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1 Abstract

We present calculations of the potential energy between an in�nitely heavy
quark-antiquark pair at high temperatures and densities. The calculations are
carried out via lattice QCD in conjunction with a recently developed Bayesian
inference method. We provide a detailed overview lattice QCD, Bayesian infer-
ence methods and the potential energy itself. We conclude by considering some
suitable potential models put forth in the literature. At su�ciently high tem-
perature we observe the apparent onset of decon�nement, while at high densities
no such decon�nement is observed.

2 Introduction

The physics of strong interactions has proved to be a complex and phenomeno-
logical rich �eld of study. The existence of di�erent quark �avors, as well as the
non-abelian nature of their interactions, gives rise to a diverse range of phys-
ical systems, which may be described by quantum chromodynamics (QCD).
This non-abelian property of strong interactions also presents many challenges,
in particular, it su�ers from both ultraviolet and infrared divergences, which
greatly reduces the viability of perturbative descriptions. Indeed, this proved
such a hindrance, that it required a new formulation of the underlying theory,
lattice QCD, which provides non-perturbative calculations of observables.

Despite the non-perturbative framework lattice QCD o�ers, strong interactions
retain quite complicated descriptions, causing many to seek systems where these
descriptions may be greatly simpli�ed. One such system which is relevant to
this thesis, is the dynamics of charm and bottom mesons (hereafter we will
denote these as QQ bound states). The large mass of these quark �avors (mc =
1.275 ± 0.025GeV, mb = 4.18 ± 0.03GeV [20]) has been thought to leave non-
relativistic descriptions as a viable option to describe QQ bound states. With
this motivation, calculations of the potential energy between a heavy quark
anti-quark pair (which we shall refer to as the static quark potential) have
been carried out. Such descriptions have useful applications in areas such as
heavy ion-collisions and neutron star formation. One particularly noteworthy
application is the study of the Quark-Gluon Plasma (QGP)[19], which is a state
of matter thought to exist at su�ciently high temperature. The dynamics of
the QQ bound state is believed to serve as a useful probe into the properties of
hot matter created in heavy-ion collisions [4].

The calculation of the static quark potential has been found to be more in-
volved than �rst thought. Originally the potential was calculated by applying
an exponential �t to the ground state energy of the QQ bound state [7]. Later
work carried out by M.Laine et al [18] showed that at non-zero temperature,
such a potential becomes complex with a leading order imaginary component
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proportional to the temperature T , rendering exponential �ts unusable for high
temperature descriptions.

It took the development of E�ective Fields Theories (EFT) which exploits the
hierarchy of scales present in QCD (mQ � mQv � mQv

2, where mQ is the
heavy quark mass and v is its velocity), to provide a more rigorous approach to
such calculations. This EFT treatment relies on a procedure known as matching,
in which a suitable correlator is computed in the EFT, then equated to an
appropriately chosen correlator in QCD. This approach has produced reassuring
results, such as a coulomb term up to leading order in the potential and o�ers
a natural framework to study spin dependent potential models [6]. However, at
�nite temperature T this EFT approach is hindered by the use of perturbative
expansions in T and Debye mass mD (see [5]), which only leaves it as a viable
description for particular temperature ranges (e.g. mQv � gT � mQ, where g
is the gauge coupling).

In this thesis we will be calculating this complex potential using a relatively
recent procedure outlined in [23], which makes use of the spectral function
representation of the colour singlet correlator to infer numerically, the real and
imaginary parts of the static quark potential. This methodology is useful in
that it valid at any temperature, provided the numerical data has su�ciently
high accuracy. Here we provide a thorough description of the underlying theory
and present calculations of the complex static quark potential at both high
temperature and high density using this spectral function representation.
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3 Lattice QCD

Lattice QCD is a non-perturbative formulation of QCD in which we approximate
Minkowski space as a discrete set of lattice points. We then place some action
on this lattice whose continuum limit converges to the QCD action. Recall that
the QCD action is:

SQCD =

∫
d4x tr {GµνGµν}+

∑
f

ψf (iγµDµ −mf )ψf , (1)

where

Gµν = Fµν + ig [Aµ, Aν ] , (2)

Fµν = ∂µAν − ∂νAµ, (3)

Dµ = ∂µ − igAµ, (4)

Aµ = AaµT
a (5)

{γµ, γν} = 2gµν , (6)

ψ = ψ†γ0, (7)

where T a are the generators of SU (N) in the adjoint representation. In the
above expression we are summing over all quark �avors f and the trace tr {GµνGµν}
is taken over the colour indices.

We make use of the path integral formulation to calculate the expectation value
of an operator O via the equation:

〈O〉 =
1

Z

∫
DAµDψDψ exp [−iSQCD]O. (8)

where Z =

∫
DAµDψDψ exp [−iSQCD] . (9)

We need only determine which action to use as well as how our �elds and
measures DAµ, Dψ,Dψ appear on the lattice.

In this section we brie�y discuss how the lattice formulation of QCD is carried
out at non-zero temperature T and non-zero chemical potential µ.

3.1 Euclidean Space

Before we begin our discussion on lattice QCD it is worthwhile to consider how
our �eld theory maps to Euclidean space, since the ability to do so is vital to
lattice QCD. Recall the Minkowski metric:
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xµxµ = xµgνµxν

=
(
x0
)2 − (x1

)2 − (x2
)2 − (x3

)2
, (10)

and the Euclidean metric:

xµxµ = xµδνµxν

=
(
x0
)2

+
(
x1
)2

+
(
x2
)2

+
(
x3
)2
. (11)

Consider the Wick rotation which maps t → −it = τ , i.e. x0 → −ix0. Then
the Minkowski metric transforms as:

xµgνµxν =
(
x0
)2 − (x1

)2 − (x2
)2 − (x3

)2
→ −

(
x0
)2 − (x1

)2 − (x2
)2 − (x3

)2
= −xµδνµxν , (12)

which is the Euclidean metric up to a minus sign. So the Wick rotation maps
Minkowski space to Euclidean space. We now consider how the path integral
and the Dirac equation appears in Euclidean space.

For the path integral we need only consider the action S =
∫
d4xL, where L is

the Lagrangian density. Applying a Wick rotation we get:

dx0 → −idx0, (13)

⇒ d4x→ −id4x, (14)

⇒ S → −iSE , (15)

where the subscript E denotes a quantity in Euclidean space. Thus the path
integral becomes

〈O〉 =
1

Z

∫
DAµDψDψ exp [−iS]O

→ 1

Z

∫
DAµDψDψ exp [−i (−iSE)]O

=
1

Z

∫
DAµDψDψ exp [−SE ]O (16)

= 〈O〉E .

where Z =

∫
DAµDψDψ exp [−SE ] . (17)
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For the Dirac equation we have:

iγµDµ −m = iγ0 (∂0 + igA0) + iγi (∂i + igAi)−m
→ iγ0 (i∂0 + igA0) + iγi (∂i + igAi)−m
= −γ0 (∂0 + gA0) + iγi (∂i + igAi)−m
= −

(
γ0
E (∂0 + igAE,0) + γiE (∂i + igAE,i) +m

)
(18)

= − (γµEDµ +m) . (19)

where, in line (18) we made the substitutions:

γ0 → γ0 = γ0
E , (20)

γi → −iγi = γiE , (21)

A0 → iA0 = AE,0, (22)

Ai → Ai = AE,i, (23)

So

− (γµEDµ +m)ψ = 0

⇒ (γµEDµ +m)ψ = 0. (24)

The corresponding Lagrangian density is L = ψ (γµEDµ +m)ψ.

One can show (A.1) that the Euclidean gamma matrices satisfy the equations

{γµE , γ
ν
E} = 2δµν , (25)

(γµE)
†

= γµ. (26)

Furthermore, for the matrix γ5 de�ned as γ5 := iγ0γ1γ2γ3 we have:

γ5 = iγ0γ1γ2γ3

→ γ0γ1γ2γ3

= γ5
E , (27)

which satis�es (see A.1):

{
γµ, γ5

}
= 0, (28)(

γ5
)†

= γ5, (29)(
γ5
)2

= 1. (30)
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3.2 Discretizing Spacetime

The lattice formulation is carried out by replacing the continuous set of points
xµ in Minkowski space by a discrete set of lattice points lµ, where lµ is a lattice
vector.

Suppose the lattice is anisotropic, that is, the lattice spacing and number of
lattice points varies in each of the

(
x0, x1, x2, x3

)
directions. If we have Nµ

lattice points with lattice spacing aµ in the µ direction. Then we may write our
points explicitly as:

xµ 7→ lµ,

lµ = (a0n0, a1n1, a2n2, a3n3) , (31)

where 0 ≤ nµ ≤ Nµ − 1.

In general, we choose the lattice spacing and number of lattice points along
the spatial axes x1, x2, x2 to be the same, which we will denote as as and Ns
respectively. Furthermore we denote the spacing and number of lattice points
along the temporal axis as at and Nt. With this notation it is convenient to
de�ne the anisotropy ξ, of the lattice as:

ξ :=
as
at
. (32)

With this we may express our lattice vector lµ as

lµ = (atn0, asn1, asn2, asn3)

= at (n0, ξ~n) . (33)

with 0 ≤ n0 ≤ Nt − 1,

and 0 ≤ ni ≤ Ns − 1.

It is more useful to write the lattice vector lµ such that the temporal lattice
spacing at = a appears explicitly. To do this we write:

anµ = at (n0, ξ~n)

= lµ, (34)

with

as = a, (35)

at =
a

ξ
. (36)
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3.3 Gauge Fields on the lattice

To determine how the gauge �elds appear consider an operator of the form
ψ (x)ψ (y). We wish to construct an operator of this type which is gauge in-
variant since it appears in the fermion action after discretization. To do this we
�rst note how ψ (x) and ψ (y) transform under a local gauge transformation. If
V (x) is an element of the gauge group SU (N) assigned to the point x then:

ψ (x) 7→ ψ (x)V −1 (x) , (37)

ψ (y) 7→ V (y)ψ (y) . (38)

Now consider the operator U (x, y) = exp
[
igP

∫
C
dzµAµ

]
where we are inte-

grating over some open contour C with whose starting point is y and end point
is x1. This transforms as (A.2):

U (x, y) 7→ V (x)U (x, y)V −1 (y) . (39)

Thus the operator:

ψ (x)U (x, y)ψ (y) (40)

is gauge invariant. Formulating this on the lattice corresponds to the replace-
ments xµ 7→ anµ and yµ 7→ amµ. So on the lattice we have the gauge invariant
term:

ψ (an)U (an, am)ψ (am) .

