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Abstract

Numerical simulation is essential, to assist in the development of wave energy technology. In par-
ticular, tasks such as power assessment, optimisation and structural design require a large number
of numerical simulations to calculate the wave energy converter (WEC) outputs of interest, over a
variety of wave conditions or physical parameters. Such challenges involve a sound understanding
of the statistical properties of ocean waves, which constitute the forcing inputs to the wave energy
device, and computationally efficient numerical techniques for the speedy calculation of WEC
outputs. This thesis studies the statistical characterisation, and numerical generation, of ocean
waves, and proposes a novel technique for the numerical simulation of non-linear WEC models.

The theoretical foundations, the range of validity, and the importance of the statistical repre-
sentation of ocean waves are first examined. Under relatively mild assumptions, ocean waves can
be best described as a stationary Gaussian process, which is entirely characterised by its spec-
tral density function (SDF). Various wave superposition techniques are discussed and rigorously
compared, for the numerical generation of Gaussian wave elevation time series from a given SDF.
In particular, the harmonic random amplitude (HRA) approach can simulate the target statisti-
cal properties with perfect realism. In contrast, the harmonic deterministic amplitude (HDA)
approach is statistically inconsistent (because the generated time-series are non-Gaussian, and
under-represent the short-term statistical variability of real ocean waves), but can be advantageous
in the context of WEC simulations since, if it can be verified that HDA results are unbiased, the
HDA method requires a smaller number of random realisations than the HRA method, to obtain
accurate WEC power estimates.

When either HDA or HRA are used for the generation of wave inputs, the forcing terms of
WEC mathematical models are periodic. Relying on a Fourier representation of the system inputs
and variables, the harmonic balance (HB) method, which is a special case of spectral methods, is a
suitable mathematical technique to numerically calculate the steady-state response of a non-linear
system, under a periodic input. The applicability of the method to WEC simulation is demon-
strated for those WEC models which are described by means of a non-linear integro-differential
equation. In the proposed simulation framework, the WEC output, in a given sea state, is assessed
by means of many, relatively short, simulations, each of which is efficiently solved using the HB
method.

A range of four case studies is considered, comprising a flap-type WEC, a spherical heaving
point-absorber, an array of four cylindrical heaving point-absorbers, and a pitching device. For
each case, it is shown how the HB settings (simulation duration and cut-off frequency) can be
calibrated. The accuracy of the HB method is assessed through a comparison with a second-order
Runge-Kutta (RK2) time-domain integration scheme, with various time steps. RK2 results con-
verge to the HB solution, as the RK2 time step tends to zero. Furthermore, in a Matlab implemen-
tation, the HB method is between one and three orders of magnitude faster than the RK2 method,
depending on the RK2 time step, and on the method chosen for the calculation of the radiation
memory terms in RK2 simulations. The HB formalism also provides an interesting framework,
for studying the sensitivity of the WEC dynamics to system parameter variations, which can be
utilised within a gradient-based parametric optimisation algorithm. An example of WEC gradient-
based parametric optimisation, carried out within the HB framework, is provided.
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I, Alexis Mérigaud, declare that this thesis entitled ‘A harmonic balance framework for the nu-
merical simulation of non-linear wave energy converter models in random seas’, and the work
presented in it, are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other quali-
fication at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

.

Date:

Signature:

vi



Acknowledgement

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. John V.
Ringwood, for making me consider the idea of becoming a researcher, for giving me the opportu-
nity to embark on this PhD journey, for the freedom I enjoyed throughout these four years, for the
invaluable support, advice, and trust I received, and, no less importantly, for the countless ‘these’
and ‘those’ suppressed, and commas added, in my written work.

Many thanks to the staff members of the Electronic Engineering Department, in particular Ann
Dempsey, Joanne Bredin, Denis Buckley and John Malocco, for their availability and kindness,
and for the help they provided with a variety of administrative and technical issues.

I feel greatly indebted to Dr. Romain Genest, for his expert advise, help and encouragement,
provided when they were most needed, to get a foot on the ladder in the early stages of my stay in
Maynooth. I also thank Romain for his precious friendship, of course not forgetting Camille and
her talent as a chef.

