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Summary 

This thesis investigates different aspects of weather, grass growth and statistical 

modelling. First, the accuracy of weather forecasts is assessed and improved using 

bias correction methods at twenty-five Irish locations for weather variables that 

influence grass growth. For the first time, soil temperature observations measured at 

six depths are verified and bias corrected. Next, the weather forecasts are included in 

an Irish grass growth model to investigate how the model accuracy is affected. The 

model predictions at an Irish farm are compared for weather observations and 

forecasts in multiple years, as well as to on-farm grass growth observations. These 

studies show that forecasts can be used in place of observations, and model 

predictions generally describe weekly grass growth accurately. Finally, grass growth 

modelling methods for experiments involving multiple species are developed for the 

analysis of a weed invasion study involving a large number of species. These 

developments include fitting novel random effects over multiple years to describe 

pairwise interactions between species parsimoniously and incorporating spatial 

planting pattern treatment into modelling methods. 
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Glossary 

 

Biodiversity variety of animal and plant species life 

Centroid community community in which all species are in equal proportion 

Forb a flowering plant that is not a grass 

Forecast period the number of days in advance of the observation that the forecast was produced 

Functional group group containing species that fulfil similar functional traits, for example nitrogen fixation 

Legume a family of plants known for their nitrogen-fixing traits 

Met Éireann Irish meteorological service 

Mixture community with more than one species 

Monoculture community with one species 

Mean climatological forecasts forecast the monthly mean climatological value for each day in the month 

PastureBase Ireland a national Irish database and management tool for grassland management 

Persistence forecasts forecasting the observation from the day before the forecast was generated 

Richness number of species 

Stocking rate animal units per unit of land area 

Visual assessment method a method of grass measurement which involves estimating grass covers visually 
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Chapter 1 

Introduction 

1.1 Thesis objectives 

The overall aim of this thesis is to extend existing Irish grass growth modelling 

work by including weather forecasts, so grass growth can be predicted in advance, 

and therefore grass growth models (GGMs) can be used as farm management tools. 

The forecasts must first be assessed for accuracy, and then included in the grass 

growth model to investigate their influence. This work also aims to extend existing 

methods in the modelling of species-rich grassland experiments. 

 

1.2 Background 

Importance of grass growth in Ireland 

Grazed grass is the cheapest feed source available to Irish farmers (Dillon et al., 

2005). On dairy farms, every extra tonne of dry matter (DM) per hectare utilised can 

result in an increase of between €161 and €267/ha in farm profit (French et al., 2015; 

Shalloo, 2009). To maximise utilisation of this valuable resource, farmers must make 

grassland management decisions daily. For example, when there is a surplus of grass 

on-farm they should remove excess herbage to maintain feed quality in grazed 

swards. They must also decide when to apply nitrogen (N) fertiliser, and plan when 

to feed supplements if there will not be sufficient grass to meet demand. Current best 

practice in Irish grassland management involves using the visual assessment method, 

in which farmers visually estimate the amount of grass available to them on each 

paddock on their farm (grass cover) (Hanrahan et al., 2017; O'Donovan et al., 2002). 
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PastureBase Ireland is a national grass growth database and management tool . It 

provides farmers with information on the grass available to them on their farm based 

on farm cover estimation, stocking rate and weekly management (Hanrahan et al., 

2017). Farmers can then make management decisions based on the information and 

resources available to them in PastureBase Ireland. Currently within PastureBase 

Ireland, a grass growth estimate for the current week is given based on the usual 

grass growth at that time of year. An operational grass growth model predicting 

growth in the coming week to ten days based on current farm conditions and weather 

forecasts would enhance farmers’ abilities to make informed decisions and increase 

grass utilisation and farm profits (Ruelle et al., 2018).  

 

History of grass growth modelling internationally and in Ireland 

An operational grass growth model should give reasonable predictions for the 

short-term growth on-farm by accounting for local conditions such as soil type and 

weather conditions, and incorporating factors within the farmer’s control such as 

grazing management and N fertiliser application. Site-specific grass growth models 

have been developed for European sites (Johnson and Thornley, 1983; Jouven et al., 

2006), as well as some models that predict for multiple sites, and different land types 

(Schapendonk et al., 1998). All of these grass growth models are mechanistic, except 

Brereton et al. (1996), which is deterministic. Hurtado-Uria et al. (2013b) examined 

the accuracy of three grass growth models (Brereton et al., 1996; Johnson and 

Thornley, 1983; Jouven et al., 2006) for an Irish site and found that the Jouven et al. 

(2006) model performed best. Ruelle et al. (2018) developed the Moorepark St. 

Gilles (MoSt) grass growth model by equipping the Jouven model with soil water 
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and soil nitrogen (N) sub-models to describe the movement of water and N through 

the soil. The MoSt GGM is a mechanistic model developed in C++, and is designed 

to be able to predict growth in a perennial ryegrass (Lolium perenne L.) sward on any 

Irish dairy farm.  

 

Background on link between weather and grass growth 

One of the main factors influencing grass growth is the weather conditions. The 

weather variables that most affect grass growth are rainfall, solar radiation, and air 

and soil temperatures. Ireland’s temperate climate gives the country’s farmers a 

competitive advantage because it provides favourable conditions for almost year-

round growth (Hurtado-Uria et al., 2013a). The persistent, low-intensity rainfall and 

the generally mild temperatures are almost optimal grass growth conditions, since 

grass growth begins at 5°C and ceases between 20°C and 25°C (Frame, 1992; 

Hopkins, 2000). Rainfall during the Irish growing season is usually persistent and 

low-intensity, which favours grass growth, although a lack of water in summer 

months can sometimes reduce grass growth. Excess rainfall can also be problematic, 

particularly during spring and autumn, and can prevent grazing due to poor ground 

conditions and reduced growth (Burke et al., 2004). Soil temperatures at depths of 

less than 10 cm below the surface affect grass growth, with a particular influence on 

determining the length of the grass growth season (Hurtado-Uria et al., 2013a). Solar 

radiation is essential for photosynthesis to happen, and thus convert carbon dioxide 

into biomass (Laidlaw and Frame, 2013).  

 

Weather forecasts for grass growth modelling 
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To be used in practice, a grass growth model requires weather forecasts. Previous 

grass growth models developed in Ireland have used retrospective weather 

observations and yielded reasonable estimates (Hurtado-Uria, 2013; Ruelle et al., 

2018). The forecasts used by Met Éireann (Ireland’s national meteorological service) 

up to ten days in advance are generated by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). The variables relevant for grass growth are air 

temperature, rainfall, soil temperature and solar radiation. Observations for these 

weather variables are available at the 25 Met Éireann synoptic stations, which are 

distributed around Ireland. Because weather forecasts must describe large areas and 

be homogeneous, local biases can exist in forecasts (Auligne et al., 2007; Roberts, 

2008). Before the inclusion of weather forecasts in a grass growth model, it is 

necessary to assess their accuracy, and attempt to remove any local systematic biases 

present in them. This can be done using bias-correction techniques such as those 

described in Joliffe and Stephenson (2011). 

 

Grass growth modelling of mixed species swards 

The GGM work in this thesis only examines predictions for perennial ryegrass 

systems, as the MoSt GGM currently only predicts growth for such systems. Mixed 

species swards have been shown to have environmental and economical benefits 

(Finn et al., 2013). Legumes, in particular white clover, are the most common 

species included with perennial ryegrass in Irish grasslands (Egan et al., 2018). In 

future, it will be important to adapt the MoSt GGM so that it can predict for such 

systems, which when managed well usually show increased dry matter production 

(Guy et al., 2018) and decreased weed invasion (Connolly et al., 2018), without 

11



affecting forage quality (Sturludottir et al., 2014). The inclusion of nitrogen-fixing 

legumes also reduces the amount of fertiliser needed. Although the inclusion of 

legumes is common when increasing species diversity in grasslands, herbs such as 

plantain and chicory are also being considered (Hofer et al., 2016). Diversity-

Interactions (DI) models have been developed to be used for the analysis of multi-

species experiments, including investigating the effects of multi-species swards in 

grasslands (Kirwan et al., 2009). 

 

DI models and weed invasion 

DI models use the proportions of each species in the plot as predictors, and give 

estimates of each species in monoculture (a single species), as well as estimating the 

contribution of the interaction between each pair of species (Kirwan et al., 2009). 

The DI model can be expressed as: 

𝑦𝑚 = ∑ 𝛽𝑖𝑃𝑖𝑚

𝑠

𝑖=1

+ ∑ 𝛿𝑖𝑗𝑃𝑖𝑚𝑃𝑗𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

+ 𝜀𝑚               (1) 

where 𝑃𝑖𝑚 is the proportion of species 𝑖 in experimental unit 𝑚, 𝑠 is the total number 

of species in the species pool, and the 𝜀𝑚~𝑁(0, 𝜎2) are assumed independent and 

identically distributed for a single year, single site setting. 𝛽𝑖  is the expected 

response for species 𝑖 in monoculture, and 𝛿𝑖𝑗 is the contribution of the interaction 

between species 𝑖 and 𝑗. To simplify the model, the pairwise interactions can be 

grouped if they are similar (Kirwan et al., 2009), for example, it might be assumed 

that any pair of species from a group that have similar biological traits will interact 

in the same way. They can also be included as random pairwise interactions with the 
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same variance to make a more parsimonious model, or if there is insufficient data to 

fit the model that includes all pairwise interactions as fixed effects (Brophy et al., 

2017). DI models allow for prediction at proportions of species that were not sown 

provided the experimental design appropriately describes the simplex space 

(Connolly et al., 2013). Weed resistance is an important property of multi-species 

swards (Connolly et al., 2018), and weed biomass can be analysed as a response 

using DI modelling methods. The Species Pattern and Community Ecology (SPaCE) 

experiment investigated the effects of 16 grassland species on weed invasion and 

grass biomass in a natural system in North Dakota between 2012 and 2014. It 

incorporated a spatial sowing pattern treatment where species within plots were 

either aggregated or dispersed. However, DI models have not previously dealt with 

spatial pattern treatment, and the spatial pattern treatment in this case only applies to 

mixtures. Nor have DI models been developed that can model a large number of 

pairwise species interactions over multiple years. 

 

1.3 Summary of each section / goals of the thesis 

 The aims of my research are to 1) to assess and improve the accuracy of 

weather forecasts in Ireland, 2) to extend the abilities of grass growth modelling in 

Ireland by including weather forecasts as inputs, and 3) to improve existing 

statistical methods for the analysis of multi-year grassland biodiversity experiments 

with large numbers of species.  

In chapter 2, the accuracy of weather forecasts in Ireland is assessed. 

ECMWF forecasts up to ten days in advance for weather variables relevant to grass 

growth: maximum, minimum and mean two metre air temperature, rainfall and soil 
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temperature at six depths, are compared to observations at the 25 Met Éireann 

synoptic weather stations. A variety of correction techniques are employed to 

attempt to remove any biases in ECMWF forecasts. ECMWF and bias-corrected 

forecasts are compared to easily generated low-skill forecasts: mean climatological 

forecasts, where the mean monthly observation is the forecast for every day in the 

month, and persistence forecasts, where the observation from the day before the 

forecast was generated is used.  

It was found that all air and soil temperature forecasts were predicted 

accurately up to a week in advance, and were improved by bias corrections, 

particularly one using a regression model-based approach. Rainfall forecasts were 

shown to be accurate up to 5 or 6 days in advance. However, after this ECMWF 

rainfall forecasts generally gave higher RMSE values than equivalent mean 

climatology forecasts. Although climatology forecasts would not predict extreme 

rainfall events, it was found that ECMWF forecasts also did not predict these events 

accurately more than 6 days in advance. 

In chapter 3, weather forecasts are included as an input for an Irish grass 

growth model. The Moorepark StGilles grass growth model (MoSt GGM) is the 

model used (Ruelle et al., 2018). It can be adjusted to account for local conditions 

and different farm management systems, but here is only presented at one site: 

Teagasc Curtin’s research farm. The weather inputs used in the model are rainfall, 

solar radiation and air temperatures. Two studies are conducted: the first compares 

predictions from the MoSt GGM from 2008 to 2016 at four different fertiliser levels 

at Curtin’s farm using observed weather, with corresponding predictions using 

weather forecasts. The second study replicates the farm management from 2013 to 

2016 at Curtin’s in the MoSt GGM, and predictions using observed weather and 
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various weather forecasts are compared to weekly on-farm grass growth 

observations. 

The first study showed that forecasts could be interchanged with observations 

in the grass growth model and give similar grass growth predictions, and that the 

ECMWF forecasts, best bias-corrected forecasts, and mean climatological forecasts 

could all be important at varying forecast periods. There was no apparent interaction 

between fertiliser application levels and the weather input used, observed or forecast. 

The study comparing MoSt GGM predictions to on-farm grass growth observations 

showed agreement in most weeks during the growing season between the weekly 

grass growth observations and the predictions from the MoSt grass growth model for 

all weather inputs. However, there were consistent under-predictions by all weather 

inputs early and late in the growing season. Some poor weekly predictions showed 

the influence that weather inputs could have in the model, highlighting 

improvements that could be made. 

The final section, which aims to improve existing statistical methods for the 

analysis of plot-based grassland experiments, uses the weed biomass yield in the 

three years of the SPaCE biodiversity experiment (2012 to 2014). The study 

investigated how functional group (groups of species with similar traits) and spatial 

sowing pattern (aggregated in species-specific clusters or randomly dispersed) 

influenced weed invasion. There were four species from each of four functional 

groups: warm-season and cool-season grasses, forbs and legumes. DI models are 

fitted to the weed biomass over three years. Random pairwise interactions with a 

common variance in each of the three years are included to help incorporate 

variation not described by the fixed effects, because there are many pairwise 

interactions. They do this in a parsimonious way, since each year only requires one 
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extra model parameter. Complex covariance structures are included to account for 

the different variances for different functional groups, as well as including spatial 

pattern treatment as a fixed effect. A simulation study explores the ability of the 

modelling approach to detect when the random pairwise interactions are needed in 

the model under varying conditions. 

Weed biomass was generally lower for mixtures after the year of 

establishment. The final model showed that each pair of species interacted depending 

on their functional group membership and the spatial planting pattern, as well as by 

the proportion of legumes present. Random pairwise interactions were needed in the 

model in year three of the study to describe additional variation not picked up by the 

fixed effects. A covariance structure with different blocks for monocultures from 

each functional group, and another for mixtures was used to satisfy the model 

assumptions. Model predictions suggested that species aggregation suppressed weed 

invasion better at establishment but had higher weed biomass in years 2 and 3. The 

simulation study showed that when the variance of the random pairwise interactions 

is sufficiently large, they are almost always detected, while when no random 

pairwise interaction variance is present, the model often does not fit. 

 

1.4 Publications 

 

McDonnell, J., K. Lambkin, R. Fealy, D. Hennessy, L. Shalloo and C. Brophy 

“Verification and bias correction of ECMWF forecasts for Irish weather 

stations to evaluate their potential usefulness in grass growth modelling”, 

Meteorological Applications, Volume 25, April 2018, Pages 292-301. 
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(This journal paper forms the basis for Chapter 2.) 

 

McDonnell, J., C. Brophy, E. Ruelle, L. Shalloo K. Lambkin and D. Hennessy 

“Weather forecasts to enhance an Irish grass growth model”, European 

Journal of Agronomy, Volume 105, April 2019, Pages 168-175. 

(This journal paper forms the basis for Chapter 3.) 

 

Brophy, C., A. Dooley, L. Kirwan, J. A. Finn, J. McDonnell, T. Bell, M. W. Cadotte 

and J. Connolly “Biodiversity and ecosystem function: Making sense of 

numerous species interactions in multi-species communities”, Ecology, 

Volume 98, Issue 7, July 2017, Pages 1771-1778. 

(This journal paper outlines new Diversity-Interactions modelling methods that are 

built upon in Chapter 4.) 

 

McDonnell, J., C. Brophy, E. Ruelle, K. Lambkin, R. Fealy, L. Shalloo and D. 

Hennessy (2018) “Evaluation of ECMWF weather forecasts and their 

inclusion in an Irish grass growth model”, In Sustainable meat and milk 

production from grasslands. Proceedings of the 27th General Meeting of the 

European Grassland Federation, Cork, Ireland, 17-21 June 2018 (pp. 823-

825)  

(This peer reviewed conference paper was presented at the European Grassland 

Federation meeting (EGF 2018). It is based on work from chapters 2 and 3.) 
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Chapter 2 

 

Verification and bias correction of ECMWF forecasts for Irish 

weather stations to evaluate their potential usefulness in grass 

growth modelling 

 

Collaborators on this paper were Keith Lambkin, Rowan Fealy, Deirdre Hennessy, Laurence 

Shalloo and Caroline Brophy. The paper is published in Meteorological Applications. 

 

ABSTRACT:  Typical weather in Ireland provides conditions favourable for 

sustaining grass growth throughout most of the year. This affords grass based 

farming a significant economic advantage due to the low input costs associated with 

grass production. To optimise the productivity of grass based systems, farmers must 

manage the resource over short time scales. While research has been conducted into 

developing predictive grass growth models for Ireland to support on-farm decision 

making, short-term weather forecasts have not yet been incorporated into these 

models. To assess their potential for use in predictive grass growth models, 

deterministic forecasts from the European Centre for Medium-Range Weather 

Forecasting (ECMWF) were verified for lead times up to ten days using observations 

from 25 Irish weather stations. Forecasts of air temperature variables were generally 

precise at all lead times, particularly up to seven days. Verification of ECMWF soil 

temperature forecasts is limited, but here they were shown to be accurate at all 

depths and most precise at greater depths such as 50 cm. Rainfall forecasts 

performed well up to approximately five days. Seven bias correction techniques were 
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assessed to minimise systematic biases in the forecasts. Based on the root mean 

squared error values, no large improvement was identified for rainfall forecasts on 

equivalent ECMWF forecasts, but the optimum bias corrections improved air and 

soil temperature forecasts greatly.  Overall, the results demonstrated that forecasts 

predict observations accurately up to approximately a week in advance and, 

therefore, could prove valuable in grass growth prediction at farm level in Ireland. 

 

KEYWORDS: forecast verification, bias correction, Ireland, air temperature, 

rainfall, soil temperature, grass growth, agriculture. 

 

2.1   Introduction 

Agriculture is the largest indigenous industry in Ireland; specifically, the agri-

food industry accounts for approximately €26 billion of total turnover (~ 7% GDP) 

and 8.4% of employment (DAFM 2015). At the primary agricultural production 

level, the grass based beef and dairy sectors account for almost 70% of production 

(DAFM 2015). In recognition of the 2015 abolition of EU quotas restricting milk 

production, the Irish Government established targets to increase the value of primary 

production by 65% and agri-food exports by 85% by 2025, compared to 2012-2014 

levels (DAFM 2015). To meet these targets and the growing demands of the 

international community, farming practices in Ireland will need to optimise the 

utilisation of valuable natural resources such as grass. Shalloo (2009) and Dillon 

(2011) previously identified a strong positive linear association between grass 

utilisation (tonnes dry matter per hectare (t DM/ha)) and on-farm net profitability 

(€/ha) in Ireland. Due to the mild, maritime climate, with mean annual temperatures 

from 9-11 oC and the typically low intensity, long duration of rainfall throughout the 
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year, optimum conditions for grass growth are achieved during most of the year 

(Hurtado-Uria et al. 2013a). The production of grass, with low input cost 

requirements, also minimises the need for costly alternative feed supplements.  

Consequently, primary agricultural production has largely developed around 

grass/pasture based systems, making it a key element of Irish agricultural 

productivity (Finneran et al. 2010), and profitability.  

Many factors influence grass productivity, some of which are within the farmers 

control (e.g. stocking rate, fertiliser application), while others are outside (e.g. 

meteorological conditions, soil type). Frame (1992) has previously highlighted the 

influence of weather on grass production and utilisation. In particular, air and soil 

temperatures as well as rainfall, are critical factors determining both growing season 

length and rate of growth (Brereton 1995, Thorvaldsson et al. 2004). Perennial 

ryegrass (Lolium perenne L.) is the most widely sown grass species in Ireland 

(DAFM 2016), with leaf growth beginning at 5 °C, and reaching its peak between 20 

°C and 25 °C (Hopkins 2000). Temperatures during spring and autumn typically 

vary between 5-10 oC, and therefore determine the growing season length (Burke et 

al. 2004). Soil temperatures between 0 cm and 10 cm below the surface are 

particularly important for grass growth in Ireland (Hurtado-Uria et al. 2013a). The 

year-round rainfall and the low permeability of many Irish soil types means that 

excessive moisture is usually more problematic for grass growth in Ireland than 

insufficient moisture availability (Burke et al. 2004). However, adequate rainfall 

during the growing season is essential for grass growth, with winter rainfall 

necessary to establish sufficient soil water levels in spring for growth to occur 

(Frame 1992).  
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To ensure sufficient supply and the optimised utilisation of grass throughout the 

growing season, grasslands are required to be managed on short timescales, 

optimally on a daily to weekly basis. The timing of management decisions, such as 

removing excess herbage at times of peak growth to maintain grass quality, directly 

affects farm efficiency and ultimately profitability (O'Donovan 2000, O'Donovan et 

al. 2011). While tools currently exist to assist on-farm decision making for grass 

budgeting/accounting (eg. grazing planners; PastureBase Ireland – a national 

grassland database), the use of an operational grass growth model, employing ‘local’ 

weather conditions, would assist farmers with management decisions influencing 

grass growth such as N fertiliser application, stocking rate and rotation length. Grass 

growth models using weather observations retrospectively have previously been 

developed (Hurtado-Uria et al. 2013b). The research outlined here seeks to build on 

these developments through the evaluation of outputs from a numerical weather 

prediction (NWP) model for use in forecasting meteorological parameters that 

influence grass growth, over time scales of relevance to improving on-farm decision 

making.   

Over the last decade, NWP forecasts have become more skilful largely due to 

significant advances in computational resources, resolution and improved 

parameterisation schemes; but model skill varies depending on the meteorological 

parameter and the forecast lead time being evaluated. Despite these improvements, 

they also contain systematic biases (Ebert and McBride 2000, Sun et al. 2003, 

Auligne et al. 2007, Roberts 2008). These biases are most apparent at the surface-

atmosphere boundary where errors in fluxes arising from the land surface and 

atmospheric model interact (Galanis and Anadranistakis 2002, Mass et al. 2008). 

Another bias arises due to the model grid representation, an integrated value 
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representative of an area, which is typically evaluated against a proximal weather 

station.  

The presence of systematic biases within NWP outputs can be minimised using 

appropriate post-processing methods (for example Harrison et al. 2000, Boi 2004, 

Sweeney et al. 2011, Vannitsem and Hagedorn 2011). A variety of approaches, 

including the moving window technique and Model Output Statistics (MOS), have 

been found to improve the accuracy of rainfall and 2 m air temperature forecasts (see 

Yussouf and Stensrud 2007, Huang et al. 2012 for example). Many studies attempt 

to correct forecasts spatially over a domain of interest (Louka et al. 2008, Vrac and 

Friederichs 2015 for example), and applying bias correction techniques at individual 

station locations can yield improvements in forecast accuracy (Taylor and Leslie 

2005).  

At long forecast lead times, rainfall is more difficult to forecast, and 

consequently bias correct, than air temperature. This is largely due to the fact that the 

processes that give rise to rainfall can occur over small space and time scales (Hamill 

et al. 2008, Fan and van den Dool 2011), requiring parameterisations rather than 

being resolved dynamically.  Verification and bias correction of soil temperature 

forecasts remains limited internationally (but see Albergel et al. (2015)), in part due 

to a lack of suitable databases recording soil temperature observations. However, 

Met Éireann, the Irish National Meteorological Service, maintains a comprehensive 

soil temperature observation database for Ireland, with observations taken at six 

depths for 23 locations. This database is analysed in this paper, providing a detailed 

case study for soil forecast verification at multiple depths.   

The purpose of this case study is to identify the accuracy of ECMWF weather 

forecasts in Ireland and to improve forecast accuracy where possible using bias 
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correction for potential future inclusion in predictive grass growth models. This 

objective is achieved using data from a distributed network of 25 weather stations in 

Ireland over a period of seven years (2007 to 2013). The quality of ECMWF 

forecasts of rainfall, soil temperature and maximum, minimum and mean 2 m air 

temperature for lead times from 1 to 10 days is assessed. Various bias correction 

techniques are compared and the resulting forecasts are verified. Rainfall, air and soil 

temperature are highly influential in grass growth, but investigating and bias 

correcting their forecasts is an essential prior step to their inclusion in grass growth 

models. 

 

2.2   Data and Methods 

2.2.1 Data collation 

Weather observations were collated for each of the 25 Met Éireann synoptic weather 

stations in Ireland for the period from 2007 to 2013 (Figure 2.1). Hourly 

observations of air temperature were obtained, while soil temperature (oC) at six 

depths (5, 10, 20, 30, 50 and 100 cm) were available at 6 hourly intervals (0300, 

0900, 1500 and 2100) at 5, 10, 20 cm and at once per day (0900) for soil depths at 

30, 50 and 100 cm. Rainfall data (mm) were available daily. Corresponding forecasts 

for the seven years were obtained from the ECWMF operational forecasting model, 

for model grids matching the locations of the surface weather stations, for forecast 

lead times from day-1 to day-10. For example, the day-1 forecast for 10 January 

2007 was run at 0000 on 10 January 2007, while the day-10 forecast was run at 0000 

on 1 January 2007. Day-1 to day-10 are hereafter referred to as ‘forecast periods’. As 

eight of the weather stations became operational after 1 January 2007, observations 

were not available at all locations for the entire seven year period examined 
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(Appendix 2.1). There was also a small number of missing observations at some 

stations due to servicing, calibrations or instrument outages. Persistence and mean 

climatological forecasts were also obtained, with the exception that mean 

climatological observations were unavailable for soil temperatures. 

 

 

Figure 2.1. Map of Ireland showing the locations of the 25 Met Éireann synoptic 

stations. The observations are taken manually at the manual stations which are 

located at airports. 

25 km 
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2.2.1.1 Observations 

The daily mean 2 m air temperature was the mean of the 24 hourly 2 m air 

temperature values recorded on each day starting at 0000 Coordinated Universal 

Time (UTC). If less than 13 hourly temperatures were available for a day, the daily 

value was excluded from analysis. The daily maximum and minimum 2 m air 

temperatures were the highest and lowest values recorded at the station in the 24 

hours of the day beginning at 0000. Soil temperature observations were available at 

23 of the 25 stations (measurements of soil temperature were unavailable from 

Finner and Macehead). At each station, soil temperature measurements were taken at 

5, 10, 20, 30, 50 and 100 cm. The daily mean soil temperature at 5, 10 and 20 cm 

was derived from the mean of the observed temperature values for each depth at 

0300, 0900, 1500 and 2100. Observations at 30, 50 and 100 cm were measured once 

daily at 0900. The total daily rainfall was the total precipitation (mm) recorded in the 

24 hours beginning at 0000. 