In particular, if an and am are adjacent lattice points, (i.e. am = an + aµ̂
where µ̂ is a unit lattice vector in the µ direction) then U (an, an+ aµ̂) must be
associated with the link moving from an to an+aµ̂ and is given by the equation:

U (an, an+ aµ̂) = exp

[
igP

∫
C

dzµAµ

]

where C is a contour from an to an+ aµ̂. But due to lattice discretization the
only contour between these two adjacent lattice points is a straight line, which
we assign a constant gauge �eld Aµ to. Thus:

1The term P which appear in this expression denotes a path ordering, which is required
since the gauge group is non-abelian
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U (an, an+ aµ̂) = exp

[
igP

∫ an+aµ̂

an

dzµAµ

]
= exp [igaiAµ] , (41)

with ai =

{
at if µ̂ points in the temporal direction.

as if µ̂ points in a spatial direction,

From now on we denote Unm = exp [igaiAµ] to be the link variable associated
with the link moving from lattice point an to the adjacent lattice point am.
Furthermore, if Unm is link from an to am, then its inverse must be the same
link traversed in the opposite direction, i.e.:

U−1
nm = U†nm

= Umn, (42)

where † denotes the hermitian conjugate of an operator.

We are now left with determining which point we should assign the variable
Unm. Since the variables Unm are assigned to the links between adjacent lattice
points an and am, the point we choose should be in the vicinity of the link. The
point chosen doesn't matter in the continuum limit, so we are free to choose any
point we wish. For convenience we choose the midpoint between an and am.

Therefore, the gauge �eld Aµ appear on the lattice in the form of equation (41)
as link variables between adjacent lattice points. The gauge measure becomes:

DAµ →
∏
{n,m}

dUnm = [dU ] , (43)

where {n,m} denotes a pair of adjacent lattice points an and am.

3.4 Fermions on the lattice

Before we discretize fermions on the lattice recall that fermionic �elds anti-
commute, i.e. they are Grassmann variables. Recall that a set G forms a
Grassmann algebra if is satis�es the following conditions:

θ1θ2 ∈ G ∀θ1, θ2 ∈ G, (44)

θ1θ2 = −θ2θ1 ∀θ1, θ2 ∈ G, (45)

0 ∈ G. (46)
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Some useful properties of Grassmann variables has been provided in the ap-
pendix (A.3).

With this in mind we now consider how fermions appear in the lattice formula-
tion. This is done by virtue of the fact that the fermionic �elds can be integrated
out explicitly in Euclidean space. After mapping the fermionic integral to Eu-
clidean space the solution reads (A.6):

∫
DψDψ exp [−iSF ]→

∫
DψDψ exp [−SE ]

= det (M) , (47)

where M = γµEDµ +m. (48)

3.5 Lattice Actions

We now must choose an action to place on the lattice which determines the
dynamics of the gauge and fermionic �elds. From a theoretical standpoint, the
lattice action chosen does not matter as long as its continuum limit converges
to the QCD action. In the case of numerical simulations this is no longer true,
since we cannot take a continuum limit when carrying out numerics. Thus there
is a non-zero lattice spacing and a �nite number of lattice points present in our
simulation which introduces errors in the results, these errors are often referred
to as lattice artifacts.2

Because of this, the lattice action chosen is non-trivial, as di�erent actions will
give rise to di�erent lattice artifacts. Here we use two di�erent sets of lattice
actions, one for SU (2) simulations and one for SU (3) simulations.

• SU (2): The Wilson gauge action and the Wilson fermion action

• SU (3): The Symanzik improved Wilson gauge action and the Clover ac-
tion

The continuum limit of the Wilson gauge and Wilson fermion actions have been
presented in the appendix (A.4, A.5). Below we give explicit expressions for all
the actions used, as well as the leading order corrections to these actions, which
are proportional to the lattice spacing a.

The Wilson gauge action is given by:

2Lattice artifacts don't just refer to numerical uncertainties, but to more intrinsic problems
associated with the lattice formulation e.g. fermion doubling, which won't be discussed here.
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SWG =
∑
�

S� +O (a) where S� is the Plaquette action, (49)

S� =
2Nc
g2

(
1− 1

Nc
tr
{
Un(n+aµ̂)U(n+aµ̂)(n+aµ̂+aν̂)U(n+aµ̂+aν̂)(n+aν̂)U(n+aν̂)n

})
(50)

= SYM +O
(
a2
)
, (51)

where Nc is the number of colours present in the system and SYM is the Yang-
Mills action. The Wilson fermion action is:

SWF =
∑
n

∑
µ

ψn

(
ψn + κ (1− γµ)Un(n−aµ̂)ψn−aµ̂ + κ (1 + γµ)U†n(n+aµ̂)ψn+µ̂

)
(52)

= ScontF +O (a) . (53)

Where κ is a parameter used to rescale the �eld ψ and ScontF is the continuum
fermion action. The Clover action is given by:

Sc = SWF −
∑
n

∑
µ

ψn+aµ̂

(
1

2
csw

∑
ν<µ

[γµ,γν ]Fµν

)
ψn (54)

= ScontF +O
(
a2
)
, (55)

where csw is a coe�cient chosen to maximize the O (a) correction to SWF and:

Fµν =
1

8

(
Pµν − P †µν

)
, (56)

Pµν = Un(n+aµ̂)U(n+aµ̂)(n+aµ̂+aν̂)U(n+aµ̂+aν̂)(n+aν̂)U(n+aν̂)n

+ Un(n+aν̂)U(n+aν̂)(n−aµ̂+aν̂)U(n−aµ̂+aν̂)(n−aµ̂)U(n−aµ̂)n

+ Un(n−aµ̂)U(n−aµ̂)(n−aµ̂−aν̂)U(n−aµ̂−aν̂)(n−aν̂)U(n−aν̂)n

+ Un(n−aν̂)U(n−aν̂)(n+aµ̂−aν̂)U(n+aµ̂−aν̂)(n+aµ̂)U(n+aµ̂)n. (57)

Finally the Symanzik improved Wilson gauge is:
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SIWG = SWG

− α
∑
n

∑
µ,ν<µ

Un(n+aµ̂)U(n+aµ̂)(n+2aµ̂)U(n+2aµ̂)(n+2aµ̂+aν̂)×

U(n+2aµ̂+aν̂)(n+aµ̂+aν̂)U(n+aµ̂+aν̂)(n+aν̂)U(n+aν̂)n

+ cα
∑
n

∑
µ,ν<µ,ρ<ν

Un(n+aµ̂)U(n+aµ̂)(n+aµ̂+aν̂)×

U(n+aµ̂+aν̂)(n+aµ̂+aν̂+aρ̂)U(n+aµ̂+aν̂+aρ̂)(n+aν̂+aρ̂)U(n+aν̂+aρ̂)(n+aρ̂)U(n+aρ̂)n,

= SYM +O
(
a6
)

(58)

where α and c are coe�cients chosen to remove the O
(
a2
)
errors in SWG.

3.6 Monte Carlo Methods

Rewriting our Euclidean path integral on the lattice gives:

〈O〉E =
1

Z

∫
[dU ] exp [−SE ] det (M)O, (59)

where Z =

∫
[dU ] exp [−SE ] det (M) . (60)

We are now left with the task of calculating this integral numerically. Evalu-
ating this integral using a mesh is impossible due to its massive dimension3.
Instead we approximate this integral using Monte Carlo methods. To outline
how this method works note that the det (M) is real and positive (A.7). Thus
the quantity σ (U) = exp [−SE ] det (ME) is a positive function. So we have:

〈O〉E =
1

Z

∫
[dU ]σ (U)O. (61)

The above expression may be thought of as an average over all �eld con�gura-
tions of the operator O with a probability weight σ (U). Such expressions are
calculated via Monte Carlo methods by virtue of importance sampling, where
only a small region of phase space contributes signi�cantly to the integral, thus
this integral may be well approximated by averaging over a relatively small
collection of �eld con�gurations. This is done by starting with some initial

3For example, if we have an 84 lattice then there are 7, 504 links. If the gauge �elds assigned
to these links are elements of SU (3) then the dimension of this integral is 8 (7, 504) = 60, 032
(since SU (3) has 8 real parameters). Thus if we tried to evaluate this integral using a mesh
with 10 points there would be 1060,032 terms to compute.
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con�guration C1 and applying a random update to C1 to generate a new con�g-
uration C2. This process is repeated until we have a collection of con�gurations
{C1, ...., CN}. The random update applied to our con�gurations is chosen such
that the collection {C1, ..., CN} converges to the ensemble σ (U) as N → ∞,
where the uncertainty falls o� as 1√

N
.

The more technical details of Monte Carlo methods relies on the notion of
Markov Chains, which won't be discussed here (see [15]). The Monte Carlo
algorithm used here will be the Hybrid Monte Carlo algorithm [14].

3.7 Lattice QCD at T 6= 0.

To introduce temperature consider a system in contact with a reservoir in ther-
mal equilibrium at temperature T . The expectation value of an observable is
then given by the partition function:

〈O〉T =

∑
n exp

[−En
T

]
O∑

n exp
[−En

T

] (62)

=
1

Z
tr {exp [−βH]O} , (63)

with

β =
1

T
, (64)

Z = tr {exp [−βH]} , (65)

where we are summing over all states n with energy En andH is the Hamiltonian
of the system. Using this one can show that (A.9):

〈ψ (t, x)ψ (0, y)〉T = 〈ψ (−iβ, y)ψ (t, x)〉T
⇒ 〈ψ (τ, x)ψ (0, y)〉T = 〈ψ (β, y)ψ (τ, x)〉T , (66)

where we applied a Wick rotation t → −it = τ in the second line. It follows
that ψ must satisfy the boundary conditions:

ψ (0, x) = ±ψ (β, x) , (67)

where the sign is determined by whether ψ is a bosonic(+) or fermionic(−) �eld.
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To come to a �eld theory description of thermodynamics recall that the path
integral formulation is given by:

〈ψ (t1) |e−iH(t1−t2)|ψ (t2)〉 =
1

Z

∫
Dψ exp

[
i

∫ t1

t2

dtL

]
(68)

⇒ 〈ψ (t1) |e−iH(−iβ)|ψ (t2)〉 =
1

Z

∫
Dψ exp

[
i

∫ −iβ
0

dtL

]
. (69)

In line (69) we made the substitution t1 − t2 = −iβ. We again apply a Wick
rotation to this expression and set t2 = 0 to get:

〈ψ (β) |e−iHβ |ψ (0)〉 =

∫
Dψ exp

[
−
∫ β

0

dτ LE

]
, (70)

but recall ψ (0) = ±ψ (β). Thus

〈ψ (β) |e−iHβ |ψ (0)〉 = 〈ψ (0) |e−iHβ |ψ (0)〉 (71)

= Z. (72)

⇒ Z =

∫
Dψ exp

[
−
∫ β

0

dτ LE

]
. (73)

Finally this gives us a �eld theory approach to thermodynamics:

〈O〉T =
1

Z

∫
Dψ exp

[
−
∫ β

0

dτ LE

]
O, (74)

β =
1

T
. (75)

So a system in thermal equilibrium at some �nite temperature T may be formu-
lated via a path integral carried out in Euclidean space on the interval [0, β]
where β = 1

T . Furthermore the bosonic/fermionic �elds are periodic/anti-
periodic on this interval.

