
original article© The American Society of Gene & Cell Therapy

T-cell depletion therapy is used to prevent acute allograft 
rejection, treat autoimmunity and create space for bone 
marrow or hematopoietic cell transplantation. The 
evolved response to T-cell loss is a transient increase in 
IL-7 that drives compensatory homeostatic proliferation 
(HP) of mature T cells. Paradoxically, the exaggerated 
form of this process that occurs following lymphode-
pletion expands effector T-cells, often causing loss of 
immunological tolerance that results in rapid graft rejec-
tion, autoimmunity, and exacerbated graft-versus-host 
disease (GVHD). While standard immune suppression 
is unable to treat these pathologies, growing evidence 
suggests that manipulating the incipient process of HP 
increases allograft survival, prevents autoimmunity, and 
markedly reduces GVHD. Multipotent adult progenitor 
cells (MAPC) are a clinical grade immunomodulatory 
cell therapy known to alter γ-chain cytokine responses 
in T-cells. Herein, we demonstrate that MAPC regulate 
HP of human T-cells, prevent the expansion of Th1, 
Th17, and Th22 effectors, and block the development 
of pathogenic allograft responses. This occurs via IL-1β-
primed secretion of PGE2 and activates T-cell intrinsic 
regulatory mechanisms (SOCS2, GADD45A). These data 
provide proof-of-principle that HP of human T-cells can 
be targeted by cellular and molecular therapies and lays 
a basis for the development of novel strategies to pre-
vent immunopathology in lymphodepleted patients.
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INTRODUCTION
Patients receiving T-cell depletion therapy often experience tissue 

destructive immunopathology due to iatrogenic dysregulation of 

T-cell homeostasis.1–7 Growing evidence suggests that modulation 

of incipient T-cell repopulation can target immune dysregulation 

to prevent allograft loss, GVHD, or autoimmunity.8–11 This study 

examines the potential of a clinical grade cell therapy to block the 

development of disease-causing pathogenic effector T-cells in a 

relevant human model system.

T-cell homeostasis requires a balance in programs underly-

ing activation and apoptosis with those controlling quiescence 

and survival. In healthy, T-cell replete animals naive CD4 T-cells 

are sustained by self-peptide and IL-7 signals.12–14 However, upon 

T-cell depletion, loss of IL-7R-bearing T-cells leads to an increase 

in IL-7 concentration that facilitates stimulatory, rather than tonic 

responses to self-peptide, driving homeostatic proliferation (HP) 

of mature T-cells.12,13,15,16 The HP of naive CD4 T-cells proceeds 

with slow kinetics and results in the formation of effector mem-

ory-like progeny; a process that primes/expands predisposing 

T-cell clones to exacerbate GVHD, accelerate allograft rejection 

and cause autoimmunity.17–22 Similar mechanisms govern HP of 

memory cells.14

In the clinic, lymphodepletion is increasingly used to suc-

cessfully prevent acute allograft rejection, remedy autoimmune 

pathology, and create space for bone marrow transplantation 

(BMT). While immune reconstitution is an immediate concern 

for lymphopenic patients, growing evidence suggests that lympho-

penia-induced immune dysregulation significantly contributes to 

patient mortality and  morbidity.1,4,5,23–25 During immune recon-

stitution, acutely lymphopenic patients experience an increase in 

circulating IL-7 levels, and have a T-cell compartment character-

ized by low naive cell frequency and a predominance of rapidly 

dividing, proinflammatory (Th1) memory T-cells, displaying 

STAT5 phosphorylation and decreased activation threshold.23,26,27 

TCR specificity may also become highly restricted and auto- or 

allo-reactive T-cells appear to undergo preferential expansion.2,3,28 

Consequently, clinical CD4 T-cell lymphopenia (and/or IL-7 

levels) associates with increased mortality, exacerbated GVHD, 

enhanced allograft rejection, and causes autoimmunity.1,4–7,29–31 

These pathologies present a challenge since systemic immuno-

suppressive drugs fail to target the IL-7 pathway, and HP-induced 

effector memory cells are resistant to steroids or costimulatory 

blockade.3,7,32 Furthermore, recovery of normal T-cell homeo-

stasis takes 2–20 years and is dependent upon the contribution 

of an often involuted or damaged thymus.24,25 Taken collectively, 
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these data indicate that lymphodepletion causes acute and chronic 

immunopathology via IL-7-mediated HP and enhanced inflam-

matory potential of pre-existing auto- or alloreactive T-cells. 

Targeting the IL-7 axis or HP has recently shown marked thera-

peutic potential in rodent models of autoimmunity, GVHD, and 

solid organ transplant.8,9,11,33 However, despite an urgent clini-

cal need and clear rationale, the mechanisms regulating HP are 

poorly understood and there are no therapies to treat effector 

T-cell driven immunopathology in lympodepleted patients.

Multipotent adult progenitor cells (MAPC) are a class of in 
vitro expanded, adherent, bone marrow-derived precursors.34 

Both MAPC and prototypic mesenchymal stromal cells (MSC) 

have demonstrable immunomodulatory potential in vivo, sup-

press human T-cell activation, and have a record of safety in 

clinical trials.35–39 The vast majority of ongoing trials evaluating 

MSC/MAPC are conducted within T-cell depleted cohorts, and 

anecdotal clinical and preclinical data suggest efficacy may relate 

to an impact on HP.40,41 However, a formal mechanistic study 

of how these cells impact the process of HP has yet to be com-

pleted. We and others have recently shown that MSC and MAPC 

control T-cell responses to γ-chain cytokines by an unknown 

mechanism.35,42 In this study, we use a robust human model to 

test the hypothesis that MAPC (and MSC) can block IL-7-driven 

expansion of pathogenic effector T-cells via defined molecular 

mechanisms and aim to identify novel pathways, drug targets or 

biomarkers to assist in the development of therapies that could 

prevent immunopathology in T-cell depleted patients.

