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Abstract

It is shown that the b-functions for four dimensional Ns2 supersymmetric Yang–Mills theory without matter give
integral curves on the moduli space some of which are geodesics of the natural metric on the moduli space. In particular the

Ž .flow lines which cross-over from the weak coupling limit asymptotically free theory to the singular points, representing the
strong coupling limit, are geodesics. A possible connection with irreversibility is discussed. q 1998 Elsevier Science B.V.
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The purpose of this letter is to investigate the
geometrical and topological structure of the renor-
malisation flow in an exactly solved four dimen-

Ž .sional field theory Ns2 supersymmetric SU 2
w xYang–Mills theory without matter 1 . The b-func-
u 4p iefftion for the complex coupling, ts q , of this22p g eff

w xmodel was calculated in 2 and the resulting flow
diagram is shown in Fig. 1. This diagram has special
points: the weak coupling limit ts i`, the strong
coupling limit at ts0, "1 where there are singular-
ities due to extra massless degrees of freedom asso-

Žciated with composite objects monopoles and
. Ž .dyons , and the points at ts "1q i r2 where the

² 2:Higgs field f satisfies Tr f s0. The points at

1 E-mail: bdolan@thphys.may.ie.

ts"1 and ts0 are physically equivalent under
the symmetry t™tq1, as are the two points ts
Ž . ² :"1q i r2. At these last two points f /0 even

² 2: Ž .though Tr f s0, so that SU 2 symmetry is not
restored in the quantum regime, but these points are
the quantum mechanical vestige of the place where
the symmetry would be restored in the classical
theory. It will be shown that the flow lines which
cross over between all these special points are
geodesics of the Seiberg–Witten metric, but none of
the other flow lines is a geodesic. These are geodesics
with a ‘‘frictional’’ force and the geodesic nature of
the cross-over appears to be related to irreversibility
of the renormalisation flow.

Ns2 supersymmetric Yang–Mills theory has
features in common with both the standard model of

Želectro-weak theory symmetry breaking and mass
.generation by the Higgs mechanism and with quan-
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Žtum chromo-dynamics asymptotic freedom and con-
. w xfinement 1 . There are also many differences, of

course, but as a model for testing physical ideas in
four dimensions Seiberg and Witten’s low energy
effective action gives us an unprecedented arena for
experimentation. In common with QCD, Ns2 su-
persymmetric Yang–Mills theory exhibits dimen-
sional transmutation in that there exists a natural
length scale, L, at which the interactions become
strong in the sense that the dimensionless gauge

Ž .coupling, g L , becomes large. It is convenient, aseff
Ž .above, to combine g L with an effective topolog-eff

Ž .ical parameter, u L , into the complex quantityeff

u 4p ieff
ts q .22p geff

The value of t depends on Higgs expectation value,

a 0² :f s ,ž /0 ya

which is not fixed in this theory but can take on a
range of values corresponding to different vacua.

² 2:Using the gauge invariant quantity usTr f to
parameterise the symmetry breaking, Seiberg and
Witten determined the zero momentum functional
form of the dimensionless quantity t as a function of
urL2 'u,˜

iK X

ts 1Ž .
K

XŽ 2 . Ž X 2 . Ž 2 .where K k sK k and K k are standard el-
X 22 2 2w xliptic integrals 3 , with k s1yk and k s uq 1˜

Ž Ž . w x.the explicit form 1 can be found in the review 4 .
It is then straightforward to obtain the b-functions of

w xthe theory, including non-perturbative effects 2 ,

Et Et
< <b t :sL sy2uŽ . u L

EL E u

1 q 4 qq 4
3 4

s . 2Ž .4 4ž /ip q q3 4

The q-functions used here are, in the conventions of
w xWhittaker and Watson 3 ,

`
21r4 2 n 2 nq s2 q 1yq 1qq 3Ž .Ž . Ž .Ł2

ns1

`
22 n 2 ny1q s 1yq 1qqŽ . Ž .Ł3

ns1

`
22 n 2 ny1q s 1yq 1yqŽ . Ž .Ł4

ns1

with qsep it.
These b-functions represent a vector flow, bs

E E Ž .b qb , on a one complex dimensional mani-Et Et

fold, parameterised by t , which has the topology of
w xa sphere with three holes 1 . The flow is most easily

visualised by noting that it is radial in the u-plane˜
Ž .by definition and then transforming to the t-plane.
The b-function is singular at ts"1,0 and vanishes

1 Ž .at ts "1q i . This last point corresponds to2

us0, which is the point at which one would have
as0 classically, restoring the gauge symmetry to

Ž . < <the full SU 2 , but quantum mechanically a has a
Ž .lower bound f0.7628 so as0 can never be

reached in the quantum regime. Nevertheless the
< <point us0 corresponds to the minimum value of a

in the quantum theory 2.
Note that this vector flow represents a real physi-

Žcal flow that follows from changing L at fixed u or
.u at fixed L . It is thus similar in spirit to the

Callan–Symanzik flow of Q.E.D., which one obtains
by changing the physical electron mass. Here physi-

Žcal masses are also being varied, since u and thus
.a is changing at fixed L.