3.8 µ 6= 0. The sign problem

We now introduce a non-zero chemical potential µ into our system. Recall that
a system of N particles introduces a total energy of µN to the system, where
N =

∫
d4xψ†ψ. Thus our action at �nite chemical potential becomes:
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S =

∫
d4x tr {GµνGµν}+

∑
f

ψf (iγµDµ −mf )ψf + µN (76)

=

∫
d4x tr {GµνGµν}+

∑
f

ψf (iγµDµ −mf )ψf +

∫
d4xµψ†ψ (77)

=

∫
d4x tr {GµνGµν}+

∑
f

ψf
(
iγµDµ −mf + γ0µ

)
ψf . (78)

With an analogous argument as the previous subsections, we have (in Euclidean
space):

〈O〉E =
1

Z

∫
[dU ] exp [−SE ] det (M (µ))O. (79)

M (µ) = γµDµ +mf + γ0µ. (80)

To solve this expression using Monte Carlo methods we exploited the fact that
det (M) was real. However, introducing a non-zero chemical potential now
causes this quantity to become complex (A.7), rendering Monte Carlo meth-
ods useless.

To solve this we turn to 2 colour QCD, that is, a formulation of QCD whose
gauge group is SU (2) rather than SU (3). In 2 colour QCD det (M (µ)) is real
for all values of chemical potential (A.8), leaving it amenable to Monte Carlo
methods.
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4 De�nition of the static quark potential

4.1 The Thermal Wilsonloop

The de�nition of the static quark potential arises from the description of the
late time dynamics of a heavy quark anti-quark pair. We do this via an E�ective
Field Theory (EFT) treatment of the QQ system.

To begin we start with the full QCD Lagrangian density:

LQCD = tr {GµνGµν}+
∑
f

ψf (iγµDµ −mf )ψf (81)

= tr {GµνGµν}+
∑
lf

ψlf (iγµDµ −mlf )ψlf +
∑
hf

ψhf (iγµDµ −mhf )ψhf

(82)

= LG + LLQ + LHQ. (83)

In line (83) we have split the QCD Lagrangian density in the gauge, light quark
and heavy quark Lagrangian densities respectively.

We now neglect the light quark Lagrangian density and only consider the dy-
namics of the heavy quarks and gluons. Furthermore we suppress the sum over
the heavy quark �avors and treat all heavy quark �avors as having the same
mass m. This gives:

LQCD = LG + ψ (iγµDµ −m)ψ. (84)

To move to an EFT treatment, we apply a unitary transformation, known
as the Foldy-Wuthuysen transformation, to our heavy quark Lagrangian den-
sity4.Writing this up to leading order in 1

m gives [7]:

LNRQCD = LG+χ†

(
iD0 −m−

~D2

2m
− g~σ. ~B

2m

)
χ+φ†

(
iD0 +m+

~D2

2m
− g~σ. ~B

2m

)
φ

(85)

where σi are the Pauli matrices and Bi = εijkF jk is the colour magnetic �eld.
The resulting EFT is known as non-relativistic QCD (NRQCD).

Note that we have written γµ in the Dirac representation so that we may identify

ψ =
(
χ
φ

)
, where χ† and φ† are Pauli spinor �elds which create a quark and anti-

quark respectively.

4To be more precise, we apply this transformation to the heavy quark Hamiltonian, then
calculate the corresponding Lagrangian. Since we will be working entirely with the Lagrangian,
we do not bother to include any Hamiltonian dynamics here.
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In the in�nite mass limit this yields:

LNRQCD = LG + χ† (i∂0 + gA0 −m)χ+ φ† (i∂0 + gA0 +m)φ. (86)

It has been shown (see [7]) that in this limit, the forward correlator for a QQ
pair, separated a spatial distance r , created at time t = 0 and annihilated at
time t is given by the Wilsonloop formula:

〈
φ (t, x)χ (t, x+ r)χ† (0, x+ r)φ† (0, x)

〉
=

1

Z

∫
DAµe

−iSGtr

{
P exp

[∮
C

dxµAµ

]}
(87)

=
1

Z

∫
DAµe

−iSGW (r, t) (88)

= 〈W (r, t)〉 , (89)

where SG =
∫
d4xLG is the gauge action and the Wilsonloop W (r, t), is a

rectangular loop in Minkowski space with temporal length t and spacial width
r.

It is known that in thermal equilibrium, the Wilsonloop correlator obeys the
equation5[18]:

i∂t 〈W (r, t)〉 = Φ (r, t) 〈W (r, t)〉 , (90)

where Φ (r, t) is a complex function.

If the late time dynamics of the QQ system may be described by some potential
V (r), then Φ (r, t) must converge to this potential as t→∞. This brings us to
our de�nition of the static quark potential:

V (r) := lim
t→∞

Φ (r, t)

= lim
t→∞

i∂t 〈W (r, t)〉
〈W (r, t)〉

. (91)

Note that since Φ (r, t) is complex V (r) is also complex.

5Note that we have dropped the subscript T for correlator in thermal equilibrium i.e. we
wrote 〈W (r, t)〉 rather than 〈W (r, t)〉T . From here on we will always neglect this subscript
since all correlators are in thermal equilibrium for some T 6= 0.
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4.2 Spectral Functions

To proceed with our calculation of the static quark potential we need to calculate
the Wilsonloop correlator in Minkowski space. This poses a problem as the
Monte Carlo methods used in lattice QCD are only applicable in Euclidean
space. In other words, we cannot calculate 〈W (r, t)〉, but rather 〈W (r, τ)〉
where τ = −it.

To circumvent this we need to relate the Euclidean correlator to its Minkowski
counterpart. We may do this by virtue of their spectral functions.

〈W (r, t)〉 =

∫
dωe−iωtρ (ω, r) , (92)

where ρ (ω, r) is the spectral function of 〈W (r, t)〉.

Recall that we can map Minkowski space to Euclidean space via a Wick rotation:
t→ −it. Using this we have:

〈W (r, t)〉 → 〈W (r,−it)〉 = 〈W (r, τ)〉 . (93)

Thus:

〈W (r, t)〉 =

∫
dωe−iωtρ (ω, r)

→
∫
dωe−ωτρ (ω, r)

= 〈W (r, τ)〉 . (94)

Note from the above expression that 〈W (r, t)〉 and 〈W (r, τ)〉 have the same
spectral function ρ (ω, r). It is convenient to de�ne V (r) by virtue of the spectral
function rather than the Wilsonloop. We can do this by combining equations
(92) and (91):

V (r) = lim
t→∞

i∂t 〈W (r, t)〉
〈W (r, t)〉

lim
t→∞

i∂t
∫
e−iωtρ (ω, r) dω∫

e−iωtρ (ω, r) dω

= lim
t→∞

∫
ωe−iωtρ (ω, r) dω∫
e−iωtρ (ω, r) dω

. (95)

With this de�nition it is now clear how we may calculate V (r).
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1. Calculate 〈W (r, τ)〉 via lattice QCD

2. Use 〈W (r, τ)〉 to infer ρ (ω, r)

3. Calculate V (r) by virtue of equation (95)

We �nish with some remarks on how features of the spectral function ρ (ω, r)
relate to V (r).

From the functional form of equation (95) we can see that the lowest lying peak
of the spectral function encodes information about the potential. In particular,
it was thought that the peak position corresponded to the Re [V ] while the peak
width gave Im [V ] [23].

It turns out this is not the case. Although V (r) is de�ned in terms of the late
time dynamics, the early time physics plays a role in how we can relate V (r)
to ρ (ω, r). To see this recall that V (r) = limt→∞Φ (r, t). To study the e�ect
of the early time scale we insert a complex function φ (r, t) such that φ (r, t)
vanishes after some time t0.

Φ (r, t) = V (r) + φ (r, t) , (96)

φ (r, t) = 0 for t > t0. (97)

Substituting this into equation (90) gives:

i∂t 〈W (r, t)〉 = (V (r) + φ (r, t)) 〈W (r, t)〉 . (98)

We can solve this equation analytically, then invert equation (92) to obtain an
expression for ρ (ω, r). Doing this yields[8]:

ρ (ω, r) =
1

2π

∫ ∞
−∞

exp [i (ω − Re [V (r)]) t− iRe [σ (r, |t|)] sign (t)− |Im [V (r)] t|+ Im [σ (r, |t|)]] .

(99)

σ (r, |t|) =

∫ t

0

φ (r, t′) dt′. (100)

The above expression may be rewritten in terms of a peak structure plus higher
order corrections, expanded in terms of (ω − Re [V (r)]) t0:

ρ (ω, r) =
exp [Im [Σ (r)]]

π

(
|Im [V (r)]| cos (Re [Σ (r)])− (Re [V (r)]− ω) sin (Re [Σ (r)])

Im [V (r)]
2

+ (Re [V (r)]− ω)
2

)
(101)

+ c0 (r) + c1 (r) t0 (Re [V (r)]− ω) + c2 (r) t20 (Re [V (r)]− ω)
2

+ ..,
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where Σ (r) =
∫∞

0
φ (r, t) dt and c0, c1, c2 are expansion coe�cients. So once we

infer ρ (ω, r) form lattice simulations we can �t its lowest lying peak to equation
(101) to extract Re [V (r)].

4.3 Bayesian Inference

We are now left with the task of inferring ρ (ω, r) from the Euclidean Wilsonloop
〈W (r, τ)〉. If we knew the functional form of the Wilsonloop this could be done.
However, since 〈W (r, τ)〉 is calculated on the lattice rather than analytically,
this is an ill-posed problem as we are trying to construct a smooth function from
�nite set of noisy data points.

To solve this we make use of Bayesian inference, which lets us reconstruct the
most probable spectral function for a given data set. The basic principle un-
derlying a method of Bayesian inference is that, given a data set D and a set
of constraints I which the spectral function must satisfy, the probability of ob-
taining a spectral function ρ is given by P [ρ|D, I]. We wish to maximize this
probability with respect to ρ. We can expand this expression by virtue of Bayes'
Theorem:

P [ρ|D, I] =
P [D|ρ, I]P [ρ|I]

P [D|I]
, (102)

⇒ P [ρ|D, I] ∝ P [D|ρ, I]P [ρ|I] . (103)

Notice that P [D|I] is a constant with respect to ρ, and thus, is irrelevant when
maximizing P [ρ|D, I]. Hence we will focus our attention on the distributions
P [D|ρ, I] and P [ρ|I].