2.2.1.2 Forecasts 

Daily forecast values for model grids corresponding to each weather station were 

obtained from the ECMWF Atmospheric Model high resolution 10-day 0000 

forecast. This forecast had a horizontal grid resolution of approximately 25 km over 

Ireland until 26 January 2010, when it changed to approximately 16 km. The data 

extracted was mapped onto a latitude/longitude grid (0.125° x 0.125°) for ease of 

comparison of different model versions operating on different grid resolutions over 

the years. At some coastal stations, the grid box containing the station was 

describing a sea area in the model before the update, and a land area afterwards. It 

was found that this could lead to biases in the model. In order to overcome issues 

associated with the improvement of land-sea boundaries in the updated model, the 
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forecast value used was that from the nearest land grid box output by the model. The 

ECMWF model predicts the minimum and maximum 2 m air temperatures in every 

consecutive 6-hour interval from +0 hours (0 hours after the model run) to +240 

hours. The daily minimum and maximum temperatures were the lowest and highest, 

respectively, of the forecasts for the day in question. Each ECMWF model run gave 

2 m air temperature and soil temperature forecasts at 3-hour intervals from +0 hours 

to +144 hours and at 6-hour intervals from +144 hours to +240 hours. The model 

forecast mean temperature was computed as the mean of the 2 m air temperature 

forecast values for the day. The day-1 to day-10 ECMWF forecasts for the four soil 

temperature forecast parameters (STL1 (0-7 cm), STL2 (7-28 cm), STL3 (28-100 

cm) and STL4 (100-289 cm)) were obtained similarly. For example, the day-2 

forecast for 2 January was the mean of the +24, 27, 30, 33, 36, 39, 42 and 45 hours 

forecasts from 1 January whereas the day-7 forecast for 7 January was the mean of 

the +150, 156, 162 and 168 hours forecasts from 1 January. Day-1 to day-10 rainfall 

forecasts were output directly by the ECMWF forecast model. 

Monthly mean climatological values for rainfall and maximum, minimum 

and mean temperature between 1981 and 2010 were obtained at each station (Walsh 

2012). The monthly mean climatological observation at each station was forecast for 

every day in the month to generate mean climatology forecasts. Persistence forecasts 

were generated by forecasting the observation of the day preceding the forecast 

generation (Joliffe and Stephenson 2011). For example, day-10 persistence forecasts 

were the observed weather conditions of 10 days ago.  

2.2.2 Accuracy assessment of direct model output forecasts 

A range of verification statistics were used to assess forecast accuracy and to identify 

biases for each weather variable. The statistics included Mean Systematic Bias (MSB 
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= 
∑ (𝑓𝑖−𝑜𝑖)𝑛

𝑖=1

𝑛
), Root Mean Squared Error (RMSE =√

∑ (𝑓𝑖−𝑜𝑖)2𝑛
𝑖=1

𝑛
), and Mean Absolute 

Error (MAE = 
∑ |𝑓𝑖−𝑜𝑖|𝑛

𝑖=1

𝑛
),  where 𝑜𝑖 is the 𝑖𝑡ℎ observation, 𝑓𝑖 is the ith forecast and 𝑛 

is the total number of observations used in the calculation (Joliffe and Stephenson 

2011). Standard deviation was used to assess the variability of the forecast and 

observed values. The forecasts were analysed at each individual forecast period from 

day-1 to day-10, or using all forecast periods combined if the statistic of interest did 

not vary substantially across forecast periods, to give a general description of 

forecast quality. The trends were examined by individual year, season, month and 

station, as well as across all seven years of data and twenty-five stations. When 

calculating yearly, monthly or seasonal statistics, limits were imposed on the number 

of missing values permitted: a minimum requirement of 183 values present in a year, 

61 in a season and 22 in a month was set (yearly missing values at each station are 

shown in Appendix 2.1). To assess the skill of a forecast, its accuracy was compared 

with that of a mean climatology or a persistence forecast.  

2.2.3 Bias correction 

Seven bias correction (BC) techniques were tested: yearly, seasonal and monthly BC 

(1, 2 and 3, respectively), mean and variance (MAV) BC (4), regression model BC 

(5), regression model BC by station (6) and the composite (COM) post-processing 

method (7). Each BC method used a cross-validation approach; values from the 

period to be bias corrected were excluded from the data used to inform the bias 

corrections (Joliffe and Stephenson 2011). It was deemed reasonable to use data 

from before and after the target year (the year in which the forecasts were to be bias 

corrected) (Joliffe and Stephenson 2011). The details for each bias correction method 

are as follows: 
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1. Year BC: One year of forecasts and observations at one station was selected 

as the target year data. The MSB for all data at the station excluding the 

target year was calculated. This MSB was subtracted from ECMWF 

forecasts in the target year to obtain the yearly bias corrected forecasts 

(Joliffe and Stephenson 2011). This was repeated for each year at each 

station. Data from all forecast periods were used to do these bias 

corrections provided the MSB values did not vary much across forecast 

periods. 

2. Season BC: Individually for each station, the MSB in the season of interest 

for all data outside the target year was subtracted from target year ECMWF 

forecasts for the particular season. The seasons were defined as spring 

(March, April, May), summer (June, July, August), autumn (September, 

October, November), and winter (December, January, February). 

3. Month BC: Individually for each station, the MSB in the month of interest 

for all years outside the target year was subtracted from target year 

ECMWF forecasts for the particular month.  

4. Mean and variance (MAV) BC: Separately for each forecast period, 

forecasts were bias corrected by scaling them to have the same mean and 

variance as the observations from the month being bias corrected (obs) 

using the cross-validation approach (Sweeney et al. 2011). The bias 

correction involved two steps: 

fBC1𝑖  =  𝑓𝑖  ∗  
𝜎𝑜𝑏𝑠

𝜎𝑓
 

fBC2𝑖  =  fBC1𝑖 + µ𝑜𝑏𝑠 − µ𝑓𝐵𝐶1 

Where fi is the ith forecast of interest, σobs and σf are the standard 

deviations of the observations and forecasts of interest, respectively, 
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fBC1i is the ith forecast scaled for standard deviation, μobs and μfBC1 are 

the means of the observations and forecasts (adjusted for standard 

deviation), respectively, and fBC2i is the ith MAV bias corrected forecast. 

5. Model BC: Using a linear regression approach (Acharya et al. 2013), 

separately for each forecast, forecasts were used as a predictor of 

observations: 

𝐸[𝑦] =  𝛽0 + 𝛽1𝑓 + 𝛿𝑗 + 𝛼𝑘 

where 𝑦 is the observation, 𝑓is the ECMWF forecast, 𝛿𝑗 is a categorical 

month specific term,  𝑗 = 1, … ,12, 𝛼𝑘 is a categorical station specific 

term, 𝑘 = 1, … ,25. The coefficients of the model were estimated using 

the data outside the target year. The bias corrected forecasts for the target 

year were obtained by predicting from the estimated model. 

6. Model BC by station: The model BC approach described in (5) was 

performed on each station separately with just the forecast and month as 

predictors. 

7. Composite (COM) post-processing: Any subset (of size n) of the six bias-

corrected forecasts and the ECMWF forecast can be combined to make a 

composite (COM) forecast (Sweeney and Lynch 2011). For each day, the 

cross-validation approach was employed separately on each station using 

data from the same month as that being bias corrected to obtain an MAE 

value (MAE𝑗) for each forecast (𝑓𝑗) in the subset being used. The 

following equation was used to calculate the COM forecast for a 

particular day.  

COM = ∑
𝑓𝑗

MAE𝑗 ∑
1

MAE𝑗

𝑛
𝑗=1

𝑛

𝑗=1
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Any negative rainfall forecasts given by the bias correction methods were set to zero. 

All bias corrected forecasts were re-assessed for accuracy using the methods 

described in Section 2.2.2.  

A moving window approach using cross validation, in which only data from 

the 31 days centred on the day to be bias corrected were used in the bias correction, 

was applied to methods 3, 4, 6 and 7 to assess if there was any improvement in 

forecast accuracy (Stensrud and Yussouf 2005). When using this approach, there was 

generally no overall improvement on the original bias correction methods. Since it 

was much more computationally expensive and therefore less useful for operational 

purposes, it has not been presented. 

 

2.3 Results and discussion 

2.3.1 Accuracy assessment of ECMWF forecasts 

The accuracy of the ECMWF minimum, mean and maximum air temperature 

forecasts each decreased linearly as forecast period increased (Appendix 2.2); for 

example, the minimum temperature RMSE for data from all stations rose from 1.51 

°C to 2.25 °C to 3.44 °C for forecast periods 1, 5 and 10, respectively. Comparing 

yearly RMSE values at each individual station and for each air temperature variable 

identified that persistence forecasts outperformed day-7 ECMWF forecasts over 75% 

of the time. This indicates that air temperature forecasts of forecast period longer 

than a week were not any more useful than low-skill forecasts. A number of stations 

showed considerable within year variability in maximum temperature RMSE (Figure 

2.2). 
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Figure 2.2. Monthly maximum temperature RMSE of day-1 ECMWF forecasts for 

each of the Met Éireann synoptic stations in each year from 2007 to 2013. 

 

The highest yearly RMSE value for minimum temperature was recorded in 

2010: 1.74 °C at forecast period 1 across all stations in comparison to a mean of 1.47 

°C for the other six years of data, and this trend was evident in all forecast periods. 

In 2010, 20.1% of the daily minimum temperature observations were less than 0 °C 

compared to 7.0% on average across the other six years and these extremes were 

poorly predicted by the ECMWF model, explaining the poor forecasting 

performance in 2010. Poor forecasts of freezing temperatures are unlikely to hamper 
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the prediction of grass growth provided the observations remain below 5 °C since 

this is the lower threshold for grass growth (Hopkins 2000). Minimum, maximum 

and mean 2 m air temperature MSB trends were generally constant across forecast 

period at each station indicating that the air temperature variables should respond 

positively to bias-correction (minimum temperature, Appendix 2.3). Appendix 2.3 

shows yearly differences in MSB at Belmullet and Mace Head. This is likely due to 

the horizontal improvements in the model in 2010 better defining the land-sea 

boundary for these coastal stations. Otherwise, there were no noticeable differences 

in systematic biases before and after the ECMWF model update (Figure 2.3, 

Appendix 2.3, Appendix 2.4). Minimum temperature displayed a larger range of 

MSB values across stations than the other air temperature variables (between -1.86 

°C and 1.00 °C for forecast period 1).  

Soil temperature observations at each depth (5, 10, 20, 30, 50 and 100 cm) 

may not be most accurately forecasted by the forecast range into which they fall 

(STL1: 0-7, STL2: 7-28, STL3: 28-100 and STL4: 100-289 cm). When data from all 

stations and all forecast periods were included, the RMSE statistic identified that 

depths 5, 20, 50 and 100 cm were best forecast by their corresponding STL range but 

that 10 cm was best predicted by STL1 and 30 cm was best predicted by STL2; the 

most accurate range was used as the ECMWF forecast in each case. For all six soil 

temperature depths, the MSB was reasonably consistent across forecast periods at 

each station. However, there was a strong within year difference in MSB, with the 

forecast consistently under-estimating the observed in summer at all stations (shown 

for 5 cm, Figure 2.3). This could be attributed to the fact that the forecasts are not 

directly predicting the observation depths, rather they predict ranges, and therefore 
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exhibit strong systematic biases. Bias correction should successfully reduce these 

biases (Joliffe and Stephenson 2011).  

 

Figure 2.3. Monthly MSB of STL1 (0-7 cm) forecasts and 5cm soil temperature 

observations for day-1 forecasts in each year from 2007 to 2013 at 23 of the 25 Met 

Éireann synoptic stations. No soil observations were available at Finner or Mace 

Head. 

Short-term ECMWF soil temperature forecasts performed well, with RMSE 

values below 1.71 °C at every depth at forecast period 1 when data from all stations 

were considered (Figure 2.4(a)).  As expected, at all depths forecast accuracy 

declined as forecast period increased; for example, the RMSE for 10 cm soil 

temperatures across all stations was 1.62 °C at forecast period 1 and increased to  
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                         (a)                                                      (b) 

  

Figure 2.4. RMSE (°C) of (a) ECMWF and (b) model BC by station soil temperature 

forecasts and observations at six depths across all stations at forecast periods 1 to 10. 

 

2.46 °C at forecast period 10 (Figure 2.4(a)).  At greater depths, the forecasts were 

usually more accurate and the differences in RMSE values between forecast periods 

1 and 10 were smaller (Figure 2.4(a)). This can be explained by the tendency of 

greater soil temperature depths to be less sensitive to changes in air temperature, 

making them more homogeneous over time, and therefore easier to predict. For 

example, at Dublin Airport between 1 June and 31 August 2012, the correlation 

between daily 5 cm soil temperature observations and corresponding 2 m mean air 

temperature observations was 0.83; the correlation between daily 100 cm soil 

temperature observations and corresponding 2 m mean air temperature observations 

was 0.52. There was a gradual overall warming effect at 100 cm, while there were 

persistent increases and decreases in 5 cm soil temperature over the same period 
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(Appendix 2.5). Since depths between 0 and 10 cm are most important for grass 

growth (Hurtado-Uria et al. 2013a), these results suggests that in the presence of 

accurate air temperature forecasts, soil temperature forecasts may not contribute 

appreciably further to the ability of a model to predict grass growth.  However, 

ECMWF soil temperature forecasts have been shown for the first time to give 

accurate predictions of observations at a range of depths up to 100 cm; soil 

temperature forecasts have been verified only at 5 cm previously (Albergel et al. 

2015). Although the soil temperature RMSE values were low, soil persistence 

forecasts generally outperformed ECMWF forecasts: 83.9% of yearly RMSE values 

for day-1 10 cm forecasts at individual stations were higher than equivalent 

persistence RMSE values. This rose to 100% for day-1 100 cm forecasts. 

Day-5 climatology forecasts gave lower RMSE values than equivalent ECMWF 

forecasts in 64.9% of years at individual stations for daily rainfall, while day-7 

climatology forecasts were better than ECMWF forecasts in all cases. Thus, after 7 

days, ECMWF rainfall forecasts are no more useful in a grass growth model than 

mean climatology values.  The yearly rainfall MSB values were often non-zero and 

were quite consistent within station across all forecast periods indicating that there 

were systematic biases in ECMWF rainfall forecasts that could possibly be 

eliminated by bias correction (Appendix 2.4). The MSB values in northwest Ireland 

at Belmullet, Finner and Mace Head were higher than the other stations: the 

ECMWF model over-predicted rainfall at these stations more than other stations. 

Perhaps due to their proximity to the Atlantic Ocean, high rainfall values were 

predicted here which were not reflected by the observations. It was also the case that 

the decrease in forecast accuracy of maximum temperature during the summer was 

most extreme at coastal stations such as Belmullet, Mace Head and Newport (Figure 
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2.2). The topography of the station could be different to the general area described 

by the ECMWF forecast. It could also be that the grid boxes used to forecast these 

stations are overly marine influenced. These biases should be reduced after bias 

correction.  

As one might expect, high rainfall observations led to a decrease in forecast 

accuracy (Roberts and Lean 2008). For example, the MAE for day-5 forecasts from 

all stations with observations between 40 and 50 mm inclusive was 31.3 mm 

compared to an MAE of 2.2 mm for all observations between 0 and 10 mm 

inclusive. The MSB for the day-5 forecasts from all stations with observations 

between 40 and 50 mm inclusive was -31.3 mm, so these high rainfall events were 

all under-predicted at a lead time of 5 days. The MSB at Valentia Observatory in 

2009 was lower than all other years at that station, particularly for day-5 forecasts 

and longer (Appendix 2.4). This was likely due to unusually high summer rainfall 

values causing the forecast to under-predict the observations; the total rainfall at 

Valentia in summer 2009 was 619.7 mm, compared to a mean total summer rainfall 

of 351.0 mm at the same station in the other 6 years. Inaccurate ECMWF forecasts 

of high rainfall events during the growing season can cause poor grazing 

management, resulting in reduced utilisation of available grass and subsequently 

impacting negatively on future grass growth. Due to poor utilisation, farms might be 

forced to supplement with concentrate, increasing variable costs. There are also risks 

of a decline in ground conditions and poor use of fertiliser (Shalloo et al. 2004). 

2.3.2 Bias correction results 

Model BC by station gave the greatest reductions in RMSE (compared to ECMWF 

forecasts) for almost all of the air and soil temperature variables for both forecast 

periods 1 and 10 (Table 2.1). It generally performed better than model BC since it 
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Table 2.1. The percentage reduction in RMSE resulting from the different bias correction methods compared to ECMWF forecasts across all 

stations for each of the rainfall and air and soil temperature forecasts at forecast periods 1 and 10. The COM BC included in this table is the 

composite of model BC and model BC by station since it performed best of all of the COM BC forecast combinations. The best bias correction 

technique, identified by the highest RMSE reduction, is highlighted by grey shading in each row. 

 Year BC Season BC Month BC MAV BC Model BC 
Model BC 
by station 

COM BC 

Min temp day-1 8.6 8.7 8.2 -42.7 9.5 12.7 12.3 
Min temp day-10 1.6 1.6 1.5 -12.5 13.9 13.8 14.0 
Max temp day- 1 26.8 27.5 27.4 -49.0 27.1 29.0 28.8 
Max temp day-10 5.5 5.7 5.5 -11.7 15.3 15.6 15.7 
Mean temp day-1 19.5 21.0 21.0 -102.4 21.0 24.8 24.5 
Mean temp day-10 2.4 2.7 2.7 -14.8 13.0 13.2 13.3 
5 cm day- 1 18.7 38.0 43.2 -2.6 42.1 45.9 45.6 
5 cm day-10 11.2 16.7 17.7 -0.8 28.0 29.0 28.9 
10 cm day-1 22.3 38.1 42.0 -4.2 43.7 48.1 47.8 
10 cm day-10 13.0 17.3 17.9 1.3 31.1 32.3 32.2 
20 cm day-1 26.2 43.8 48.4 1.1 48.3 54.6 54.2 
20 cm day-10 19.4 25.4 26.4 3.7 35.8 38.0 37.8 
30 cm day-1 27.5 34.2 35.0 0.9 48.1 56.8 55.9 
30 cm day-10 21.8 24.6 24.9 8.2 42.1 45.6 45.2 
50 cm day-1 33.5 56.8 64.0 22.5 57.4 68.1 67.2 
50 cm day-10 34.4 51.1 55.6 20.8 51.5 58.7 58.0 
100 cm day-1 47.0 54.4 55.5 30.6 59.4 73.7 72.4 
100 cm day-10 47.3 54.6 56.0 35.2 61.0 73.0 71.8 
Rainfall day-1 3.1 3.3 3.1 -12.7 7.8 9.0 8.9 
Rainfall day-10 1.2 1.3 1.3 -1.5 23.6 23.5 23.6 
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does not assume common month coefficients for each station and was therefore more 

effective at eliminating monthly biases (such as those in Figure 2.3). Although COM 

BC gave similar and sometimes slightly higher reductions, model BC by station is 

recommended as it requires less computation time. Model BC, model BC by station 

and COM BC reduced the bias at every station to magnitudes of 0.05 °C or less for 

all air temperature variables at all forecast periods. Although MAV BC reduced bias 

in forecasts, it did not improve the RMSE in general and was generally the worst 

bias correction method (Table 2.1). The relatively high percentage reductions in 

RMSE for predictions of soil temperatures could be because there were often large 

systematic biases attributable to the fact that the forecasts predicted ranges rather 

than directly forecasting the observations. Model BC by station was also generally 

the most effective method at reducing the RMSE (Table 2.1) and eliminating bias in 

rainfall forecasts: across all forecast periods the MSB values at individual stations 

ranged from -0.00 mm to 0.06 mm. This was compared to methods such as month 

BC which gave forecasts that over-predicted the daily rainfall on average by 0.82 

mm at Mace Head.  

 

2.3.3 Accuracy assessment of best bias corrected forecasts 

After model bias correction by station the day-1 MSB values were 0.002 °C, 0.000 

°C and 0.001 °C  for maximum, minimum and mean temperature, respectively, 

across all stations. In comparison, the ECMWF day-1 MSB values were -0.770 °C, 

0.039 °C and -0.304 °C, respectively. Model BC by station reduced the range in 

MSB for day-1 maximum temperature ECMWF forecasts across stations from 

between -1.57 °C and 0.43 °C to between -0.004 °C and 0.006 °C. The RMSE values 

for the maximum temperature ECMWF forecast at forecast period 1 ranged from 
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0.86 °C to 1.96 °C at individual stations, with a station average of 1.32 °C when 

included in a mixed model with weather station included as a random variable to 

generalise the location. These values were reduced to range between 0.82 °C and 

1.19 °C by model BC by station, with an average of 0.98 °C and forecast 

improvements at almost all stations. Day-1 air temperature forecasts experienced 

decreases in RMSE of up to 49% at individual stations. Yearly RMSE values for 

day-7 persistence forecast were preferable to day-7 model BC by station forecasts for 

maximum, minimum and mean temperature 47.1%, 48.4% and 58.0% of the time, 

respectively, a substantial improvement on the ECMWF forecasts. Thus, model BC 

by station improved the ECMWF air temperature forecasts, meaning they should be 

of practical use in a grass growth model up to approximately a week in advance. 

Model BC by station did not generally improve the accuracy of the imprecise 

ECMWF air temperature forecasts of the extreme low temperature observations in 

2010. Regression model approaches are not usually good at predicting extremes 

(Allen and DeGaetano 2001, Zhai et al. 2005), and the forecasts used as predictors in 

the model were not accurate to begin with. However, as noted in Section 3.1, this 

may not be too important provided forecasts for extremely low observations are 

below 5 °C. 

Model BC by station soil temperature forecasts had RMSE values below 0.93 

°C for day-1 forecasts and below 1.84 °C for day-10 forecasts at all depths (Figure 

2.4(b)). The forecast accuracy was generally worst at 5cm, improving at each 

subsequent depth (Figure 2.4(b)). Due to their homogeneity, the systematic biases 

were more constant at greater depths, meaning bias correction usually gave larger 

improvements at these depths. While ECMWF 30 cm soil temperature forecasts had 

lower RMSE values than all other depths at some forecast periods (Figure 2.4(a)), its 
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systematic bias was not as large as other depths. As a result, it did not have the 

lowest RMSE values after model BC by station. The reductions in RMSE from the 

ECMWF forecasts were similar across all forecast periods but tended to be higher in 

summer when the MSB values were of higher magnitude (Figure 2.3). Model BC by 

station soil temperature forecasts for depths such as 5 and 10 cm were generally 

more useful than persistence at forecast periods of less than a week, while forecasts 

at depths such as 50 and 100 cm were not. For example, day-5 model BC by station 

forecasts for 10 cm gave lower RMSE values than persistence in 70.5% of years at 

individual stations (a large improvement on ECMWF forecasts), but day-1 100 cm 

persistence forecasts outperformed equivalent model BC by station forecasts in 

99.3% of cases. The accuracy of forecasts at the 5 cm and 10 cm depths is useful 

since the soil temperature at shallow depths will be the most influential in 

determining grass growth. 

Model BC, model BC by station and the COM BC approaches gave the highest 

RMSE reductions for rainfall at both forecast periods 1 and 10 (Table 2.1); and 

although day-7 model BC by station forecasts out-performed climatology forecasts 

in 81.6% of cases (a large improvement on ECMWF forecasts), they may not be 

useful in practice. Because rainfall is difficult to forecast and predictive rainfall 

accuracy diminishes rapidly with forecast period, these BC methods tend to forecast 

conservative estimates close to the mean rainfall. Although these methods usually 

resulted in lower RMSE values than the original forecast, they did not follow the 

trend of the observations as closely as other forecasts (see Ballyhaise for example, 

Figure 2.5). At Ballyhaise in January 2012, the RMSE values of the day-10 

ECMWF, month BC and model BC by station forecasts were 5.56 mm, 5.60 mm and 

4.40 mm, respectively. The standard deviation of the observations was 4.55 mm, and  
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Figure 2.5. Daily observed rainfall (squares), day-10 ECMWF forecast (circles, 

RMSE = 5.56 mm), day-10 month bias corrected forecast (triangles, RMSE = 5.60 

mm), day-10 model bias corrected by station forecast (diamonds, RMSE = 4.40 mm) 

at Ballyhaise in January 2012. 

 

was 4.51 mm for both the ECMWF forecast and the monthly bias corrected 

forecasts. This fell to 0.47 mm for model BC by station forecast. Thus, bias 

correction approaches such as monthly BC were preferable even though the 

reductions in RMSE were minimal (Table 2.1). Although most BC methods gave 

reductions in RMSE when using all observations, the reductions usually only 

occurred for low rainfall observations. As highlighted in Section 3.1, high rainfall 
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values were predicted poorly by ECMWF forecasts. When daily observations greater 

than 10 mm were considered, none of the methods gave substantial reductions in 

RMSE at any forecast period. A possible reason for this is that if the initial forecasts 

are generally imprecise, bias corrections cannot improve the forecasts. The 

inaccuracy of rainfall forecasts and their bias corrections is problematic since rainfall 

values greater than 10 mm are likely to be more influential on grass growth than 

lower rainfall values. Model BC by station air and soil temperature forecasts did not 

have the same problem with standard deviation as the rainfall forecasts, often giving 

standard deviation values closer to those of the observations than ECMWF forecasts. 

 

2.3.4 Future work and implications for Irish agriculture 

Future work will involve developing a grass growth model to simulate on-farm 

growth in Ireland that will incorporate weather forecast predictors. To date, grass 

growth prediction models have tested a wide range of predictors (for example soil 

type, fertiliser application, grazing events) but have only considered historical 

weather data (Hurtado-Uria et al. 2013b). The verification of the ECMWF forecasts 

suggest that they will accurately predict weather conditions in the coming five to 

seven days, and therefore will be valuable as predictors of grass growth. The best 

bias corrected forecasts were usually more accurate than the ECMWF forecasts. If 

they prove to give grass growth predictions preferable to the ECMWF forecasts, 

methods of applying bias corrections across the island at farm level could be useful. 

If the rainfall component of the grass growth model is not sufficient, the use of 

probabilistic rainfall forecasts could be explored (Hamill et al. 2004, Wilks 2009). 

Previous studies have shown that soil temperature forecasts at various European 

locations give accurate predictions at 5cm (Albergel et al. 2015). This study verified 
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the accuracy of soil temperature forecasts at 23 Irish weather stations at six depths. 

The fact that soil temperature forecasts are useful will not only benefit grassland 

management, it also has positive implications for Irish crop production. Climatology 

and persistence forecasts both regularly out-performing ECMWF and bias-corrected 

forecasts after seven days suggests that a combination of these forecasts with recent 

observed weather and long term climate would work best when forecasting weather 

for on-farm grass growth prediction. Online resources allowing farmers to input local 

parameters and obtain grass growth predictions accounting for weather forecasts 

would increase grass utilisation and on-farm profitability. 

 

2.4   Conclusions 

Forecast verification was undertaken to determine how accurate ECMWF 

operational deterministic forecasts were at the Irish synoptic weather stations. Air 

temperature forecasts were accurate for all forecast periods but often gave higher 

RMSE values than persistence after 7 days. Previous studies on the bias correction of 

ECMWF 2 m air temperature forecasts illustrated the decrease on forecast quality as 

the forecast period increased for both ECMWF and bias corrected forecasts 

(Vannitsem and Hagedorn 2011). It has also been shown that bias correction 

methods work well up to five days in advance, but is difficult at longer lead times 

(Boi 2004). ECMWF soil temperature forecasts have not been extensively verified 

internationally but here we show for the first time in Ireland that they can predict 

observations well at a variety of depths, with prediction accuracy increasing as depth 

beneath the surface increases. This was due to the more conservative rate of change 

in temperatures at greater depths making them easier to model. However, this slow 

rate of change also meant that persistence forecasts gave lower RMSE values than 
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ECMWF forecasts in almost all years and at all forecast periods. ECMWF rainfall 

forecasts showed skill for forecast periods of six days or less. After this climatology 

forecasts tended to give lower RMSE values. Previous studies on rainfall forecasts in 

the United Kingdom (Harrison et al. 2000), and monsoon season rainfall forecasts in 

India (Acharya et al. 2013) have shown that bias correction can yield improvements 

in forecast accuracy. They also discuss the fact that rainfall forecasts often predict 

extreme rainfall events poorly. 