RESULTS
MAPC suppress HP in a monocyte CD4 T-cell 
coculture system
To study HP of human CD4 T-cells, we developed a reductionist 

coculture system based on a previously described model.43 Cell 

trace violet (hereafter CTV)-labeled CD4 T-cells were combined 

with autologous CD14+ monocytes in the presence of exoge-

nous IL-7 and dye-dilution measured at 6 days. Neither IL-7 or 

autologous monocytes alone were sufficient to induce HP of CD4 

T-cells, which occurred without exception when IL-7 and mono-

cytes were used in combination (Figure 1a). This was largely 

dependent upon T-cell contact with APC (Figure 1b), proceeded 

with kinetics that were consistent with the documented pace of 

slow  HP  (1–4 divisions in 6 days), and exhibited dye-dilution 

patterns distinct to antigen-specific or polyclonal activation 

(Figure 1a; Supplementary Figure S1a). Thus, the monocyte-co-

culture system faithfully emulates the characteristic features of HP 

that have been observed in vivo.

Figure 1  Development of a monocyte-CD4 T-cell coculture system to study multipotent adult progenitor cells (MAPC) suppression of IL-7-
driven HP. Untouched, violet labeled CD4+ T-cells and CD14+ autologous monocytes were sorted from peripheral blood mononuclear cells and 
cocultured (10:1) in the presence and absence of IL-7 (50 ng/ml) and MAPC (1:2) for 6 days. (a) Representative fluorescence-activated cell sorting 
plots displaying proliferation of CD4 T-cells under the conditions indicated. (b) Proliferation of responding CD4 T-cells in the presence of IL-7 and 
monocytes either in contact (IL-7+Mo) or with T-cells and monocytes separated via a 1.0 μM pore transwell insert (IL-7+Mo, TW). (c) Proliferation of 
responding T-cells in the presence of IL-7 upon coculture with autologous monocytes in the presence or absence of third party MAPC and MSC (T-cell: 
MAPC ratio of 1:2) that were derived from the same bone marrow aspirate. (d) A dose titration of MAPC was added to monocytes and CD4 T-cells 
stimulated with IL-7 as above. (e) IL-7 was added to monocytes and CD4 T-cells from six different donors as above and proliferation measured in the 
presence and absence of MAPC (ratio of 1:2). Error bars in b–d represent the mean ± SEM of three donors. *P < 0.05; **P < 0.01; ***P < 0.001. Data 
are representative of three independent experiments. CTV, cell trace violet; MSC, mesenchymal stromal cell; NS, not significant.
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As previously demonstrated, allogeneic MAPC (Figure 1a) 

and MSC (not shown) were nonimmunogenic when cultured 

alone with CD4 T-cells.35 However, addition of MSC or MAPC 

potently suppressed IL-7+Monocyte-mediated HP in a dose-

dependent manner (Figure 1c,d). We observed no statistical 

difference in the level of suppression mediated by MSC versus 

MAPC derived from the same donor (Figure 1c). This effect was 

reproducible in experiments replicated with T-cell:monocytes 

from independent blood draws of the same donor (JR, unpub-

lished data, April 2013) and T-cell:monocyte cultures from sev-

eral different individuals (Figure 1e). Suppression of HP also was 

observed with multiple independent batches of unrelated MAPC 

in combination with different responder donors (Supplementary 

Figure S1b), irrespective of HLA type (Supplementary Table 

S1). MAPC and MSC also inhibited IL-7- and IL-15-driven 

effector expansion of CD4 and CD8 T-cells in whole periph-

eral blood mononuclear cell (PBMC) cultures (Supplementary  

Figure S1c–j).

MAPC prevent IL-7-mediated enhancement of 
cytokine production in CD4 T-cells
Th1 (IFN-γ and TNFα producing), Th17 (IL-17 producing), and 

Th22 (IL-22 producing) cells are known to mediate pathology in 

allogeneic transplant and autoimmune settings via the action of 

signature proinflammatory cytokines. IL-7-driven HP has been 

shown to enhance Th1 cytokine production, yet the effect of HP 

Figure 2 Multipotent adult progenitor cells (MAPC) prevent HP-induced enhancement of effector T-cell cytokine responses. Untouched CD4+ 
T-cells were cocultured at a ratio of 1:5 with autologous monocytes in the presence and absence of IL-7 (50 ng/ml) with or without MAPC for 6 days. 
Cultures were then restimulated for 4 hours with 50 ng/ml PMA and 1 μg/ml Io. (a,d) Representative fluorescence-activated cell sorting (FACS) plots 
(MAPC at 1:2) and (b–f) bar graphs (ratios indicated) of data from ICS analysis of cocultures; gates were set on CD3+ viable cells. (g) Representative FACS 
plots and schematic of experimental design for sorted T-cell restimulation assays. CTV-labeled CD4 T-cells were cocultured with monocytes in the presence 
or absence of IL-7 as above with or without MAPC for 6 days at a low ratio of 1 MAPC: 40 CD4 T-cells. Under which conditions suppression of prolifera-
tion was minimal in the donors used. Untouched CD4 T-cells from all three conditions were FACS sorted and subsequently cocultured with allogeneic DC 
(1:8) for 72 hours. Harvested S/N were used for cytokine bead array analysis and the levels of (h) IFN-γ measured, *P < 0.05; NA, not activated; ns, not 
significant. Error bars represent the mean ± SEM of five donors. Data are representative of three independent experiments. CTV, cell trace violet; MSC, 
mesenchymal stromal cell.
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on the production of other cytokines in human T-cells is not 