First let us consider P [D|ρ, I]. Recall that our data set D contains noise, i.e.
there is some inherent uncertainty in the data set from which we are trying
in infer ρ. Because of this, it is more useful to consider D as an average over
a distribution of possible data sets which could be obtained from ρ. Here we
assume this distribution takes the form of a Gaussian distribution. Using this
we can extract an expression for P [D|ρ, I].

Suppose we select some spectral function ρ. From this we can calculate a cor-
responding data set D′ by discretizing (92):

D′j =
∑
i

∆ωi exp (−iωitj) ρ (ωj) . (104)

Since we assume our data sets are Gaussian distributed we can assign a proba-
bility to D′ which reads:
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exp

−1

2

∑
i,j

(
Di −D′j

)
C−1
ij

(
Di −D′j

) , (105)

where Cij is the covariance matrix of D. This equation holds for any such data
set D′, in particular, it gives an explicit expression for the distribution of data
sets about D. Thus:

P [D|ρ, I] = exp

−1

2

∑
i,j

(
Di −D′j

)
C−1
ij

(
Di −D′j

) . (106)

We now move on to P [ρ|I]. This gives a distribution of all possible spectral
functions which are characterized by the constraints I. The constraints placed
on the spectral function can be determined from the underlying physics. In our
case we know that the spectral function is smooth and positive. Using these it
has been shown [9] that this distribution has the expression:

P [ρ | I] =

∫
dαP [ρ | α,m]

=

∫
dα

eS∏N
j=1 e

α∆ω (α∆ωi)
−α∆ω

m (ωi) Γ (α∆ω)
, (107)

with

S = α

∫
dω
(

1− ρ

m
+ ln

( ρ
m

))
, (108)

where α is a parameter introduced to leave S dimensionless. The Bayesian
inference method which uses this expression for P [ρ|I] is known as the BR
method.
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5 Details of the Numerical Simulations and Re-

sults

Although the static quark potential is formulated in terms of the spectral func-
tion of Wilsonloop correlators, it has been found [10] that the spectral function
of the Wilsonline correlator in the Coulomb gauge produces a lowest lying peak
which is related to the static quark potential in precisely the same way the
Wilsonloop is, that is, via equation (101). Due to the Wilsonline correlator
o�ering a much better signal to noise ratio, we calculate the potential using this
observable, rather than the Wilsonloop itself.

The Wilsonline correlators were measured from samples of lattice con�gurations
generated at various values of temperature T and chemical potential µ. The
correlators were also measured for a range of spatial separations r ∈ {a, 2a, .., 8a}
on the lattice between the quark anti-quark pair. Once this was done, the lowest
lying peak of the correlators' spectral functions were inferred via the BR method
outlined in (4.3). Finally, we �t the lowest lying peak of these spectral functions
using the �t function (101) to extract a value for the Re (V ).

Here the Wilsonline correlators were measured from two distinct samples of
lattice con�gurations:

1. A set of high temperature lattice con�gurations generated in real QCD at
µ = 0 across a range of temperatures.

2. A set of 2 colour lattice con�gurations generated at a �xed temperature
T 6= 0 across a range of chemical potentials.

5.1 High Temperature Analysis

5.1.1 Simulation parameters

The Wilsonline correlators were measured from lattice con�gurations each with
Ns = 24 lattice points along the spatial axes and Nτ ∈ {16, ..., 40} lattice points
on the temporal axis. Table 1 gives a summary of the lattice size, its temperature
T in terms of the critical temperature Tc = 185MeV and the number of lattice
con�gurationsNconf. We also display the lattice anisotropy ξ = as

aτ
, the temporal

and spatial lattice spacings aτ and as, gauge coupling β and pion mass Mπ. A
more detailed outline of the lattice con�gurations can be found in [1].

Once the Wilsonline correlators were measured from each sample of lattice con-
�gurations, their spectral functions ρ (ω) were inferred via the BR method. A
sample of these Wilsonline correlators is displayed in Figure 1 plotted on both
linear and logarithmic scales with a relative uncertainty of ∆W

W ≤ 10−3. From
the logarithmic plots of the Wilsonline correlators, we can already see that an
increase in temperature causes an increase in screening e�ects present in the
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Figure 1: A sample of the Wilsonline correlators obtained from Nτ ∈ {40, 24, 16} data sets via

lattice QCD. The top panel has been plotted on a linear scale, while the bottom panel as been

plotted on a logarithmic scale.
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Table 1: High temperature lattice con�gurations
N3
s ×Nτ T

TC
Nconf Njack

243 × 40 0.76 500 10

243 × 36 0.84 496 16

243 × 32 0.95 1000 10

243 × 28 1.09 1000 10

243 × 24 1.27 1000 10

243 × 20 1.52 1000 10

243 × 16 1.90 1000 10

ξ aτ as β Mπ

3.5 0.0351fm 0.123fm 1.5 384MeV

system by virtue of the decreasing slope of the correaltors with respect to tem-
perature.

The spectral functions were reconstructed on the frequency range ω ∈ [−1, 5].
The reconstruction was implemented three times for each spectral function, each
time using a di�erent model function m (ω). The model functions used were:

m1 (ω) = ω + 2, (109)

m2 (ω) = 1, (110)

m3 (ω) = exp (1− ω) . (111)

Note that the ω is not the physical frequency but rather the frequency in lattice
units, i.e. ω = ωphysa. The uncertainty in the spectral functions was calculated
using a Jackknife resampling. The number of Jackknife samples Njack for each
set of lattice con�gurations is also given in Table 1.

5.1.2 Results

Shown in Figure 2 are the reconstructed spectral functions from the Wilson-
line correlators. The Wilsonlines were calculated for spatial distances r ∈
{a, 2a, .., 8a}. As such, each sample of lattice con�gurations yields 8 spectral
functions, one for each value of spatial separation.The black, red and green
graphs correspond to to the reconstructions using the model functions m1 (ω),
m2 (ω) and m3 (ω) respectively.

From the results of the Bayesian inference we can see that as the temperature
increases there is a �attening of the spectral function peaks. This peak �attening
becomes more apparent as the spatial separation is increased. We can also see
that the reconstruction appears quite stable with respect to the model function
chosen, at least for low temperature reconstructions. In the high temperature
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Figure 2: Spectral functions inferred from Wilsonline correlators via the BR method. Each �gure

contains spectral functions for each value of spatial separation r ∈ {a, .., 8a}, with the shortest

separation yielding the lowest lying, narrow peak and the greatest separation yielding a wide peak

positioned further along the ω axis.
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results a discrepancy begins to appear, for example, in the 243 × 16 spectral
functions, a distinction is already clear in the second spectral peak.

We now proceed to �t these peaks to extract a value for Re (V ). The �t was
carried out across the full width, half maximum of the spectral peak using the
Levenberg-Marquardt �tting algorithm. Figures 3 and 4 display samples of the
best �t graphs obtained by the �tting procedure from the Nτ = 36 and Nτ = 16
data sets respectively.

We determine the goodness of �t by virtue of the parameter P
(
χ2
)
de�ned as:

P
(
χ2
)

:=
Γincomplete

(
d
2 ,

χ2

2

)
Γ
(
d
2

) , (112)

where Γincomplete is the incomplete gamma function, Γ is the gamma function,
d is the number of degrees of freedom in the �t and χ2 is usual chi squared
parameter. The value of P

(
χ2
)
lies between 0 and 1, with 1 corresponding to

a perfect �t and 0 indicating a poor �t [22]. The P
(
χ2
)
parameters are also

displayed in Table 2.

r
a 1 2 3 4

P
(
χ2
) (

243 × 36
)

1 1 1 1

P
(
χ2
) (

243 × 16
)

1 1 1 1

Table 2: The P
(
χ2

)
parameters for the 243 × 36 and 243 × 16 data sets for r ∈ {a, 2a, 3a, 4a}.

This �tting procedure was carried out on all spectral functions to extract a
value for Re (aV ) and Im(aV ), where the potential has been measured in lattice
units. Notice from Table 2 that we obtain a value of P

(
χ2
)

= 1 for all the
�ts displayed above, leading us to believe that we are over �tting the data.
We attribute this over �tting to the large uncertainty present in the spectral
reconstruction and the large number of �t parameters. Nevertheless, we proceed
with the �t parameters obtained.

Figures 5 and 6 show the values of Re (aV ) and Im (aV ) respectively, plotted
against r

a . Black, red and green indicates if the data point was extracted from
a spectral peak reconstruction using the model function m1, m2 or m3 respec-
tively.

Before discussing the results for Re (aV ) we will mention, in passing, Im(aV ).
From our understanding of the static quark potential we expect, up to leading
order, a linear increase in Im (V ) with respect to temperature [18]. We see from
Figure 6 that there is an apparent increase in Im (aV ) but this is di�cult to
to analyze quantitatively due to large uncertainty in Im (aV ). Furthermore,
Bayesian inference methods are known to be unreliable when inferring Im (aV ).
As such, we will not be discussing Im (aV ) in this thesis, and only mention it
here for the sake of completeness.
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Figure 3: The best �t function of the lowest lying spectral peak for r ∈ {a, 2a, 3a, 4a} re-

constructed from the 243 × 36 con�gurations using the model function m3 (ω). The best �t func-

tion(black) is plotted on top of the original spectral peak(green). For the sake of clarity the functions

are plotted twice, one plot displaying the uncertainty of the reconstructed spectral function.
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Figure 4: The best �t function of the lowest lying spectral peak for r ∈ {a, 2a, 3a, 4a} re-

constructed from the 243 × 16 con�gurations using the model function m3 (ω). The best �t func-

tion(black) is plotted on top of the original spectral peak(green). For the sake of clarity the functions

are plotted twice, one plot displaying the uncertainty of the reconstructed spectral function.
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Figure 5: Values of Re (aV (r)) extracted from the lowest lying peak of the spectral functions

shown in Figure 2.
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Figure 6: Values ofIm (aV (r)) extracted from the lowest lying peak of the spectral function.
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We now proceed to inspect the extracted values for Re (aV ). We consider data
points which are stable with respect to the model function, such as the ones seen
in the 243 × 40 data set in Figure 5, to be reliable values for the Re (aV ). On
the other hand, unstable data points are seen as an indication that the lowest
lying peak structure produced by the BR method is no longer trustworthy and
these data points are neglected.

We can see this instability begin to take e�ect in the 243 × 28 sample in Figure
5, where a discrepancy begins to appear for r

a = 6, 7, 8 . For Nτ = 20, 16 we see
that the values of Re (aV ) are no longer reliable for distances larger than r

a = 3.
We take this as a sign that for r

a > 3 the uncertainty in our data has become
too large for the BR method to accurately reproduce the spectral peak. We
refer the reader to [21], in which Re (aV ) was successfully extracted via spectral
function reconstruction at much larger temperatures. The simulation carried
here uses much lower statistics than [21], which leads us to believe this is why
the extraction breaks down for the highest temperature con�gurations.