Special thanks to Prof. Frédéric Dias (University College Dublin), for kindly showing interest
in my work and for his help and advise, which significantly contributed to building my confidence
in the research directions I was following, as well as for the pleasurable collaboration on real-time
ocean wave prediction.

To Dr. John Scanlan, I would like to express the gratitude of my most appreciative thank-
fulness, for the many hours spent exploring some of the finest literary works of the French and
Irish nations, and even more importantly for his help, support and friendship throughout this PhD
journey.

A warm Thanks a mil’! to present and former members of the COER group, for the fruit-
ful discussions and collaborations, for the countless coffees and walks around the old campus,
and for heaps of very random pub conversations: Jake Cunningham, Josh Davidson, Sébastien
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List of symbols

A general convention adopted in this thesis is the use of the bold font style is used for multidimen-
sional variables, such as matrices (e.g. M and Φ ) and vectors (e.g x and θ). Vectors specified by
means of two points, geometrically defined in the two- or three-dimensional physical space, are
identified using the arrow notation, for example

−→
GP. Finally, this section only lists the symbols

used ‘globally’ through this thesis.
.
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α Vector of parameters in a WEC dynamical model.
δ The Dirac delta function.
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µ The fluid viscosity coefficient.

∇ Gradient operator, defined as

 ∂
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∂z
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.
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Nt Number of collocation points.
Nα Number of parameters.
Nω Number of frequencies.
P Absorbed power.
p Pressure.
pa Atmospheric pressure.
R The set of real numbers.
Rxx Auto-correlation function of the random process x.
ℜ The real part of a complex number.
smax Spreading parameter in the Mitsuyasu directional spreading function.
Sxx The spectral density function of the random process (or random field) x.
Sw Wetted surface.
S 0

w Mean wetted surface.
S A stiffness matrix.
t A time instant.
T A time duration.
Tp The peak wave period of a wave spectrum.
Te The mean energy wave period of a wave spectrum.
T A torque.
u The fluid velocity field.
var[x] The variance of a random variable x
x The variables of a WEC dynamical model.
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Chapter 1
Introduction

1.1 Introduction

With an estimated 300 to 400 GW wave power resource along European Atlantic coastlines, wave
energy could be a significant contributor to carbon-free, renewable electricity production in Eu-
rope, in addition to providing opportunities for economic growth and for the creation of highly-
qualified jobs [1]. Furthermore, possible uses of wave energy are not limited to electricity produc-
tion for wholesale electricity markets, but also include the power supply of small-scale electrical
networks on isolated islands, freshwater production through desalination, and the power supply
of offshore platforms or measurement buoys [1]. An overview of the rich existing range of wave
energy converter (WEC) patents, companies and operating principles, as well as a wide historical
perspective on wave energy development, may be found in [2], and in the recent book from Babarit
[1].

In spite of a tremendous diversity of concepts [2], the vast majority of, if not all WECs, feature
one or more mechanical components, actuated under the effect of waves. As of today, it is esti-
mated that the most advanced WEC technologies do not achieve more than 20% of the maximum
power which could, theoretically, be captured by heaving mechanical structures of similar dimen-
sions [1]. Improving WEC design through research, by increasing the amount of absorbed energy
while limiting capital expenditure, is thus of primary importance, if wave energy is to one day
fulfil its potential. To assist in the development of innovative wave energy technologies, numeri-
cal simulation is an essential tool for researchers and engineers [3], given the high cost generally
associated with physical experiments.