Systematic biases were evident for all of the weather variables examined; 

their values varied in magnitude and orientation across locations. Thus, seven 

approaches to eliminate them were proposed. For air and soil temperatures, model 

BC by station was generally the most effective method of bias correction. Soil 

temperature forecasts were greatly improved by bias correction since the ECMWF 

forecasts exhibited strong systematic biases at many depths. Month BC was 

recommended for ECMWF rainfall forecasts, although none of the bias correction 

methods assessed gave large improvements because they did not improve forecast 

quality for observations greater than 10 mm, and some methods gave forecasts with 

much lower standard deviations than the observations.  

Overall, we have shown that weather forecasts have the potential to 

contribute to grass growth prediction for up to one week in Ireland. This knowledge 

can contribute to better efficiency in on-farm management of grass resources and 

help improve primary productivity and profit for Irish agriculture.  
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Chapter 3 

 

Weather forecasts to enhance an Irish grass growth model 

 

Collaborators on this paper were Caroline Brophy, Elodie Ruelle, Laurence Shalloo, Keith Lambkin 

and Deirdre Hennessy. An invited revision of the paper has been submitted to the European Journal 

of Agronomy. 

 

ABSTRACT:  Grass growth models have retrospectively predicted grass growth in 

Ireland using weather observations. However, to predict future grass growth to aid 

farm management, weather forecasts are necessary inputs. The Moorepark St. Gilles 

grass growth model (MoSt GGM) was developed to predict perennial ryegrass 

growth on any Irish farm. To date, it has used local farm information, (retrospective) 

weather data and management factors to predict daily paddock-level grass growth. 

Here, we assess the performance of the MoSt GGM using weather forecasts through 

two studies: daily grass growth predictions at four nitrogen fertiliser application 

levels using weather forecasts up to ten days in advance were compared with those 

using weather observations; and the GGM predictions for an Irish dairy farm using 

observed and forecast weather were compared with on-farm grass growth 

observations from 2013 to 2016. In the first study, all weather inputs captured the 

rise in grass growth predictions with higher fertiliser application. Based on the Root 

Mean Squared Error (RMSE), European Centre for Medium-Range Weather 

Forecasts (ECMWF) forecasts outperformed a low skill equivalent (based on 

climatological averages) as GGM inputs up to six days in advance, and up to ten 

days in advance after bias correction. In the second study, weather observations 
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usually predicted total observed grass growth most accurately; however, weather 

forecasts sometimes gave lower RMSE values compared to observed weather when 

weather was overly influential in the model. Weather forecasts are useful inputs to 

the MoSt GGM, and yield accurate weekly predictions that could aid management 

decisions. 

 

KEYWORDS: grass growth model, on-farm decision tools, grassland management, 

weather forecasts, Lolium perenne L. 

 

3.1   Introduction 

The UN predicts worldwide population to grow from 6.9 billion people in 2010 

to 9.7 billion in 2050 (United Nations, 2015). A 1.1% growth per annum in 

worldwide consumption of agricultural products is projected between 2005 and 

2050, giving rise to an approximate food demand growth of 60% in this period 

(Alexandratos and Bruinsma, 2012). Food Wise 2025 (DAFM, 2015) anticipates an 

85% increase in Irish agri-food exports between 2015 and 2025 to capitalise on this 

extra demand. To meet these targets, Irish farmers must ensure their foodstuffs can 

be produced sustainably. Maximising economic growth by expanding and making 

best use of available resources must be coupled with environmental protection 

(DAFM, 2015). Livestock convert grass into human food such as milk and meat, 

often on land that is less suitable for crop production (van Zanten et al., 2016; 

Wilkinson, 2011). It is imperative that Irish dairy and beef farmers make best use of 

their grassland resources as grazed grass is the cheapest feed source available to 

them (Dillon et al., 2005; Finneran et al., 2012).  
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Management of grasslands on a short-term basis is essential to maximise grass 

growth and utilisation (Creighton et al., 2011). However, some factors that strongly 

affect farm management decisions are outside the farmer’s influence, for example 

weather conditions. Irish farmers have a competitive advantage over those from 

many other countries as the temperate Irish climate provides favourable conditions 

for high yields of grass dry matter (DM) from perennial ryegrass (Lolium perenne 

L.) over a long grazing season (O'Donovan et al., 2011). Perennial ryegrass growth 

begins at 5°C and ceases around 20-25°C (Frame, 1992; Hopkins, 2000), so the Irish 

growing season can last from early Spring to early Winter (Burke et al., 2004; 

Hopkins, 2000; Hurtado-Uria et al., 2013). Rainfall during the Irish growing season 

is often optimal for grass growth, although an excess of water can sometimes make 

grazing impossible or reduce grass growth (Burke et al., 2004). Solar radiation is 

essential for the conversion of carbon dioxide into biomass (Laidlaw and Frame, 

2013). During a large part of the growing season, low solar radiation is more limiting 

than low temperature, and strongly affects growth in all seasons (Hurtado-Uria et al., 

2013; Laidlaw and Frame, 2013). 

 A grass growth model (GGM) accounting for weather and local conditions, as 

well as factors that can be controlled by farmers, such as N fertiliser application, 

grazing rotation length and removal of excess herbage, would aid farm management 

decisions on feed supply and grassland management. GGMs accounting for some or 

all of these components have been developed for specific locations in countries such 

as England (Johnson and Thornley, 1983) and France (Jouven et al., 2006), as well 

as general models for multiple European sites in different countries (Schapendonk et 

al., 1998). These models can be mechanistic (for example Johnson and Thornley, 

1983; Jouven et al., 2006; Schapendonk et al., 1998) or empirical (for example 
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Brereton et al., 1996). The model used in this paper is the Moorepark St Gilles 

(MoSt) GGM (Ruelle et al., 2018) , which is an Irish adaptation of the model 

developed by Jouven et al. (2006). Although Irish GGMs have been developed, none 

are being widely used in practice. An operational GGM would allow the farmer to 

describe their location, soil type and management practices initially. It would then 

account for these parameters and local weather conditions to predict on-farm growth 

over the next seven to ten days. Based on these predictions, farmers could make 

informed management decisions. For example, they could plan to supplement feed if 

a grass shortage occurs or remove excess herbage from paddocks when there is a 

surplus of grass on-farm. 

Weather forecasts are potentially highly influential inputs for a GGM to predict 

future grass growth. To date, only predictions from the MoSt GGM using 

retrospective weather observations have been verified (Ruelle et al., 2018). The 

inclusion of forecasts will introduce an extra level of uncertainty to the model. 

McDonnell et al. (2018) assessed the accuracy of European Centre for Medium-

Range Weather Forecasts (ECMWF) forecasts at 25 Irish weather stations, and 

applied bias correction techniques to improve forecast accuracy. Air temperatures 

were forecast accurately up to ten days in advance, with improvements after bias 

correction, and rainfall forecasts generally performed well up to five days in 

advance. However, high rainfall observations were often poorly predicted. Inaccurate 

rainfall forecasts could decrease the accuracy of grass growth predictions from the 

MoSt GGM due to the strong influence of rainfall on grass growth. 

The objective of this paper is to compare weather observations and forecasts as 

predictors in the MoSt GGM, and to assess model predictions against on-farm grass 

growth observations. The practical benefits of the MoSt GGM as an on-farm 
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management decision aid would be improved if weather forecasts can be identified 

as useful model inputs.  

 

3.2   Materials and Methods 

 

3.2.1 Outline of weather forecast assessment studies 

Two assessments of the inclusion of weather forecasts in the Moorepark St Gilles 

grass growth model (MoSt GGM) were performed: 

1. Fertiliser study: The predictions from the GGM when weather observations 

were used as inputs were compared with those using weather forecasts. 

Predictions were performed using four different fertiliser application levels, 

assuming other conditions for a single farm. 

2. Observed grass growth study: GGM predictions using i) weather 

observations and ii) weather forecasts were verified against on-farm grass 

growth observations. 

The GGM predictions, the weather data (observed and forecast) and the observed 

grass growth data are described in the following sections. 

 

3.2.2 Grass growth model description 

The MoSt GGM is a mechanistic grass growth prediction model developed in C++. 

It describes perennial ryegrass (Lolium perenne L.) growth in dairy production 

systems and is an adaptation of the Jouven model (2006), which was customised for 

local conditions (Hurtado-Uria, 2013). The MoSt GGM incorporates N, and soil and 

water sub-models added by Ruelle et al. (2018), which describe the availability of N 
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to the plants and the movement of water through the soil (Fig. 3.1). The sub-models 

also interact to describe N leaching. The MoSt model is designed to be able to  

 

Fig. 3.1: Representation of the physical processes used to predict grass growth in the 

Moorepark St. Gilles Grass Growth Model (MoSt GGM). This figure is taken from 

Ruelle et al. (2018). 

 

predict grass growth for any location in Ireland. To do this, it requires a number of 

inputs based on environmental factors (for example weather data (forecast or 

observed), N content, soil clay, sand and organic matter content) and management 

factors (for example grazing data, paddock size, N fertiliser application). Some of 

these inputs, such as soil type, are initial parameters required to enable the process 

model to run. Based on all of these factors, it updates the state of the systems 

controlling grass growth on a daily basis, such as the amount of water and N 

available to the plant (Fig. 3.1). The final output is a daily grass growth prediction at 

the paddock level, which can be summed over time. Predictions can be generated for 
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multiple paddocks and aggregated to predict at farm level. The model is described in 

full detail in Ruelle et al. (2018). 

 

3.2.3 Weather forecasts and observations 

Six different weather inputs were examined in the GGM: 1) observed weather, 2) 

ECMWF forecasts, 3) monthly BC forecasts, 4) yearly BC forecasts, 5) model BC 

forecasts and 6) mean climatological forecasts, where BC stands for ‘bias corrected’. 

Daily observations of rainfall, solar radiation and maximum, minimum and mean 2 

m air temperature were collected between 2008 and 2016 inclusive at the Met 

Éireann synoptic weather station at Teagasc, AGRIC, Moorepark, Fermoy, Co. Cork, 

Ireland (52.16N; 8.26W). For each daily observed weather value, corresponding 

forecasts from one day to ten days in advance were taken from the ECMWF 

Atmospheric Model high resolution deterministic 10-day 0000 forecast. Forecasts 

generated at 0000 on the day of the observation are denoted day-1, and similar 

notation was used up to day-10 forecast. McDonnell et al. (2018) applied various 

bias correction techniques (Joliffe and Stephenson, 2011) to the forecast rain and 

temperature variables to remove systematic biases in the forecasts. We also applied  

the bias correction techniques to solar radiation forecasts. Monthly and yearly BC 

use a leave one out method, and subtract the monthly or yearly mean difference 

between forecast and observed in the training set (i.e. with current year or month 

excluded) from the forecast being corrected. Model BC by station uses a regression 

model approach with the month and daily weather forecast as predictors of the 

observed weather. For each year of daily data, the regression model is calibrated 

using a leave one out method (i.e. current year excluded), and the resulting model is 

used to predict the observations. These regression model predictions are then used as 
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the bias-corrected forecasts. Mean climatological forecasts for rainfall and air 

temperature were created using the Met Éireann mean climatological data for Ireland 

(Walsh, 2012). Solar radiation observations at Moorepark from between 2001 and 

2016 were recorded, and monthly mean climatological forecasts were calculated 

using them: for example, the average of all values from January over the 16 years 

provides the forecast for every January day. In the MoSt GGM, missing weather 

observations were imputed by taking the mean of the observations from the days 

before and after the missing date. There was only a small number of missing 

observations: 14 across all weather variables, and only one (rainfall) from 2013 

onwards.  

 

3.2.4 Grass growth observations 

A grazing experiment investigating the effect of calving date and stocking rate on 

animal performance was conducted at Teagasc Moorepark Curtins Research Farm, 

AGRIC, Moorepark, Fermoy, Co. Cork, Ireland (Coffey et al., 2018). Visual cover 

assessments of grass growth (Hanrahan et al., 2017) recorded for the 54 perennial 

ryegrass paddocks from 2013 to 2016 inclusive are used in this paper. The grazing 

season lasted from early February until late November each year and three stocking 

rates were studied in a randomised block design: 3.28, 2.91 and 2.51 cows/ha. 

Nitrogen fertiliser application rates were 250 kg N/ha per year for every paddock on 

every treatment. Full details of the experiment are described by Coffey et al. (2018). 

The visual assessments were regularly calibrated by cut and weigh measurements as 

described by O’Donovan et al. (2002a). The daily growth observations for each 

paddock were calculated using the visual cover estimates, previous growth rate, the 

number of days pre-grazing, the grazing residuals and the number of days since the 
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last growth figure was obtained (Hanrahan et al., 2017). Although it is the most 

accurate method of pasture cover estimation (O'Donovan et al., 2002b), there are 

errors associated with visual assessment (Hanrahan et al., 2017). 

 

3.2.5 Assessment of weather forecasts in MoSt GGM 

 

3.2.5.1 Fertiliser study 

Weather observations of rainfall, solar radiation and minimum, maximum and mean 

2 m air temperature were employed as model inputs to give paddock-level daily 

grass growth predictions from the MoSt GGM between 2008 and 2016. These were 

compared with daily predictions from the GGM using day-1 to day-10 ECMWF and 

bias-corrected forecasts of rainfall, solar radiation and minimum, maximum and 

mean 2 m air temperature as inputs. Low-skill mean climatological forecasts were 

also used as weather inputs to compare with the GGM predictions employing more 

skilful forecasts. All of these predictions (daily predictions over nine years for each 

set of weather inputs) were performed at four fertiliser application levels: 0, 100, 200 

and 300 kg N/ha, with the first fertilisation for each year on day 65 of the year, and 

the day after the end of each of the first four grazing events of the year. The first 

yearly grazing event happened when the paddock height reached 9 cm, and at 8 cm 

thereafter. There were 40 animals per grazing event in all model runs. 

 

3.2.5.2 Observed grass growth study 

Predictions from the MoSt GGM were performed for Teagasc Moorepark Curtins 

Research Farm, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland (52.17N; 8.27W) 

using weather observations and forecasts, and were compared to the grass growth 
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observations described in Section 2.2.4. To allow accurate comparisons between the 

experimental grass growth observations and predictions from the MoSt GGM, the 

farm management inputs in each of the 54 experimental paddocks were replicated in 

the model.  For each grass growth observation, weather observations were the model 

inputs from the first day of the year in question until the day before the period of the 

grass growth observation to allow the updates of the MoSt GGM sub-models. Then 

the most recent weather forecasts available were used for the period of the grass 

growth observation. For example, the model run between March 4th and 10th 2013 

used weather observations from January 1st to March 3rd, day-1 forecasts for March 

4th, and day-7 forecasts for March 10th. The model predictions were also generated 

using weather observations for the period of the grass growth observation to allow 

comparisons. If the period of the grass growth observation was greater than ten days, 

forecasts were not available, and the period was not used for comparisons. This 

usually happened outside of the peak growing season (April to September). Thus, 

some periods at the beginning and end of the growing season (February to 

November) are not described in the study. The period of the grass growth 

observation is referred to as a ‘weekly’ observation but can be from four to ten days 

in length since it is the growth between pasture cover estimations. The grass growth 

was predicted for each paddock with available grass growth figures for the ‘week’, 

and the ‘weekly’ average paddock values were computed to describe average farm 

growth. The ‘weekly’ values were scaled to daily averages to ensure reasonable 

comparisons across weeks, and did not always contain the same number of 

paddocks.  

 

3.2.6 Statistical criteria for comparisons 
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The criteria used to compare the MoSt model predictions with each other and with 

observed grass growth include Mean Systematic Bias (MSB = 
∑ (𝑝𝑖−𝑜𝑖)
𝑛
𝑖=1

𝑛
), Mean 

Squared Error (MSE =
∑ (𝑝𝑖−𝑜𝑖)

2𝑛
𝑖=1

𝑛
) and Root Mean Squared Error (RMSE =√𝑀𝑆𝐸), 

where 𝑝𝑖 and 𝑜𝑖 are the 𝑖𝑡ℎ predicted and observed values respectively, and 𝑛 is the 

number of predicted and observed values. Relative Prediction Error (RPE) is the 

RMSE divided by the mean of the observed values (Rook et al., 1990). The MSE can 

be partitioned into errors in central tendency (mean bias = (�̅� − �̅�)2), errors due to 

regression (slope bias = 𝜎𝑝
2(1 − 𝑏)2) and errors due to unexplained random variation 

(𝜎𝑜
2(1 − 𝑅2)) (Dhanoa et al., 1999), i.e. 

𝑀𝑆𝐸 =
∑ (𝑝𝑖 − 𝑜𝑖)

2𝑛
𝑖=1

𝑛
= (�̅� − �̅�)2 + 𝜎𝑝

2(1 − 𝑏)2 + 𝜎𝑜
2(1 − 𝑅2) 

where 𝜎𝑝
2 and 𝜎𝑜

2 are the variances of the predictions and observations respectively, 

𝑏 is the slope of the regression line of observed on predicted and 𝑅2 is the coefficient 

of determination from this regression. Ideally, the MSE (and therefore each of the 

three components) is close to zero, meaning the predictions and observations agree 

closely. A high mean bias component means the predictions are consistently over or 

under predicting the observed values. A high slope bias means the best fit regression 

line is not similar to the line of equality, meaning equality of predictions and 

observations does not describe the relationship. Errors due to unexplained random 

variation cannot be bias corrected by linear correction methods. A high value for 

errors due to unexplained random variation indicates that the points are scattered 

widely about the best-fit regression line. These comparison methods were also 

sometimes used to compare two sets of predictions from the MoSt GGM, those using 

weather forecasts with those using weather observations. 

 

66



 

3.3   Results 

3.3.1 Fertiliser study 

Yearly total grass growth predictions increased as the amount of N fertiliser 

increased. For example, the predicted grass growth yearly totals in 2016 from model 

runs using weather observations with 0, 100, 200 and 300 kg N/ha were 7036, 9697, 

10807 and 12726 kg DM/ha, respectively. However, across N application levels for 

each forecast period, the RPE of the predicted grass growth using ECMWF forecasts 

versus observed weather was similar, so there were no notable changes in the 

accuracy of the predictions with N application levels (Appendix 3.1).  

The MoSt GGM predictions using forecasts generally followed those using 

weather observations closely for 200 kg N/ha of fertiliser (Fig. 3.2, Appendix 3.2). 

This shows that forecasts can be interchanged with observed weather with no serious 

change to the grass growth predictions, but the interchangeability decreases as the 

forecast period increases (Appendix 3.3). Of the weather forecast types examined, 

grass growth predictions using model BC forecasts gave the lowest RMSE values at 

all forecast periods (Table 3.1). It was also the most effective forecast in predicting 

grass growth in the short term (Fig. 3.2, Appendix 3.2), but did not capture the 

variations in daily growth well for forecast periods over five days (Appendix 3.3). 

The ECMWF forecasts yielded better grass growth predictions than the low-skill 

mean climatological forecasts up to six days in advance, but not for any longer 

forecast periods (Table 3.1). 

For each forecast period in each year, most of the MSE from the GGM 

predictions using ECMWF forecasts was attributable to unexplained random 

variation (always above 60% for all N application levels). The remainder was 

predominantly due to regression. The error due to unexplained random variation was  
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Fig. 3.2: Predicted daily grass growth in 2015 for (a) May, (b) June, (c) July and (d) August from the MoSt GGM using weather 

observations (black), day-2 ECMWF forecasts (blue) and day-2 model BC forecasts (red) with 200 kg N/ha.

68



 

 

 Weather forecast type 

 

Forecast 

period ECMWF 

Month 

BC 

Year 

BC 

Model 

BC 

Mean 

climatology 

1 9.1 9.2 9.3 8.6 16.6 

2 10.2 10.2 10.3 9.8 17.0 

3 11.7 11.8 11.9 10.9 17.0 

4 13.6 13.9 13.9 12.6 17.0 

5 15.3 16.0 15.7 13.8 17.0 

6 16.3 17.3 17.1 14.8 17.0 

7 18.2 19.0 18.7 15.6 17.0 

8 18.4 19.0 19.0 15.9 17.0 

9 20.2 20.7 20.8 16.6 17.0 

10 20.1 20.8 20.8 16.9 17.0 

 

Table 3.1: Forecast periods 1 to 10 RMSE values (kg DM/ha) comparing daily grass 

growth predictions for 2008 to 2016 from the MoSt grass growth model using 

observed weather, with grass growth predictions from the model using various 

weather forecasts. The fertiliser application level for these predictions is 200 kg 

N/ha. The most accurate predictions for each forecast period are highlighted.  

 

only 63.6% of the total MSE at forecast period nine in 2012 with 300 kg N/ha. In 

2012, the errors due to regression from the GGM predictions using ECMWF 

forecasts were higher at forecast periods of over five days than in the other years 

examined. This was due to ECMWF forecasts of solar radiation and rainfall over-

predicting and under-predicting, respectively, the observations for many days in June 

2012, leading to over-predictions of grass growth in the month. Model bias 

correction of the day-9 forecasts reduced the RMSE of the grass growth predictions 

in June 2012 from 41.2 kg DM/ha when ECMWF forecasts were used to 31.2 kg 

DM/ha. 
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3.3.2 Observed grass growth study 

The MoSt GGM using the different weather inputs predicted the grass growth 

observations accurately in most weeks (Fig. 3.3). The grass growth observations 

suitable for comparisons in 2015 went from February 16th to November 2nd, the 

longest of the four years in the study (Fig. 3.3c). The weekly MoSt GGM predictions 

at the beginning and end of the period were lower than observed grass growth (Fig. 

3.3c). This trend was apparent outside the peak growing season in all years and 

resulted in the under-prediction of yearly grass growth by all simulations, regardless 

of whether observed or forecast weather was used. To exclude the poor predictions at 

the beginning and end of the full growing season, the total grass growth over the 

peak growing season (sum of average paddock values on each measurement date 

from 1st April to 30th September) was examined. During this period, the predictions 

using ECMWF forecasts were within 25% of the weekly grass growth observation 

for two-thirds of all observations. MoSt GGM predictions using actual weather, 

ECMWF forecasts, model BC forecasts and mean climatology forecasts as weather 

inputs predicted the grass growth during the peak growing season accurately in all 

years from 2013 to 2016, inclusive (Fig. 3.4). As expected, the actual weather 

simulations gave the closest values to the observed grass growth in 2013, 2014 and 

2015 (Fig. 3.4). However, in 2016, the peak growing season total was under-

predicted by all simulations, with mean climatology simulations giving the best 

prediction (Fig. 3.4). The monthly observed grass growth totals were followed 

closely by monthly grass growth predictions for each of the weather inputs, but no 

weather input gave clearly better monthly totals (Table 3.2). However, in April 2013 

there was a clear benefit of using weather inputs other than mean climatology, since 

the monthly prediction based on mean climatological weather was much higher than  
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Fig. 3.3: Weekly grass growth (kg DM/ha scaled to daily mean) across all 54 paddocks (black), and corresponding predicted yearly grass growth 

from the MoSt GGM using observed weather (blue), ECMWF forecasts (red), model BC forecasts (grey), and mean climatology forecasts 

(orange) in (a) 2013, (b) 2014, (c) 2015, and (d) 2016. Grass growth is only shown for weeks in which it was recorded.
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Fig. 3.4: Total grass growth from April to September inclusive, averaged across all 

54 paddocks from 2013 to 2016 (filled squares), and corresponding predicted grass 

growth from the MoSt GGM using observed weather (empty circles), ECMWF 

forecasts (triangles), model BC forecasts (crosses) and mean climatology forecasts 

(crossed circles). 
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Table 3.2: Monthly grass growth observations and predictions (kg DM/ha) for 2013 

to 2016. 

   Weather input 

Month Year Observed 

grass growth 

Actual ECMWF Model 

BC 

Mean 

climatology 

4 2013 1481 1790 1566 1763 2127 

5 2013 1924 2358 2648 2616 2681 

6 2013 1798 2008 2084 1992 2044 

7 2013 1837 2306 2550 2285 2286 

8 2013 1991 1723 1753 1670 1699 

9 2013 1525 1074 1128 1102 1177 

       

4 2014 1937 1881 1990 2027 1831 

5 2014 2044 2400 2572 2490 2571 

6 2014 2665 2537 2582 2478 2437 

7 2014 2280 1929 2039 1975 1991 

8 2014 1581 1782 1966 1808 1735 

9 2014 1788 1835 1943 1716 1607 

       

4 2015 2016 2088 2223 2274 1958 

5 2015 2065 2485 2372 2522 2752 

6 2015 2393 2644 2676 2591 2567 

7 2015 2034 1812 1853 1848 2000 

8 2015 2043 2127 2199 2074 2079 

9 2015 1574 1216 1345 1266 1260 

       

4 2016 1416 1252 1283 1406 1612 

5 2016 3103 3197 3326 3259 3305 

6 2016 2427 1941 2143 2083 2129 

7 2016 2355 1853 1901 1895 2083 

8 2016 2265 2049 2165 2075 2128 

9 2016 1356 1236 1285 1214 1354 

 

the observed grass growth (Table 3.2). The observed weather in April 2013 differed 

significantly from the climatology in April, and the MoSt GGM predictions using 

actual weather, and ECMWF and bias-corrected weather forecasts predicted the 

resulting low grass growth more accurately than mean climatology since weather 

observations and forecasts capture the variability that mean climatology does not 

(Table 3.2). In other months, the monthly grass growth total was not predicted well 

regardless of the weather input, for example in September 2013 (Table 3.2). This 
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was likely due to the fact that the MoSt GGM must describe a number of physical 

processes to predict grass growth such as N leaching and the water content in the 

soil. These physical processes cannot be checked for accuracy using actual 

observations, and when they become inaccurate the grass growth predictions are less 

accurate. 

 

The MoSt model run using model BC forecasts gave a lower RMSE value in 

2015 than the runs using actual weather, and ECMWF and mean climatology 

forecasts (Table 3.3). In some of the years, and in some seasons within the years, 

actual weather had higher RMSE values than model BC and mean climatology 

forecasts. Splitting the MSE (Dhanoa et al., 1999) showed that there were high errors 

in central tendency in 2016, where they made up over 19% of the total MSE for 

actual weather, and ECMWF and model BC forecasts. This can be seen in the under-

predictions across the peak growing season (Fig. 3.4). There were high slope biases 

in 2013, 2014 and 2015, with values of between 42% and 60% for actual weather, 

and ECMWF and model BC forecasts.  

 

Table 3.3: RMSE values (kg DM/ha) comparing daily average of ‘weekly’ grass 

growth observations for 2013 to 2016 with grass growth predictions from the model 

using the weather observations and various weather forecasts.  

 Weather input 

Year Actual ECMWF Model BC Mean 

climatology 

2013 19.6 21.4 20.1 20.4 

2014 16.8 17.2 15.4 14.5 

2015 15.1 15.1 14.2 15.5 

2016 17.9 16.8 16.6 14.3 
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3.4 Discussion 

3.4.1 Fertiliser study 

The results suggest that forecasts can be useful predictors in a GGM. The fertiliser 

study showed that grass growth predictions from the MoSt GGM using weather 

forecasts can give similar predictions to those using weather observations, 

particularly after bias corrections, although decrease in accuracy as forecast period 

increases (Fig. 3.2, Table 3.1). This is because weather forecasts predict weather 

observations less accurately as forecast period increases. The example from Section 

3.3.1 in which poor ECMWF forecasts in June 2012 resulted in poor predictions 

from the MoSt GGM illustrates the influence that inaccurate weather forecasts can 

have on predictions from the MoSt GGM, and how bias corrections can improve 

prediction accuracy.  