entirely clear.22 As expected, IL-7-driven HP caused significantly 

elevated frequencies of Th1 cytokines IFN-γ and TNFα (Figure 

2a–c), but also increased the frequency of IL-17- and IL-22-

producing T-cells (Figure 2d–f). This effect was predominantly 

localized to divided cells, indicating that, like antigen-driven 

differentiation, effector potential increases upon cell division 

(Supplementary Figure S2a,b). MAPC coculture resulted in a 

dose-dependent suppression of all four effector cytokines, dem-

onstrating that the presence of MAPC can impede both IL-7-

driven cellular replication and the interdependent induction 

of effector memory potential (Figure 2a–f). We next examined 

whether suppression of cytokine induction was dependent upon 

inhibition of T-cell proliferation by establishing cocultures con-

taining low MAPC:T-cell ratios, under which conditions pro-

liferation was minimally affected. T-cells that had proliferated 

despite the presence of MAPC continued to exhibit diminished 

levels of IFN-γ, IL-22, and TNFα production (Supplementary 

Figure S2c,d), indicating that suppression of cytokine synthesis 

does not solely rely upon inhibition of proliferation. To test this 

in a transplantation-relevant system, we next isolated T-cells that 

had undergone HP in the presence and absence of a low ratio of 

MAPC then restimulated cells with allo-DC in secondary cul-

tures. Low ratios of MAPC lead to a significant diminution of 

inflammatory allo-responses, despite only moderately inhibit-

ing proliferation (Figure 2g,h). Thus MAPC modulation of HP 

blocks pathogenic allo-responses, and does so in a manner that 

is not dependent upon the ability to inhibit proliferation. This 

suggests that, at low ratios MAPC could prevent inflammatory 

effector cell responses while facilitating immune reconstitution. 

Finally, we tested whether MAPC suppression of was specific to 

naive or memory T cells. Both naive and memory cells exhib-

ited significant responses to IL-7 and, although the magnitude 

was greater in memory cells, MAPC suppressed proliferation and 

Figure 3 Multipotent adult progenitor cells (MAPC)-suppression of homeostatic proliferation occurs via soluble factors following monocyte-
dependent priming. (a) Schematic and (b) representative FACS plots from transwell experiments. CTV-labeled, sort purified, untouched CD4 T-cells were 
cocultured with autologous monocytes (5:1) and 50 ng/ml IL-7 and proliferation measured by dye-dilution at 6 days. MAPC (1:8) were added either in 
direct contact or in the top chamber of a transwell, either alone or in combination with additional monocytes (1:1). (c) Bar graph displaying proliferation 
of responder CD4 T-cells in the lower chamber of the transwell. (d) Schematic and (e) bar graph for culture media exchange assays. Monocytes and MAPC 
were cultured separately for 6 days (1 × 105/well) in 200 μl in 96-well plates. Alternatively, after 3 days, CM was removed from either cell type, wells were 
washed gently in media without detachment of adherent cells, then 200 μl cell free CM from MAPC added to monocytes and vice versa. All CM was col-
lected at 6 days and added to a fresh monocyte-CD4 T-cell + IL-7 coculture at 50% volume and proliferation measured at 6 days. Media alone, or MAPC 
cells (1:8) were used as controls. Error bars represent the mean ± SEM for three donors. Results are indicative of at least three independent experiments. *P < 
0.05, **P < 0.01. CM, conditioned media; CTV, cell trace violet; FACS, fluorescence-activated cell sorting; HP, homeostatic proliferation; NS, not significant.
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expression of all cytokines tested in both subsets (Supplementary 

Figure S2e,f).

MAPC suppress HP via a soluble factor following 
monocyte-dependent priming
We next sought to determine the mechanism by which MAPC 

suppressed HP. Suppression was observed through a transwell 

when MAPC and monocytes were cultured together in the upper 

chamber, but not when MAPC were cultured alone, thereby indi-

cating that suppression occurred by a soluble factor that was only 

synthesized when MAPC and monocytes were in close proxim-

ity (Figure 3a–c). In agreement with this, cell-free conditioned 

media from MAPC-monocyte cocultures, but not MAPC alone 

suppressed HP (Supplementary Figure S3a,b). To determine if 

the soluble mediator of HP suppression was generated by MAPC 

following monocyte priming, or from MAPC-conditioned mono-

cytes, we next compared the suppressive activity of several cell-

free supernatants generated via serial media exchange (Figure 3d). 

Suppression of HP was exclusively observed using conditioned 

media (CM) from MAPC pretreated with monocyte supernatant 

(Figure 3e), demonstrating that, MAPC suppress HP via a soluble 

factor posterior to priming mediated by high local concentrations 

of a secreted, monocyte-derived molecule.

MAPC suppress HP via an indoleamine 
2,3-deoxygenase (IDO)-independent mechanism
We and others have previously demonstrated that IDO-mediated 

tryptophan catabolism is required for MAPC/MSC suppression 

of antigen-driven T-cell responses.35,37 Therefore, we examined 

whether MAPC suppression of HP occurred via IDO by conduct-

ing HP and anti-CD3/28-driven proliferation assays using the 

monocyte-T-cell coculture system in the presence and absence of 

the chemical inhibitor 1-methyl-L-tryptophan (1-MT) (Figure 4). 