1.2 Motivations: the challenges of WEC modelling and numerical
simulation

This thesis is primarily concerned with the numerical simulation of WEC models, for applications
where the calculation speed is highly important, including the following tasks1:

• WEC or WEC farm design based on optimisation, where the objective (or cost) function
must be evaluated a large number of times through WEC simulations;

• WEC or WEC farm power assessment, which involves the calculation of WEC power output
over several years of wave data [4], also involving a large number of numerical simulations;

• WEC or WEC farm fatigue analysis and reliability assessment, which may require proba-
bility analysis based on a large number of numerical simulations - see Chapter 14 of [3];

1The tasks enumerated here are not entirely distinct: for example, WEC power assessment could be embedded
within a WEC optimisation algorithm, as part of the objective function evaluation.
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• In the future, computationally efficient simulation tools will also be necessary for the real-
time operation of WEC or WEC farms, including energy production forecasting for market
participation, management of the WEC safe mode (to avoid structural damage, in case of
dangerously high sea conditions), and predictive maintenance, as discussed in [5].

In general, numerical experiments require:

• An appropriate mathematical and numerical representation of the physical inputs to the
WEC system, i.e. the wave input by which the WEC is actuated;

• A suitable physical model, sufficiently realistic for the application considered, and which
mathematically represents the dynamical behaviour of the WEC system, usually in the form
of a differential equation;

• An adequate numerical simulation method, which essentially aims to find the solution of the
differential equation representing the physical model, subject to the forcing terms defined
by the physical inputs.

Concerning the wave input, and for the aforementioned applications, ocean waves are usefully
modelled as a Gaussian random process [6], with well-defined statistical properties. When wave-
related quantities, such as the wave elevation or pressure forces, are numerically generated, it must
be ensured that the simulated quantities are consistent with the statistical properties of the target
wave random process.

In the tradition of naval and offshore engineering, linear hydrodynamic theory has been ap-
plied to WEC modelling since the 1970s, and has yielded a wealth of fundamental theoretical
results, which can be best appreciated in [7]. Linear hydrodynamics permits the WEC dynamics
be described and analysed in the frequency domain, allowing for highly efficient calculations of
the WEC response in periodic wave signals. It is thus unsurprising to observe that linear hydro-
dynamic models generally form the basis of WEC design, optimisation, power assessment and
performance analysis [8].

For most WEC concepts, maximum power capture cannot be reached, or even approached, if
the WEC does not mechanically resonate in incoming waves, the WEC velocity being in phase
with the wave excitation [7, 9]. Resonance can be achieved, either if the WEC size makes it
resonate naturally in typical ocean waves, or if control strategies are applied, which modify the
device response, so as to make it resonate artificially in incoming waves. The latter solution has
received considerable attention in recent years, giving rise to many scientific publications [9].
One can further distinguish between real-time optimal control, whereby the control input is ad-
justed in real-time following the solution of an optimisation problem [10], and simpler parametric
control strategies, whereby one or several parameters are tuned on a sea-state-by-sea-state basis,
to enhance power absorption. Regardless of how it is achieved, resonance amplifies the WEC
dynamical response, which violates the assumption of small motion, and thus invalidates the fun-
damental prerequisites underpinning linear hydrodynamics [11]. Accordingly, non-linear hydro-
dynamic models must be employed, to design and operate WECs capable of achieving optimal or
near-optimal power absorption.

Unfortunately, non-linearities pose several challenges in the context of numerical WEC sim-
ulation. In addition to an increased modelling effort and mathematical complexity, non-linear
hydrodynamic models do not lend themselves easily to computationally efficient output calcula-
tions; the traditional linear frequency-domain approach cannot be used, and time-domain numer-
ical integration schemes are usually employed [3], which are relatively inefficient in comparison.
The greater computational complexity of non-linear WEC models is problematic for those tasks,
which require fast numerical simulations, and which are precisely the target applications for the
work presented in this thesis.
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1.3 Objectives and contributions: a harmonic balance simulation
framework for wave energy applications

1.3.1 Thesis objective

In view of the preceding discussion, the main research direction for this thesis is the study of inno-
vative numerical simulation methods, which would take advantage of a statistical perspective on
ocean waves. New methods should accommodate non-linear WEC models, and present consistent
benefits in terms of computational time or accuracy, with respect to existing approaches.