The predictions using model BC forecasts failing to capture variability was 

linked to the problem identified with model BC of rainfall forecasts in McDonnell et 

al. (2018):  ECMWF forecasts (particularly of rainfall) were not accurate at longer 

forecast lead times, so model BC forecasts were close to the mean rainfall. This 

resulted in similarly conservative grass growth estimates from the MoSt GGM. 

When using the MoSt GGM in practice, if the intention is to get accurate daily grass 

growth predictions between 1 and 6 days in advance, it is generally best to use model 

BC forecasts (Fig. 3.2, Appendix 3.2). However, if the priority is to predict the daily 

fluctuations in grass growth for 7-10 days in advance, it would be recommendable 

not to use model BC forecasts or mean climatological forecasts, but to use ECMWF 

forecasts instead (Appendix 3.3).  
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3.4.2 Observed grass growth study 

The observed grass growth simulations showed that grass growth could be 

modelled accurately during the peak growing season using weather observations, and 

predicted four to ten days in advance by weather forecasts. Since predictions using 

weather forecasts were within 25% of the observed grass growth on two out of three 

occasions, this could be a useful predictive tool to aid farm management. Model BC 

and mean climatological forecasts often gave the most accurate grass growth 

predictions, according to the RMSE values (Table 3.3). RMSE gives a high weight 

to high errors, and the more conservative weather forecasts yield grass growth 

predictions with lower RMSE values, suggesting that the MoSt GGM does not 

capture some extreme grass growth observations. Mean climatology can be a useful 

weather input, as it gives the expected grass growth performance of the farm based 

on the usual weather for the month in question. Thus, it is a good prediction to 

compare with predictions using other weather inputs which should describe the 

fluctuations in grass growth more accurately.  

The high slope biases observed in 2013, 2014 and 2015 were due to the under-

prediction of many of the lower grass growth observations, which occurred at the 

beginning and end of the growing season, (Fig. 3.3). The grass growth predictions in 

the shoulders of the distribution (at the beginning and end of the growing season) 

were generally lower than the observed grass growth for all weather inputs to the 

MoSt model. The model can be examined for possible causes, so this under-

prediction can be corrected. This could also be due to the method of estimation for 

the grass growth observations. Visual observation may result in the estimation of 

higher covers on pastures than the actual values. Many of the high grass growth 

observations were also over-predicted, adding to the slope bias. The MoSt GGM 
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under-predicted grass growth in the peak growing season in 2016 (Fig. 3.4). This 

appears to be due to an under-estimation of grass growth in a number of summer 

weeks, mainly weeks 10 (May 9th to May 15th), and 15 to 19 (June 13th to July 17th) 

(Fig. 3.3d). The weather input with the highest solar radiation values in those weeks 

gave the highest grass growth predictions in each case. However, all of the 

predictions were lower than observed grass growth. In all of these weeks, solar 

radiation was below mean climatology. It may be that the influence of low solar 

radiation is being overstated in the MoSt GGM in the summer months. 

These predictions were conducted at one site which is a well-managed dairy 

research farm with free-draining soils and high grass growth, and easily accessible 

weather observations. However, if this GGM tool was to be used in practice by 

farmers as part of the Pasture Base Ireland framework (Hanrahan et al., 2017), it 

would have to give accurate predictions in many different locations on different soil 

types with varying levels of farm management (Ruelle et al., 2017). Although an 

increasing number of Irish farmers record daily on-farm weather observations, they 

will not be available at most sites, and the bias-correction methods may not give 

improvements as the nearest available weather stations may not describe the farm 

accurately enough. In these cases, it would make sense to use the ECMWF forecasts 

in the MoSt GGM. 

 

3.4.3 Future work 

The predictions presented in this paper are from the MoSt GGM described in 

Ruelle et al. (2018). As with any predictive model, it can be updated to improve the 

accuracy of the predictions. The MoSt GGM will be incorporated into the Pasture 

Base Ireland framework (Hanrahan et al., 2017), and use weather forecasts to give 
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farmers grass growth predictions for their farm. Grass growth predictors such as the 

NZ Pasture Growth Forecaster (Dairy NZ, 2018) are being used in practice but do 

not use weather forecasts. Australian studies have assessed the potential usefulness 

of seasonal climate forecasts in agriculture, concluding that the lead time and  

potential managements benefits did not warrant widespread adoption by farmers 

(Ash et al., 2007). Another study included monthly to seasonal climatological 

hindcasts in a GGM (Harrison et al., 2017), and found that global climate models 

predicting pasture growth rates gave similar predictions to when historical climate 

data was included. However, none of these have used short-term weather forecasts. 

The MoSt GGM could be run using seasonal forecasts to allow farmers to plan for 

the coming season. The MoSt GGM currently predicts for perennial ryegrass 

systems (Ruelle et al., 2018). However, it could be adapted to include mixed-species 

swards, including those with white clover. White clover is being included in 

increasing numbers of grassland systems in Ireland because of its N fixation traits, 

and the resultant increase in dry matter yield (Guy et al., 2018), as well as increased 

animal performance associated with mixed perennial ryegrass white clover swards 

(Egan et al., 2018). Sowing species mixtures that include legumes such as white 

clover can help to stabilise yield output at different levels of N application 

(Enriquez-Hidalgo et al., 2016). For example, in the fertiliser study, the dry matter 

yields would probably have been more similar across the N fertiliser levels if white 

clover was included in the system. 

The MoSt GGM under-predicted grass growth in the early and late growing 

season. Also, many of the extreme grass growth observations were not detected by 

the model for any of the weather inputs. It should be investigated whether these poor 

predictions happen at other locations, and if so, the causes of the problems identified 
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and fixed. Weather forecasts are not usually good at predicting extremes accurately 

at a weekly scale, but the GGM model runs using weather observations could be 

updated to capture the extreme grass growth values. It is important for farmers to be 

able to prepare for extreme weather and grass growth conditions. 

 

3.5   Conclusions 

The MoSt GGM can utilise weather forecasts to predict short-term grass growth, 

and aid farmers with their daily management decisions. It has been shown to capture 

the variability in systems using different amounts of N fertiliser, and to accurately 

describe weekly on-farm grass growth observations. We have demonstrated that 

weather forecasts can be a useful input to a grass growth model and have the 

potential to enhance on-farm resource use efficiency, as pressure mounts on farms to 

increase outputs to meet extra food demands.  
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Chapter 4 

 

A mixed model for assessing the effect of many species interactions 

in complex grassland ecosystems 

 

Collaborators on this paper were Thomas McKenna, Kathryn Yurkonis, Deirdre Hennessy, Rafael 

de Andrade Moral and Caroline Brophy. The paper has been formatted for the Journal of the 

American Statistical Association. 

 

Abstract: Weed invasion in grasslands can reduce yields and forage quality. 

Increasing biodiversity or manipulating the spatial pattern of species in grasslands 

may mitigate weed invasion. However, when many species are present in an 

ecosystem, it can be difficult to model the numerous interactions among species. 

Motivated by the Species Pattern and Community Ecology (SPaCE) experiment that 

investigated the effect of species diversity and spatial planting pattern on weed 

invasion, we developed a Diversity-Interactions mixed model that can assess large 

numbers of species interactions and test the effects of spatial planting pattern over 

multiple years. The model includes a large number of pairwise interaction random 

effects, that are indexed by pairs of species rather than a plot-level factor as is typical 

in mixed models, but that only require one additional variance parameter per year. 

Applying our method, we identified species with functional traits (in particular 

nitrogen-fixing legumes) that reduced weed invasion when mixed with species that 

have other functional traits (e.g. grasses). We found that both spatial pattern and the 

proportion of legume in mixture influenced the species’ interaction effects on weed 
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invasion, but that the identities of species in the mixture determined whether overall 

weed invasion was increased or reduced.  

 

KEYWORDS: weed invasion, Diversity-Interactions modelling, variance-

covariance structure, random effects, species interactions, grassland 

 

4.1   Introduction  

Weed invasion has been shown to reduce yields and forage quality in grasslands, and 

can prevent restored grasslands from reaching their diversity goals (Levine et al. 

2003, Corbin and D'Antonio 2012). With the increasing demand for food worldwide, 

the agricultural industry is under increasing pressure to maximize resource use 

(Foley et al. 2011). Weed invasion is a source of inefficiency and must be reduced to 

make grassland production systems more economically and environmentally 

sustainable. Herbicide use to control weeds is expensive (DiTomaso 2000) and can 

negatively impact the environment and human health (Freemark and Boutin 1995, 

Mahanty et al. 2017). Combining multiple species in grassland ecosystems offers a 

solution that is less economically and environmentally expensive, since it has been 

shown to reduce weed invasion by making better uses of resources (Dukes 2002, 

Hooper et al. 2005, Maron and Marler 2008, Sturludottir et al. 2014, Connolly et al. 

2018). However, it can be challenging to model biodiversity effects in ecosystems 

with large numbers of species due to the numerous species interactions that may be 

jointly affecting ecosystem responses.  

When sowing a multi-species mixture, species can be randomly dispersed, or 

a spatial pattern may be induced whereby individuals of the same species are sown in 

an aggregated pattern such that individuals are grouped together while maintaining 
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density. Some studies have shown that spatially structured seeding approaches can 

be used to control species dominance and increase productivity (Rayburn and 

Schupp 2013, Zhang, Wang, and Yu 2014, McKenna and Yurkonis 2016, Seahra, 

Yurkonis, and Newman 2016). The impact of spatial pattern on grassland weed 

invasion is less well known, but it has been shown that the proximity of the 

individuals of the same species within plots can promote the persistence of sown 

species, thus promoting diversity and reducing weed invasion (Lamosova et al. 2010, 

Yurkonis, Wilsey, and Moloney 2012). 

 

4.1.1 Background of statistical methods used in biodiversity and ecosystem 

function research 

Ecosystem functions of grasslands are community-level responses such as plant 

biomass, weed biomass, and nitrogen yield (Hooper et al. 2005). Biodiversity can 

depend on species composition (identities of species), species richness (number of 

species) and functional group richness (the number of different plant groups that 

perform certain functions), as well as factors such as how equal the abundance of 

each species is (evenness). The biodiversity and ecosystem function (BEF) 

relationship has been studied in a wide range of ecosystem types including marine, 

forest and grassland ecosystems, and increasing biodiversity has been shown to 

consistently have positive effects on multiple ecosystem functions (Tilman et al. 

2014). In grasslands, BEF studies have shown that biomass production and weed 

suppression increase with diversity as a result of increasing functional group 

diversity (Petermann et al. 2010, Cardinale et al. 2011, Isbell et al. 2017). However, 

many methods focus mainly on the number of species present (richness) as the driver 

of diversity effects in BEF relationships (Byrnes et al. 2014). These methods make it 
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difficult to distinguish the effects of individual species identities, changing evenness, 

and species’ interactions in mixtures. Diversity-Interactions (DI) models were 

introduced to facilitate the analysis of multi-species mixtures experiments using 

species proportions as predictors of ecosystem functions (Kirwan et al. 2007, Kirwan 

et al. 2009, Connolly et al. 2013, Dooley et al. 2015, Brophy et al. 2017). Diversity-

Interactions models allow estimation of the contribution of each individual species 

and its interactions with other species, and the effects of evenness and richness on 

ecosystem function.  

 

4.1.2 Overview of the SPaCE experiment  

The Species Pattern and Community Ecology (SPaCE) experiment is a plot-based 

grassland BEF experiment designed to investigate the effects of biodiversity 

(richness and evenness) and species spatial planting pattern on weed and grass 

biomass (McKenna and Yurkonis 2016). Monoculture (single species) and mixture 

plots of up to eight species were constructed from a pool of sixteen species, ranging 

from grasses and legumes, to large herbs such as Helianthus maximiliani 

(maximilian sunflower). The spatial pattern treatment involved species in mixture 

plots being either randomly dispersed or aggregated in conspecific clusters within 

plots while maintaining plant density. Plots were hand weeded on a monthly basis 

during the growing season, and annual weed invasion was recorded over three 

growing seasons (2012-2014). The data presented three specific statistical challenges 

each to be addressed in a multi-year setting: 1) how to model the (
16
2
) = 120 

pairwise species interactions in a biologically meaningful way; 2) how to assess the 

impact of spatial pattern, a manipulated treatment that was applied to mixture, but 
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not monoculture, plots; and 3) given the variety of species types in the study, how to 

adjust for heterogeneous variation across plots within each year. 

 

4.1.3 Overview of proposed methodology 

We develop a new Diversity-Interactions model that will address the statistical 

challenges presented in the SPaCE experimental data. These include integrating the 

spatial pattern treatment into diversity effects, modelling the variance-covariance 

structure of the model to adjust for heterogeneous variance across plots, and 

introducing novel multi-year random pairwise interaction effects to handle the large 

numbers of possible species’ interactions at play. The random effects included are 

highly unusual in that they are indexed by pairs of species (and year), rather than by 

a plot-level factor, which is more typical in mixed models. They are included to 

supplement a low degree of freedom fixed-effect description of the species 

interactions to acknowledge that there may be additional variation due to species 

interactions that cannot be captured by biologically meaningful fixed effects. For 

each year, a new random effect is introduced for each pair of species (120 pairs in 

each year, totaling 360 random effects), and they are assumed to be independent and 

to have the same variance, thus only introducing a single variance parameter for each 

year, i.e. 3 extra parameters in the model, not 360.  

Section 4.2 contains a review of DI models, a detailed description of the 

SPaCE dataset, and a description of the new methods introduced in this paper. 

Section 4.3 contains details of model fitting and comparisons, as well as some 

simulation studies to illustrate the scope of the developed DI modelling methods. 

Section 4.4 is the results section, while section 4.5 provides discussion and 

conclusions drawn from the results. 
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4.2   Data and methods 

4.2.1 Review of Diversity-Interactions models 

Biodiversity and ecosystem function (BEF) experiments typically manipulate the 

number of species (richness) in a community to investigate how varying species 

diversity affects a community level response (the ecosystem function). It is common 

to keep the relative abundances of species equal across the richness levels (Roscher 

et al. 2005) although some studies also manipulated the species’ relative abundances 

at given levels of richness (Kirwan et al. 2007, Wilsey and Stirling 2007). There is a 

long-standing history in BEF research to focus on species richness as the driver of 

ecosystem functions (Byrnes et al. 2014, Spehn et al. 2005), but evenness (how 

equally distributed the species’ relative abundances are) may also be strongly 

influential (Kirwan et al. 2007). While it is common to find a positive and saturating 

relationship between ecosystem function and richness (Scherber et al. 2010, 

Mittelbach et al. 2001, Schwartz et al. 2000), variation around the line may be 

attributed to the identities and the relative abundances of the species in the 

community. Diversity-Interactions (DI) models (Kirwan et al. 2007, Kirwan et al. 

2009) were developed to model the data from BEF experiments in which species 

diversity (richness and / or evenness) is manipulated, with the species proportions 

(simplex space) and their interactions used to model ecosystem functions (Cornell 

2002). These models account for variation attributed to species’ identities, species’ 

relative abundances, interactions among species and evenness, in addition to species 

richness. If the experimental design provides good coverage around the simplex 

space, DI models can be used to predict for any community combination of relative 

abundances within the species pool, not just the exact communities that were 

90



 

 

included in the design, providing a major advantage over other modelling approaches 

used in BEF research. Since their original development (Kirwan et al. 2007, Kirwan 

et al. 2009), the family of DI models has grown to facilitate many of the 

complexities that arise with data from biodiversity experiments, such as multivariate 

responses (Dooley et al. 2015), non-linearity in the form of species interactions 

(Connolly et al. 2013), the modelling of a large numbers of species interactions in a 

single year (Brophy et al. 2017) and the modelling of interactions among 

phylogenetically diverse communities (Connolly et al. 2011), where phylogenetic 

diversity is a measure of how ancestrally related the species in the pool are. The 

approach has been applied to biodiversity experimental data from a wide range of 

ecosystem types including bacterial communities (Brophy et al. 2017, Piovia-Scott et 

al. 2017), plot-based grassland experiments (Frankow-Lindberg 2012, Hoekstra et al. 

2015), dung fauna diversity studies (O'Hea, Kirwan, and Finn 2010) and tree species 

diversity experiments (De Groote et al. 2017, Sercu et al. 2017).  

 DI models generally take the form (Kirwan et al. 2009): 

𝑦 = 𝐼𝐷 + 𝐷𝐸 + 𝜀                      (1) 

The community-level response 𝑦 is some ecosystem function such as sown plant 

biomass in a grassland community or average daily respiration rate of bacterial 

communities. DI models use linear (mixed) models to estimate the identity (ID) and 

diversity effects (DE) of species on the ecosystem function. Identity effects measure 

the effects of individual species and can include block or treatment effects. Diversity 

effects are the additional effects due to the interaction between species in mixtures, 

and can take many forms. An example of a DI model is: 

𝑦𝑚 =∑𝛽𝑖𝑃𝑖𝑚

𝑠

𝑖=1

+ ∑ 𝛿𝑖𝑗𝑃𝑖𝑚𝑃𝑗𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

+ 𝜀𝑚                                           (2) 
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where 𝑃𝑖𝑚 is the proportion of species 𝑖 in experimental unit 𝑚, 𝑠 is the total number 

of species in the species pool, and 𝜀𝑚~𝑁(0, 𝜎
2). In monoculture (species 𝑖 is the 

only species present),  𝑃𝑖 = 1 and all other proportions are 0 and the expected 

response is 𝐸[𝑌] = 𝛽𝑖. The expected interaction between species 𝑖 and 𝑗 is 𝛿𝑖𝑗. 𝐸[𝑌] 

in a mixture is a weighted sum of the monoculture performances of each of the 

species (ID) plus the combined pairwise interactions (DE). Model (2) is the full 

pairwise interactions model and it accounts for all pairwise interactions between 

species and their potential effects on the response of interest. If there is a small 

number of species in the species pool, model (2) is a reasonable model to fit. 

However, when the species pool is large, model (2) is generally not of interest: the 

number of pairwise interactions is either too large to be biologically informative, or 

it may not be possible to estimate all pairwise interactions due to the experimental 

design. For example, in a four-species system there are (
4
2
) = 6 pairwise interactions, 

while in a sixteen-species system there are (
16
2
) = 120 pairwise interactions. 

However, there are many biologically informative ways to simplify model (2) (Table 

4.1); for example, there may be no diversity effect (the identity model), or it may be 

assumed that all of the pairwise interactions are equal (average pairwise model), or 

constraints among interactions may be introduced according to biological functional 

groupings (functional group model).  
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Table 4.1.  Descriptions of the diversity effect (DE) in Diversity-Interactions models, for a pool of s species. 

Model name Model description DE 

 

Identity 

 

 

No diversity effect. 

 

Average pairwise 

 

All pairwise interactions are equal.  
𝛿 ∑ 𝑃𝑖

𝑠

𝑖,𝑗=1
𝑖<𝑗

𝑃𝑗 

 

Functional group 

(FG) 

 

Assume T functional groups (FG1-FGT), each with 𝑛𝑡 species, where 

𝑡 = 1,… , 𝑇 and ∑ 𝑛𝑡
𝑇
𝑡=1 =s. The species in each functional group 

are numbered: FG1 = {1,…,n1}, FG2 = {n1+1,…,n1+n2}, … , FGT = 

{1+∑ 𝑛𝑡
𝑇−1
𝑡=1 ,…, s}. The parameter qq is the interaction between two 

species from functional group q; and qr is the interaction between 

two species from different functional groups, i.e. where q≠r.  
 

∑𝜔𝑞𝑞 ∑ 𝑃𝑖𝑃𝑗
𝑖,𝑗∈𝐹𝐺𝑞
𝑖<𝑗

𝑇

𝑞=1

+ ∑ 𝜔𝑞𝑟 ∑ ∑ 𝑃𝑖𝑃𝑗
𝑗∈𝐹𝐺𝑟𝑖∈𝐹𝐺𝑞

𝑇

𝑞,𝑟=1
𝑞<𝑟

 

 

Additive species 

 
The contribution of species 𝑖 to a pairwise interaction (𝜆𝑖) is an 

additive constant, regardless of the species it is interacting with. The 

strength of the pairwise interaction between two species is the sum 

of the individual contributions of each species.  

 

∑(𝜆𝑖 + 𝜆𝑗)𝑃𝑖𝑃𝑗

𝑠

𝑖,𝑗=1
𝑖<𝑗

 

Full pairwise All pairs of species interact uniquely. 
∑ 𝛿𝑖𝑗𝑃𝑖𝑃𝑗

𝑠

𝑖,𝑗=1
𝑖<𝑗

 

   

93



 

 

4.2.2 Experiment 

The data used in this study was collected from the Species Pattern and Community 

Ecology (SPaCE) experiment at the University of North Dakota’s Mekinock Field 

Station (Mekinock, ND, USA) from 2012 to 2014, inclusive. There were 170 plots of 

size 1 × 1 m in a randomized block design consisting of 5 blocks. Each plot was 

divided evenly into an 8 × 8 grid where each of the 64 cells was planted with a 16-

week-old greenhouse grown transplant at the beginning of the growing season in 

2012. Sixteen tallgrass prairie species were planted in the plots with either 1 

(monoculture), 2, 4 or 8 (mixtures) species in each, with varying relative abundances 

at each richness level in mixtures, where richness is the number of species in a plot. 

A spatial treatment with two levels was manipulated across plots with more than one 

species (mixture plots): each individual was either planted randomly in the 8 × 8 grid 

(dispersed) or grouped with other individuals of the same species in 2 × 2 squares 

within the grid (aggregated) (Figure 4.1). The yearly aboveground plant biomass 

yield (g) was recorded in each plot. Non-focal species were removed monthly by 

hand and the weed biomass in each plot was collected, dried and weighed. Season 

total weed biomass removed (g) from each plot in each growing season was the 

response of interest in this analysis. The proportion of biomass of the planted species 

in each plot was recorded at the end of every growing season, providing ‘realized’ 

proportions in each year.  

Plants with similar traits can be classified by their functional group (FG). In 

this experiment, there were four species from each of four functional groups:  warm-

season grasses, species 1 to 4: Andropogon gerardii (AG; big bluestem), 

Schizachyrium scoparium (SS; little bluestem), Sorghastrum nutans (SN; Indian 

grass), and Panicum virgatum (PV; switchgrass); cool-season grasses, species 5 to 8: 
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Figure 4.1: Hypothetical illustration of the spatial arrangement of experimental 

plots. Each plot was 1 m2 and was split into a grid of 8 by 8 cells at planting. A 

single species was allocated to each of the 64 cells. Shown are examples of (a) a 

monoculture plot of species 1, (b) an aggregated plot with richness of 4 with species 

1 to 4, and (c) a dispersed plot with richness of 4 with species 1 to 4. 

 

 (a) 

 

    

 

 

 

 

(b)                  (c) 

 

 

 

 

 

 

 

 

Elymus canadensis (EC; Canada wildrye), Elymus trachycaulus (ET; slender 

wheatgrass), Pascopyrum smithii (PS; western wheatgrass), and Nassella viridula 

(NV; green needle grass); forbs, species 9 to 12:  Monarda fistulosa (MF; wild 

bergamot), Solidago rigida (SR; stiff goldenrod), Helianthus maximiliani (HM; 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 4 1 3 3 1 1 

2 2 1 3 4 1 4 3 

4 1 3 2 2 4 4 2 

2 2 4 2 2 1 4 2 
3 3 3 4 4 2 3 3 

1 4 3 3 2 1 1 1 

4 4 2 3 1 4 2 4 

3 4 1 3 3 1 2 2 

4 4 1 1 3 3 4 4 

4 4 1 1 3 3 4 4 

2 2 2 2 1 1 4 4 

2 2 2 2 1 1 4 4 

3 3 4 4 1 1 3 3 

3 3 4 4 1 1 3 3 

1 1 2 2 3 3 2 2 

1 1 2 2 3 3 2 2 

95



 

 

maximilian sunflower), and Ratibida columnifera (RC; yellow coneflower) and 

legumes, species 13 to 16: Desmodium canadense (DC: showy tick trefoil), 

Astragalus Canadensis (AC; Canada milkvetch), Dalea purpurea (DP; purple prairie 

clover), and Glycyrrhiza lepidota (GL; American licorice). Two-species plots 

contained a grass and either a forb or a legume, four-species plots contained one 

species from each FG and eight-species plots contained two species from each FG. 

The species were randomly selected from the FGs for each plot according to these 

constraints.  

 

4.2.3 Statistical innovations 

In this paper, we develop a Diversity-Interactions (DI) model for the SPaCE data. 

While we build on previous versions of DI models, the statistically innovative 

aspects include: the testing of a treatment (spatial pattern) that only applies to 

mixture (and not monoculture) communities, the modelling of inhomogeneous 

variation across communities within each year and the inclusion of novel random 

effects to facilitate modelling pairwise interactions when there are a high number of 

species pairwise interactions over multiple years. We also present a simulation study 

to test the limits of DI models in a species rich setting to identify conditions when 

the random effects approach to modelling pairwise interactions will break down.  

 

4.2.4 Description of new methods 

In the SPaCE data, there are 16 species and (
16
2
) = 120 pairwise interactions. 

Estimating all 120 pairwise interactions is not of interest here since their large 

number would be devoid of biological meaning, and not possible given the design of 

the experiment (there is partial confounding among pairwise interactions). We aim to 
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describe the diversity effect (DE) using fixed effects as parsimoniously as possible, 

and to test the inclusion of random pairwise interactions to identify if any variation 

due to pairwise interactions remains unexplained. In this section, we assume that all 

pairwise interactions are equal (Table 4.1, average pairwise model; a suitable 

starting-point candidate model), while in sections 4.3 and 4.4 we describe the full 

model fitting process and final choice of model, respectively.  The model for the 

SPaCE data (3 years of repeated measurements on 170 plots) can be written 

generally as: 

 𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺           (3) 

The predictors in the 𝑿 matrix include block effects, species proportions (𝑃𝑖), and the 

sum of all pairwise interactions, and interactions with other explanatory variables. 