Despite the numerical uncertainties there is still a clear �attening of the poten-
tial, which is particularly apparent at the Nτ = 28, 24 data sets in Figure 5.
Given that this �attening begins to occur at temperatures larger than Tc, we
conclude that we are indeed observing the onset of decon�nement.

We �nish our high temperature analysis by considering some potential models
put forth in the literature. The �rst is the well known Cornell potential de�ned
as:

Re (VCornell(r)) := σr − α

r
+ C. (113)

The linear term in this potential model σr is associated with the con�ning
nature of QCD. As such, the parameter σ is expected to decrease with both
temperature and density, consistent with asymptotic freedom. The results of
the �t are displayed in Figure 7. The �tted values for σa2 and the P

(
χ2
)

parameter are shown in Table 3. We do indeed observe a decrease in σ with
the exception of the �nal two samples: Nτ = 20, 16. The inconsistency in the
�nal two samples is due to the data points in the r ∈ {3a, .., 8a} range being
unreliable and as a result, yielding a nonsensical �t.

Nτ 40 36 32 28 24 20
T
Tc

0.76 0.84 0.95 1.09 1.27 1.52

σa2 0.0288(11) 0.0283(9) 0.0270(9) 0.0204(18) 0.0093(52) 0.0199(51)

P
(
χ2
)

0.98448 0.9762 0.9759 0.8961 0.5711 0.2543

Table 3: The linear parameter σa2 determined from �tting the Cornell potential

Secondly we consider the Karsch-Mehr-Satz model discussed in [17] given by:
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Figure 7: The graph produced by �tting the extracted values of Re (aV ) to the Cornell

potential model

Re (V (r)) : =
σ

mKMS
(1− exp (−mKMSr)) +

(
−α
r

+ C
)

exp (−mKMSr) .

(114)

Note that we have modi�ed the potential model found in [17] with the addition
of the term C exp (−mKMSr). This is due to the fact that the authors of [17]
de�ned the Cornell potential such that the constant C does not appear. Since
our de�nition of VCornell di�ers slightly, we add this term to account for the
discrepancy.

Furthermore, notice the introduction of the Debye mass, which we denote as
mKMS for this model, which is introduced to account for screening e�ects in
the QQ system caused by the surrounding thermal medium. Unlike the Cornell
potential, the parameters σ, α and C determined at T = 0 are considered
constant with respect to temperature in this model, and any apparent change
in the potential with respect to temperature is due to an increase in screening
e�ects, i.e. an increase in mKMS . Due to a lack of zero temperature Cornell
parameters, we make do with treating the Cornell parameters of the lowest
temperature i.e. the 243×40 data set, as constant with respect to temperature.
We then proceed to �t our extracted values for Re (aV (r)) to this model in
order to obtain a best �t value for amKMS . The results are given in Figure 8
and Table 4.
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Table 4: Numerical values of mKMS
Tc

determined from the Karsch-Mehr-Satz potential

Nτ 40 36 32 28 24 20 16
T
Tc

0.76 0.84 0.95 1.09 1.27 1.52 1.9

amKMS 0 0.0048(1) 0.0113(1) 0.0235(1) 0.042(12) 0.043(2) 0.05(4)

P
(
χ2

)
- 1.42×10−6 8.0527×10−19 2.617×10−15 2.89×10−3 4.8058×10−6 6.66×10−3

The values of P
(
χ2
)
indicates quite a poor �t, so the �tted values of amKMS

need to be discussed cautiously. It is unclear if this poor �t is due to the
short comings of the potential model or the fact that the Cornell parameters
used were not the true zero temperature parameters. In any case there is an
apparent increase in the Debye mass as a function of temperature. The in-
crease is particularly large across the critical temperature Tc, consistent with
decon�nement. There is an apparent plateau of the Debye mass for the higher
temperature values. Given the lack of reliable data points for the high temper-
ature data sets as well as the poor �t parameters, we dismiss this behavior as
there is simply too much uncertainty to draw any meaningful conclusion for the
highest temperature sets.

We �nally �nish with a more sophisticated potential model proposed in [11],
which incorporates screening e�ects by treating the thermal medium surround-
ing the QQ bound state as a weakly coupled gas. It reads:

Re (Vscreened (r)) : =− αmD − α
exp (−mDr)

r
−

Γ
(

1
4

)
σ

3
4α

1
4

2
3
4
√
πmD

D− 1
2

(√
2mDσ

1
4

α
1
4

r

)

+
Γ
(

1
4

)
σ

3
4α

1
4

2Γ
(

3
4

)√
mD

, (115)

where Γ (z) is the usual gamma function, mD denotes the Debye mass for this
potential model and Dv (z) is the parabolic cylinder function which, by de�ni-
tion, satis�es the di�erential equation

d2

dz2
Dv (z) +

(
−1

4
z4 +

1

2
+ v

)
Dv (z) = 0. (116)

In a similar fashion to the �ts above, we set mD = 0 for the 243 × 40 sample to
extract a best �t value for σ, α and C, then proceed to treat these as constant
for all other data sets to deduce a value for mD.
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Figure 9: The screened potential and amD plotted against T
TC

obtained from potential

model

Table 5: The numerical values of the Debye mass mD
Nτ 40 36 32 28 24 20 16
T
Tc

0.76 0.84 0.95 1.09 1.27 1.52 1.9

amD 0 0.0224(74) 0.0475(74) 0.2764(74) 0.3731(74) 0.3968(74) 0.4373(74)

P
(
χ2

)
- 7.99×10−10 3.435×10−41 5.726×10−17 0.1372 0.1104 0.2718
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Once again we must take care with the goodness of �t. Similarly to the previous
model we have extremely small values for the P

(
χ2
)
parameter, at least for the

low temperature data sets. Despite this we tentatively discuss the results of the
�t.

Notice that the values of the Debye mass in this model behave in similar man-
ner to the one obtained from the Karsch-Mehr-Satz model, that is, a noticeable
increase in amD across the transition temperature Tc. However, the values
of amD displayed in Table 5 are one order of magnitude larger compared to
those displayed for amKMS in Table 4. The Debye mass is associated with the
screening e�ects present in a strongly interacting medium, and is thus consid-
ered to be a physically signi�cant quantity. Because of this, one would expect
mKMS ≈ mD, however, we see that they appear to di�er by one order of mag-
nitude. This discrepancy may be accounted for in two ways.

Firstly, the Cornell parameters used were not true zero temperature parameters.
It may be that the the Debye mass predicted by both models converge to similar
values if lower temperature Cornell parameters are used. Secondly, there is
ambiguity in the de�nition of the Debye mass.

In (114) the Debye mass is de�ned as the inverse length scale of the screening
e�ects present in the system. The authors of [17] expect these screening e�ects
to manifest themselves as an exponential decay in the potential and thus impose
a prefactor of the form:

exp
(
− r
L

)
= exp (−mKMSr) . (117)

Equation (115) on the other hand, tackles screening e�ects by virtue of Gauss's
Law. In particular they relate the static quark potential to the colour electric
�eld via the familiar equation:

~E = −~∇V, (118)

they then impose screening e�ects on this colour electric �eld by introducing
the permittivity of a weakly coupled gas to the colour charge distribution. In
this case the permittivity is related to the Debye mass, up to leading order, by
[24]:

Re (ε) =

(
1− m2

D

p2

)
, (119)

Im
(
ε−1
)

=
−πTpm2

D

(p2 +m2
D)

2 . (120)

Due to the more rigorous approach used to derive (115), we expect the values of
mD to be more physically relevant than mKMS . However, due to a lack of data
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points for large values of r in the high temperature data sets, we suspect that
the �t functions obtained in Figure 8 are overestimating the screening e�ects
present in the system. In particular, we don't expect such a drastic change in
the potential energy between the Nτ = 32 and Nτ = 28 data sets. A similar
analysis was carried out in [12] without such a drastic change being observed as
well as obtaining similar values for the Debye mass. In [12], the authors made
use of much �ner lattices (as = 0.097fm) which allowed for the extraction of
more long distance data points, which we believe, is why a more gradual change
in the potential was observed across Tc.

5.2 Two Colour High Density Analysis

Here we present the results of a similar calculation carried out on dense two
colour lattice con�gurations. Computations of the static quark potential in
dense systems have been carried out previously by applying an exponential �t
to the Wilsonloop correlator [16, 3]. A calculation of the static quark potential
via the spectral function decomposition has (to the best of our knowledge) not
been carried out. As such, it is interesting to compare our results to those found
in [16, 3].

5.2.1 Simulation parameters

The 2 colour simulation was carried out in an analogous way to the high tem-
perature analysis. The Wilsonline correlators were measured using lattice con-
�gurations generated on 163 × 24 lattices. The con�gurations were generated
for chemical potentials µ (MeV) ∈ {0, 333, 554, 776}. The Table 6 shows the
chemical potential µ and the number of lattice con�gurations Nconf used in the
Monte Carlo method as well as some of the lattice parameters used in the sim-
ulation. A more detailed outline of the lattice parameters can be found in [13].
We also display the number of Jackknife samples used in the BR method af-
ter the Wilsonline correlators were measured. Figure 10 displays the measured
correlators plotted on both linear and logarithmic scales.

N3
s ×Nτ β a mπ

mρ
κ

163 × 24 1.9 0.178fm 0.807 0.1680

µa µ (MeV) Nconf Njack

0 0 198 11

0.3 332 2000 10

0.5 554 2025 15

0.7 776 1530 16

Table 6: Details of the 2 colour lattice con�gurations as well as the chemical potential each sample

was generated for
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As we can see from Figure 10, there is much more noise present in the Wilsonline
correlators than the high temperature simulation, particularly in the µ = 0 data
set. Furthermore there is no clear change in the correlators with increasing µ.

Once the Wilsonline correlators were measured we deployed the BR method
with the model functions m1, m2 and m3 used in the previous subsection given
by equations (109),(110) and (111) respectively. The results of the Bayesian
inference are displayed in Figure 11 with the black, red and green lines indicating
reconstructions using m1, m2 and m3 respectively.

The reconstructed spectral functions have similar characteristics to the ones
seen previously, in particular, a lowest lying peak structure whose width and
position increase with r

a . From the high temperature analyses presented in the
previous subsection, one would expect spectral functions similar in shape to the
ones seen for µ = 333MeV and µ = 554Mev. Because of this, the results of the
µ = 0 and µ = 776MeV reconstructions are concerning. The µ = 0 may be
due to the low statistics available for the simulations (see Table 6). This clearly
does not explain the µ = 776MeV result since it was a relatively high statistics
simulation.