The main contributions of this thesis, directly aligned with the objective formulated above,
are listed below in Section 1.3.2, and will be the subject of the remaining chapters of the present
document. However, throughout the course of this thesis, several other research directions were
followed, both before the main objective stated above was identified as such, and after, as natural
developments, into the fields of real-time wave prediction and WEC optimal control, of the work
presented in the following chapters. This supplementary material is briefly summarised in Section
1.3.3.

1.3.2 Principal contributions of the thesis

The first significant contribution of this thesis, with respect to the objective of Section 1.3.1, is
a thorough study of the statistical properties of ocean waves, considered as a stochastic process,
and the examination of how numerical wave simulation methods may, or may not, reflect those
properties. This is the subject of Part I of this thesis. In particular:

• The criteria, for a wave signal generation method to be statistically realistic, are clearly
formulated.

• It is shown that a commonly employed procedure, which consists of the superposition of
harmonic sinusoids with random phases, and amplitudes derived deterministically from the
wave spectrum (termed the HDA method in this thesis), is not statistically consistent but, if
certain precautions are taken, can be useful to obtain quick estimates of statistical quantities
of interest, such as the average energy in a given signal, or the power absorption of a WEC.

• In contrast, the method, consisting of superposing harmonic sinusoids with random phases,
and amplitudes randomly generated from the wave spectrum (termed the HRA method in
this thesis), is statistically correct; however, many or long simulations may be required to
obtain accurate statistical estimates.

• Non-harmonic sinusoid superposition methods are also studied, and are shown to induce
undesirable statistical inaccuracies.

• Therefore, to numerically generate time series of wave-related quantities (such as wave
elevation or pressure forces), a pertinent alternative is to choose between HDA and HRA
methods, depending on the target application.

The second main contribution of this thesis, contained in Parts II and III, is the introduction
of the harmonic balance (HB) method, to the wave energy field. The proposed approach is a
significant addition to the existing range of techniques, available to wave energy researchers and
engineers, for the numerical simulation of non-linear WEC models. The HB technique belongs
to the mathematical family of spectral methods. The approach is used to calculate, accurately
and efficiently, the steady-state solution for a non-linear, time-periodic differential equation, by
means of a Fourier expansion of the forcing input and solution. The proposed HB simulation
methodology is thus able to exploit the synergy, between harmonic superposition methods, for
wave input generation, and the HB mathematical technique, for the solution of the WEC dynamical
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equations under the random forcing wave input. The specific contributions of this thesis, relative
to the HB method, are listed as follows:

• The HB method is developed, for WECs described by means of non-linear integro-differential
equations (IDEs). It is explained how the HB method results in the solution of a non-linear
vector equation, termed the HB (or the HB residual) equation, where the unknown variables
are the Fourier coefficients of the solution.

• It is studied how the Jacobian of the HB equation can be explicitly computed, in order to
ensure a fast convergence to the HB solution.

• A number of WEC models, with smooth non-linearities, are successfully simulated using
the HB method, for both one and several degrees-of-freedom models, as reported in this
thesis: a flap-type WEC, a spherical WEC operating in heave, an array of cylindrical WECs
also operating in heave, and a device operating in pitch, the ISWEC [12, 13].

• The tuning of the main HB parameters, namely the cut-off frequency and the duration of the
simulated signal, is investigated in detail, taking into consideration the numerical accuracy
of the HB method, and the appropriate statistical representation of the input wave signals.

• Most importantly, it is demonstrated that, for smooth non-linearities, the HB method can
calculate the steady-state solution of non-linear WEC differential equations, between one
and three orders of magnitude faster, and with better accuracy, than a standard 2nd-order
Runge-Kutta (RK2) [14] time-domain integration procedure. The HB method accuracy is
evidenced by the fact that, as the RK2 time step decreases, the RK2 solution converges
towards the HB solution.

• The possible issues associated with the HB method are highlighted, such as the absence of
convergence, or the convergence to non-physical solutions.

• The solution of the sensitivity equation is shown to take a particularly simple form in the HB
framework. It is explained how this can be advantageously used for gradient-based WEC
optimisation.