The error term 𝜺 ~ 𝑁(𝟎, 𝑹), where 𝑹 is a (510 × 510) block diagonal matrix with 3 × 

3 blocks for the repeated measurements on each plot. The blocks can be the same 

across all plots or can differ based on plot characteristics. The species in the SPaCE 

experiment range from grasses to large forbs and vary significantly in their ability to 

resist weed invasion and as such, a homogeneous response to varying within-plot 

diversity was not expected. Preliminary analyses identified that in the second and 

third years of the experiment, the mean and variance of weed biomass for legume 

monocultures (FG 4) was considerably higher than all other types of communities 

(Figure 4.2). Heterogeneity was also observed in year 1, but patterns in mean and 

variance were not consistent with functional groups. This confirms that homogeneity 

across all communities within each year is unlikely to be a valid assumption.  
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Figure 4.2. Total plot weed biomass (g DM in 1 m2 plot) in (a) 2012, (b) 2013, (c) 

2014 for each monoculture (1 to 16) and each level of richness in mixture (2, 4 or 8 

species). The 4 functional groups and the mixtures are separated by the dotted lines. 
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For species 𝑖=1,…,15, 𝑗=2,…,16, 𝑖 < 𝑗, plot 𝑚=1,…,170, and year 𝑘=1,2,3, the 𝒁 

and 𝒖 matrices are 

                                [510 ×  360; 𝑃𝑃𝑖𝑗𝑚𝑘 =  𝑃𝑖𝑚𝑘𝑃𝑗𝑚𝑘]       ×      [360 × 1;  𝑑𝑖𝑗𝑘]  

𝒁𝒖 =

(

 
 
 
 
 

𝑃𝑃1,2,1,1 0 0

0 𝑃𝑃1,2,1,2 0

0 0 𝑃𝑃1,2,1,3

⋯

𝑃𝑃15,16,1,1 0 0

0 𝑃𝑃15,16,1,2 0

0 0 𝑃𝑃15,16,1,3
⋮ ⋱ ⋮

𝑃𝑃1,2,170,1 0 0

0 𝑃𝑃1,2,170,2 0

0 0 𝑃𝑃1,2,170,3

⋯

𝑃𝑃15,16,170,1 0 0

0 𝑃𝑃15,16,170,2 0

0 0 𝑃𝑃15,16,170,3)

 
 
 
 
 

(

 
 
 
 
 

𝑑1,2,1

𝑑1,2,2
𝑑1,2,3
⋮

𝑑15,16,1
𝑑15,16,2
𝑑15,16,3)

 
 
 
 
 

  

 

i.e. 𝒁 is a 510 by 360 matrix which contains the 120 pairwise interactions (PiPj) 

separated out into yearly columns (with zeros outside of the current year). It is 

assumed that 𝒖 ~ 𝑁(𝟎, 𝑮), where 𝑮 = (

𝑴𝟏,𝟏 𝟎 𝟎

𝟎 ⋱ 𝟎
𝟎 𝟎 𝑴𝟏𝟓,𝟏𝟔

)  is a 360 x 360 block 

matrix and each 𝑴𝒊𝒋 = (

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

) is a 3 × 3 block solely indexed by year. I.e., 

there are 120 random effects included in each year, but they are constrained to have 

equal variance, thus only one variance parameter per year is added. The purpose of 

this variance parameter in each year is to test if there is variability due to pairwise 

interactions additional to the fixed diversity effect terms: for example, for the 

average pairwise interaction model (𝛿𝑖𝑗𝑘 = 𝛿𝑘), 𝜎𝑘
2 measures variation in the true 

𝛿𝑖𝑗𝑘 around 𝛿𝑘, if it exists. Indexing the random effects  𝑑𝑖𝑗𝑘 by species pair 𝑖, 𝑗 (and 

year 𝑘) is highly unusual, since random effects are typically indexed by a plot-level 

factor such as a block. It is usual that the experimental or sampling design generates 

observations grouped according to one or more factors (which may be crossed or 

nested), yielding a hierarchical modelling structure in which observations within the 

same group are correlated. Hence, in our modelling framework the 𝒁 matrix differs 
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to that expected by standard mixed model fitting software, such as nlme (Pinheiro et 

al. 2018) and lme4 (Bates et al. 2015) in R (R Core Team 2018) for example.  

The spatial pattern treatment (aggregated or dispersed, Figure 4.1) of the SPaCE 

experiment presents statistical challenges that have not yet been addressed within the 

DI modelling framework. By definition, the treatment in the SPaCE experiment is 

applied only to mixture plots. The spatial pattern treatment can interact with the 

diversity effect terms, allowing the fixed average pairwise interaction of all pairs of 

species to differ for aggregated and dispersed plots, i.e. pairs of species interact 

differently depending on the spatial planting pattern. This could be due to higher 

intraspecific interactions (between individuals of the same species) and lower 

interspecific interactions (between individuals of different species) in aggregated 

plots than dispersed plots (Murrell, Purves, and Law 2001, Stoll and Prati 2001). 

Incorporating the spatial pattern treatment, model (3) can be written as 

      Response =          ID        +         DEfixed        +     DErandom   +   Error          (4) 

𝑦𝑘𝑙𝑚𝑛 = 𝛼𝑘𝑙 +∑𝛽𝑖𝑘𝑃𝑖𝑘𝑚

𝑠

𝑖=1

⏞          

+ 𝛿𝑘𝑛 ∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

⏞          

+ ∑ 𝑑𝑖𝑗𝑘𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

⏞          

+ 𝜀𝑘𝑙𝑚𝑛      (5) 

where 𝛼𝑘𝑙 is block effect 𝑙 in year 𝑘, 𝑃𝑖𝑘𝑚 is the proportion of species 𝑖 in plot 𝑚 in 

year 𝑘, and 𝜺~𝑁(𝟎,𝑹) as in equation (3). The 𝛽𝑖𝑘 terms can be interpreted as the 

expected weed biomass for a monoculture of species 𝑖 in year 𝑘 (all 𝑃𝑖𝑃𝑗 = 0 in 

monoculture). 𝛿𝑘𝑛 is the fixed average pairwise interaction between species 𝑖 and 𝑗 

in year 𝑘 for spatial pattern 𝑛, where 𝑛 can be either 1=aggregated or 2=dispersed. 

Suppose that DErandom is needed in year k, for example: the DEfixed term assumes 

that all 120 𝛿𝑖𝑗𝑘𝑛 pairwise interactions are equal to 𝛿𝑘𝑛, but this may not be sufficient 

and including the DErandom term acknowledges there is variation around 𝛿𝑘𝑛 across 
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all pairwise interactions. Extra terms may be needed in the DEfixed component (see 

Section 4.3) but the inclusion of random effects acknowledges there may be 

additional variation, unexplained by DEfixed, and the random effect variance terms 

will be incorporated into fixed effects standard errors, improving inference.  

Fitting 360 random effects with a constrained variance in each year is not a 

trivial coding challenge. We used SAS software (SAS Institute, Cary, North 

Carolina, USA) to fit our models, utilizing the LIN covariance structure in proc 

mixed, which allows user-defined variance-covariance matrix structures for random 

effects. SAS University Edition is currently freely available for academic and non-

commercial use and our models can be fitted using it. It is not possible to fit the 

models in the standard mixed model packages in R (e.g. LME4 (Bates et al. 2015)) 

since random effects in these packages are always indexed by a plot level factor.  

However, we succeeded in fitting simple versions of a multi-year model using 

optimx in R (Nash and Varadhan 2011, R Core Team 2018). Appendix 4.1 provides 

a tutorial style guide to fitting simple versions of the models in SAS and R for 

comparison.  

 

4.3   Model fitting and simulations 

4.3.1 Model fitting for the SPaCE experiment 

Diversity-Interactions models were fitted to the SPaCE data from all three years with 

total yearly weed biomass as the response. A log transformation of the yearly weed 

biomass was also modelled as a response to try to account for non-constant variance. 

One was added to each of the weed biomass values before taking the log to avoid 

problems with zero values. Proportions planted were used as predictors in year 1 and 
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‘realized’ proportions in the preceding year were used in years 2 and 3. The model 

selection process involved: 

1. Preliminary fixed effects selection: The identity, average pairwise, functional 

group and additive species models (Table 4.1) were fitted by maximum 

likelihood (ML) to allow comparisons of different fixed effects. Likelihood 

ratio tests (LRTs) were conducted to select the best model. 

2. Best variance-covariance structure: The fixed effects model identified in step 

1 was used as a ‘baseline’ model: the fixed effects in the model stayed the 

same while different variance-covariance structures were fitted by restricted 

maximum likelihood (REML) to account for repeated measures over years: 

compound symmetry, first-order auto-regressive and unstructured (Littell et 

al. 2006). REML fitting was necessary in this case because the fixed effects 

were constant and the variance-covariance structures were changing. To test 

for heterogeneous variance across plots, the 𝑨𝒊 matrices within the 𝑹 matrix 

were first fitted as constant across all 170 plots, and then allowed to differ 

according to: (a) monocultures and mixtures, (b) all FGs in monocultures, 

and mixtures. These models were also compared using LRTs. 

3. Best fixed effects model with the best variance-covariance structure: If the 

variance-covariance structure was changed in step 2, the selection of fixed 

effects was carried out again as described in step 1, using the new error 

structure. In addition, the diversity effect was tested for interaction with 

spatial pattern and with legume percentage. Models were fitted by ML and 

compared using LRTs.  

4. Include random pairwise interactions: The best fixed effects model with the 

best variance-covariance structure was fitted using REML (because the fixed 
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effects did not change) with and without random pairwise interactions in each 

year individually and compared using LRTs. The purpose of including 

random pairwise interactions in a given year is twofold: 1) if they are not 

needed, this indicates no evidence of lack of fit in the diversity effect 

explanation, 2) if they are needed, the extra variance parameter acknowledges 

that there is additional variability due to pairwise interactions and 

incorporates this extra uncertainty into standard errors, without the need for 

many additional fixed terms (Brophy et al. 2017). To counteract the boundary 

space problem (Self and Liang 1987, Shapiro 1988) when testing the 

inclusion of random effects in each year, the P-values of the LRTs were 

halved (Littell et al. 2006). 

 

4.3.2 Simulation studies for model evaluation 

We conducted simulation studies to evaluate the performance of the random 

effects approach to modelling pairwise interactions over multiple years. An 

experimental design was generated with 𝑚 = 110 plots, a pool of ten species 

categorized according to two functional groups (each of size five), and plots of 

species richness 1, 2, 5, 9 and 10. Each species was in monoculture in two plots; 

each pair of species appeared once in a plot of richness two in equal proportion; and 

there were 30, 10 and 5 plots of richness 5, 9 and 10 respectively, with all species in 

equal proportion in each plot. Response values were simulated assuming a functional 

group model (Table 4.1) over 𝑘 = 3 experimental years. In addition to functional 

group interaction effects, extra variation due to pairwise interactions was included in 

the simulated responses. For year 𝑘, plot 𝑚, species 𝑖, 𝑗, and FG1 = {1,2,3,4,5} and 

FG2 = {6,7,8,9,10}, the simulated model was 
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𝑦𝑘𝑚 =∑𝛽𝑖𝑘𝑃𝑖𝑘𝑚

10

𝑖=1

+∑𝜔𝑞𝑞𝑘

2

𝑞=1

∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚 
𝑖,𝑗∈𝐹𝐺𝑞
𝑖<𝑗

+ 𝜔12𝑘 ∑ ∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚
𝑗∈𝐹𝐺2𝑖∈𝐹𝐺1

+ ∑ 𝑑𝑖𝑗𝑘𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚

10

𝑖,𝑗=1
𝑖<𝑗

+ 𝜀𝑘𝑙𝑚                (6) 

 

where the identity effects values and the within and between functional group 

interaction values in each year are given in Table 4.2. The random effects were 

assumed to be normally distributed in each year; the standard deviation values 

simulated (assumed the same in each year) were 0, 500, 1000, 1500, 2000 and 2500. 

The residual errors, also assumed normally distributed, were simulated assuming 

homogeneity across plots within each year, and for simplicity, assuming zero 

covariance across years; the simulated standard deviation values for each year were 

100, 200 and 300. Each combination of random effects variance by error variance 

values gave rise to 18 sets of simulations, each of which contained 1000 datasets. 

The code to perform the simulation study is provided in Appendix 4.2. The 

experimental design dataset is provided in the supporting electronic file EF4: 

Experimental_design.csv. 
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Table 4.2.  Values of the identity effects and the within and between functional 

group interactions in each year from the simulation study for model evaluation. 

  Year  

Effect 1 2 3 

𝛽1 700 1477 1103 

𝛽2 472 1458 1411 

𝛽3 512 1636 1601 

𝛽4 650 1267 604 

𝛽5 440 879 753 

𝛽6 343 759 792 

𝛽7 630 931 627 

𝛽8 709 874 637 

𝛽9 699 1100 752 

𝛽10 584 845 748 

𝜔11 -2400 -2345 4592 

𝜔22 1753 -2151 -3954 

𝜔12 841 -128 524 

 

4.4   Results 

4.4.1 Data overview 

Weed biomass was similar for all levels of species richness in 2012 (Figure 4.3a). In 

2013 and 2014, monocultures showed both a higher median and range in weed 

biomass than mixtures (Figure 4.3b,c), suggesting that diversity suppressed weed 

invasion over time. Weed biomass in 2013 and 2014 did not vary much among  

richness levels in mixture plots, although the values appeared to be lower at all 

richness levels in 2013 than in any other year (Figure 4.3). This was most likely 

because 2012 was an establishment year and biomass production of most planted 

species was greatest in 2013 (Appendix 4.3), leaving more space, light and nutrients 

for weeds to grow in (McKenna and Yurkonis 2016). The medians and the variances 

of the weed biomass across the 16 monocultures varied in all years (Figure 4.2). 

Some species from FGs 2 and 3 (cool-season grasses and forbs) had lower medians 
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in monoculture than the mixtures in all years. For example, all five monocultures of 

Solidago rigida (species 10) (SR) completely suppressed weeds in 2014. This was 

most likely due to the dense basal rosette form of this species making it difficult for 

invaders to grow. S. rigida monocultures also had some of the highest biomass yields 

in 2014 (Appendix 4.3). Legume (FG4) monocultures had high weed biomass values 

in each year (Figure 4.2). Mixtures containing legumes were usually far superior at 

resisting weed invasion compared to their monocultures (e.g. Figure 4.2) and thus 

legume proportion in the mixture may be strongly influential on the diversity effect.  

 

4.4.2 Model selection 

To find the best model, the steps outlined in Section 4.3.1 were followed. The 

additive species model (Table 4.1) was the best model identified in step 1 (which 

assumed homogeneous variance across plots within each year). In step 2, the best 

variance-covariance structure had unstructured blocks in the 𝑹 matrix (i.e. a unique 

variance for each year and a unique covariance for each pair of years) with different 

blocks for each of the four functional groups in monoculture, and another for 

mixtures (Appendix 4.4). In step 3, the best fixed effects model identified (using the 

new variance-covariance structure) was the functional group model where spatial 

planting pattern interacted with the within functional group and between functional 

group interactions, and proportion of FG4 (legumes) interacted with additive species 

pairwise interactions (Table 4.3). Models with more parameters than model 4 in 

Table 4.3 that were not nested with model 4 were compared using AIC values, but 

were not preferable. Additional random pairwise interactions were needed in 2014 

only (Table 4.3). 
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Figure 4.3. Total plot weed biomass (g DM in 1 m2 plot) in (a) 2012, (b) 2013, and (c) 2014 by number of species in plot (richness). 
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Table 4.3.  Details of tests conducted to determine the best linear predictor for the fixed effects (step 3) and tests for the inclusion of random 

pairwise interactions (step 4). Likelihood ratio test statistics (LRT), degrees of freedom (df = difference between the compared models) and P-

values are shown. Model 1 includes block effects, identity effects for each species, and an average pairwise interaction term. Models 1-3 were 

fitted using maximum likelihood (ML). Model 4 was fitted by ML for comparisons of fixed effects and REML for comparisons of random 

effects. Models 5-7 were fitted using restricted maximum likelihood (REML). The P-values for the random pairwise interactions variance 

components are halved due to the boundary space issue.  

Model 

number 
Model description Test LRT df P-value 

 Fixed effects model comparisons     

1 Average pairwise model     

2 Functional group model 1 v 2 62.8 27 <0.001 

3 With functional group interactions * Spatial pattern 2 v 3 52.1 30 0.007 

4 With additive species interactions * legume % 3 v 4 210.9 48 <0.001 

 Random effects model comparisons     

5 With random pairwise interactions in 2012 4 v 5 0 1 0.500 

6 With random pairwise interactions in 2013 4 v 6 0.4 1 0.264 

7 With random pairwise interactions in 2014 4 v 7 5.6 1 0.009 
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For year 𝑘, block 𝑙, plot 𝑚, spatial pattern 𝑛, species 𝑖, 𝑗, and the warm-

season grasses FG1 = {1,2,3,4}, the cool-season grasses FG2 = {5,6,7,8}, the forbs 

FG3 = {9,10,11,12} and the legumes FG4 = {13,14,15,16}, the final chosen model 

was 

𝑦𝑘𝑙𝑚𝑛 = 𝛼𝑘𝑙 +∑𝛽𝑖𝑘𝑃𝑖𝑘𝑚

𝑠

𝑖=1

                               ID (including block effects)

+∑𝜔𝑞𝑞𝑘𝑛

4

𝑞=1

∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚 

𝑖,𝑗∈𝐹𝐺𝑞
𝑖<𝑗

                        DEfixed(within functional groups by spatial pattern)  

+  ∑ 𝜔𝑞𝑟𝑘𝑛

4

𝑞,𝑟=1
𝑞<𝑟

∑ ∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚
𝑗∈𝐹𝐺𝑟𝑖∈𝐹𝐺𝑞

             DEfixed(between functional group by spatial pattern)

+ ∑(𝜆𝑖𝑘 + 𝜆𝑗𝑘)𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚 ∑ 𝑃𝑖𝑘𝑚

16

𝑖=13

𝑠

𝑖,𝑗=1
𝑖<𝑗

            DEfixed(legume interactions)  

+ ∑ 𝑑𝑖𝑗3𝑃𝑖3𝑚𝑃𝑗3𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

                                          DErandom(year 𝑘 = 3 only)     

 + 𝜀𝑘𝑙𝑚𝑛                                                                                                                                          (7) 

where 𝜺~𝑁(𝟎,𝑹). 𝑹 contains different blocks for each functional group 

monoculture, and another for mixtures (i.e. five repeated measures variance-

covariance blocks across the 170 plots), 𝑑𝑖𝑗3~𝑁(0, 𝜎3
2) independent of 𝜺. The 

parameter 𝛼𝑘𝑙 is the effect of block 𝑙 in year 𝑘, 𝛽𝑖𝑘 is the expected weed biomass of a 

monoculture of species 𝑖 in year 𝑘, and 𝜆𝑖𝑘 and 𝜆𝑗𝑘 are the fixed additive species 

interaction effects of species’ 𝑖 and 𝑗 in year 𝑘. ∑ 𝑃𝑖𝑘𝑚
16
𝑖=13  is the total legume 

proportion for year 𝑘, plot 𝑚. 𝜔𝑞𝑞𝑘𝑛 is the coefficient of the total pairwise 

interactions between species from functional group 𝑞 for spatial pattern 𝑛 in year 𝑘. 

𝜔𝑞𝑟𝑘𝑛 is the coefficient of the total pairwise interactions between species from 

functional group 𝑞 and 𝑟 for spatial pattern 𝑛 in year 𝑘. The DEfixed (functional 
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group) terms mean that a pair of species interacts in the same way as any pair of 

species from the same functional group(s). However, these interactions changed 

depending on whether the spatial planting pattern was aggregated or dispersed (𝑛). 

The remainder of DEfixed is the legume interaction terms; these interaction terms 

indicate that in addition to functional group effects, there is a species-specific effect 

that contributes towards the DE and depends on legumes percentage in the mixture. 

The inclusion of DErandom in the final model means that in the third year of the 

experiment, there was additional variability due to the individual pairwise 

interactions that was not picked up by DEfixed, and was incorporated into the fixed 

effects standard errors. The estimated variance of the random pairwise interactions 

(�̂�3
2) was 3224.3.  The estimates of the fixed effects of the final model are in 

Appendix 4.5 and the variance components estimates are in Appendix 4.6. A 

graphical assessment of model assumptions is included in Appendix 4.7. 

Figure 4.2 shows that the weed biomass medians across the 16 monocultures 

varied in all years. The monoculture estimates in 2012 were all significantly higher 

than those in 2013 at the average block level (P<0.001 in most cases; all P<0.02), 

and in 2014 except for species 4, 11, 13 and 16 (Panicum virgatum (PV), Helianthus 

maximiliani (HM), Desmodium canadense (DC), and Glycyrrhiza lepidota (GL) 

respectively). Two-species community predictions with both species in equal 

proportions (centroid communities) at the average block level were conducted for all 

communities which contained either one warm-season or cool-season grass species 

and either one forb or legume species. In 2012, the aggregated planting pattern 

generally yielded lower predictions than dispersed, except for communities mixing a 

species from FGs 2 and 4 (Figure 4.4). This could be due to aggregation allowing 

subordinate species to establish more easily due to decreased interspecific  
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Figure 4.4. Predicted weed biomass (g DM in 1 m2 plot) in 2012 in two-species centroid communities containing one species from either FG1 or 

FG2 and one species from either FG3 or FG4 split by spatial pattern (either aggregated or dispersed). 
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interactions, leaving the community less susceptible to invasion at establishment. To 

examine the effect of altering legume percentage, four-species predictions containing 

one species from each functional group were calculated from the final model at the 

average block level, with legume percentage taking six values between 0 and 0.25 to 

stay within the bounds of the experimental values. The remaining proportion was 

divided between the other three chosen species. In 2012, the predicted weed biomass 

changed more with legume percentage in dispersed plots than in aggregated plots for 

the chosen communities: the predictions for communities with no legume present 

were much lower for dispersed, but at the centroid community (∑ 𝑃𝑖
16
𝑖=13 =0.25) the 

predictions were similar for both spatial planting patterns, with dispersed still 

slightly lower (Appendix 4.8a). In 2013 and 2014, the predictions were similar for 

both spatial patterns in the communities with no legumes present, and as the legume 

percentage increased, the predicted weed biomass changed similarly with legume 

percentage with the aggregated community predictions becoming higher than the 

corresponding dispersed predictions (Appendix 4.8 b,c). This could be due to the 

aggregation of legumes leaving niche space for invaders to grow. The orientation 

and strength of the relationship between legume percentage and predicted weed 

biomass depended on species present, spatial pattern and year. Some predictions 

were negative, but this was to be expected since there were a number of weed 

biomass observations close to and equal to zero in the SPaCE data. These negative 

predictions can be thought of as predicting that weeds were completely suppressed. 
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4.4.3 Log transformation model selection 

The procedure in Section 4.3.1 was followed for the log transformed data. As for the 

untransformed data, the additive species model was the best model in step 1 (which 

assumed homogeneous variance across plots within each year). The best 𝑹 matrix 

with the additive species model had a single unstructured block that was the same for 

each plot (i.e. a unique variance for each year and a unique covariance for each pair 

of years). In step 3, the spatial planting pattern was accounted for in the model along 

with the fixed effects models from step 1. The chosen model was the additive species 

model in which spatial planting pattern interacted with the species-specific 

interactions, and proportion of FG4 (legumes) interacted with functional group 

pairwise interactions. Random pairwise interactions in any year did not improve the 

best model. The best model for the log-transformed data is in Appendix 4.9, and a 

graphical assessment of the model assumptions is in Appendix 4.10.  

 

4.4.4 Simulation results 

In our simulation study, the ability of the modelling approach to detect the random 

pairwise interactions was assessed across various combinations of random effect 

variance values by residual error variance. When the random pairwise interactions 

standard deviation was set to 0, DI models found significant variation due to random 

pairwise interactions in one of the years on just a small number of occasions (Table 

4.4). However, many of the models including random pairwise interactions were 

stopped due to infinite likelihood when no random pairwise interactions were 

present, or their variance was small compared to residual variance (Table 4.4). 

Diversity Interactions modelling methods detected random pairwise interactions at a 
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higher rate when the variance of the random pairwise interactions was large in 

comparison to the residual variance (Table 4.4). To be distinguishable from residual  

 

Table 4.4. The number of simulations from 1000 that gave 0, 1, 2 or 3 significant 

yearly random pairwise interactions at the 0.05 significance level, or number of 

times the model was stopped because of too many likelihood evaluations (NA) in 

each of three years for 18 different combinations of residual standard deviation by 

random pairwise interactions standard deviation.  

  

Number of significant yearly random pairwise 

interactions 

Residual 

standard 

deviation 

Random pairwise 

interactions  

standard deviation 0 1 2 3 NA 

100 0 555 29 1 0 415 

100 500 5 83 379 533 0 

100 1000 0 0 0 1000 0 

100 1500 0 0 0 1000 0 

100 2000 0 0 0 1000 0 

100 2500 0 0 0 1000 0 

200 0 554 31 1 0 414 

200 500 600 284 51 7 58 

200 1000 6 74 369 551 0 

200 1500 0 0 9 991 0 

200 2000 0 0 0 1000 0 

200 2500 0 0 0 1000 0 

300 0 600 19 0 0 381 

300 500 720 102 9 0 169 

300 1000 308 417 234 32 9 

300 1500 8 67 393 531 1 

300 2000 0 2 44 954 0 

300 2500 0 0 4 996 0 

 

variance, random pairwise interactions must usually have sufficiently large variance 

in comparison to the residual variance.   
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4.5   Discussion and conclusions 

Diversity-Interactions models are a valuable tool in BEF research: they can 

simultaneously assess the impact of individual species, species interactions, species’ 

proportions and richness on ecosystem function (Kirwan et al. 2009). The ability to 

predict around the simplex space of the species pool provided a superior level of 

information compared to ANOVA or richness only based approaches to estimating 

BEF relationships. We identified varying abilities of species to resist weed invasion, 

with legumes in particular proving very susceptible to invasion in monoculture. We 

also found that diversity effects were driven by functional group membership and 

that the functional group effects varied according to species spatial pattern. Thus, the 

spatial pattern effects depended on which species were in the mixture and could not 

be generalized to any mixture. Examining the raw data, when plots were grouped by 

spatial pattern within year, no apparent effect of spatial pattern treatment was 

observed in any of the years, except for a slightly inferior weed suppression in 

aggregated plots in 2013 and 2014 (Appendix 4.11), highlighting the benefit of our 

approach over traditional ANOVA based methods for analyzing this type of data. 

Previous studies have found that aggregation of plant species helped maintain 

diversity and reduce weed invasion by allowing less competitive species to persist 

(Wassmuth et al. 2009). However, model prediction here suggested that aggregated 

plots were more prone to invasion outside the year of establishment which is 

consistent with Yurkonis, Wilson and Moloney (2012). We also identified a species-

specific effect of the proportion of legume in mixtures on the diversity effects. 

Model predictions illustrated this, with predicted weed biomass in dispersed spatial 

pattern communities in particular changing with increasing proportions of legumes. 

The results supported the argument that increasing the number of species with 
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different functional traits has a positive impact on weed suppression (Hector et al. 

2001, Pokorny et al. 2005). 

The inclusion of the unusual random effects (indexed by pairwise species 

rather than by a plot-level factor) provides a novel and parsimonious way to model a 

large number of pairwise interactions over multiple years, extending the methods 

from Brophy et al. (2017) for fitting the random effects in a single year. As shown by 

the simulation studies, the ability of the modelling approach to pick up the random 

effects is determined by the relative size of the random effects variance to the 

residual error variance, but when the random effects variance is sufficiently 

(relatively) large, the model performs well at detecting the need for the additional 

variance components. Our simulation studies also showed that when the random 

pairwise variance does not exist, the model will rarely detect that is required, but it 

may encounter convergence issues. Thus, when there were problems including 

random pairwise interactions in a model that otherwise has no convergence issues, 

we interpreted it as a lack of need for the variance component. The analysis in 

Connolly et al. (2013) compared DI models to a reference model including a 

coefficient for each distinct community and blocking structure or treatment (where 

there was replication at this level). DI models fitted similarly to the reference model 

in six experiments out of seven, meaning that pairwise interactions were sufficient to 

describe the data structure. A similar analysis could not be done on the SPaCE 

dataset because individual community types were not replicated (except in 

monoculture). 

This work provides a useful extension to DI models that accounts for spatial 

pattern treatment in the experiment. At establishment, aggregated plots had higher 

mean total intraspecific interactions than dispersed plots at each richness level. The 
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difference became larger with increasing richness (Appendix 4.12). Future work 

could focus on making bigger same-species clusters in the aggregated plots to 

increase the intraspecific interactions and make them more different from the 

dispersed plots. To ensure the dispersed plots lead to genuinely different groupings 

of planted species, a ‘dispersed control’ treatment could be added. This would 

include plots in which the dispersed plots are manipulated to reflect varying levels of 

interspecific interactions. Not only will the inclusion of spatial pattern in DI models 

benefit the modelling of grassland plot experiments, DI models are being used to 

model the interactions between species in forests (De Groote et al. 2017). The spatial 

pattern in forests could play a very important role in ecosystem functioning due to 

light interception, and the ability of species to interact with distant species could be 

diminished on a larger scale than in the SPaCE experiment. 