As observed previously, T-cell proliferation in anti-CD3/28-stim-

ulated cultures was potently suppressed by MAPC, consistent with 

IDO-mediated tryptophan catabolism and production of kyn-

urenine (Figure 4a,c). Addition of 1-MT resulted in restoration of 

tryptophan levels and a significant recovery in T-cell proliferation 

(Figure 4a,c). In stark contrast, when MAPC were added to HP 

cultures neither tryptophan consumption nor kynurenine pro-

duction was apparent, coincident with negligible effects on either 

molecule in the presence of 1-MT and a failure of the inhibitor 

to rescue T-cell proliferation (Figure 4b,d). Therefore, unlike anti-

CD3/28 responses, MAPC inhibit HP via an IDO-independent 

mechanism, suggesting that MAPC suppress heterologous T-cell 

responses via context-dependent mechanisms. MAPC suppression 

of HP was subsequently found to be independent of IL-10, TGFβ 

and IL-6 in antibody blocking experiments (Supplementary 

Figure S3c).

MAPC suppress HP via prostaglandin E2 (PGE2) 
following monocyte priming
An established property of MAPC (and MSC) is the ability to 

produce the immunoregulatory molecule PGE2, which can sup-

press GVHD in vivo.41,44 To assess a role for any potential pros-

tanoid in MAPC-mediated suppression of HP, we first measured 

concentrations of these molecules in the coculture supernatants 

from MAPC that were untreated or exposed to monocytes and/

or T-cells. Levels of PGF2a, PGI2, PGD2, TXA2 were undetect-

able or close to background and where present were not induced by 

monocyte or monocyte-T-cell coculture, while PGE2 was consis-

tently and potently produced by MAPC under the same conditions 

(Supplementary Figure S3d,e). Similarly MAPC produced PGE2 

after treatment with monocyte CM (Figure 5a), coincident with 

induction of suppressive potential observed above (See Figure 3e).  

Monocytes induced MAPC to produce PGE2 at least partially via 

IL-1β, since treatment of MAPC with rhIL-1β but not IFN-γ- or 

TNFα-induced PGE2 (Figure 5b) and PGE2 secretion could be sig-

nificantly reduced by the inclusion of anti-IL-1β blocking antibody 

in monocyte-MAPC cocultures (Figure 5c). Addition of PGE2 to HP 

cultures lead to dose-dependent suppression of proliferation, reca-

pitulating the effect of PGE2-containing supernatant (Figure 5d). 

We next blocked PGE2 production using the COX-2 inhibi-

tor NS-398 in anti-CD3/28 (Figure 5e,f) and IL-7 (Figure 5g,h)  

stimulated cultures, leading to significant depletion of PGE2 levels 

(Figure 5e,g). In line with a dominant role for IDO, MAPC sup-

pression of CD3/28-driven proliferation was unaffected by PGE2 

Figure 4 Multipotent adult progenitor cells (MAPC) suppress homeo-
static proliferation via an IDO-independent mechanism. Monocyte-CD4 
T-cell coculture experiments were set up as above with stimulation via 1:10 
anti-CD3/28 (a,b) or 50 ng/ml IL-7 (c,d) in the  presence and absence of  
1:4 MAPC and 1 mmol/l 1-MT. Proliferation (b,d), tryptophan and kyn-
urenine (a,c) were measured by dye dilution and mass spectrometry, 
respectively at 6 days. Error bars represent the SEM of two (a,c) and three 
(b,d) donors. *P < 0.05. IDO, indoleamine 2,3-deoxygenase.
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blockade (Figure 5f). However, NS-398 treatment completely 

ablated the suppression of HP by MAPC (Figure 5h). Importantly, 

the activity of NS-398 could be reversed by supplementation of 

MAPC+NS-398 treated cocultures with PGE2, confirming path-

way specificity (Figure 5i). Therefore, PGE2 is induced at least par-

tially by IL-1β-dependent monocyte priming and is accountable 

for MAPC suppression of IL-7-induced CD4 T-cell proliferation. 

Given that suppression of cytokine production by MAPC appeared 

to occur independently of effects on proliferation, we tested if PGE2 

was also responsible for MAPC-mediated attenuation of IL-7-

enhanced cytokine synthesis. Interestingly, whilst NS-398 ablated 

suppression of proliferation, COX-2 inhibition only partially recov-

ered cytokine production; thereby indicating that suppression of 

cytokine induction may involve additional pathways (Figure 5j).

Suppression of HP activates T-cell intrinsic regulatory 
mechanisms
We next sought to determine the impact of HP suppression on 