• An application example is detailed, consisting of the parametric optimisation of the ISWEC
device in a large range of sea states. Power assessment is another pertinent application of the
HB method which, although not detailed in this thesis, has also been studied by the author.

1.3.3 Supplementary material

Other related research directions have led to the following contributions:

• The first works of the author, in the wave energy field, have highlighted the importance of
non-linear hydrodynamic modelling for wave energy converters (WECs), particularly under
resonant conditions [a,f].

• Various aspects of the operation of future commercial WECs or WEC farms have been
explored. In particular, a literature review has been carried out on condition-based and
predictive maintenance for renewable marine energies, including WECs [e]. The needs,
requirements and techniques for medium-term ocean forecasting (from a few hours to a few
days ahead) have been reviewed, in the context of WEC or WEC farm operation [g].

• The proposed HB method has a natural extension, in the domain of WEC power-maximising
optimal control calculations; the HB equation can be used within a Fourier non-linear
pseudo-spectral control approach, resulting in a smaller problem size, and making it possi-
ble to greatly improve the speed of calculating optimal WEC trajectories and control force
[h]. However, this approach has only been applied to one-degree-of-freedom WEC models.
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• The aforementioned control formalism has also led to the derivation of a set of useful theo-
retical results, relative to WEC optimal control, under various dynamical non-linear effects
and constraint configurations. In particular, the dependence of the optimal control results on
the different modelling terms has been studied [b].

• Assuming linear hydrodynamics, the robustness of different control architectures to various
types of modelling errors has been investigated [d,m].

• The research, primarily dealing with the statistical aspects of ocean wave simulations, has
also resulted in an innovative approach to real-time wave forecasting, based on statistical
information contained in the wave spectrum [c,i,l]. Within the scope of Gaussian wave
theory, the developed approach has been proven to be statistically optimal.

• It has been shown that the proposed pseudo-spectral WEC control formulation can be imple-
mented within a real-time control framework, in a receding-horizon configuration, with the
inclusion of real-time wave prediction, using the forecasting technique developed [j]. The
influence of the length and shape of the receding-horizon window has been investigated.

• A study was carried out, articulating significant aspects of WEC real-time optimal control,
including measurement noise, excitation force estimation, real-time wave forecasting, real-
time non-linear optimal control calculations, and trajectory tracking [k]. The study shows
that, in principle, under relatively realistic assumptions regarding the control setup, it should
be possible to reach more than 90% of the optimal hydrodynamic power absorption.

1.3.4 List of publications related to the principal contributions of the thesis

1.3.4.1 Conference publications

[A] Alexis Mérigaud and John V. Ringwood. Nonlinear frequency-domain WEC simulation:
Numerical case studies and practical issues. In Proceedings of the 11th European Wave
and Tidal Energy Conference, Cork, Ireland, 2017.

[B] Riccardo Novo, Alexis Mérigaud, Giovanni Bracco, Sergei Sirigu, Giuliana Mattiazzo, and
John. V. Ringwood. Non-linear simulation of a wave energy converter with multiple degrees
of freedom using a harmonic balance method. In Proceedings of the 37th International
Conference on Ocean, Offshore & Arctic Engineering (OMAE 2018), Madrid, Spain, 2018.

1.3.4.2 Journal publications

[C] Alexis Mérigaud and John V. Ringwood. Free-surface time-series generation for wave en-
ergy applications. IEEE Journal of Oceanic Engineering, 43(1), pp. 19-35, 2018.

[D] Alexis Mérigaud and John V. Ringwood. A nonlinear frequency-domain approach for nu-
merical simulation of wave energy converters. IEEE Transactions on Sustainable Energy,
9(1), pp. 8694, 2017.

[E] Alexis Mérigaud and John V. Ringwood. Power production assessment for wave energy
converters: Overcoming the perils of the power matrix. Proceedings of the Institution
of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,
232(1), pp. 5070, 2018.