The decrease in the magnitude of the �rst spectral peak for µ = 776MeV as
well as the almost �at peak structure for the r

a = 2 spectral function was not
observed in the high temperature spectral peaks, even after the apparent onset
of decon�nement was observed. As such, we suspect that this behavior is the
result of lattice artifacts.

Nevertheless we proceed with �tting the peak structure of each spectral function
to extract Re (V ). These �ts are displayed in Figures 12 and 13, while the
extracted values for Re (V ) are displayed in Figure 14.

r
a 1 2 3 4

P
(
χ2
)

(µ = 333MeV) 1 1 1 1

P
(
χ2
)

(µ = 776MeV) 1 1 1 1

Table 7: The P
(
χ2

)
parameter for the µa ∈ {0.3, 0.7} data sets for r ∈ {a, 2a, 3a, 4a}.

The results of the two colour analysis are not quite as satisfying as the high tem-
perature results. First and foremost the numerical values for Re (aV ) generally
seem more unstable with respect to the model function. Furthermore, there is
no obvious �attening of Re (aV ) with increasing chemical potential. For com-
pleteness, we also �t these data points to the Cornell potential VCornell (r). The
best �t curves are presented in Figure 15. The numerical values of σ and the
P
(
χ2
)
parameters are shown in Table 8.

Due to asymptotic freedom, we might expect a decrease in σ with respect to µ
but no such behavior is seen from our analysis. Indeed, the lowest value of µ
has produced the lowest value of σ, while the largest value of µ has produced
the largest value of σ, which almost perfectly contradicts what we expect to
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Figure 10: The Wilsonline correlators measured from the µ ∈ (0MeV, 333MeV, 554MeV, 776MeV)

2 colour lattice con�gurations. The top panel has been plotted on a linear scale, while the bottom

has been plotted on a logarithmic scale.
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Figure 11: The spectral function reconstructions for µa ∈ {0, ..., 0.7} at spatial separations

r ∈ {a, ..., 8a}. The black, red and green graphs denote spectral functions reconstructed with
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43



0.53 0.535 0.54 0.545 0.55
ω

0

50

100

150

200

250

300

ρ(ω)

r=a

0.53 0.535 0.54 0.545 0.55
ω

0

50

100

150

200

250

300

ρ(ω)

r=a

0.85 0.86 0.87 0.88 0.89

ω

0

10

20

30

40

ρ(ω)

r=2a

0.85 0.86 0.87 0.88 0.89

ω

0

10

20

30

40

ρ(ω)

r=2a

1 1.05 1.1 1.15 1.2

ω

0

1

2

3

4

5

ρ(ω)

r=3a

1 1.05 1.1 1.15 1.2

ω

0

1

2

3

4

5

ρ(ω)

r=3a

1 1.1 1.2 1.3 1.4 1.5 1.6
ω

0

0.5

1

1.5

2

ρ(ω)

r=4a

1 1.1 1.2 1.3 1.4 1.5 1.6
ω

0

0.5

1

1.5

2

ρ(ω)

r=4a

Figure 12: The �tted spectral peaks from the µa = 0.3 data set for spatial separations r ∈

{a, 2a, 3a, 4a}.

44



0.49 0.5 0.51 0.52 0.53 0.54
ω

0

10

20

30

40

ρ(ω)

r=a

0.49 0.5 0.51 0.52 0.53 0.54
ω

0

10

20

30

40

ρ(ω)

r=a

0.8 0.85 0.9 0.95

ω

0

0.5

1

1.5

2

2.5

3

ρ(ω)

r=2a

0.8 0.85 0.9 0.95

ω

0

0.5

1

1.5

2

2.5

3

ρ(ω)

r=2a

0.9 1 1.1 1.2 1.3 1.4 1.5
ω

0

0.5

1

1.5

2

ρ(ω)

r=3a

0.9 1 1.1 1.2 1.3 1.4 1.5
ω

0

0.5

1

1.5

2

ρ(ω)

r=3a

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

ω

0

0.2

0.4

0.6

0.8

1

ρ(ω)

r=4a

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

ω

0

0.2

0.4

0.6

0.8

1

ρ(ω)

r=4a

Figure 13: The �tted spectral peaks from the µa = 0.7 data set for spatial separations r ∈

{a, 2a, 3a, 4a}.
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Figure 15: The graphs produced by �tting the extracted values of Re (V ) to the Cornell potential

model

µ(MeV) 0 333 554 776

a2σ 0.1128(679) 0.1925(5) 0.1742(74) 0.197(17)

P
(
χ2

)
0.914851 0.008988 0.456084 0.02245

Table 8: The values of the linear parameter σ determined from �tting the Cornell potential

observe. To determine the cause of this, we take a closer look at the lattice
con�gurations used in the analysis.

Firstly, the µ = 0MeV is a very low statistics simulation (Nconf = 198), which
is re�ected in the small number of data points extracted in Figure 14. Because
of the large numerical uncertainty this produces in the extraction of Re (V ), we
suspect that the results for µ = 0 are not physically relevant. It is worth noting,
however, that the large uncertainty in σa2 for µ = 0 is consistent with the
value of σa2 obtained for µ = 332MeV, so there appears to be no statistically
signi�cant change in σ in this range of density.

As for the µ = 776MeV data set, we suspect that lattice artifacts are corrupting
the results. This is re�ected in the spectral reconstruction for µ = 776MeV
in Figure 11, where the BR method produced far more peak structures for
the model function m3 than m1 and m2. The results from the µa ∈ {0.3, 0.5}
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appear reliable and indicate a �attening of the potential with increasing chemical
potential. From the values of σ extracted from these results, it appears that
decon�nement does not occur across this range of densities.

The numerical values of Re (V ) for µa ∈ {0.3, 0.5} displayed in Figure 11 agree
reasonably well with those found in [3]. The numerical methods and lattice
sizes used in [3] di�er from ours, but all other lattice parameters (ξ, as, aτ , etc.)
are the same, which demonstrates that the numerical methods used here are
indeed reliable. An analysis of the free energy between a quark anti-quark pair
was carried out in [2] on much �ner lattices (a = 0.044fm) with an improved
Symanzik gauge action and a staggered fermion action. In [2] decon�nement
was observed via the free energy at higher densities (µ ≈ 1GeV) than the ones
available here. Hence our results are consistent with what has been found in
previous analyses.

For the sake of completeness we will also �t these data points to the Karsch-
Mehr-Satz model de�ned in (114). The �tting procedure we carry out here
is slightly di�erent to the one used in the high temperature analysis. When
carrying out the potential �ts in the previous subsection we treated the zero
temperature Cornell parameters as constants with respect to temperature and
proceeded to �t only the Debye mass parameter mKMS . Ideally, we would treat
the zero density Cornell parameters as constants here too, however, due to the
large uncertainty in the µ = 0Mev results, this is not feasible, so we make do
with �tting to all four parameters, σ, α,C and mKMS . The best �t functions
are given in Figure 16, with σ, mKMS and P

(
χ2
)
parameters shown in Table

9.

µa 0 0.3 0.5 0.7

amKMS -0.2188 0.1534 0.1139 0.4503

σa2 -0.1848 0.3911 0.3174 0.6803

P
(
χ2

)
- 0.349851 0.554802 -

Table 9: The numerical values of mKMS and σ obtained from the Karsch-Mehr-Satz model

We cannot determine a P
(
χ2
)
parameter for µa ∈ {0, 0.7} since there are no

degrees of freedom when �tting these data sets. As expected these data sets
produce nonsensical �ts, such as a negative Debye mass seen in the µa = 0 �t or
a large increase in σ for µa = 0.7. The �ts µa ∈ {0.3, 0.5} produce an apparent
decrease in the Debye mass parameter. We attribute this to the fact that we are
using non-constant Cornell parameters for this �t. For these reasons we cannot
draw any meaningful conclusion from this potential model �t.
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Figure 16: The Karsch-Mehr-Satz potential model �tted to the 2 colour potential for µa ∈

{0.3, 0.5, 0.7}
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6 Conclusions

The static quark potential has a long history in heavy quark physics. Despite
this the real time potential is still in relative infancy, particularly in dense sys-
tems and to a lesser extent, high temperature systems. Originally the problem
has been approached using suitable ansatz for the potential energy and in more
recent years, an EFT approach. With the formulation of this new Bayesian
inference method we are �nally able to infer numerical values of V (r) from the
underlying theory.

At high temperature we have observed the onset of decon�nement by virtue of
the �attening of the static quark potential. The Bayesian inference method used
produced fewer reliable data points for the Re (V ) from the highest temperature
lattice con�gurations. This was due to fewer lattice points Nτ being available
along the temporal axis. As such we expect that a �ner lattice spacing is required
to numerically infer Re (V ) at higher temperatures.

From the two colour analysis, no decon�nement was observed across the range
of densities available to us. This is consistent with a previous investigation
on dense quark matter where decon�nement was observed at higher densities
[2]. Due to the corruption of the results by lattice artifacts, it is crucial that
improved lattice actions are implemented moving forward. Despite this, we
obtained values for Re (V ) similar to the ones found in [3], which serves as an
ideal cross examination of the numerical methods used in both calculations.
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Appendix

A Lattice QCD

A.1 γµE algebra

We derive the anti-commutation relations of the Euclidean gamma matrices γµE ,
γ5
E and their Hermitian conjugates where:
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γ0
E = γ0,

γiE = −iγi,
γ5
E = γ0γ1γ2γ3.

We determine the anti-commutator of the Euclidean gamma matrices via the
anti-commutation relations of their Minkowski counterparts. Recall that the
gamma matrices in Minkowski space satisfy the relations:

{γµ, γν} = 2gµν ,{
γ5, γµ

}
= 0,

(γµ)
†

= γ0γµγ0,(
γ5
)†

= γ5.

Using these we have:

{
γ0
E , γ

i
E

}
=
{
γ0,−iγi

}
= 2g0i

= 2δ0i. (121){
γjE , γ

i
E

}
=
{
−iγj ,−iγi

}
= −

{
γj , γi

}
= −2gji

= 2δji. (122){
γ0
E , γ

0
E

}
=
{
γ0, γ0

}
= 2g00

= 2δ00. (123)

These can be written more compactly as

{γµE , γ
ν
E} = 2δµν . (124)

Furthermore (
γiE
)†

=
(
−iγi

)†
= −iγi

= γiE , (125)

⇒ (γµE)
†

= γµE . (126)
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Now for γ5
E = γ0γ1γ2γ3:

{
γ5
E , γ

i
E

}
=
{
γ5,−iγi

}
= 0, (127){

γ5
E , γ

0
E

}
=
{
γ5, γ0

}
= 0, (128){

γ5
E , γ

µ
E

}
= 0. (129)

And:

(
γ5
E

)†
=
(
γ5
)†

= γ5 = γ5
E . (130)

A.2 Gauge transformation of U (x, y)

We wish to show that U (x, y) transforms as U (x, y) → V (x)U (x, y)V −1 (y)
under local gauge transformations.