T-cell molecular dynamics. Our experimental design was based 

upon the rationale that undivided T-cell populations within 

MAPC-containing cultures would comprise an admixture of rest-

ing T-cells, cells that had failed to respond to IL-7 stimulation, 

those that were engaged to proliferate and those that had under-

gone suppression. Therefore, to resolve a gene signature specific 

to suppressed cells we performed dye-dilution experiments and 

compared the gene expression profile of FACS-sorted resting, non-

responding and proliferating cells to that of MAPC-suppressed 

cells (Figure 6a). Highly reproducible levels of suppression (79% ±  

3.1) were observed in all three experiments using independent 

donors to source RNA (Supplementary Figure S4a). Initially, 

unbiased principal component analysis independently grouped 

samples from each of the four conditions into discrete clusters, 

indicating treatment-specific differences in global gene expression 

(Figure 6b). Proliferated cells showed the highest degree of vari-

ance with respect to the other three groups, whilst suppressed cells 

exhibited a closer relationship to nonresponding, and resting cells 

(Figure 6b). Relative to resting cells, IL-7 treatment resulted in the 

significant differential upregulation of genes involved in cell-cycle 

Figure 5 Multipotent adult progenitor cells (MAPC) suppress HP via PGE2. (a) PGE2 levels were measured in supernatants from 6-day cultures 
containing monocytes, MAPC, monocytes treated with 3-day MAPC CM or MAPC treated with 3-day Monocyte CM (see legend of Figure 3d for more 
detail). (b) PGE2 levels were measured in 6-day supernatants from MAPC cultures treated with the cytokines indicated at 25 ng/ml or (c) cocultures 
containing allogeneic monocytes (1:2) in the presence or absence of 5 μg/ml IgG1 isotype control or anti-IL-1β antibodies. (d) Proliferation in IL-7-driven 
CD4 T-cell monocyte cocutlures was measured in the presence and absence of exogenous PGE2 at the concentrations indicated. (e–h) Monocyte: CD4 
T-cell cocultures (5:1) were stimulated with 1:10 anti-CD3/28 (e,f) or 50 ng/ml IL-7 (g,h) and PGE2 levels (e,g) or proliferation (f,h) measured at 6 days 
in the presence and absence of 5 μmol/l NS-398. (i) IL-7 HP cocultures were treated with or without 1:8 MAPC in the presence and absence of 5 μmol/l 
NS-398 and/or 50 ng/ml PGE2. (j) % Suppression of proliferation and IFN-γ production were measured according to dye-dilution and ICS after PMA/Io,  
respectively for monocyte+IL-7 stimulated T-cells in the presence or absence of MAPC treated with or without NS-398 as above. Error bars represent the 
SEM for two (a) or three (b,c) experiments or three donors (e–j). *P < 0.05; **P < 0.01. Data are representative of three independent experiments. CM, 
conditioned media; HP, homeostatic proliferation; NA, not activated; NS, not significant.
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regulation and DNA biosynthesis (10 most upregulated shown in 

Supplementary Table S2), confirming that the experimental sys-

tem could be successfully applied to extract biologically relevant 

treatment-specific differences in gene regulation. We next com-

pared global gene expression in MAPC-suppressed T-cells to that 

of all other groups. Fifty-nine genes were significantly (P < 0.05) 

upregulated in MAPC-treated, undivided T-cells (heat map in 

Figure 5c shows the 40 most markedly upregulated loci, raw data 

online at www.ebi.ac.uk accession number E-MTAB-3228). Twelve 

of these genes exhibited a reproducibly higher level of expression 

in MAPC-suppressed cells relative to all other treatment groups for 

all 3/3 donors (example of validation provided in Supplementary 

Figure 4b). These 12 loci (EGR1, FOS, DACT1, TXNIP, GPT2, 
SOCS2, PSAT1, CEBPB, TBL1X, SLC3A2, GADD45A, PTGS2, 

Table 1) could be functionally classified according to roles in 

transcriptional regulation, cellular metabolism/stress and PGE2 

responsiveness (Figure 6d; Table 1). To confirm these data, replicate 

experiments were performed with PGE2-suppressed CD4 T-cells 

Figure 6 Suppression of HP activates T-cell intrinsic regulatory mechanisms. (a) CD4 T-cells were cocultured with autologous monocytes (5:1) 
in the absence of simulation (header NA, not activated), with 50 ng/ml IL-7 (header IL-7) or with 50 ng/ml IL-7 plus 1:4 MAPC for 6 days (header 
IL-7+MAPC. Cells from each condition were FACS sorted as four populations representing resting (Rest.), proliferated (Prolif.), nonresponding (NR.), 
or suppressed (Supp.) cells as indicated. Experiments were completed for three independent donors and RNA used for microarray analysis. (b) 
Unbiased clustering of samples from microarray data via principal component analysis. (c) Heat map showing comparative analysis of the 40 most 
differentially expressed genes significantly upregulated (P < 0.05) in MAPC (suppressed) samples versus the mean expression of all three other groups 
ordered by hierarchical clustering of samples (columns) and fold change (rows). Twelve most consistently upregulated genes for 3/3 donors for all 
Illumina probe sets are marked (*). (d) Venn diagram displaying functional classification of the 12 most consistently upregulated genes in MAPC-
supp. cells; the number of genes within each functional category is shown, those common to multiple categories are indicated in the overlapping 
sections. (e) Confirmation of microarray data by qRT-PCR showing relative expression levels of three genes denoted in the y-axis of each bar graph. 
The fold expression value relative to resting cells (NA) for all other groups is shown. Bar graph in bottom right shows expression index of all three 
genes combined as a single value. Data were normalized to B2M (shown) and EIF4a expression with similar results. *P < 0.05, NS, nonsignificant. 
Error bars represent the mean ± SEM of three donors. NA, not activated (i.e., Rest.). CTV, cell trace violet; FACS, fluorescence-activated cell sorting; 
HP, homeostatic proliferation; MAPC, multipotent adult progenitor cells; NS, not significant.
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used as an additional control (Supplementary Figure S4c,d).  

qRT-PCR analysis confirmed that the average expression of 8/8 

loci tested was higher in MAPC-suppressed T-cells (Figure 6e; 