A log transformation of weed biomass is a possible alternative method of 

ensuring that the linear mixed model, as proposed here, provides a good fit to the 

data. The analysis conducted on the log transformed data (with one added to each 

weed biomass value to avoid zero values), satisfied linear mixed model assumptions 

(Appendix 4.10). Similar to the model for the untransformed data, the best DI model 

for the log transformed data detected the functional grouping structure and the 

legume effects present in the data (Appendix 4.9). The model on the log-scale had a 

simpler R matrix structure, because the log transformation resolved the non-constant 

variance issues evident on the original scale. However, a log transformation makes 

the interpretation of individual coefficients less straightforward. For example, on the 

untransformed data, the estimated coefficients of the species 1 identity effects are the 

estimated weed biomass values for species 1 monocultures in each year. For the log 

transformed data, a back-transformation of the model identity coefficients gives the 
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estimated median weed biomass value instead of the mean, which is still directly 

interpretable. However, for the log transformed data, the diversity effect terms are 

more complex to understand since when back-transformed, the effects are 

multiplicative rather than additive. Thus, when modelling on the original scale of the 

data, it is easier to attribute specific parameter estimates to the underlying biological 

processes than when working on a transformed scale. 

The SPaCE experimental design in this study partially confounded species 

richness and functional group richness: all two-species plots contained two 

functional groups (always a warm-season or cool-season grass with a legume or a 

forb), and all four-species and all eight-species plots contained four functional 

groups. The design was suitable for the aim of the study to investigate the 

interactions among different functional groups as they relate to a reconstructed 

grassland. However, there are implications of the restricted design space for 

Diversity-Interactions modelling predictions: for our estimated model, it was not 

reasonable to predict for richness=2 plots of species from the same functional group, 

or for two grasses (warm and cool season) together, or a legume and a forb together. 

Generally, if it is desirable to predict for any combination of any species at any 

richness or evenness levels, care must be taken to have adequate representation 

around the simplex space when designing the experiment.  

Many of the species in this reconstructed grassland system did not persist very 

well, as is common in reconstructed grasslands (Martin, Moloney, and Wilsey 2005). 

For example, the highest proportion of Glycyrrhiza lepidota (species 16) (GL) in any 

of the plots in 2014 was 0.12, from a species-high of 0.5 in 2012. Because of this, it 

was not reasonable to predict at high values of species 16 in 2014. Similar declines 

occurred for some of the other species. In grassland systems, producers can manage 
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their grasslands to help legumes persist, for example by lowering soil nitrogen, and 

through alternate harvesting for silage between and within years (Humphreys et al. 

2017). However, this is not possible in the restored grassland system used in the 

SPaCE experiment, in which the only management was monthly weeding and annual 

harvesting. In such systems, the initial management of the experiment, for example 

the seed density composition and site age, can be influential (Grman, Bassett, and 

Brudvig 2013). Varying the establishment times of different species can also affect 

diversity and species persistence (Martin and Wilsey 2012). 
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Chapter 5 

Conclusion 

My research has focused on assessing the accuracy of weather forecasts, and 

incorporating them into an Irish grass growth model, as well as extending the DI 

modelling framework for the modelling of species-diverse grassland experiments. 

Below I will summarise the main conclusions from each chapter.  

 

Chapter 2 

 Chapter 2 focused on the first aim of the thesis, which was to quantify the 

accuracy of weather forecasts in Ireland, and if possible to improve their accuracy. It 

was shown that ECMWF weather forecasts of all weather variables examined 

declined in accuracy as forecast period increased, and were accurate up to at least 

five days in advance. The best bias-correction method used a regression approach, 

and improved the accuracy of the ECMWF air and soil temperature forecasts, but 

rainfall forecasts were not greatly improved. Previous studies on the verification and 

bias correction of rainfall forecasts showed similar results: improvements in rainfall 

forecast accuracy but difficulty in predicting extreme events and for longer lead 

times (Acharya et al., 2013; Harrison et al., 2000). Although the bias corrections 

showed improvements in forecast accuracy, recently observed weather data are 

required to use these bias correction methods. Farms that are not beside weather 

stations and that do not record their daily weather would have less accurate bias-

correction options.  
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Although this work was done primarily to aid with the inclusion of a grass 

growth model, it could be used for many other applications. For example, ECMWF 

soil temperature forecasts had not been verified previously in Ireland at all of these 

depths. Albergel et al. (2015) verified the ECMWF 5 cm soil temperature at a 

number of European sites, including at some Irish locations. As well as being a 

strong predictor of grass growth, soil temperature is important in the growth of many 

Irish crops, including potatoes. Up until now, these forecasts have been used 

primarily to inform the interaction between the air and the earth surface in the 

weather forecasting models produced by the ECMWF. Met Éireann can now advise 

users of soil temperature forecasts that they are reasonably accurate and can be used 

in practice. They also contain seasonal biases that can be corrected if observations 

are available.  

 

Chapter 3 

 Chapter 3 investigated whether weather forecasts were reasonable inputs for 

a grass growth model at an Irish dairy farm. Previous work by Ruelle et al. (2018) 

and Hurtado-Uria et al. (2013) showed that Irish grass growth observations could be 

predicted accurately using retrospective weather observations. Internationally, grass 

growth modelling had focused on long-term seasonal hindcasting, but the potential 

benefits were not sufficient to promote adoption by farmers in practice (Ash et al., 

2007; Harrison et al., 2017). Here, it was shown that they could be predicted with 

reasonable accuracy up to a week in advance using weather forecasts. The weekly, 

monthly and yearly totals from the MoSt GGM predictions generally followed the 

grass growth observations closely for both forecast and observed weather, showing 
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that the MoSt GGM including weather forecasts can be a useful management tool for 

farmers. The grass growth observations outside of the peak growing season were 

generally under-predicted by the MoSt GGM, regardless of the weather input. It will 

be important to identify the source of this error because it can be important for 

farmers to know their grass growth early in the growing season to make grazing 

decisions that can have a strong influence on and grass utilisation and quality across 

the growing season (Kennedy et al., 2006; O'Donovan and Delaby, 2008). Some 

circumstances in which certain weather conditions were overly influential during the 

peak growing season were identified, in particular low solar radiation during the 

peak growing season resulted in grass growth predictions lower than observed. 

 

Chapter 4 

Chapter 4 aimed to enhance existing methods for modelling multi-species 

experiments. DI models have been used previously to describe numerous different 

types of experiments, including tree species interactions, weed biomass in 

grasslands, and the effect of dung fauna on dung decomposition (Connolly et al., 

2018; De Groote et al., 2017; O'Hea et al., 2010). They also incorporated many 

treatments, but a spatial planting pattern treatment had not previously been studied. 

In the year of establishment there was no difference between weed biomass in 

mixture and monoculture plots. Mean weed biomass was lower in mixture plots than 

in monoculture plots in the second and third years of the study, showing that 

increasing species richness reduced weed invasion. The mean weed biomass 

increased from year two to year three of the study. This could be because the plots 

were in a natural system, and soil nutrients may have been depleted. Although some 
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species suppressed weeds effectively in monoculture, there are other benefits in 

species mixtures in grasslands such as increased grass yields, and environmental 

enrichment.  

A number of DI modelling methods were developed, as a complex 

covariance structure in a repeated measures setting was implemented, and random 

pairwise interactions were fitted in multiple years. In the final model, there were 

different blocks for monocultures from each functional group, and another for 

mixtures in the 𝑹 matrix, while random pairwise interactions were included in the 

model in 2014.  The chosen model had a functional group structure which interacted 

with spatial planting pattern, meaning each pair of species interacted depending on 

their functional group membership and the spatial planting pattern. Legumes 

influenced the interactions: each pair of species interacted based on the sum of two 

species-specific (additive species) interaction effects, scaled by their proportions as 

well as by the proportion of legumes present. It was shown that the random pairwise 

interactions methods described almost always detected random pairwise interactions 

when their common variance was sufficiently large in relation to the error variance. 

However, when this was not the case, the models including random pairwise 

interactions were often stopped due to infinite likelihood. Since spatial planting 

pattern appeared in the final model, predictions allowed us to explore how the two 

spatial patterns differed. For two-species mixtures in 2012, aggregation suppressed 

weed invasion better possibly due to it allowing less competitive species to establish 

better. However, in 2013 and 2014, dispersed communities generally gave lower 

weed biomass predictions in four-species mixtures. Tools and code in SAS and R for 

analysing and fitting DI models to multi-year and species-rich biodiversity 

experiments were also provided. 
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Future work 

 There are plenty of opportunities for further research in grassland modelling 

with weather forecasts. Solar radiation and wind speed and direction are two weather 

variables that influence grass growth that have not been extensively verified here. An 

increased understanding of the accuracy of their forecasts, as well as their 

relationship with grass growth could help to develop the MoSt GGM. For example, 

using mean climatological solar radiation forecasts in conjunction with ECMWF or 

bias-corrected temperature and rainfall forecasts could yield accurate predictions if 

the solar radiation forecasts are not accurate a week in advance. Climate change will 

bring challenges to the agricultural industry, and studies investigating the effects of 

weather on areas such as grass and crop growth will be important in ensuring food 

sustainability in the future. As drought and flood conditions become more common 

in Ireland, research into their effects on agricultural production is imperative. There 

are also opportunities to collaborate with agricultural researchers as a statistician. 

Many potentially information-rich experiments are not being utilised to their fullest.  

Although the MoSt GGM has been shown to be producing accurate 

predictions, a number of areas in which its predictive ability could be improved have 

been highlighted. The MoSt GGM study was carried out for a well-drained farm, and 

the model is designed to be able to predict grass growth on any Irish dairy farm. It 

would be useful to test the model outputs at other sites with different climatic 

conditions and soil types, for example on heavy soils. The MoSt GGM must also be 

adapted to include multi-species swards, as Irish farmers are incorporating species 

such as white clover to improve grass and milk yield (Egan et al., 2018; Guy et al., 
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2018), and to promote biodiversity to enhance the ecosystem in an increasingly 

environmentally aware industry (Tilman et al., 2006). 

Grass growth models have been developed in other countries. New Zealand’s 

Pasture Growth Forecaster appears to be the most advanced of these models, and is 

used in practice by farmers to make informed grassland management decisions (NZ, 

2018). It is similar to the PastureBase Ireland tools: it is split into regions, and in 

each region daily grass growth predictions for the next seven days are available as 

well as the typical growth in the region based on historical climate and grass growth 

data. However, there are some interesting features in this model that could be useful 

to incorporate into PastureBase Ireland, in conjunction with the MoSt GGM. For 

example, it uses climatic data and the starting soil and water conditions in the system 

to forecast the expected growth for the next three months and the coming year along 

with confidence bounds of 50% and 90%. When the PastureBase Ireland dataset 

accumulates sufficient historical grass growth data, the MoSt GGM could be used in 

conjunction with the Met Éireann climatology data (Walsh, 2012) to produce similar 

estimates. 

I hope to further develop DI modelling methods and help with the 

dissemination of the work to researchers working with appropriate species mixture 

data. DI modelling methods can be applied to a variety of experiments that mix 

species other than grassland plot experiments, including bacterial and tree species 

studies. Because DI models can be used in so many areas, there is potential for 

collaborative work with a growing number of researchers from a wide variety of 

backgrounds. Publishing material about DI modelling in the statistical literature 

would help to bring a wider audience to the methods. 
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Appendices 

Appendix 2.1: Number of missing values at each station in each year for the ten 

weather variables examined: rainfall (rain), minimum temperature (min), maximum 

temperature (max), mean temperature (mean), 5 cm soil temperature (5cm), 10 cm 

soil temperature (10cm), 20 cm soil temperature (20cm), 30 cm soil temperature 

(30cm), 50 cm soil temperature (50cm), 100 cm soil temperature (100cm). Some of 

the stations became operational after 1 January 2007. Other missing values are 

usually due to servicing, calibrations or instrument outages. 

variable station 2007 2008 2009 2010 2011 2012 2013 

rain Athenry 365 366 365 365 258 11 3 

min Athenry 365 366 365 365 258 11 3 

max Athenry 365 366 365 365 258 11 3 

mean Athenry 365 366 365 365 258 10 0 

5cm Athenry 365 366 365 365 279 10 0 

10cm Athenry 365 366 365 365 266 11 0 

20cm Athenry 365 366 365 365 257 11 0 

30cm Athenry 365 366 365 365 273 11 1 

50cm Athenry 365 366 365 365 252 11 1 

100cm Athenry 365 366 365 365 254 11 1 

rain Ballyhaise 6 7 2 3 4 0 1 

min Ballyhaise 6 4 0 0 0 0 0 

max Ballyhaise 6 4 0 0 0 0 0 

mean Ballyhaise 2 0 0 0 0 0 0 

5cm Ballyhaise 2 0 0 0 3 1 0 

10cm Ballyhaise 2 0 0 0 0 0 0 

20cm Ballyhaise 2 0 0 0 0 0 0 

30cm Ballyhaise 1 0 0 0 1 0 0 

50cm Ballyhaise 0 0 0 0 0 3 0 

100cm Ballyhaise 0 0 0 0 13 3 0 

rain Belmullet 0 0 0 0 0 2 0 

min Belmullet 0 0 0 0 0 0 0 

max Belmullet 0 0 0 0 0 0 0 

mean Belmullet 0 0 0 0 0 0 0 

5cm Belmullet 0 0 0 0 0 0 0 

10cm Belmullet 0 0 0 0 0 0 0 

20cm Belmullet 0 0 0 0 0 0 0 

30cm Belmullet 0 0 0 0 0 0 0 

50cm Belmullet 0 0 0 0 0 0 0 

100cm Belmullet 0 0 0 0 0 0 0 

rain Carlow 24 2 0 0 1 0 3 
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min Carlow 0 0 0 0 1 0 0 

max Carlow 0 0 0 0 1 0 0 

mean Carlow 0 2 2 0 0 0 0 

5cm Carlow 0 0 2 0 0 0 0 

10cm Carlow 0 0 2 0 0 0 0 

20cm Carlow 0 0 1 0 0 0 0 

30cm Carlow 0 0 1 0 0 0 0 

50cm Carlow 0 0 0 0 0 0 0 

100cm Carlow 0 0 0 0 0 0 1 

rain Casement 0 0 0 0 0 0 0 

min Casement 0 0 0 0 0 0 0 

max Casement 0 0 0 0 0 0 0 

mean Casement 0 0 0 0 0 0 0 

5cm Casement 0 0 0 0 0 0 0 

10cm Casement 0 0 0 0 0 0 0 

20cm Casement 0 0 0 0 0 0 0 

30cm Casement 0 0 0 0 0 0 0 

50cm Casement 0 0 0 0 0 0 0 

100cm Casement 0 0 0 0 0 0 0 

rain Claremorris 0 0 2 0 1 0 1 

min Claremorris 0 0 3 0 1 0 0 

max Claremorris 0 0 3 0 1 0 0 

mean Claremorris 0 0 0 0 23 0 0 

5cm Claremorris 0 0 0 0 1 1 0 

10cm Claremorris 0 0 0 0 1 2 0 

20cm Claremorris 0 0 0 0 1 0 0 

30cm Claremorris 0 0 0 0 1 0 0 

50cm Claremorris 0 0 0 0 1 0 0 

100cm Claremorris 0 1 0 0 1 0 0 

rain Cork Airport 0 0 0 0 0 0 0 

min Cork Airport 0 0 0 0 0 0 0 

max Cork Airport 0 0 0 0 0 0 0 

mean Cork Airport 0 0 0 0 0 0 0 

5cm Cork Airport 0 0 0 0 0 0 0 

10cm Cork Airport 0 0 0 0 0 0 0 

20cm Cork Airport 0 0 0 0 0 0 0 

30cm Cork Airport 0 0 0 0 0 0 0 

50cm Cork Airport 0 0 0 0 0 0 0 

100cm Cork Airport 0 0 0 0 0 0 0 

rain Dublin Airport 0 0 0 0 0 0 0 

min Dublin Airport 0 0 0 0 0 0 0 

max Dublin Airport 0 0 0 0 0 0 0 

mean Dublin Airport 0 0 0 0 0 0 0 

5cm Dublin Airport 0 0 0 0 0 0 0 

10cm Dublin Airport 0 0 0 0 0 0 0 

20cm Dublin Airport 0 0 0 0 0 0 0 

30cm Dublin Airport 1 0 0 0 0 0 0 

50cm Dublin Airport 1 0 0 0 0 0 0 

100cm Dublin Airport 1 0 0 0 0 0 0 
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rain Dunsany 314 61 0 1 1 2 1 

min Dunsany 315 61 0 1 1 1 1 

max Dunsany 315 61 0 1 1 1 1 

mean Dunsany 314 59 0 0 0 0 0 

5cm Dunsany 314 59 0 0 0 0 0 

10cm Dunsany 314 59 0 0 0 0 0 

20cm Dunsany 314 59 0 0 0 0 0 

30cm Dunsany 314 59 0 0 0 0 1 

50cm Dunsany 314 59 0 0 0 0 0 

100cm Dunsany 314 59 0 0 0 0 0 

rain Finner 365 366 365 365 26 2 5 

min Finner 365 366 365 365 26 2 8 

max Finner 365 366 365 365 26 2 8 

mean Finner 27 2 8 29 6 0 5 

5cm Finner 365 366 365 365 365 366 365 

10cm Finner 365 366 365 365 365 366 365 

20cm Finner 365 366 365 365 365 366 365 

30cm Finner 365 366 365 365 365 366 365 

50cm Finner 365 366 365 365 365 366 365 

100cm Finner 365 366 365 365 365 366 365 

rain Gurteen 365 40 0 2 1 0 2 

min Gurteen 365 40 0 2 0 0 0 

max Gurteen 365 40 0 2 0 0 0 

mean Gurteen 365 39 0 0 0 0 0 

5cm Gurteen 365 38 0 0 0 1 0 

10cm Gurteen 365 38 0 0 0 0 0 

20cm Gurteen 365 38 0 0 0 0 0 

30cm Gurteen 365 39 0 0 0 0 0 

50cm Gurteen 365 39 0 0 0 1 0 

100cm Gurteen 365 39 0 0 0 0 0 

rain Johnstown 13 2 0 4 1 2 0 

min Johnstown 0 0 0 0 0 0 0 

max Johnstown 0 0 0 0 0 0 0 

mean Johnstown 0 0 0 45 6 0 0 

5cm Johnstown 0 1 5 219 124 0 0 

10cm Johnstown 0 0 3 55 15 0 0 

20cm Johnstown 0 1 3 7 2 0 0 

30cm Johnstown 0 1 3 17 0 0 0 

50cm Johnstown 0 0 3 12 0 0 0 

100cm Johnstown 0 0 4 13 0 0 0 

rain Knock Airport 0 0 0 0 0 0 0 

min Knock Airport 0 0 0 0 0 0 0 

max Knock Airport 0 0 0 0 0 0 0 

mean Knock Airport 0 0 0 0 0 0 0 

5cm Knock Airport 0 0 0 0 0 0 0 

10cm Knock Airport 0 0 0 0 0 0 0 

20cm Knock Airport 0 0 0 0 0 0 0 

30cm Knock Airport 0 0 0 0 0 0 0 

50cm Knock Airport 0 0 0 0 0 0 0 
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100cm Knock Airport 0 0 0 0 0 0 0 

rain Mace Head 220 13 7 1 1 0 4 

min Mace Head 229 22 20 1 1 0 4 

max Mace Head 229 22 20 1 1 0 4 

mean Mace Head 209 1 0 0 0 0 1 

5cm Mace Head 365 366 365 365 365 366 365 

10cm Mace Head 365 366 365 365 365 366 365 

20cm Mace Head 365 366 365 365 365 366 365 

30cm Mace Head 365 366 365 365 365 366 365 

50cm Mace Head 365 366 365 365 365 366 365 

100cm Mace Head 365 366 365 365 365 366 365 

rain Malin Head 0 0 0 0 0 0 0 

min Malin Head 0 0 0 1 0 0 0 

max Malin Head 0 0 0 1 0 0 0 

mean Malin Head 0 0 0 1 0 0 0 

5cm Malin Head 0 0 0 0 0 1 0 

10cm Malin Head 0 0 0 0 0 0 0 

20cm Malin Head 0 0 0 0 0 0 0 

30cm Malin Head 0 0 0 0 0 0 0 

50cm Malin Head 0 0 0 0 0 0 0 

100cm Malin Head 0 0 0 0 0 0 0 

rain Markree 312 60 3 1 2 1 1 

min Markree 312 60 4 1 0 0 0 

max Markree 312 60 4 1 0 0 0 

mean Markree 312 60 0 0 0 0 0 

5cm Markree 312 60 0 0 0 0 0 

10cm Markree 312 60 0 0 0 0 0 

20cm Markree 312 60 0 0 0 0 0 

30cm Markree 312 60 0 0 0 0 1 

50cm Markree 312 60 0 0 0 0 0 

100cm Markree 312 60 0 0 0 0 0 

rain Moorepark 268 2 1 2 1 0 1 

min Moorepark 269 1 1 0 1 0 0 

max Moorepark 269 1 1 0 1 0 0 

mean Moorepark 268 0 0 0 0 0 0 

5cm Moorepark 268 0 0 0 0 0 0 

10cm Moorepark 268 0 0 0 0 0 0 

20cm Moorepark 268 0 0 0 0 0 0 

30cm Moorepark 268 0 0 0 0 0 0 

50cm Moorepark 268 0 0 0 0 0 0 

100cm Moorepark 268 0 0 0 0 0 0 

rain Mt Dillon 321 148 11 3 1 0 1 

min Mt Dillon 314 146 12 7 1 1 0 

max Mt Dillon 314 146 12 7 1 1 0 

mean Mt Dillon 313 144 6 0 0 0 0 

5cm Mt Dillon 313 144 5 0 0 0 0 

10cm Mt Dillon 313 144 5 0 0 0 0 

20cm Mt Dillon 313 144 5 0 0 0 0 

30cm Mt Dillon 313 144 6 0 0 0 0 
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50cm Mt Dillon 313 144 6 0 1 0 0 

100cm Mt Dillon 313 144 6 0 0 0 0 

rain Mullingar 0 0 0 1 1 1 1 

min Mullingar 0 1 0 0 0 1 0 

max Mullingar 0 1 0 0 0 1 0 

mean Mullingar 0 0 0 0 0 0 0 

5cm Mullingar 0 0 0 0 0 0 0 

10cm Mullingar 0 0 0 0 0 0 0 

20cm Mullingar 0 0 0 0 0 0 0 

30cm Mullingar 0 0 0 0 0 0 1 

50cm Mullingar 0 0 0 0 0 0 1 

100cm Mullingar 0 0 0 0 0 2 1 

rain Newport 5 3 0 1 4 3 1 

min Newport 14 3 0 1 1 3 2 

max Newport 14 3 0 1 1 3 2 

mean Newport 1 0 0 0 0 0 0 

5cm Newport 1 0 0 0 0 0 0 

10cm Newport 1 0 0 0 0 0 0 

20cm Newport 1 0 0 0 0 0 0 

30cm Newport 1 0 0 0 0 1 0 

50cm Newport 1 0 0 0 0 1 1 

100cm Newport 1 0 0 0 0 1 1 

rain Phoenix Park 239 30 2 2 1 1 1 

min Phoenix Park 238 58 2 1 0 0 0 

max Phoenix Park 238 57 2 1 0 0 0 

mean Phoenix Park 235 2 0 0 0 0 0 

5cm Phoenix Park 235 0 0 0 0 0 0 

10cm Phoenix Park 235 0 0 0 0 0 0 

20cm Phoenix Park 235 0 0 0 0 0 0 

30cm Phoenix Park 235 1 0 0 0 0 0 

50cm Phoenix Park 235 1 0 0 0 0 0 

100cm Phoenix Park 235 1 0 0 0 0 0 

rain Roches Pt 365 97 0 6 1 0 1 

min Roches Pt 365 98 0 1 1 0 0 

max Roches Pt 365 98 0 1 1 0 0 

mean Roches Pt 0 2 0 0 0 0 0 

5cm Roches Pt 0 0 0 0 0 0 0 

10cm Roches Pt 0 0 0 0 0 0 0 

20cm Roches Pt 0 0 0 0 0 0 0 

30cm Roches Pt 0 0 0 1 0 0 0 

50cm Roches Pt 0 0 0 1 0 0 1 

100cm Roches Pt 0 0 0 1 0 0 1 

rain Shannon Airport 0 0 0 0 0 0 0 

min Shannon Airport 0 0 0 0 0 0 0 

max Shannon Airport 0 0 0 0 0 0 0 

mean Shannon Airport 0 0 0 0 0 0 0 

5cm Shannon Airport 0 0 0 0 0 0 0 

10cm Shannon Airport 0 0 0 0 0 0 0 

20cm Shannon Airport 0 0 0 0 0 0 0 
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30cm Shannon Airport 0 0 0 0 0 0 0 

50cm Shannon Airport 0 0 0 0 0 0 0 

100cm Shannon Airport 0 0 0 0 0 0 0 

rain Sherkin Island 268 22 6 1 2 2 0 

min Sherkin Island 270 17 15 1 2 2 1 

max Sherkin Island 270 16 15 1 2 2 1 

mean Sherkin Island 268 9 3 0 0 0 0 

5cm Sherkin Island 268 4 3 0 0 0 0 

10cm Sherkin Island 268 4 3 0 0 0 0 

20cm Sherkin Island 268 4 3 0 0 0 0 

30cm Sherkin Island 268 8 3 0 1 0 0 

50cm Sherkin Island 268 8 3 0 1 0 0 

100cm Sherkin Island 268 8 3 0 1 0 0 

rain Valentia 0 0 0 0 0 2 0 

min Valentia 0 0 0 0 0 1 0 

max Valentia 0 0 0 0 0 1 0 

mean Valentia 0 0 0 0 0 4 0 

5cm Valentia 0 0 0 0 0 0 0 

10cm Valentia 0 0 0 0 0 0 0 

20cm Valentia 0 0 0 0 0 1 0 

30cm Valentia 0 0 0 0 0 4 0 

50cm Valentia 0 0 0 0 0 2 0 

100cm Valentia 0 0 0 0 0 2 0 
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Appendix 2.2: RMSE values (°C) for minimum temperature (min), maximum 

temperature (max) and mean temperature (mean) at forecast periods 1 to 10 for all 

years at all stations. 

 

Forecast period 1 2 3 4 5 6 7 8 9 10 

min 1.51 1.63 1.79 1.98 2.25 2.53 2.82 3.03 3.25 3.44 

max 1.36 1.45 1.55 1.70 1.89 2.10 2.31 2.52 2.75 2.93 

mean 0.89 0.99 1.09 1.25 1.48 1.73 2.02 2.23 2.49 2.70 
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Appendix 2.3: Yearly minimum temperature MSB (°C) of ECMWF forecasts 

for each forecast period from day 1 to day 10 for each of the Met Éireann 

synoptic stations. 

 

 

 

 

 

 

 

145



Appendix 2.4: Yearly total daily rainfall MSB (mm) of ECMWF forecasts for 

each forecast period from day 1 to day 10 for each of the Met Éireann synoptic 

stations. 
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Appendix 2.5:. June 1st to August 31st 2012 daily soil temperature observations 

(black) at (a) 5cm and (b) 100cm and forecasts (red) for (a) STL1 and (b) STL3 at 

Dublin Airport. The blue line shows the daily mean 2m air temperature observations 

for the same time period. 
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Appendix 3.1: Forecast periods 1 to 10 RPE values (%) for daily grass growth 

predictions from 2008 to 2016 from the MoSt model using ECMWF forecasts as 

weather inputs. The RMSE of these predictions with the daily grass growth 

predictions using weather observations is expressed as a percentage of the mean of 

the daily grass growth predictions from 2008 to 2016 from the MoSt model using 

weather observations. Numbers in the top row indicate the fertiliser application level 

(kg N/ha) used for the predictions. 