1.3.4.3 Publications in preparation

[F] Alexis Mérigaud and John V. Ringwood. Non-linear, parametric optimisation of wave en-
ergy devices using gradient-based optimisation in a harmonic balance framework.
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1.3.5.3 Submitted publications

[m] John V. Ringwood, Alexis Mérigaud, Nicolás Faedo, and Francesco Fusco. On the sensitiv-
ity and robustness of wave energy control systems. IEEE Transactions on Control Systems
Technology. Revised version submitted June 2018.

1.3.5.4 Publications in preparation

[n] Alexis Mérigaud and John V. Ringwood. Control-informed optimisation of a wave energy
converter using pseudo-spectral optimal control and the notion of shadow costs.

1.4 Thesis outline

This thesis consists of seven more chapters, organised into three parts, as follows:

• Part I is concerned with the statistical representation of ocean waves, with emphasis on the
numerical generation of wave elevation time series, with appropriate statistical properties.

– Chapter 2 introduces the statistical representation of ocean waves, which usually takes
the form of a Gaussian random process (if a single wave measurement point is con-
sidered) or a Gaussian random field (if the spatial distribution of the wave elevation is
also examined). The underlying assumptions, and the range of validity of the Gaussian
wave representation, are discussed. Modelled as a Gaussian process or Gaussian field,
the statistical properties of ocean waves are entirely described by their spectral density
function, or wave spectrum. The importance of the notion of a wave spectrum, in wave
energy and other marine and offshore engineering applications, is highlighted.

– Chapter 3 devises methods for the numerical generation of wave elevation time se-
ries, with properties consistent with the Gaussian representation of ocean waves. In
particular, various Gaussian process simulation methods, based on the idea of har-
monic superposition, are rigorously compared. It is shown that, for most pertinent
engineering applications, the so-called harmonic superposition methods are the most
pertinent option. In harmonic superposition methods, wave time series are generated
through a sum of sinusoidal signals, with random phases, and amplitudes derived from
the wave spectrum.

• Part II introduces the HB method as a technique for calculating the steady-state response of
WECs in random waves. The WEC models considered take the form of non-linear integro-
differential equations.

– In Chapter 4, the basic principles of WEC modelling are introduced. The variety of
mathematical modelling approaches for hydrodynamic interaction, mooring systems
and PTO systems is briefly reviewed, with an emphasis on the mathematical form taken
by the resulting models. A reasonably generic WEC model formulation, in the form of
a non-linear integro-differential equation, is proposed, which allows two challenging
components, present in many WEC models, to be articulated: non-linear terms, and
linear memory terms. How a wider range of WEC models could be developed under
such a formalism is also discussed.

– Chapter 5 introduces the harmonic balance (HB) method and its application to the
numerical simulation of WEC models for periodic wave inputs, and constitutes the
core of this thesis. The fundamental features of the method are illustrated by means
of a simple WEC model example. Combining the outputs from Chapters 3 and 5,
a HB framework for WEC simulation in random seas is proposed, whereby several,
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relatively short, simulation problems are efficiently solved using the HB method, in
order to characterise the WEC output in a given sea state.

• Part III consists of several numerical case studies, which aim to demonstrate the accuracy,
and illustrate the practical value, of the proposed simulation framework:

– In Chapter 6, four case studies are presented, to give the reader a sense of how the HB
method can be calibrated, and to assess the accuracy and computational gains which
can be expected from using the HB method, with respect to widely employed RK2
time-domain numerical integration. It is found that the HB method provides compu-
tation gains of one to three orders of magnitude, while showing excellent accuracy
compared to RK2 numerical integration.

– While Chapter 6 is concerned with the validation and calibration of the HB method,
Chapter 7 details an application where the HB method can be used effectively, and
which consists of the gradient-based, parametric optimisation of wave energy convert-
ers represented by non-linear models. The optimisation of three scalar parameters,
governing the ISWEC power take-off system, is carried out as a numerical example.