Supplementary Figure S4e). Three of these genes, EGR1, SOCS2, 

and GADD45a were expressed at significantly higher levels in sup-

pressed T-cells, relative to each of the three other treatment con-

ditions for 3/3 donors, comprising a core index to identify CD4 

T-cells suppressed by PGE2 or MAPC during HP (Figure 6e). In 

seven out of eight of the genes tested by qPCR, there was a trend 

for expression to be higher in MAPC-suppressed T-cells versus 

those inhibited by PGE2 (significant for GADD45a) including 

3 genes (PSAT1, GPT2, SLC3A2) that were exclusively induced by 

MAPC (Figure 6e, Supplementary Figure S4e), suggesting that 

HP suppression by MAPC induces both PGE2-dependent and 

PGE2-independent gene induction. Thus, despite some discern-

able differences, suppression of HP by MAPC or PGE2 leads to a 

conserved pattern of molecular reprograming in CD4 T-cells.

DISCUSSION
T-cell depletion therapy is increasingly used in the clinic for a 

multitude of transplant and autoimmune indications. The conse-

quent phenomenon of HP is responsible for both immune recon-

stitution and immunopathology. However, a human model of HP 

has not previously been reported, and there is a paucity of data 

regarding the regulation of this process, highlighting a scientific 

gap that underpins an urgent, unmet clinical need. In line with 

rodent studies, our data indicate a two-signal model in which both 

cytokine and self-peptide signals are required to drive human HP, 

suggesting that pharmacological inhibition of TCR and/or cyto-

kine signals may successfully modulate cell division and effector 

potential.14 Furthermore, the polyfunctional inflammatory profile 

we discovered for HP-induced T-cells (IFNγ, IL-17, IL-22 induc-

tion) extends beyond the previously described Th1 bias, providing 

a potential pathological basis for the spectrum of lymphopenia-

associated tissue destruction observed in the clinic.

This report is the first example of context-dependent sup-

pression mechanisms being deployed by MSC/MAPC according 

to the nature of the ongoing T-cell response. Our results col-

lectively illustrate that PGE2 and IDO are coordinately induced 

during antigen-driven responses, where IDO plays a predomi-

nant role. In contrast, only PGE2 is induced during IL-7-driven 

proliferation, where it is necessary and sufficient for regulation of 

HP with a subsequent impact on antigen-driven responses. It is 

not presently clear whether IDO is able to suppress HP, since this 

enzyme is not active in our HP model; however it is noteworthy 

that in vivo MAPC-derived PGE2 alone is able to block GVHD 

in the absence of IDO, potentially via effects on HP.41 Moreover, 

though it is most likely that the low levels of IFN-γ in HP cultures 

account for a lack of IDO induction, the proliferation rate/meta-

bolic demand of dividing T-cells, or involvement of APC function 

may also be key factors determining system-dependent IDO ver-

sus PGE2 dominance.

The induction of PGE2 target genes in our microarray suggests a 

direct effect of the molecule on T-cell populations. However, PGE2 is 

known to alter APC function, including that of monocytes, thus the 

contribution of direct (MAPC>T cell) or indirect (MAPC>Mono>T-

cell) suppression of HP on the arrest or molecular reprogramming 

of T-cells is not presently clear.37 GADD45a, SOCS2, and EGR-1 were 

all consistently induced by MAPC or PGE2 during suppression 

of proliferation. However, compared to PGE2, MAPC induced an 

increased breadth and magnitude of gene expression during T-cell 

regulation (e.g., induction of PSAT1, GPT2, SLC3A2). These loci may 

Table 1 List of the 12 consistently upregulated genes in MAPC-suppressed CD4 T-cells versus all other conditions as determined by microarray analysis

Gene symbol Gene name Fold P value Biological process function

EGR1* Early growth response protein-1 3.9851 0.001440256 Zinc finger transcription factor, interacts induced by PGE2.

FOS FBJ murine osteosarcoma viral 

oncogene homolog

3.76432 0.002126604 Transcription factor, forms the hetero dimer AP-1 with 

JUN.

DACT1 Dishevelled-binding antagonist of 

β catenin 1

2.71704 0.001070045 Inhibitor of Wnt signaling.

TXNIP Thioredoxin interacting protein 2.50754 0.001613713 Cellular redox, cell metabolism, Transcriptional repression.

GPT2 Glutamic pyruvate transaminase 

(alanine aminotransferase) 2

2.31766 0.000651333 Reactive to metabolic stress, 

SOCS2* Suppressor of cytokine signaling 2 2.31563 0.011565039 IGF1R signaling, Treg stability/function, Th2 function.

PSAT1 Phosphoserine aminotransferase 1 2.04284 3.36E-05 Serine biosynthesis 

CEBPB CCAAT/enhancer binding protein  

(C/EBP), β
2.14418 0.000187675 bZIP transciption factor, regulator of immune and 

inflammatory function genes.

TBL1X Transducin (β)-like 1X-linked 1.99704 0.000190799 Nuclear corepressor component of the SMRT/NcoR 

transcriptional repression machinery.

SLC3A2 Solute carrier family 3 (amino acid 

transporter heavy chain), member 2

1.73587 1.66E-05 L-type amino acid transport.

GADD45A* Growth and DNA damage inducible α. 1.62498 7.74E-05 T cell specific inhibitor of p38, suppression of TCR 

signaling and IFN-γ production, controls autoimmunity.

PTGS2 Prostaglandin-Endoperoxide Synthase 2 1.61094 0.0006221 Inducible production of PGE2, immune modulation and 

inflammation.