The question posed here is, how does the above
flow relate to the geometry of the punctured sphere?
Seiberg and Witten also described a metric on the

Ž .punctured sphere which is compatible with the G 2
action on the upper half t-plane. In terms of the
Higgs expectation value, a,

2ds s Imt dada . 4Ž . Ž .SW

Using t co-ordinates this is

q 4q 4
3 4 22 2 < <ds sp Imt dt dt , 5Ž . Ž .SW 2q2

or in u-co-ordinates

X X1 K KqK KŽ .
2ds s dudu . 6Ž .SW 2 ''p 1qu 1qu

2 I am grateful to Denjoe O’Connor for useful discussions on
this point.
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The relationship between the Seiberg-Witten met-
ric above and the Poincare metric on the upper´
half-plane,

1
2ds s dt dt , 7Ž .P 2ImtŽ .

w xwas discussed in 5 .
Physically the Seiberg–Witten metric seems to be

the more relevant – it gives rise to a positive Ricci
curvature which diverges at ts"1 and 0, reflecting
the singularities at these points,

1 q 2
2 2< <Rs , 8Ž .3 4 42 q qp ImtŽ . 3 4

and R tends to zero in the weak coupling limit,
t™ i`. The boundaries of the fundamental region
Ž .Fig. 1 are clearly geodesics of the Poincare metric´
and it is natural to ask if this property also holds for
the Seiberg–Witten metric. A detailed calculation
shows that it does! Indeed the only flow lines of the
figure that are geodesics of the Seiberg–Witten met-
ric are the bold lines which cross-over between the

1 Žspecial points ts"1, ts0, ts i` and ts "12

.q i .
1To prove that the lines ts is, ts1q is, ts q2

Ž .is where s is a real parameter are geodesics, con-
sider the geodesic equation for a vector field js

E Et tj qj ,Et Et

= jslj . 9Ž .j

Explicitly, for the Levi–Civita connection associ-
ated with a Kahler metric,¨

Ej t Ej t

t t t t t tj qj qG j j sljttEt Et

t tEj Ej
t t t t t tj qj qG j j slj . 10Ž .ttEt Et

t tŽ .For a holomorphic vector field, j sj t and j

sj t , with j the complex conjugate of j , theseŽ .
equations reduce to

Ej
t 2j qT j sljttEt

Ej
t 2j qG j slj , 11Ž .ttEt

Ej Ejt twith the condition that ls qT js qT jtt ttEt Et

be real. For the b-function aboÕe and the connection
for the Seiberg–Witten metric this is easily checked

( )using the representation 3 for the q-functions. Since
qseyp s along ts is, qsyeyp s along ts1q is

1yp sr2and qs ie along ts q is, the reality condi-2

Ž . Ž .tions on l are readily verified using 2 and 5 . For
1 ifŽ .the circular arch ts 1qe corresponding to2

y1-u-1, a proof can be constructed using the
u-coordinate, in which one only need prove that

X XK E K qK E K 1Ž . Ž .� 4u uuG s y 12Ž .uu X X 2 uq1Ž .K KqK K

is real along the real line segment y1-u-1. This
X uy 12follows by noting that k s is real and negativeuq 1

for y1-u-1, thus K X is real on this segment, K
Žhowever is not real, but one can show using see

w x.Ref. 3

dK Eyk X 2K dK X k 2K X yEX

s , s ,
X X2 2 2 22 22k k 2k kd k d kŽ . Ž .

K XEqEXKyK XKspr2 , 13Ž .
and the fact that K X is real, that T u is in fact realuu

along y1-u-1, and thus this line segment is a
geodesic. Hence the bold lines in Fig. 1 are geodesics
in the Seiberg-Witten metric. That none of the other
flows is geodesic follows from the fact that they are
all repulsed from the singular points ts"1,0. Since
these points have infinite positive curvature any

Ž .Fig. 1. Renormalisation flow for SU 2 Ns2 supersymmetric
Yang–Mills. The thick lines boundimg the fundamental domain
are geodesic.
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geodesic would necessarily be attracted to and fo-
cused into these points, not repulsed by them.

One can actually prove a slightly stronger result.
The two form

dbsE G b c dx a ndx b 14Ž . Ž .w a b xc

Ž .does not vanish in general the flow is not gradient ,
but it does vanish along the thick lines of the figure.
On a Kahler manifold this is equivalent to saying¨

Ž t .that E G b is real on these lines. Combined witht tt

the observation that the b-functions are conformally
Killing for the Seiberg–Witten metric it can be
shown that this in fact implies that these lines are
geodesics.

It seems possible that these observations may be
related to irreversibility of the flow. Gradient flow,

w xwith a positive definite metric 6 , automatically
w ximplies a c-theorem 7 . If the flow is gradient then

Ž .there exists a differentiable function, U g , such that
a ab Ž .b sG E U g and sob

dU gŽ .
a a bsb E U g sb b G G0 15Ž . Ž .a abdln L

Ž .for a positive definite metric. The function U g is
therefore monotonic along the flow trajectories. The
flow here is not gradient with the Seiberg–Witten
metric in general, but the two form db does vanish
along the lines of cross-over, which then implies that
these lines are geodesics. Geodesic cross-over, when
the metric is obtained as the second derivative of the
effective potential, has been noted in some other

Žmodels specifically Gaussian models in 2FdF4
w x Ž .and the 1yd Ising model 8 , and the O N model

w x.in 3yd for large N 9 where it can be related to a
maximisation of the relative entropy. Thus it seems
plausible that geodesic flow is related to an increase
in relative entropy along the lines of crossover. Note
that geodesic flow does not imply reversibility – the

geodesic flow described here is more closely analo-
gous to motion under friction. The ‘‘frictional’’ force
along the trajectories is represented by the function

Ž .l in Eq. 11 . In the weak coupling regime l™y1
while at the singular points l™y`, indicating that
the frictional force becomes infinite at these points.
It has been checked numerically that l is always
negative along the thick lines of Fig. 1 – in line with

Žthe concept of irreversibility in the infra-red small
.u direction.

It would obviously be of interest to explore these
matters in the case of supersymmetric theories with
matter and for more general gauge groups, but the

Ž .absence of such concrete formulae as Eq. 1 , would
probably render the pedestrian analysis presented
here inadequate to the task – one would need more
sophisticated mathematical techniques.
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