By de�nition, we have U (x, y) = exp
[
igP

∫
C
Aµdz

µ
]
, where C is some open

contour with parametrization zµ (s) such that zµ (1) = x and zµ (0) = y for
s ∈ [0, 1]. To determine the transformation law of U we consider the case when
the end point x is no longer �xed, i.e. we have x (α) = zµ (α) for some α ∈ [0, 1].
Then:

U (x (α) , y) = exp

[
igP

∫ α

0

Aµ
dzµ

ds
ds

]
, (131)

⇒ d

dα
U (x (α) , y) = igAµ (x)

dxµ

dα
U (x (α) , y) , (132)

⇒ dxµ

dα
(DµU (x (α) , y)) = 0. (133)

Note from the de�nition of U (x, y) that we have U (x, y) = 1 when x = y. Thus
we have derived a �rst order di�erential equation for U (x, y) with boundary
conditions.

Applying a gauge transformation to this equation gives

dxµ

dα

(
D′µU

′ (x (α) , y)
)

= 0. (134)

Where D′µ and U ′ are Dµ and U after gauge transformation. This di�erential
equation must satisfy the same boundary condition U ′ (x, y) = 1 when x = y.

We now show that V (x)U (x, y)V −1 (y) satis�es the same di�erential equation.
Using the fact that the �eld Aµ transforms via Aµ → V AµV

−1 + i
g (∂µV )V −1

we have:
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dxµ

dα

(
D′µ
(
V (x)U (x (α) , y)V −1 (y)

))

=
dxµ

dα

(
∂

∂xµ
+ ig

(
V (x)Aµ (x)V −1 (x) +

i

g

∂V (x)

∂xµ
V −1 (x)

))
V (x)U (x, y)V −1 (y)

(135)

=
dxµ

dα

(
∂V (x)

∂xµ
U (x, y)V −1 (y) + V (x)

∂U (x, y)

∂xµ
V −1 (y)

)
(136)

+
dxµ

dα

(
igV (x)Aµ (x)U (x, y)V −1 (y)− ∂V (x)

∂xµ
U (x, y)V −1 (y)

)
(137)

= V (x)

[
dxµ

dα

(
∂U (x, y)

∂xµ
+ igAµ (x)

)]
V −1 (y) (138)

= 0 (139)

Thus U ′ and V (x)U (x, y)V −1 (y) satisfy the same di�erential equation. But a
�rst order di�erential equation with boundary conditions has a unique solution.
Thus:

U ′ (x, y) = V (x)U (x, y)V −1 (y) , (140)

as required.

A.3 Calculus with Grassmann variables

Here we construct the notion of a di�erential operator acting on a function of
Grassmann variables, as well as a de�nite integral over Grassmann variables.
These derivations rely heavily on treating di�erentiation and integration as op-
erators which map the set of all Grassmann functions to itself. Before we do
this we note some properties of Grassmann functions.

Recall that a Grassmann algebra G is de�ned such that if θ1, θ2 ∈ G then:

θ1θ2 ∈ G ∀θ1, θ2 ∈ G, (141)

θ1θ2 = −θ2θ1 ∀θ1, θ2 ∈ G, (142)

0 ∈ G. (143)
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Using this we have:

θ1θ2θ1 = −θ2θ
2
1, (144)

⇒ −θ2
1θ2 = −θ2θ

2
1, (145)

⇒ θ2
1θ2 = θ2θ

2
1. (146)

But θ2
1 ∈ G by (141) and therefore must satisfy (142), so if θ2

1 commutes with
θ2 we must have:

θ2
1 = 0 ∀θ1 ∈ G. (147)

So powers of Grassmann variables larger than 1 equal zero. In particular if
we have θ1, ..., θn Grassmann variables, only terms which are linear in these
variables can appear. So a function f (θ1, ..., θn) of n Grassmann variables must
have the form:

f (θ1, .., θn) =
∑
mi

amiθ
m1
1 ..θmnn , (148)

mi =

{
0.

1.
(149)

where ami is a complex coe�cient. In the above sum, we are summing over all
possible powers (0 or 1) in the product θm1

1 ...θmnn .

A.3.1 Di�erentiation of Grassmann variables

Consider the di�erential operator ∂
∂θi

. Only terms which are linear in Grass-
mann variables can appear, so we need only consider how this operator acts on
products of Grassmann variables. Firstly they must satisfy the condition:

∂θj
∂θi

= δij , (150)

⇒ ∂2θj
∂θ2
i

= 0∀θi. (151)

Furthermore, how these operators act on products is non-trivial, due to the
anti-commuting nature of Grassmann variables, i.e.
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∂

∂θi
(θ1..θi..θn) =

∂

∂θi

(
(−1)

i−1
θiθ1..θi−1θi+1..θn

)
(152)

= (−1)
i−1

θ1..θi−1θi+1..θn, (153)

where have had to commute θi to the front of the product to act on it with ∂
∂θi

.

Since there are (i− 1) terms in front of θi this gives a factor of (−1)
i−1

Finally consider di�erential operators of the form ∂2

∂θi∂θj
where, without loss of

generality, i < j:

∂2

∂θi∂θj
(θ1..θi..θj ..θn) =

∂

∂θi
(−1)

j−1
θ1..θi..θn

= (−1)
j−1

(−1)
i−1

θ1...θn. (154)

Reversing the order of the operators we obtain:

∂2

∂θj∂θi
(θ1..θi..θj ..θn) = (−1)

i−1 ∂

∂θj
θ1..θj ..θn

= (−1)
i−1

(−1)
j−2

θ1...θn

= − ∂2

∂θi∂θj
(θ1..θi..θj ..θn) . (155)

Thus second order derivatives of Grassmann variables are anti-symmetric:

∂2

∂θi∂θj
= − ∂2

∂θj∂θi
. (156)

A.3.2 Integration of Grassmann variables

We now construct the notion of a de�nite integral over Grassmann variables.
First we note two conditions that such an integral must satisfy:

∫
dθi

(
∂

∂θi
f (θ1, .., θn)

)
= 0, (157)

∂

∂θi

(∫
dθif (θ1, ..., θn)

)
= 0. (158)
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The �rst condition comes from the fact that the integral of a derivative is zero
in the absence of boundary terms. The second comes from the fact that when θi
is integrated out, the resulting function is independent of θi and so its derivative
with respect to θi should be zero. We can combine these two conditions into
the following:

∂

∂θi

∫
dθi =

∫
dθi

∂

∂θi
= 0. (159)

But recall that this is precisely the same condition satis�ed by the second order
derivative (151). Thus we have:

∂

∂θi
≡
∫
dθi. (160)

We end by considering integrals of the form
∫
dθ1dθ2, since such integrals ap-

pears when integrating over the fermionic �elds ψ and ψ. Using the result above
we have:

∫
dθ1dθ2 1 = 0, (161)∫
dθ1dθ2 θ1 = 0, (162)∫
dθ1dθ2 θ2 = 0, (163)∫

dθ1dθ2 θ2θ1 = 1. (164)

A.4 Continuum limit of the Wilson Gauge Action

We take of the continuum limit, i.e. the limit as a → 0, of the Wilson Gauge
action, which is de�ned as:

SWG =
∑
�

S�, (165)

S� =
2Nc
g2

(
1− 1

Nc
tr
{
Un(n+aµ̂)U(n+aµ̂)(n+aµ̂+aν̂)U(n+aµ̂+aν̂)(n+aν̂)U(n+aν̂)n

})
.

(166)

Using the identity Unm = U†mn we have:

56



S� =
2Nc
g2

(
1− 1

Nc
tr
{
Un(n+µ)U(n+µ)(n+µ+ν)U(n+µ+ν)(n+ν)U(n+ν)n

})
=

2Nc
g2

(
1− 1

Nc
tr
{
Un(n+µ)U(n+µ)(n+µ+ν)U

†
(n+ν)(n+µ+ν)U

†
n(n+ν)

})
.

(167)

To take the continuum limit of this we consider the point

x = n+
µ

2
+
ν

2
. (168)

When then assume that the gauge �elds are smooth enough that we can Taylor
expand them about this point xµ.

Recall the expression for the link element:

Un(n+µ) = exp
[
igaAµ

(
x− a

2
ν̂
)]
, (169)

where we assignAµ to the midpoint of the link. Consider the product Un(n+µ)U(n+µ)(n+µ+ν)

which appears in the trace. Using (169) we can write this product as:

Un(n+µ)U(n+µ)(n+µ+ν) = exp
[
igaAµ

(
x− a

2
ν̂
)]

exp
[
igaAν

(
x+

a

2
µ̂
)]
. (170)

Taking the product of these exponentials is non-trivial due to the non-abelian
nature of the �eld Aµ. To take this product we make use of the Baker-Campbell-
Haussdor� formula:

exp [x] exp [y] = exp

[
x+ y +

1

2
[x, y] + ..

]
. (171)

The higher order terms in this formula have been neglected since we will be
evaluating the exponent of (170) up to order O

(
a2
)
since all higher order terms

will vanish in the a→ 0 limit. Using this we have:

Un(n+µ)U(n+µ)(n+µ+ν) = exp

[
igaAµ

(
x− a

2
ν̂
)
+ igaAν

(
x+

a

2
µ̂
)
+

1

2
igaAµ

(
x− a

2
ν̂
)
, igaAν

(
x+

a

2
µ̂
)]

(172)

= exp

[
iga (Aµ (x) +Aν (x)) +

iga2

2
∂µAν −

iga2

2
∂νAµ −

g2a2

2
[Aµ (x) , Aν (x)] +O

(
a3

)]
(173)

= exp

[
iga (Aµ (x) +Aν (x)) +

iga2

2
Fµν −

g2a2

2
[Aµ (x) , Aν (x)]

]
.

(174)
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Notice that in line (173) we Taylor expanded the �eld Aµ up to order a about
the point x. We then neglected term of order a3 and higher. Similarly we can
derive an expression for the second product appearing in the trace, namely,
U†(n+ν)(n+µ+ν)U

†
n(n+ν), it reads:

U†(n+ν)(n+µ+ν)U
†
n(n+ν) = exp

[
−iga (Aµ (x) +Aν (x)) +

iga2

2
Fµν −

g2a2

2
[Aµ (x) , Aν (x)]

]
.