*Genes validated as significant using qRT-PCR.
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be involved in the suppression of cytokine synthesis, which was not 

a potent function of PGE2. It remains interesting that at lower ratios 

MAPC inhibited cytokine induction but not proliferation. Similarly, 

MAPC exerted selective effects on cytokines; suppressing IFNγ, 

TNFα, and IL-22 but not IL-17 in divided cells. These results may 

reflect preferential inhibition of IL-7 versus TCR signals or selective 

interference of transduction events within the IL-7 signaling cascade 

(e.g., JAK1/3, STAT 1/3/5 phosphorylation). To this end, GADD45a 

is a known inhibitor of T-cell function, operating in part via p38 

kinase blockade.45 Given that p38 kinase is involved in the prolifera-

tive response to IL-7, it remains a strong possibility that MAPC (and 

PGE2) suppress HP via GADD45a-mediated p38 kinase attenua-

tion.46 Similarly, SOCS2 maintains Treg stability and an anti-inflam-

matory phenotype by preventing the induction of proinflammatory 

cytokines and thus may directly contribute to MAPC or PGE2 T-cell 

inhibition.47 On aggregate, the coordinate expression of SOCS2 

and GDD45a may represent a molecular basis for HP suppression, 

but also form part of a general T-cell tolerance signature, represent 

MAPC-specific biomarkers, or serve as therapeutic targets for future 

immunotherapy development.

T-cell depletion is currently an integral component of 

life-sparing transplantation regimens. However, this strategy 

introduces a wealth of acute and chronic immunological com-

plications that are clinically challenging due to risks associated 

with both immune insufficiency (e.g., opportunistic infection 

and  malignancy) and immunopathology (e.g., graft rejection 

and autoimmunity). For example, in allogeneic BMT/HSCT 

lymphopenic hosts require immune reconstitution to prevent 

reactivation of latent viruses and malignant disease relapse, 

yet the major cause of patient mortality, acute GVHD, neces-

sitates potent prophylactic immune suppression. This complex 

patient need is not only unmet, but likely exacerbated by com-

mon pharmacologics that fail to prevent effector cell expansion 

and/or limit immune reconstitution or competency.3,32 Thus, a 

revised therapeutic paradigm is required to treat T-cell-depleted 

hosts, in which context IL-7-driven HP appears a suitable target. 

In the clinic, delayed administration of rhIL-7 (e.g., +100 days 

post BMT) can safely boost immune recovery in patients with-

out historical or current GVHD, while day +7–14 post-BMT 

IL-7 levels associate with acute GVHD. In contrast, prophylactic 

blockade of IL-7 can prevent GVHD in vivo.9,29,48 Thus, manipu-

lation of the IL-7 axis offers great therapeutic promise but must 

be undertaken in a patient, time, and indication-specific man-

ner. We and others have demonstrated efficacy of cell therapies 

in rodent transplant or GVHD models resulting from modified 

cytokine or antigen-driven T-cell  proliferation.33,49–51 Our results 

herein suggest clinical grade MAPC, a therapy active in clini-

cal trials of T-cell-depleted cohorts, may represent an ideal can-

didate for human HP modulation. A key finding in support of 

this is that low ratios of MAPC can block IL-7 driven generation 

of pathogenic cytokine responses without affecting T-cell pro-

liferation, thereby hitting a potential “sweet spot” for normal-

ized immune reconstitution. Similarly, PGE2 has been shown to 

improve T-cell reconstitution, suggesting that therapies induc-

ing this molecule (including MAPC or novel inhibitors) may 

simultaneously promote naive cell export and suppress effector 

cell expansion.1,52,53 However, implementing this clinically will 

require future investigation and considerable optimization of 

treatment regimens.

The efficacy of MAPC to suppress HP in vivo will likely depend 

on the interdependent variables of route/time of administration, 

homing, cytokine environment and cellular milieu. Our data 

implies that the presence of APC are crucial in licensing MAPC 

and potentially in modulating the T-cell response. Indeed MSC/

MAPC efficacy has been linked to induction of regulatory cell 

populations (e.g., MDSC, M2 macrophages, tDCs, and Tregs) in 
vivo.37,54 Our system also models a proximal interaction of MAPC, 

monocytes, and T-cells, emulating an in vivo model in which 

MAPC-derived PGE2 suppression of GVHD was only observed 

upon delivery of cells to sites of allo-priming.41 Taken collectively, 

we propose that local delivery of MAPC to the spleen, lymph node 

or bone marrow early after depletion or alongside transplantation 

would maximize the chance for licensed production of PGE2 (and 

possibly IDO), induction of infectious tolerance via APCs, and 

inhibition of IL-7 (or IL-15) effector cell expansion. Indeed, our 

preliminary preclinical work suggests that MAPC can significantly 

reduce IL-7-mediated T-cell derived IFN-γ and ki67 in vivo in a 

manner that may be dependent upon specific routes of admin-

istration and patterns of biodistribution (F. Carty, J. Reading, K. 

English, unpublished data, June 2015).

The present study adds to a growing body of clinical and pre-

clinical data, which highlights that targeting of cytokine, and not 

just antigen-driven T-cell responses can influence fundamental 

therapeutic processes relevant to a broad spectrum of clinical 

indications. The cellular and molecular features of human HP 

identified here may serve as novel targets for future immuno-

therapy development, while clinical strategies deploying MSC/

MAPC, PGE2 or GADD45a or SOCS2 inducing agents could pre-

vent effector T-cell mediated immunopathology, such as that seen 

downstream of IL-7 in T-cell depleted patients.