 

 N application (kg/ha) 

Forecast 

period 0 100 200 300 

1 28.5 27.4 27.3 27.4 

2 32.5 30.8 30.5 30.5 

3 36.4 35.1 34.9 34.8 

4 43.0 40.9 40.5 40.3 

5 47.8 45.9 45.5 45.4 

6 51.8 49.8 48.5 48.8 

7 57.8 55.1 54.3 54.0 

8 57.7 55.7 54.7 55.1 

9 63.3 61.0 60.3 60.1 

10 63.5 60.6 60.1 59.6 
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Appendix 3.2: Predicted daily grass growth in 2015 for (a) May, (b) June, (c) July and (d) August from the MoSt GGM using weather 

observations (black), day-5 ECMWF forecasts (blue) and day-5 model BC forecasts (red) with 200 kg N/ha. 
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Appendix 3.3: Predicted daily grass growth in 2015 for (a) May, (b) June, (c) July and (d) August from the MoSt GGM using weather 

observations (black), day-9 ECMWF forecasts (blue) and day-9 model BC forecasts (red) with 200 kg N/ha. 
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Appendix 4.1 

DI model fitting in SAS and R for a simulated dataset with an identity effect 

structure, simple covariance structure (no covariances between year) and 

random pairwise interactions in 3 years. 

Note: Collaborator R. de Andrade Moral contributed significantly to the R code 

presented in this section.  

The following SAS code can be used to estimate the DI model for a simulated data 

set (uploaded as EF2: sim_data_R_SAS.csv) representing an experiment with 10 

species, 110 plots and 3 years, totalling 330 observations. The code uses similar 

methods to that in Appendix 4.11, where the methods are described in detail. 

/*IMPORT THE DATASET*/ 

PROC IMPORT OUT=sim_data_R_SAS 

     DATAFILE="'/folders/myfolders/sim_data_R_SAS.csv" 

     DBMS=CSV REPLACE; 

     GETNAMES=YES; 

RUN; 

 

/* CREATING A DATA SET NEEDED FOR THE RANDOM EFFECTS 

SPECIFICATION*/ 

data re; 

 do i=1 to 45; 

  parm=1; 

  row=i; 

  col=i; 

  value=1; 

  output; 

 end; 

 drop i; 

run; 
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/* Identity model with random pairwise interactions REML */ 

proc mixed data=sim_data_R_SAS method=reml; 

 class year plot; 

 model y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year / noint solution; 

 repeated year / subject=plot type=vc; 

 random Y1PP1-Y1PP45/ type=lin(1) ldata=re solution; 

 random Y2PP1-Y2PP45/ type=lin(1) ldata=re solution; 

 random Y3PP1-Y3PP45/ type=lin(1) ldata=re solution; 

run; 

 

 

/* Identity model with random pairwise interactions ML */ 

proc mixed data=sim_data_R_SAS method=ml; 

 class year plot; 

 model y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year / noint solution; 

 repeated year / subject=plot type=vc; 

 random Y1PP1-Y1PP45/ type=lin(1) ldata=re solution; 

 random Y2PP1-Y2PP45/ type=lin(1) ldata=re solution; 

 random Y3PP1-Y3PP45/ type=lin(1) ldata=re solution; 

run; 

 

The following R code can be used to estimate the DI model for the simulated data set 

(uploaded as EF2: sim_data_R_SAS.csv) representing an experiment with 10 

species, 110 plots and 3 years, totalling 330 observations. We include only identity 

effects by year as fixed, and random pairwise interactions with a different variance 

per year as the linear predictor. Note that the open-source, free R packages lme4 and 

nlme cannot be used here, since their syntax does not allow for the specification of 

the random effects without a grouping factor. Hence, we write code that optimizes 

the profile (restricted) log-likelihood function for the variance components. 
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First, we read the data into R and import packages “optimx” (Nash and Varadhan, 

2011) and “bbmle” (Boler and R Development Core Team, 2016), which will be 

used to perform optimization: 

sdata <- read.csv("sim_data_R_SAS.csv", h = T) 

sdata$Year <- as.factor(sdata$Year) 

sdata$Plot <- as.factor(sdata$Plot) 

sdata$PlotYear <- with(sdata, Plot:Year) 

 

sdata.x <- sdata 

rownames(sdata.x) <- sdata.x$PlotYear 

sdata <- sdata.x[levels(sdata$PlotYear),] 

 

require(optimx) 

require(bbmle) 

 

We now code the X and Z matrices: 

nPlots <- 110 

nSpecies <- 10 

nPairwise <- choose(nSpecies, 2) 

fmlaX <- as.formula(paste("~ 0 + (", paste("P", 1:nSpecies,  

                                          sep = "", collapse = 

"+"), 

                          "):Year")) 

fmlaZ <- as.formula(paste("~ 0 + ((", paste("P", 1:nSpecies,  

                                           sep = "", collapse 

= "+"), 

                          ")^2):Year")) 

 

X <- model.matrix(fmlaX, data = sdata) 

Z <- model.matrix(fmlaZ, data = sdata)[,-c(1:(nSpecies*3))] 

 

The Z matrix assumes non-standard form for mixed models, since there are no 

grouping factors. We may visualise it by executing 

require(Matrix) 

image(Matrix(Z)) 

 

We then write functions that generate the R, G, and V matrices, with V = ZGZ’ + R 

the marginal variance-covariance matrix of Y: 
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G <- function(sigma.vector, Z) { 

  nZ <- ncol(Z)/3 

  Gmat <- diag(rep(sigma.vector, nZ)) 

  return(Gmat) 

} 

 

R <- function(sigmaR, y) { 

  n <- length(y) 

  Rmat <- diag(rep(sigmaR, n)) 

  return(Rmat) 

} 

 

V <- function(sigma.vector, Z, y) { 

  Gmat <- G(sigma.vector[1:3], Z = Z) 

  Rmat <- R(sigma.vector[4], y = y) 

  Vmat <- Z%*%Gmat%*%t(Z) + Rmat 

  return(Vmat) 

} 

 

Given V, we may estimate the fixed effects using weighted least squares estimation, 

with the inverse of V as the matrix of weights, coded below: 

beta.hat <- function(y, X, Vinv) { 

  XVX <- t(X)%*%Vinv%*%X 

  XVXinv <- solve(XVX) 

  XVy <- t(X)%*%Vinv%*%y 

  bh <- XVXinv%*%XVy 

  return(bh) 

} 

 

We then write the profile (restricted) log-likelihood function to be maximized to 

obtain the estimates for the variance components (note that we multiply the function 

by -1, because the algorithms used are minimizers). We include the argument REML 

to choose between ML (REML = FALSE) and REML (REML = TRUE) estimation. 

Also note that we apply exponentials to the variance components, to bound the 

parameter space (repar = TRUE, the default in the function): 

profloglik <- function(sigma2G1, sigma2G2, sigma2G3, sigma2R, 

                       y, X, Z, REML = FALSE, repar = TRUE) { 

  if(repar) { 

    sig.vec <- exp(c(sigma2G1, sigma2G2, sigma2G3, sigma2R)) 

  } else { 

    sig.vec <- c(sigma2G1, sigma2G2, sigma2G3, sigma2R) 
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  } 

  V.hat <- V(sigma.vector = sig.vec, Z = Z, y = y) 

  V.hat.inv <- solve(V.hat) 

  betas <- beta.hat(y = y, X = X, Vinv = V.hat.inv) 

  raw.res <- y - X%*%betas 

  llik <- -.5*(determinant(V.hat)$modulus + 

t(raw.res)%*%V.hat.inv%*%raw.res) 

  if(REML) llik <- llik -

.5*determinant(t(X)%*%V.hat.inv%*%X)$modulus 

  minusloglik <- as.numeric(-llik) 

  return(minusloglik) 

} 

 

We use exp(10) as an initial value for all variance components and the bobyqa 

method, since we do not provide a gradient function, and because we have 

reparameterized the variance components, estimation is now unbounded. Note that 

depending on the initial values and the number of fixed effects that are included in 

the model, the algorithm may crash, and this is due to numerical instability that may 

require further investigation. We estimate the model using ML (fitML) and REML 

(fitREML): 

init <- c(10,10,10,10) 

names(init) <- c("sigma2G1","sigma2G2","sigma2G3","sigma2R") 

 

fitML <- mle2(profloglik, start = as.list(init), 

              optimizer = "optimx", method = "bobyqa", 

              data = list(y = sdata$y,  

                          X = X, Z = Z, REML = FALSE)) 

 

fitREML <- mle2(profloglik, start = as.list(init), 

                optimizer = "optimx", method = "bobyqa", 

                data = list(y = sdata$y,  

                            X = X, Z = Z, REML = TRUE)) 

 

On a 4GB RAM with an Intel Core i5 processor machine, these model fitting 

procedures take less than 15 seconds each. We now may compile the estimates for 

the fixed effects, variance components, and predictions for the random effects for 

further inspection: 
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# Estimated variance components 

sigML <- exp(fitML@coef) 

sigREML <- exp(fitREML@coef) 

 

# Estimated fixed effects 

betasML <- beta.hat(y = sdata$y, X = X, 

                    Vinv = solve(V(sigma.vector = sigML, 

                                   Z = Z, y = sdata$y))) 

betasREML <- beta.hat(y = sdata$y, X = X, 

                      Vinv = solve(V(sigma.vector = sigREML, 

                                     Z = Z, y = sdata$y))) 

 

# Estimated marginal variance-covariance matrix (V) 

G.hatML <- G(sigma.vector = sigML[1:3], Z = Z) 

G.hatREML <- G(sigma.vector = sigREML[1:3], Z = Z) 

V.hatML <- V(sigma.vector = sigML, Z = Z, y = sdata$y) 

V.hatREML <- V(sigma.vector = sigREML, Z = Z, y = sdata$y) 

 

# Predicted random effects 

ranefsML <- G.hatML%*%t(Z) %*% solve(V.hatML) %*% (sdata$y - 

X%*%betasML) 

ranefsREML <- G.hatREML%*%t(Z) %*% solve(V.hatREML) %*% 

(sdata$y - X%*%betasREML) 

 

# Compilation of estimates and predictions 

ranefs.rnames <- NULL 

for(i in 1:45){ 

  ranefs.rnames <- c(ranefs.rnames, paste("PP", i, ":year1", 

sep = ""), 

                     paste("PP", i, ":year2", sep = ""), 

                     paste("PP", i, ":year3", sep = "")) 

} 

ranefs <- data.frame(ranefsML, ranefsREML, 

                     row.names = ranefs.rnames) 

estimates <- data.frame("ML" = c(betasML, sigML), 

                        "REML" = c(betasREML, sigREML), 

                        row.names = c(paste("P", 1:10, 

":year1", sep = ""), 

                                      paste("P", 1:10, 

":year2", sep = ""), 

                                      paste("P", 1:10, 

":year3", sep = ""), 

                                      

"sigma2G1","sigma2G2","sigma2G3","sigma2R")) 

round(ranefs, 2) 

round(estimates, 2) 
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Object ranefs compiles the predicted random effects for each of the 45 pairwise 

interactions for each year. Object estimates compiles the estimated fixed effects 

(for this example only the identity effects by year).  

References 

Nash, J.C. and Varadhan, R. (2011) Unifying optimization algorithms to aid 

software system users: optimx for R. Journal of Statistical Software 43(9), 1-14. 

Bolker, B. and R Development Core Team (2016) bbmle: Tools for general 

maximum likelihood estimation. R package version 1.0.18. https://CRAN.R-

project.org/package=bbmle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

157



Appendix 4.2 

SAS code to conduct the simulation study to demonstrate detection of random 

pairwise interactions. The code to be changed to change the error standard 

deviation (100 in this case) and random pairwise interactions standard 

deviation (2500 in this case) are in bold. We conduct each of the 18 sets of 

simulations individually due to memory constraints with SAS University 

Edition. 

 

/*IMPORT THE BASE EXPERIMENTAL DESIGN*/ 

PROC IMPORT OUT= data 

DATAFILE="'/folders/myfolders/Experimental_design.csv" 

     DBMS=CSV REPLACE; 

     GETNAMES=YES; 

RUN; 

 

/*REPEAT THE EXPERIMENTAL DESIGN OVER THREE YEARS*/ 

data data; 

 set data (in=INA) data (in=INB) data (in=INC); 

 if INA then Year=1; 

 if INB then Year=2; 

 if INC then Year=3; 

run; 

 

/* REPEAT THE DATASET 1000 TIMES */ 

data data_1000; 

 set data; 

 do Count = 1 to 1000;  

   output; 

 end; 

run; 
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/*SET UP IDENTITY EFFECTS*/ 

data id; 

 input year b1 b2 b3 b4 b5 b6 b7 b8 b9 b10; 

 cards; 

1 700 472 512 650 440 343 630 709 699 584 

2 1477 1458 1636 1267 879 759 931 874 1100 845  

3 1103 1411 1601 604 753 792 627 637 752 748 

run; 

 

/* REPEAT THE IDENTITY EFFECTS 1000 TIMES */ 

data id_1000; 

 set id; 

 do Count = 1 to 1000;  

   output; 

 end; 

run; 

 

/* GENERATE THE FUNCTIONAL GROUP AND RANDOM PAIRWISE 

INTERACTIONS IN EACH YEAR */ 

data interactions1(keep= year int_total1-int_total45); 

  array int_Y1 {45} int_total1-int_total45; 

   int_wfg1=-2400; 

   int_wfg2=1753; 

   int_bfg12=841; 

 do l = 1 to 110; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    int_Y1{i} = int_wfg1 ; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 

    int_Y1{i} = int_bfg12 ; 

   end; 

 do i=36 to 45; 

    int_Y1{i} = int_wfg2 ; 
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   end; 

 

  Year=1; 

  output; 

  end; 

drop i l; 

run; 

 

data interactions2(keep= year int_total1-int_total45); 

  array int_Y1 {45} int_total1-int_total45; 

   int_wfg1=-2345; 

   int_wfg2=-2151; 

   int_bfg12=-128; 

 do l = 1 to 110; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    int_Y1{i} = int_wfg1 ; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 

    int_Y1{i} = int_bfg12 ; 

   end; 

 do i=36 to 45; 

    int_Y1{i} = int_wfg2 ; 

   end; 

 

  Year=2; 

  output; 

  end; 

drop i l; 

run; 

 

 

data interactions3(keep= year int_total1-int_total45); 

  array int_Y1 {45} int_total1-int_total45; 

   int_wfg1=4592; 
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   int_wfg2=-3954; 

   int_bfg12=524; 

 do l = 1 to 110; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    int_Y1{i} = int_wfg1 ; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 

    int_Y1{i} = int_bfg12 ; 

   end; 

 do i=36 to 45; 

    int_Y1{i} = int_wfg2 ; 

   end; 

 

  Year=3; 

  output; 

  end; 

drop i l; 

run; 

 

 

/* PUT THE THREE DATASETS CONTAINING THE THREE YEARS OF 

INTERACTIONS TOGETHER */ 

Data interactions; 

 set interactions1 interactions2 interactions3; 

 by Year; 

run; 

 

data interactions_1000; 

 set interactions; 

 do Count = 1 to 1000;  

   output; 

 end; 

run; 
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/* GENERATE THE FUNCTIONAL GROUP AND RANDOM PAIRWISE 

INTERACTIONS IN EACH YEAR */ 

data interactions1_random_2500(keep= count year random_int1-

random_int45); 

  array int_Y1 {45} random_int1-random_int45; 

  do j=1 to 1000; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    x = rand("Normal");  

    int_Y1{i} = x*2500; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 

     y = rand("Normal"); 

    int_Y1{i} = y*2500; 

   end; 

 do i=36 to 45; 

     z = rand("Normal"); 

    int_Y1{i} = z*2500; 

   end; 

  Year=1; 

  Count=j; 

  output; 

  end; 

drop i j; 

run; 

 

/* GENERATE THE FUNCTIONAL GROUP AND RANDOM PAIRWISE 

INTERACTIONS IN EACH YEAR */ 

data interactions2_random_2500(keep= count year random_int1-

random_int45); 

  array int_Y1 {45} random_int1-random_int45; 

  do j=1 to 1000; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    x = rand("Normal");  

    int_Y1{i} = x*2500; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 
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     y = rand("Normal"); 

    int_Y1{i} = y*2500; 

   end; 

 do i=36 to 45; 

     z = rand("Normal"); 

    int_Y1{i} = z*2500; 

   end; 

  Year=2; 

  Count=j; 

  output; 

  end; 

drop i j; 

run; 

 

/* GENERATE THE FUNCTIONAL GROUP AND RANDOM PAIRWISE 

INTERACTIONS IN EACH YEAR */ 

data interactions3_random_2500(keep= count year random_int1-

random_int45); 

  array int_Y1 {45} random_int1-random_int45; 

  do j=1 to 1000; 

 do i=1 to 4, 10 to 12, 18 to 19, 25; 

    x = rand("Normal");  

    int_Y1{i} = x*2500; 

   end; 

 do i=5 to 9, 13 to 17, 20 to 24, 26 to 35; 

     y = rand("Normal"); 

    int_Y1{i} = y*2500; 

   end; 

 do i=36 to 45; 

     z = rand("Normal"); 

    int_Y1{i} = z*2500; 

   end; 

  Year=3; 

  Count=j; 

  output; 
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  end;  

drop i j; 

run; 

 

/* PUT THE THREE DATASETS CONTAINING THE THREE YEARS OF RANDOM 

INTERACTIONS TOGETHER */ 

data interactions_random_2500; 

 set interactions1_random_2500 interactions2_random_2500 

interactions3_random_2500; 

 by Year; 

run; 

 

/* REPEAT THE RANDOM INTERACTIONS AT EACH PLOT WITHIN EACH OF 

THE 1000 SIMULATIONS */ 

data interactions_random_1000_2500; 

 set interactions_random_2500; 

 do Rep = 1 to 110;  

   output; 

 end; 

run; 

 

/* SORT THE RELEVANT DATASETS */ 

proc sort data=data_1000; 

 by Count Year; 

run; 

proc sort data=id_1000; 

 by Count Year; 

run; 

proc sort data=interactions_1000; 

 by Count Year; 

run; 

proc sort data=interactions_random_1000_2500; 

 by Count Year; 

run; 
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/* MERGE THE DATASETS TO ALLOW COMPUTING THE RESPONSE 

VARIABLE*/ 

data data_1000_2500; 

 merge data_1000 id_1000 interactions_1000 

interactions_random_1000_2500; 

 by Count Year; 

run; 

 

/* COMPUTE THE PIPJ PAIRWISE INTERACTION TERMS */ 

data data_1000_2500; 

 set data_1000_2500; 

 array p {10} p1-p10; 

 array pp {45}; 

 l=0;  

  do i=1 to 9; 

   do j=(i+1) to 10; 

   l=l+1; 

   pp{l}=p{i}*p{j}; 

   end; 

  end; 

 drop i j l; 

run; 

 

/* GENERATE THE IDENTITY EFFECT FOR EACH PLOT */ 

data data_1000_2500; 

 set data_1000_2500; 

 array b {10} b1-b10; 

 array p {10} p1-p10; 

 id=0; 

  do i = 1 to 10; 

   id = id + b{i}*p{i}; 

  end;  

 drop i; 

run; 
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/* GENERATE THE DIVERSITY EFFECT FOR EACH PLOT AND COMPUTE THE 

SUM OF THE PIPJ TERMS*/ 

data data_1000_2500; 

 set data_1000_2500; 

 array int {45} int_total1-int_total45; 

 array r_int {45} random_int1-random_int45; 

 array pp {45} pp1-pp45; 

 DE=0; 

 PiPj_sum=0; 

  do i = 1 to 45; 

   DE = DE + int{i}*pp{i} + r_int{i}*pp{i};  

   PiPj_sum = PiPj_sum + pp{i}; 

  end;  

 drop i; 

run; 

 

 

/* CREATING A DATA SET NEEDED FOR THE RANDOM EFFECTS 

SPECIFICATION*/ 

data re; 

 do i=1 to 45; 

  parm=1; 

  row=i; 

  col=i; 

  value=1; 

  output; 

 end; 

 drop i; 

run; 

 

/* REPLICATING AND SORTING THE DATA SET NEEDED FOR THE RANDOM 

EFFECTS SPECIFICATION*/ 

data re_1000; 

 set re; 

 do Count = 1 to 1000;  
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   output; 

 end; 

run; 

proc sort data=re_1000; 

by Count; 

run; 

 

/* ADD IN THE RESIDUALS */ 

data data_1000_2500_100; 

 set data_1000_2500; 

 call streaminit(320567);  /* set seed */ 

 e1 = rand("Normal");   /* e1 ~ N(0,1) */ 

 e2 = rand("Normal");    

 e3 = rand("Normal");    

 if year=1 then y = ID + DE + e1*100; 

 if year=2 then y = ID + DE + e2*100; 

 if year=3 then y = ID + DE + e3*100; 

run; 

 

/************************************************************/ 

/* SET UP THE DATASET SO THAT THE DI MODELS CAN BE FITTED */ 

Data data_1000_2500_100; 

 SET data_1000_2500_100; 

  /* ARRAY 1: CONTAINS THE SPECIES PROPORTIONS P1 

TO P10 */ 

  array A1 (10) P1-P10; 

  /* ARRAY 2: CONTAINS THE PAIRWISE SPECIES 

INTERACTIONS PP1-PP45 

   PPsum IS THE SUM OF PP1-PP45 */ 

  k=0; 

  array A2 (45) PP1 - PP45; 

  PPsum=0; 

  do i=1 to 9; 

   do j=(i+1) to 10; 

    k=k+1; 
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    A2{k}=A1{i}*A1{j}; 

    PPsum = PPsum + A2{k}; 

   end; 

  end; 

   

  /* CREATING THE FUNCTIONAL GROUP SUMMED PiPj VALUES 

*/ 

  /*SPECIES 1-5 ARE FG1, 6-10 ARE FG2*/ 

  PPwfg1=0; 

  do i=1 to 4; 

   do j=(i+1) to 5; 

    PPwfg1 = PPwfg1 + A1{i}*A1{j}; 

   end; 

  end; 

  PPwfg2=0; 

  do i=6 to 9; 

   do j=(i+1) to 10; 

    PPwfg2 = PPwfg2 + A1{i}*A1{j}; 

   end; 

  end; 

  PPbfg12=0; 

  do i=1 to 5; 

   do j=6 to 10; 

    PPbfg12 = PPbfg12 + A1{i}*A1{j}; 

   end; 

  end; 

 drop i j k; 

run; 

 

/* SETTING UP SEPARATE PAIRWISE INTERACTIONS FOR EACH YEAR 

WITH ZEROS FOR OTHER YEARS*/ 

data data_1000_2500_100; 

 set data_1000_2500_100; 

  array PP {45} PP1 - PP45; 

  array PP_y1 {45} Y1PP1 - Y1PP45; 
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  array PP_y2 {45} Y2PP1 - Y2PP45; 

  array PP_y3 {45} Y3PP1 - Y3PP45; 

   if year=1 

    then do i=1 to 45; 

    PP_y1{i}=PP{i}; 

    PP_y2{i}=0; 

    PP_y3{i}=0; 

    end; 

   if year=2  

    then do i=1 to 45; 

    PP_y1{i}=0; 

    PP_y2{i}=PP{i}; 

    PP_y3{i}=0; 

    end; 

   if year=3 

    then do i=1 to 45; 

    PP_y1{i}=0; 

    PP_y2{i}=0; 

    PP_y3{i}=PP{i}; 

    end; 

 drop i; 

run; 

 

/************************************************************/ 

     /* FIT THE DI MODELS TO THE DATA */ 

/************************************************************/ 

 

/* NOW FIND THE BEST BASELINE MODEL AND SEE IF THE RANDOM 

PAIRWISE INTERACTIONS ARE NEEDED IN THIS BASELINE MODEL */ 

 

/* Set up datasets to store output from models */ 

/* Want to store the log likelihood and AIC values */ 

data fits_1000_2500_100; 

input Value Model $; 
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cards; 

run; 

 

/* Want to store the covariance and lin(1) (variance of the 

random pairwise interactions) values */ 

data covs_1000_2500_100; 

input Value Model $; 

cards; 

run; 

 

 

/* Functional Group Model without RE */ 

proc mixed data=data_1000_2500_100 method=reml; 

where count <= 1000; 

 by count; 

 class year plot; 

 model Y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 

 repeated year / subject=plot type=un; 

 ods output FitStatistics=fits; 

 ods output CovParms=covs; 

 ods output SolutionF=sol_1000_2500_100_fgwo; 

run; 

 

data fits;  

set fits; 

Model='FGWO'; 

run; 

data covs;  

set covs; 

Model='FGWO'; 

run; 

 

data fits_1000_2500_100;  
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set fits_1000_2500_100 fits; 

run; 

data covs_1000_2500_100;  

set covs_1000_2500_100 covs; 

run; 

 

/* Functional Group Model with RE in Y1 */ 

proc mixed data=data_1000_2500_100 method=reml; 

where count <= 1000; 

 by count; 

 class year plot; 

 model Y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 

 repeated year / subject=plot type=un; 

 random Y1PP1-Y1PP45/ type=lin(1) ldata=re_1000 solution; 

 ods output FitStatistics=fits; 

 ods output CovParms=covs; 

 ods output SolutionF=sol_1000_2500_100_fgy1; 

run; 

 

data fits;  

set fits; 

Model='FGY1'; 

run; 

data covs;  

set covs; 

Model='FGY1'; 

run; 

 

data fits_1000_2500_100;  

set fits_1000_2500_100 fits; 

run; 

data covs_1000_2500_100;  

set covs_1000_2500_100 covs; 
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run; 

 

/* Functional Group Model with RE in Y2 */ 

proc mixed data=data_1000_2500_100 method=reml; 

where count <= 1000; 

 by count; 

 class year plot; 

 model Y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 

 repeated year / subject=plot type=un; 

 random Y2PP1-Y2PP45/ type=lin(1) ldata=re_1000 solution; 

 ods output FitStatistics=fits; 

 ods output CovParms=covs; 

 ods output SolutionF=sol_1000_2500_100_fgy2; 

run; 

 

data fits;  

set fits; 

Model='FGY2'; 

run; 

data covs;  

set covs; 

Model='FGY2'; 

run; 

 

data fits_1000_2500_100;  

set fits_1000_2500_100 fits; 

run; 

data covs_1000_2500_100;  

set covs_1000_2500_100 covs; 

run; 

 

/* Functional Group Model with RE in Y3 */ 

proc mixed data=data_1000_2500_100 method=reml; 
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where count <= 1000; 

 by count; 

 class year plot; 

 model Y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 

 repeated year / subject=plot type=un; 

 random Y3PP1-Y3PP45/ type=lin(1) ldata=re_1000 solution; 

 ods output FitStatistics=fits; 

 ods output CovParms=covs; 

 ods output SolutionF=sol_1000_2500_100_fgy3; 

run; 

 

data fits;  

set fits; 

Model='FGY3'; 

run; 

data covs;  

set covs; 

Model='FGY3'; 

run; 

 

data fits_1000_2500_100;  

set fits_1000_2500_100 fits; 

run; 

data covs_1000_2500_100;  

set covs_1000_2500_100 covs; 

run; 
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Appendix 4.3: Total plot grass biomass (g DM in 1 m2 plot) in (a) 2012, (b) 2013, 

(c) 2014 for each monoculture (1 to 16) and each level of richness in mixture (2, 4 or 

8 species). The 4 functional groups and the mixtures are separated by the dotted 

lines.  
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Appendix 4.4:  Details of step 2 of the model fitting process. Various structures to account for repeated measures and the inclusion of variance-

covariance blocks to account for inhomogeneous variance across plots are tested. These models were fitted using restricted maximum likelihood 

(REML). The fixed effects model selected in step 1 was the additive species model. Differences in AIC are from model 9, the best overall model. 