(175)

Finally, to evaluate the full product, Un(n+µ)U(n+µ)(n+µ+ν)U
†
(n+ν)(n+µ+ν)U

†
n(n+ν),

we once again make use of (171). This gives:

Un(n+µ)U(n+µ)(n+µ+ν)U
†
(n+ν)(n+µ+ν)U

†
n(n+ν) = exp

[
iga2Fµν − g2a2 [Aµ (x) , Aν (x)] +O

(
a3
)]

(176)

= exp
[
iga2 (Fµν + ig [Aµ, Aν ])

]
(177)

= exp
[
iga2Gµν

]
, (178)

where we have, once more, neglected terms of order a3 and higher. We can now
expand this exponential function, expanding up to a4 gives:

Un(n+µ)U(n+µ)(n+µ+ν)U
†
(n+ν)(n+µ+ν)U

†
n(n+ν) = 1+iga2Gµν−g2a4 (Gµν)

2
+O

(
a6
)
.

(179)

Recall from (166) that the de�nition of the Wilson gauge action requires us to
take the trace of this product. Doing this gives:

tr
{
Un(n+µ)U(n+µ)(n+µ+ν)U

†
(n+ν)(n+µ+ν)U

†
n(n+ν)

}
= tr

{
1 + iga2Gµν − g2a4 (Gµν)

2
}

(180)

= Nc − g2a4tr (Gµν)
2
.
(181)

We �nally have an expression for the Wilson gauge action which allows us to
easily take the continuum limit:

SWG =
∑
�

S� (182)

=
∑
x

∑
µ,ν<µ

2Nc
g2

(
1− 1

Nc

(
Nc − g2a4tr (Gµν)

2
))

(183)

=
∑
x

a4GµνG
µν . (184)
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We now take the continuum limit, i.e. a → 0. Identifying a4 as the volume
element d4x, and replacing the sum over all points with an integral yields:

SWG =
∑
x

a4GµνG
µν (185)

→
∫
d4xGµνG

µν (186)

as required.

A.5 Continuum limit of the Wilson Fermion Action

Recall that in Euclidean space, the fermion action is:

SF =

∫
d4xψ (γµEDµ +m)ψ. (187)

To �nd a lattice action which converges to this we �rst show that the expression

1

2a

(
Un(n+µ̂)ψn+µ̂ − U†n(n−µ̂)ψn−µ̂

)
(188)

converges to Dµψ. Note for Un(n+µ̂) we have:

Un(n+µ̂) = exp

[
igaAµ

(
x+

aµ̂

2

)]
= 1 + igaAµ

(
x+

aµ̂

2

)
+O

(
a2
)
. (189)

Plugging this in we have:

1

2a

(
Un(n+µ̂)ψn+µ̂ − U†n(n−µ̂)ψn−µ̂

)
=

1

2a

((
1 + igaAµ

(
x+

aµ̂

2

))
ψn+µ̂ −

(
1− igaAµ

(
x− aµ̂

2

))
ψn−µ̂

)
(190)

=
1

2a
(ψn+µ̂ − ψn−µ̂) +

iga

2a

(
Aµ

(
x+

aµ̂

2

)
+Aµ

(
x− aµ̂

2

))
(191)

→ ∂µψ + igAµψ (192)

= Dµψ. (193)
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Since this converges to Dµψ we can replace Dµψ with this expression when
discretizing the fermion action, furthermore we make the replacement

∫
d4x→

a4
∑
n. This gives the lattice action:

S = a4
∑
n

ψn

(
γµE

(
1

2a

(
Un(n+µ̂)ψn+µ̂ − U†n(n−µ̂)ψn−µ̂

))
+mψn

)
. (194)

Wilson proposed adding an additional term to this action which is linear in
a6. Such a term will vanish in the continuum limit, and so, leaves the physics
unchanged. This term is7:

aψn

(
Un(n+µ̂)ψn+µ̂ + U†n(n−µ̂)ψn−µ̂ − 2ψn

a2

)
. (195)

Thus the full Wilson fermion action is:

SWF = a4
∑
n

ψn

(
γµE

(
1

2a

(
Un(n+µ̂)ψn+µ̂ − U†n(n−µ̂)ψn−µ̂

))
+mψn

)

+ aψn

(
Un(n+µ̂)ψn+µ̂ + U†n(n−µ̂)ψn−µ̂ − 2ψn

a2

)
(196)

= a4
∑
n

ψn

((
1 + γµE
a

)
Un(n+µ̂)ψn+µ̂ +

(
1− γµE
a

)
U†n(n−µ̂)ψn−µ̂

)
+

(
m− 2

a

)
ψnψn

(197)

=
∑
n

a3ψn

(
(1 + γµE)Un(n+µ̂)ψn+µ̂ + (1− γµE)U†n(n−µ̂)ψn−µ̂

)
+
(
a4m− 2a3

)
ψnψn.

(198)

Finally, for convenience we rescale the �eld ψ by a factor of
√
a4m− 2a3. This

gives us our �nal expression:

SWF =
∑
n

a3ψn

(
ψn + κ (1− γµE)U†n(n−µ̂)ψn−µ̂ + κ (1 + γµE)Un(n+µ̂)ψn+µ̂

)
,

(199)

where κ =
√
a4m− 2a3 is a factor obtained when rescaling our �elds.

6This term is added to suppress fermion doubling.
7To see that this term is proportional to a rather than 1

a
, notice that the term inside the

brackets is independent of a since it is just the discretized version of the operator ∇L,µ∇R,µ
where L and R denote a left and right derivative respectively.
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A.6 Integration of the fermionic �elds

Consider the fermion action in Euclidean space:

SE =

∫
d4xLE (200)

=

∫
d4xψ (γµEDµ +m)ψ (201)

=

∫
d4xψMψ. (202)

where M is the square matrix given by M = γµEDµ + m. We wish to evaluate
the integral:

∫
DψDψ exp [−SE ] =

∫
DψDψ exp

[
−
∫
d4xψMψ

]
. (203)

To do this we consider the eigeanstates φn with eigenvalues λn of M . We can
expand ψ and ψ in terms of φn since these eigeanstates form an orthonormal
basis:

ψ =
∑
n

anφn, (204)

ψ =
∑
n

anφ
†
n, (205)∫

d4xφ†nφm = δnm, (206)

where the coe�cients an are Grassmann variables. Plugging this in we get:

∫
DψDψ exp [−SE ] =

∫
DψDψ exp

[
−
∫
d4xψMψ

]
(207)

=

∫ ∏
n

DanDan exp

[
−
∑
n

(
anλnan

∫
d4xφ†nφn

)]
(208)

=

∫ ∏
n

DanDan exp

[
−
∑
n

anλnan

]
. (209)

But note from (A.3) that
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∫
DaDa exp [−aλa] =

∫
DaDa (1 + λaa) (210)

= λ, (211)

⇒
∫ ∏

n

DanDan exp

[
−
∑
n

anλnan

]
=
∏
n

λn (212)

= det (M) . (213)

A.7 det (M) is real for µ = 0 and complex for µ 6= 0

In Euclidean space we have the following expression for M :

M = γµEDµ +m. (214)

Now consider the operator γ5M . First we show that this operator is Hermitian:

(
γ5M

)†
= M†γ5

= (γµDµ +m)
†
γ5

= (−γµDµ +m) γ5

= γ5 (γµDµ +m)

= γ5M, (215)

⇒M† = γ5Mγ5. (216)

Now we take the determinant of both sides to get the desired result:

det (M?) = det
(
M†
)

= det
(
γ5Mγ5

)
= det (M) , (217)

⇒ det (M) ∈ R. (218)

Consider the case when µ 6= 0. Then for M (µ) we have:

M (µ) = γµEDµ +m+ γ0µ. (219)

Once again me consider the operator γ5M(µ) and show that its hermicity is
broken for µ 6= 0:
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(
γ5M (µ)

)†
= M† (µ) γ5

=
(
γµDµ +m+ γ0µ

)†
γ5

=
(
−γµDµ +m+ γ0µ

)
γ5

= γ5
(
γµDµ +m− γ0µ

)
= γ5M (−µ) , (220)

⇒M† (µ) = γ5M (−µ) γ5. (221)

Taking the determinant of both sides gives:

det (M? (µ)) = det
(
M† (µ)

)
= det (M (−µ)) , (222)

⇒ det (M (µ)) ∈ C. (223)

A.8 det (M (µ)) is real in 2 colour QCD

The proof of this result relies on the fact that SU (2) is psuedo-real i.e. the
generators of SU (2) in the adjoint representation satisfy the equation:

− (T a)
?

= σ2T
aσ−1

2 , (224)

where σ2 is the second Pauli matrix. We can apply (224) to the �eld Aµ:

σ2Aµσ
−1
2 = σ2

(
AaµT

a
)
σ−1

2

= −Aaµ (T a)
?

= −A?µ. (225)

We now consider the operator U = Cγ5σ2 where C is the charge conjugation
operator (i.e. CγµC−1 = − (γµ)

T
). Using this we have:

UM (µ)U−1 =
(
Cγ5σ2

) (
γµ∂µ − igγµAµ +m+ γ0µ

)
σ−1

2 γ5C−1 (226)

= Cγ5
(
γµ∂µ − igγµ

(
−A?µ

)
+m+ γ0µ

)
γ5C−1 (227)

= C
(
−γµ∂µ − igγµA?µ +m− γ0µ

)
C−1 (228)

= (γµ)
T
∂µ + ig (γµ)

T
A?µ +m+

(
γ0
)T
µ (229)

=
(

(γµ)
†
∂µ − ig (γµ)

†
Aµ +m+

(
γ0
)†
µ
)?

(230)

=
(
γµ∂µ − igγµAµ +m+ γ0µ

)?
(231)

= M? (µ) . (232)
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Taking the determinant we have:

det (M? (µ)) = det
(
UM (µ)U−1

)
= det (M (µ)) , (233)

⇒ det (M (µ)) ∈ R. (234)

A.9 Thermal correlators

Recall that the time evolution of a �eld ψ is given by the Hamiltonian via the
equation

ψ (t, x) = eiHtψ (0, x) e−iHt. (235)

Writing the expression for 〈ψ (t, x)ψ (0, y)〉T explicitly we have:

〈ψ (t, x)ψ (0, y)〉T =
1

Z
tr
{
e−βHψ (t, x)ψ (0, y)

}
(236)

=
1

Z
tr
{
ψ (0, y) e−βHψ (t, x)

}
(237)

=
1

Z
tr
{
e−βHeβHψ (0, y) e−βHψ (t, x)

}
(238)

=
1

Z
tr
{
e−βH

(
eiH(−iβ)ψ (0, y) e−iH(iβ)

)
ψ (t, x)

}
(239)

=
1

Z
tr
{
e−βHψ (−iβ, y)ψ (t, x)

}
(240)

= 〈ψ (−iβ, y)ψ (t, x)〉T . (241)

where, line (190) we used the cyclic property of the trace and in (193) we time
evolved ψ (0, y) via the Hamiltonian operator.
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