MATERIALS AND METHODS
MSC and MAPC generation. MAPC used in this study were clinical grade 

MultiStem cells. MSC were generated in parallel. MAPC and MSC used 

throughout the majority of this study were manufactured by Athersys 

(Cleveland, OH) from a single-donor bone marrow aspirate, from a fully 

consented 21-year-old Caucasian male donor and processed according to 

the previously described methods.35 Three subsequent MAPC batches from 

unrelated donors were used to verify results (Supplementary Figure S1b).

Cell culture. PBMC were isolated from anonymous leucocyte cones of 

healthy blood donors that had given informed consent (National blood 

service, NHS, UK) using density-gradient centrifugation with Lymphoprep 

(Axis Shield, Oslo, Norway) then labeled with 1 μmol/l cell trace vio-

let according to the manufacturer’s instructions (Life Technologies, 

Grand Island, NY) and cryopreserved as previously described.35 For 

monocyte-CD4 T-cell coculture, see information in figure legends and 

Supplementary Methods. All cultured cells were incubated in X-vivo-15 

media (Lonza, Basel, Switzerland) containing penicillin-streptomycin (100 

μg/ml) and amphotericin-B (both from Life Technologies) at 37 °C, 5% 

CO
2
, using 96-well round bottom plates with or without 1.0 μM transwell 

chambers (Corning, Corning, NY, USA). For details on tissue HLA geno-

typing of MAPC and responder donors, see Supplementary Methods.

IDO, PGE2, and antibody blocking assays. IDO and PGE2 inhibition 

assays and PGE2 addition experiments were carried out as indicated in 

the figure legends. For reagent information, see Supplementary Methods.
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PGE2 ELISA. Supernatants were analyzed with the Prostaglandin E
2
 

Parameter Assay Kit (R&D Systems NE, Minneapolis, MN) according to 

the manufacturer’s instructions. For more details on measurement of other 

prostanoids, see Supplementary Methods.

Tryptophan and kynurenine measurement. Tryptophan and kynure-

nine measurements were performed by LC/MS/MS, for more details see 

Supplementary Methods.

Cytometric bead array analysis. Levels of IFN-γ in supernatants were 

determined by Flow cytomix (eBioscience, San Diego, CA) cytokine bead 

array according to the manufacturer’s instructions.

Microarray. Microarray using RNA from sorted T-cells was performed on 

Illumina HumanHT-12 v4 Expression BeadChip as contracted research 

by AROS Applied Biotechnology (Aarhus, Denmark, http://www.arosab.

com). After removal of one outlier in the rest/NA group, the raw data were 

Log2 transformed and quantile normalized using Bioconductor Lumi 

package. Data analysis (principal component analysis and hierarchical 

clustering) was carried out using Qlucore Omics Explorer (Qlucore, Lund, 

Sweden).

qRT-PCR. RNA was isolated using the RNAeasy mini kit (Qiagen, Limburg, 

The Netherlands), and reverse transcribed using the cDNA synthesis kit (Life 

Technologies). qPCR was carried out using Taqman probes and Taqman 

master mix (Life Technologies) in an ABI 7900HT instrument (Applied 

Biosystems, Grand Island, NY). For more information, see Supplementary 

Methods.

Flow cytometry. Dead cells were excluded with 7-aminoactinomycin 

D (7-AAD) (Sigma Aldrich, St Louis, MO) or Fixable Live/dead stains 

(Molecular probes, Invitrogen, Life Technologies). Fluorochrome-labeled 

antibodies used (Biolegend) are listed in the Supplementary Methods. 

Intracellular staining was performed using the intracellular staining kit 

(Biolegend, San Diego, CA) according to the manufacturers’ instructions. 

Flow cytometry acquisition was performed on a BD FACS Canto II and 

cell sorting completed using the BD FACS ARIA (BD Biosciences, Franklin 

Lakes, NJ), both equipped with FACS Diva software v6.0 (BD Biosciences) 

and data analyzed using Flowjo X (Treestar, Ashland, OR).

Data analysis. Data were analyzed using Prism version 6 (Graphpad) 

using relevant statistical tests.

All human subjects provided written, informed consent in accordance 
with the declaration of Helsinki protocol and King’s College London 
institutional code of ethics.

SUPPLEMENTARY MATERIAL
Figure S1. Characteristics of monocyte + IL-7-driven homeostatic 
proliferation and the suppression of homeostatic proliferation by MSC 
and MAPC in PBMCs.
Figure S2. T-cell effector cytokine suppression by MAPC in dividing 
CD4 T cells and naïve versus memory T-cells.
Figure S3. MAPC-mediated suppression of HP requires monocyte 
co-culture and is independent of IL-10, TGFβ and IL-6 and coincident 
with expression of PGE2, but not other COX-2 derived prostanoids.
Figure S4. Suppression, candidate gene QC and relative gene 
expression in Microarray and qRT-PCR experiments.
Table S1. MAPC from four separate individuals/batches and PBMC 
from four unrelated donors used for proliferation assays were DNA 
sequenced by PCR with primers specific for all major HLA alleles.
Table S2. The 10 most markedly up-regulated genes and the 3 
down-regulated genes in monocyte + IL-7-stimulated CD4 T-cells 
(both proliferated and non proliferated samples were pooled for analy-
sis) when compared to resting CD4 T-cells (monocyte alone) as deter-
mined by microarray analysis.
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