The likelihood ratio test (LRT) statistic and p-value are also presented.  

Model 
Repeated 

measures  
Variance-covariance block structure 

No. 

parameters 
∆ AIC 

Model 

comparison  
LRT stat P-value 

1 CS Constant across all plots 114 377.9    

2 CS Different blocks for mixtures and monocultures 116 378.4 2 v 1 3.5 0.174 

3 CS 
Different blocks for mixtures and for each FG in 

monoculture 
122 338.8 3 v 1 55.1 <0.001 

4 AR(1) Constant across all plots 114 377.2    

5 AR(1) Different blocks for mixtures and monocultures 116 378.7 5 v 4 2.5 0.287 

6 AR(1) 
Different blocks for mixtures and for each FG in 

monoculture 
122 339.7 6 v 4 53.5 <0.001 

7 UN Constant across all plots 118 84.0    

8 UN Different blocks for mixtures and monocultures 124 108.0 8 v 7 71 <0.001 

9 UN 
Different blocks for mixtures and for each FG in 

monoculture 
142 0 9 v 8 144 <0.001 
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Appendix 4.5: Estimates (Est) of the coefficients for the fixed effects of the final model with standard errors (SE) and P-values. The model was 

fitted with REML.  

 

 Year 

 2012 2013 2014 

Effect Est SE P-value Est SE P-value Est SE P-value 

P1 68.0 19.26 0.0005 10.6 3.37 0.0018 8.9 8.89 0.3165 

P2 65.0 19.18 0.0008 12.2 3.50 0.0006 19.3 7.61 0.0117 

P3 127.4 21.38 <.0001 11.8 4.25 0.0060 14.4 12.86 0.2646 

P4 32.7 19.53 0.0947 9.1 3.95 0.0224 50.0 11.68 <.0001 

P5 26.3 14.09 0.0627 0.6 1.98 0.7452 4.8 3.65 0.1924 

P6 21.9 14.08 0.1200 -0.3 1.93 0.8781 4.8 3.43 0.1635 

P7 72.9 14.71 <.0001 0.6 2.11 0.7661 4.8 3.89 0.2185 

P8 62.9 14.20 <.0001 5.4 2.06 0.0092 16.1 3.82 <.0001 

P9 53.1 13.25 <.0001 0.7 2.51 0.7898 6.9 5.07 0.1732 

P10 43.9 12.40 0.0005 -0.5 2.48 0.8464 5.1 3.87 0.1899 

P11 24.0 12.84 0.0627 2.2 1.98 0.2702 23.3 4.00 <.0001 

P12 29.6 12.39 0.0173 4.9 2.11 0.0205 85.5 4.30 <.0001 

P13 96.3 19.32 <.0001 47.9 9.98 <.0001 130.3 24.62 <.0001 

P14 39.9 19.33 0.0398 3.7 9.97 0.7114 226.7 24.39 <.0001 

P15 85.2 19.31 <.0001 51.4 9.92 <.0001 169.9 24.19 <.0001 

P16 107.7 19.27 <.0001 56.5 9.97 <.0001 135.5 24.64 <.0001 

Block 1 41.7 9.31 <.0001 0.8 1.47 0.5720 2.4 2.57 0.3478 

Block 2 32.9 9.35 0.0005 1.1 1.45 0.4330 5.7 2.63 0.0320 
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 Year 

 2012 2013 2014 

Effect Est SE P-value Est SE P-value Est SE P-value 

Block 3 21.3 9.45 0.0252 2.6 1.47 0.0817 2.6 2.68 0.3308 

Block 4 7.7 9.50 0.4155 0.7 1.49 0.6554 -7.9 2.73 0.0042 

Block 5 0.0 . . 0.0 . . 0.0 . . 

PPwfg1 Agg 5494 2813.6 0.0518 403 444.8 0.3659 523 543.6 0.3367 

PPwfg1 Disp 2639 1756.6 0.1341 201 582.3 0.7297 958 467.3 0.0413 

PPwfg2 Agg -2948 1536.6 0.0560 247 362.2 0.4959 -637 540.5 0.2394 

PPwfg2 Disp -1974 1469.1 0.1802 -25 201.8 0.9017 -93 191.3 0.6260 

PPwfg3 Agg 1109 1376.8 0.4214 -43 46.7 0.3521 14 93.6 0.8813 

PPwfg3 Disp 1979 1449.7 0.1733 -110 63.5 0.0852 102 75.8 0.1798 

PPwfg4 Agg -1724 2676.6 0.5199 -23 1464.2 0.9874 919 1168.2 0.4322 

PPwfg4 Disp -485 3133.5 0.8770 -1526 2887.8 0.5977 -6847 2763.0 0.0138 

PPbfg12 Agg 39 377.6 0.9180 -46 71.4 0.5190 -123 84.6 0.1475 

PPbfg12 Disp -890 374.5 0.0181 3 47.0 0.9528 -13 70.4 0.8496 

PPbfg13 Agg -209 183.8 0.2555 -5 15.6 0.7624 -22 38.9 0.5672 

PPbfg13 Disp 115 72.2 0.1106 1 14.8 0.9611 -77 36.1 0.0328 

PPbfg14 Agg 2744 1139.7 0.0167 137 171.6 0.4268 -1271 489.8 0.0099 

PPbfg14 Disp 2967 1163.5 0.0113 -336 448.1 0.4539 -1802 562.0 0.0015 

PPbfg23 Agg -145 95.4 0.1297 12 12.5 0.3425 -62 26.9 0.0211 

PPbfg23 Disp -105 80.8 0.1963 -3 10.6 0.7427 -88 23.1 0.0002 

PPbfg24 Agg -6128 1910.7 0.0015 -249 212.7 0.2421 -536 149.1 0.0004 

PPbfg24 Disp -6270 2040.3 0.0023 -401 162.6 0.0143 -57 161.7 0.7242 

PPbfg34 Agg 1803 2028.0 0.3747 82 75.2 0.2743 -24 108.2 0.8263 

PPbfg34 Disp 2004 2089.5 0.3383 262 105.7 0.0136 -152 160.0 0.3419 
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 Year 

 2012 2013 2014 

Effect Est SE P-value Est SE P-value Est SE P-value 

PQ1*PLeg -5550 2348.9 0.0188 -483 381.5 0.2062 1765 780.9 0.0245 

PQ2*Pleg -5710 2385.9 0.0173 -199 390.8 0.6109 1439 631.1 0.0233 

PQ3*Pleg -5709 2440.7 0.0200 -768 554.6 0.1674 721 661.5 0.2764 

PQ4*Pleg -5154 2369.2 0.0304 -154 407.7 0.7065 1006 643.1 0.1189 

PQ5*Pleg 11254 3234.6 0.0006 447 283.3 0.1153 304 286.7 0.2894 

PQ6*Pleg 11572 3297.1 0.0005 596 343.9 0.0840 294 318.8 0.3565 

PQ7*Pleg 11624 3293.4 0.0005 437 302.1 0.1493 450 277.0 0.1050 

PQ8*Pleg 11661 3301.7 0.0005 636 295.4 0.0321 464 261.2 0.0770 

PQ9*Pleg -4072 3540.0 0.251 -296 240.6 0.2201 137 305.9 0.6550 

PQ10*Pleg -3977 3625.2 0.2735 452 455.9 0.3227 -80 297.3 0.7875 

PQ11*Pleg -3994 3627.2 0.2717 -178 191.3 0.3519 -292 257.4 0.2569 

PQ12*Pleg -4211 3579.1 0.2403 -331 203.5 0.1049 -85 283.3 0.7638 

PQ13*Pleg 637 934.0 0.4956 105 429.4 0.8073 1113 592.3 0.0612 

PQ14*Pleg 330 870.5 0.7048 -18 162.9 0.9132 -539 181.2 0.0032 

PQ15*Pleg 332 886.9 0.7081 113 404.9 0.7805 237 311.0 0.4465 

PQ16*Pleg 648 929.6 0.4865 1718 572.7 0.0029 3100 1109.1 0.0055 
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Appendix 4.6: Estimates of the variance components of the final model. Model 

fitted with REML. Variances are in bold. The variances of legume (FG4) 

monocultures is considerably higher than other groups in years 2 and 3.  

  Block 

  FG1 FG2 FG3 FG4 Mixture 

Row Column Estimate 

1 1 2311.4 915.2 747.8 1690.3 1811.2 

2 1 174.6 -8.4 8.6 -50.2 9.6 

2 2 93.9 18.1 34.8 499.1 31.4 

3 1 435.5 -68.0 56.4 124.9 -269.9 

3 2 183.0 22.4 -18.1 186.9 6.3 

3 3 974.3 63.3 130.7 3062.9 80.2 
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Appendix 4.7: Plots of conditional studentized residuals for weed biomass in the final selected model.  
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Appendix 4.8: Predicted weed biomass (g DM in 1 m2 plot) in (a) 2012, (b) 2013, (c) 2014 in all four-species communities for both spatial 

patterns (aggregated and dispersed) containing one species from each functional group at the average block level, with legume percentage taking 

six values between 0% and 25% with the remaining percentage divided between the other three species.  
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Appendix 4.9: The final chosen model for the log-transformed weed biomass. 

For year 𝑘, block 𝑙, plot 𝑚, spatial pattern 𝑛, species 𝑖, 𝑗, and the warm-

season grasses FG1 = {1,2,3,4}, the cool-season grasses FG2 = {5,6,7,8}, the forbs 

FG3= {9,10,11,12} and the legumes FG4 = {13,14,15,16}, the final chosen model 

was 

log(𝑦𝑘𝑙𝑚𝑛 + 1) = 𝛼𝑘𝑙 +∑𝛽𝑖𝑘𝑃𝑖𝑘𝑚

𝑠

𝑖=1

ID(includingblockeffects)

+∑𝜔𝑞𝑞𝑘

4

𝑞=1

∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚  ∑ 𝑃𝑖𝑘𝑚

16

𝑖=13𝑖,𝑗∈𝐹𝐺𝑞
𝑖<𝑗

 DEfixed(withinfunctionalgroups, legumeinteraction)

+ ∑ 𝜔𝑞𝑟𝑘

4

𝑞,𝑟=1
𝑞<𝑟

∑ ∑ 𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚
𝑗∈𝐹𝐺𝑟

∑ 𝑃𝑖𝑘𝑚

16

𝑖=13𝑖∈𝐹𝐺𝑞

 DEfixed(betweenfunctionalgroup, legumeinteraction)

+ ∑(𝜆𝑖𝑘𝑛 + 𝜆𝑗𝑘𝑛)𝑃𝑖𝑘𝑚𝑃𝑗𝑘𝑚

𝑠

𝑖,𝑗=1
𝑖<𝑗

 DEfixed(additivespeciesbyspatialpattern) 

+𝜀𝑘𝑙𝑚𝑛                                                                                                                                          (7) 

where 𝜺~𝑁(𝟎,𝑹). 𝑹 contains the same block for each plot. The parameter 𝛼𝑘𝑙 is the 

effect of block 𝑙 in year 𝑘, 𝛽𝑖𝑘 is the expected weed biomass of a monoculture of 

species 𝑖 in year 𝑘, and 𝜆𝑖𝑘𝑛 and 𝜆𝑗𝑘𝑛 are the fixed additive species interaction 

effects of species’ 𝑖 and 𝑗 in year 𝑘 for spatial pattern 𝑛. ∑ 𝑃𝑖𝑘𝑚
16
𝑖=13  is the total 

legume proportion for year 𝑘, plot 𝑚 . 𝜔𝑞𝑞𝑘 is the coefficient of the total pairwise 

interactions between species from functional group 𝑞 in year 𝑘. 𝜔𝑞𝑟𝑘 is the 

coefficient of the total pairwise interactions between species from functional group 𝑞 

and 𝑟in year 𝑘. A graphical assessment of model assumptions is included in 

Appendix 4.10. 
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Appendix 4.10: Plots of studentized residuals for weed biomass in the final selected model with log weed biomass as the response.  
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Appendix 4.11: Total plot weed biomass (g DM in 1 m2 plot) in each year in mixture plots (plots of richness greater than one) by spatial pattern 

(either aggregated or dispersed). 
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Appendix 4.12: Total plot intraspecific interactions split by spatial pattern (aggregated or dispersed) for each level of richness (2, 4, 8). The 

intraspecific interaction for each species in the plot is the sum of the inverse squared distance between each of the cells containing the species, 

where adjacent species are a distance of 1 apart. The total plot intraspecific interaction is the sum of the intraspecific interactions for all species 

in the plot.  
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Appendix 4.13 

DI model coding in SAS for a simulated dataset with a covariance structure 

(different blocks for monocultures and mixtures) and random pairwise 

interactions in 3 years. 

 

Data were simulated to have a functional group structure with random pairwise 

interactions where the 𝑨𝒊 matrices within the 𝑹 matrix differed for monocultures and 

mixtures (monomix) in each year. The same experimental design as described in 

Section 4.3.2 was used, and similar identity and functional group interaction effects 

to those described in Table 4.2 were used. The data is in EF1: 

sim_data_FG_monomix.csv. 

 

/*IMPORT THE DATASET*/ 

PROC IMPORT OUT=sim_data_FG_monomix 

     DATAFILE="'/folders/myfolders/sim_data_FG_monomix.csv" 

     DBMS=CSV REPLACE; 

     GETNAMES=YES; 

RUN; 

 

/* CREATING A DATA SET NEEDED FOR THE RANDOM EFFECTS 

SPECIFICATION (LDATA) */ 

data re; 

 do i=1 to 45; 

  parm=1; 

  row=i; 

  col=i; 

  value=1; 

  output; 

 end; 
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 drop i; 

run; 

 

/* Functional group model with random pairwise interactions 

and variance split by monocultures and mixtures */ 

proc mixed data=sim_data_FG_monomix method=reml; 

 class year plot monomix; 

 model y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 

 repeated year / subject=plot type=un group=monomix; 

 random Y1PP1-Y1PP45/ type=lin(1) ldata=re solution; 

 random Y2PP1-Y2PP45/ type=lin(1) ldata=re solution; 

 random Y3PP1-Y3PP45/ type=lin(1) ldata=re solution; 

run; 

 

• The class statement states which of the variables are categorical. 

• The model statement specifies the response (y) and the explanatory variables, 

in this case a functional group model in which every term is starred with year 

to obtain an estimate for each identity and diversity effect in each year. 

• The repeated statement gives the variable that indexes the repeated 

measurements (year=1,2,3) and the subject in which the repeated 

measurements are recorded (plot=1,...,110). Type specifies the covariance 

model used (in this case unstructured ie. within-subject errors for each pair of 

years have a unique covariance). Group specifies the groups that form the 

blocks of the 𝑹 matrix. In this case the blocks of the 𝑹 matrix differed for 

monocultures and mixtures in each year, but this can take other forms. 

• Each of Y1PP1 - Y1PP45 is a column containing the values of the 45 

pairwise interactions in year 1 at every plot in every year, meaning that in 

years 2 and 3 all of the Y1PP1 - Y1PP45 values are zero. Y2PP1 – Y2PP45 
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and Y3PP1 – Y3PP45 are similar. The ldata re is an identity matrix with 45 

rows. Type=lin(1) allows us to fit the unusual random effects which share 

a common variance when we specify ldata = re. 

 

The code below shows how to specify the three years of random pairwise 

interactions in one statement, using type=lin(3), different ldata (re2) and a different 

ordering of the columns containing the values of the 45 pairwise interactions in each 

year. However, this specification does not allow the random effects to be fitted in 

individual years as easily. 

 

/* CREATING A DATA SET NEEDED FOR THE SPECIFICATION OF RANDOM 

EFFECTS IN ONE STATEMENT */ 

data re2; 

 do i=1 to 45; 

 do j=1 to 3; 

  parm=j; 

  row=3*(i-1) +j; 

  col=3*(i-1)+j; 

  value=1; 

  output; 

 end; 

 end; 

 drop i j; 

run; 

 

/* Functional group model with random pairwise interactions 

and variance split by monocultures and mixtures */ 

proc mixed data=sim_data_FG_monomix method=reml; 

 class year plot monomix; 

 model y = P1*year P2*year P3*year P4*year P5*year 

P6*year P7*year P8*year P9*year P10*year PPwfg1*year 

PPwfg2*year PPbfg12*year / noint solution; 
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 repeated year / subject=plot type=un group=monomix; 

 random Y1PP1 Y2PP1 Y3PP1 Y1PP2 Y2PP2 Y3PP2 Y1PP3 Y2PP3 

Y3PP3 Y1PP4 Y2PP4 Y3PP4 Y1PP5 Y2PP5 Y3PP5 Y1PP6 Y2PP6 Y3PP6 

Y1PP7 Y2PP7 Y3PP7 Y1PP8 Y2PP8 Y3PP8 Y1PP9 Y2PP9 Y3PP9 Y1PP10 

Y2PP10 Y3PP10 Y1PP11 Y2PP11 Y3PP11 Y1PP12 Y2PP12 Y3PP12 Y1PP13 

Y2PP13 Y3PP13 Y1PP14 Y2PP14 Y3PP14 Y1PP15 Y2PP15 Y3PP15 Y1PP16 

Y2PP16 Y3PP16 Y1PP17 Y2PP17 Y3PP17 Y1PP18 Y2PP18 Y3PP18 Y1PP19 

Y2PP19 Y3PP19 Y1PP20 Y2PP20 Y3PP20 Y1PP21 Y2PP21 Y3PP21 Y1PP22 

Y2PP22 Y3PP22 Y1PP23 Y2PP23 Y3PP23 Y1PP24 Y2PP24 Y3PP24 Y1PP25 

Y2PP25 Y3PP25 Y1PP26 Y2PP26 Y3PP26 Y1PP27 Y2PP27 Y3PP27 Y1PP28 

Y2PP28 Y3PP28 Y1PP29 Y2PP29 Y3PP29 Y1PP30 Y2PP30 Y3PP30 Y1PP31 

Y2PP31 Y3PP31 Y1PP32 Y2PP32 Y3PP32 Y1PP33 Y2PP33 Y3PP33 Y1PP34 

Y2PP34 Y3PP34 Y1PP35 Y2PP35 Y3PP35 Y1PP36 Y2PP36 Y3PP36 Y1PP37 

Y2PP37 Y3PP37 Y1PP38 Y2PP38 Y3PP38 Y1PP39 Y2PP39 Y3PP39 Y1PP40 

Y2PP40 Y3PP40 Y1PP41 Y2PP41 Y3PP41 Y1PP42 Y2PP42 Y3PP42 Y1PP43 

Y2PP43 Y3PP43 Y1PP44 Y2PP44 Y3PP44 Y1PP45 Y2PP45 Y3PP45 / 

type=lin(3) ldata=re2 solution; 

run;
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Table A4.13.1. Details of selected models fitted and P-values of the likelihood ratio test statistic (LRT), (with degrees of freedom (df = 

difference between the compared models), conducted to test for the inclusion of random pairwise interactions and a covariance structure with 

different blocks for monocultures and mixtures (monomix). Model 1 includes identity effects for each species, and functional group interaction 

terms. Models were fitted using restricted maximum likelihood (REML).  

Model 

number 
Model description Test LRT df P-value 

1 Functional group interactions     

2 With monomix covariance structure 1 v 2 10.6 6 0.102 

3 With random pairwise interactions 1 v 3 81.1 3 <0.001 

4 
With monomix covariance structure and random pairwise 

interactions 
3 v 4 51.6 6 <0.001 
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Appendix 4.14 

Code from SAS to fit the DI models to the SPaCE data as in Section 4 of 

manuscript. 

 

/*IMPORT THE DATASET*/ 

PROC IMPORT OUT=space_data 

     DATAFILE="'/folders/myfolders/space_data.csv" 

     DBMS=CSV REPLACE; 

     GETNAMES=YES; 

RUN; 

 

The best model with basic covariance structure fitted in ML (step 1) was the additive 

species model. 

 

/* Additive species model */ 

proc mixed data=space_data method=ml; 

 class block year plot; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=un; 

run; 

 

Fit the best model with the different variance structures: monomix (different blocks 

for monocultures and mixtures) and comp2 (different blocks for monocultures in 

each FG and mixtures).  Do this using CS, AR1 and UN covariance structures (step 

2). 
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/* First using CS (Compound Symmetry) */ 

 

/* Additive species model */ 

proc mixed data=space_data method=reml; 

 class block year plot; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=cs; 

run; 

 

/* Additive species model with monomix var structure */ 

/* Different blocks for monocultures and mixtures */ 

proc mixed data=space_data method=reml; 

 class block year plot monomix; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=cs group=monomix; 

run; 

 

/* Additive species model with comp2 var structure */ 

/* Different blocks for monocultures in each FG and mixtures 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=cs group=comp2; 

run; 
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/* Next using AR(1), first-order auto-regressive */ 

/* Additive species model */ 

proc mixed data=space_data method=reml; 

 class block year plot; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=ar(1); 

run; 

 

/* Additive species model with monomix var structure */ 

/* Different blocks for monocultures and mixtures */ 

proc mixed data=space_data method=reml; 

 class block year plot monomix; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=ar(1) group=monomix; 

run; 

 

/* Additive species model with comp2 var structure */ 

/* Different blocks for monocultures in each FG and mixtures 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=ar(1) group=comp2; 

run; 
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/* Next using UN, unstructured */ 

/* Additive species model */ 

proc mixed data=space_data method=reml; 

 class block year plot; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

repeated year / subject=plot type=un; 

run; 

 

/* Additive species model with monomix var structure */ 

/* Different blocks for monocultures and mixtures */ 

proc mixed data=space_data method=reml; 

 class block year plot monomix; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=un group=monomix; 

run; 

 

/* Additive species model with comp2 var structure */ 

/* Different blocks for monocultures in each FG and mixtures 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*pq1 year*pq2 year*pq3 year*pq4 year*pq5 year*pq6 year*pq7 

year*pq8 year*pq9 year*pq10 year*pq11 year*pq12 year*pq13 

year*pq14 year*pq15 year*pq16 / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

run; 
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Fit fixed effects models with the best covariance structure (comp2) (step3). 

 

/* Average pairwise model & comp2 */ 

proc mixed data=space_data method=ml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPsum / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

run; 

 

/* FG model & comp2 */ 

proc mixed data=space_data method=ml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1 year*PPwfg2 year*PPwfg3 year*PPwfg4 year*PPbfg12 

year*PPbfg13 year*PPbfg14 year*PPbfg23 year*PPbfg24 

year*PPbfg34 / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

run; 

 

/* FG model with functional group interactions * spatial 

pattern & comp2 */ 

proc mixed data=space_data method=ml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern / 

noint solution; 

 repeated year / subject=plot type=un group=comp2; 
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run; 

 

/* FG model with functional group interactions * spatial 

pattern & additive species interactions * legume % & comp2 */ 

proc mixed data=space_data method=ml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 

year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

run; 

 

 

/* Include random effects in the best model */ 

 

/* First fit best model without random pairwise interactions 

using REML to allow comparisons */ 

/* FG model with DE*Space & legumepc*lambdas & comp2 */ 

proc mixed data=space_data method=reml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 

year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 
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 repeated year / subject=plot type=un group=comp2; 

run; 

 

/* Include random effects in individual years */ 

 

/* FG model with DE*Space & legumepc*lambdas & comp2 & Y1 REs 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 

year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

 random Y1PP1-Y1PP120/ type=lin(1) ldata=random_pairwise 

solution; 

run; 

 

/* FG model with DE*Space & legumepc*lambdas & comp2 & Y2 REs 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 
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year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

 random Y2PP1-Y2PP120/ type=lin(1) ldata=random_pairwise 

solution; 

run; 

 

/* FG model with DE*Space & legumepc*lambdas & comp2 & Y3 REs 

*/ 

proc mixed data=space_data method=reml; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 

year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 

year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

 random Y3PP1-Y3PP120/ type=lin(1) ldata=random_pairwise 

solution; 

run; 

 

Run the best model using REML to assess assumptions and model parameter 

estimates. The estimate statement shows how to predict from the model for a four-

species centroid community. 

 

/* FG model with DE*Space & legumepc*lambdas & comp2 & Y3 REs 

*/ 

proc mixed data=space_data method=reml plots=all; 

 class block year plot spatialpattern comp2; 

 model WeedBiomass = year year*p1 year*p2 year*p3 year*p4 

year*p5 year*p6 year*p7 year*p8  year*p9 year*p10 year*p11 
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year*p12 year*p13 year*p14 year*p15 /* year*p16 */ year*block 

year*PPwfg1*spatialpattern year*PPwfg2*spatialpattern 

year*PPwfg3*spatialpattern year*PPwfg4*spatialpattern 

year*PPbfg12*spatialpattern year*PPbfg13*spatialpattern 

year*PPbfg14*spatialpattern year*PPbfg23*spatialpattern 

year*PPbfg24*spatialpattern year*PPbfg34*spatialpattern 

year*pq1*legumepc year*pq2*legumepc year*pq3*legumepc 

year*pq4*legumepc year*pq5*legumepc year*pq6*legumepc 

year*pq7*legumepc year*pq8*legumepc year*pq9*legumepc 

year*pq10*legumepc year*pq11*legumepc year*pq12*legumepc 

year*pq13*legumepc year*pq14*legumepc year*pq15*legumepc 

year*pq16*legumepc / noint solution; 

 repeated year / subject=plot type=un group=comp2; 

 random Y3PP1-Y3PP120/ type=lin(1) ldata=random_pairwise 

solution; 

estimate ‘2014 disp species 1 5 9 15 avg block’ year 0 0 

1 year*p1 0 0 0.25 year*p2 0 0 0  year*p3 0 0 0 year*p4 

0 0 0 year*p5 0 0 0.25 year*p6 0 0 0 year*p7 0 0 0 

year*p8 0 0 0 year*p9 0 0 0.25 year*p10 0 0 0 year*p11 0 

0 0 year*p12 0 0 0 year*p13 0 0 0 year*p14 0 0 0 

year*p15 0 0 0.25 year*block 0 0 0.2 0 0 0.2 0 0 0.2 0 0 

0.2 0 0 0.2 year*PPwfg1*spatialpattern 0 0 0 0 0 0 0 0 0 

year*PPwfg2*spatialpattern 0 0 0 0 0 0 0 0 0 

year*PPwfg3*spatialpattern 0 0 0 0 0 0 0 0 0 

year*PPwfg4*spatialpattern 0 0 0 0 0 0 0 0 0 

year*PPbfg12*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*PPbfg13*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*PPbfg14*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*PPbfg23*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*PPbfg24*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*PPbfg34*spatialpattern 0 0 0 0 0 0 0 0.0625 0 

year*pq1*legumepc 0 0 0.046875 year*pq2*legumepc 0 0 0 

year*pq3*legumepc 0 0 0 year*pq4*legumepc 0 0 0 

year*pq5*legumepc 0 0 0.046875 year*pq6*legumepc 0 0 0 

year*pq7*legumepc 0 0 0 year*pq8*legumepc 0 0 0 

year*pq9*legumepc 0 0 0.046875 year*pq10*legumepc 0 0 0 

year*pq11*legumepc 0 0 0 year*pq12*legumepc 0 0 0 

year*pq13*legumepc 0 0 0 year*pq14*legumepc 0 0 0 

year*pq15*legumepc 0 0 0.046875 year*pq16*legumepc 0 0 

0; 

run; 
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