• The conclusions of the foregoing parts are presented in Chapter 8.
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Part I

Statistical aspects of ocean wave
simulation
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Chapter 2
Spectral description of ocean waves

2.1 Introduction

Ocean waves are random - at least wind-generated waves. Visually examining the water surface, it
is impossible to anticipate the future wave pattern beyond the current wave, since two consecutive
waves are never identical, with peaks and troughs following an apparently unpredictable sequence.
Furthermore, even if it were possible to repeat the same atmospheric conditions (mean wind speed
and direction, temperature, etc.) in a vast enough area around the location of interest, the precise
time-history of the wave elevation would not be repeated. As formulated by Lord Rayleigh, quoted
by Pierson [15], “the basic law of the seaway is the apparent lack of any law.” Intuitively, the reason
for the free-surface elevation randomness is that ocean waves are the result of a countless number
of events and processes, whereby the wind - itself a random physical process - transfers energy
to the sea, in a multitude of locations, directions and with varying strength. Therefore, when
observed locally, the resulting waves cannot be reasonably accounted for through a deterministic
description.

Randomness, however, does not mean that the wave elevation process behaves purely arbitrar-
ily. In fact, except for special events such as wave breaking, which usually occur in shallow water
or in extreme meteorological conditions, waves seem to follow sinusoidal, or pseudo-periodic
patterns which, although they oscillate randomly, give the wave field an aspect of coherence and
continuity. Furthermore, within a reasonably short time-window, e.g. 3 hours [16], the average
properties of the wave field, such as the average crest-to-trough amplitude, average wave period,
etc. don’t usually show significant variation, thus defining a sea state. In other words, over a
relatively short period (say, between several tens of minutes and several hours), it is possible to
provide a statistical description of a sea state, as opposed to a wave-by-wave time history. In par-
ticular, under mild assumptions, the sea-state can be described as a Gaussian process, as detailed
further in Sections 2.2 and 2.3.

Over its lifetime, any ship, or any offshore or coastal structure, experiences a long sequence of
different sea states. The study of how the system of interest responds in specified sea states is then
instrumental in naval, offshore and coastal engineering. In the case of WECs, the sea states do
not only characterise the structural loads experienced by the devices (and thus their survivability)
but also, importantly, determine the amount of energy absorbed by the WEC system. Numerical
simulations, to calculate the WEC dynamical response and power production in a given sea state,
thus constitute a centrepiece procedure in the development of wave energy technology.

For realistic simulations of WEC models, an appropriate representation of the forcing terms
due to the waves is essential, which implies that:

• The statistical characterisation of the sea state is sufficiently accurate for the application
considered, as discussed in this chapter;
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• Time-series of the free-surface elevation1 are generated through a numerical procedure,
which appropriately reflects the statistical properties which define the sea-state of interest,
as detailed in Chapter 3.

Chapter organisation

The rest of this chapter is organised as follows:

• Section 2.2 starts with a brief reminder of the physical, deterministic modelling of elemen-
tary waves propagating over the ocean surface, and depicts the train of thought which leads
to a consistent stochastic description of wave fields. This stochastic description takes the
form of a Gaussian process (when time series of the wave elevation are considered) or a
Gaussian wave field (when the statistical properties of waves are also examined over a spa-
tial domain). The statistical properties of Gaussian waves are entirely characterised by their
spectral density function.

• Section 2.3 discusses the range of validity of the Gaussian wave model, as far as wave energy
applications are concerned. It is pointed out that the Gaussian wave description should be
accurate for the vast majority of WEC operating conditions, and thus a Gaussian random
process may be used to model the wave input for WEC simulation.

• In the context of WEC power assessment, and assuming that the Gaussian wave model is
valid, Section 2.4 highlights the need for an accurate characterisation of the wave spec-
tral density function. The need for computationally efficient numerical methods for WEC
simulation is highlighted, if one wants to avoid the use of over-simplified parametric repre-
sentations of the wave spectral density function.

• The main developments and conclusions of this chapter are summarised in Section 2.5.

2.2 The Gaussian description of ocean waves and the notion of a
wave spectrum

Many types of oscillations can be observed in the ocean, involving a variety of phenomena and
time scales, such as storm surges, tidal oscillations, tsunami waves, infra-gravity waves, wind
waves and capillary waves, in ascending order of the typical frequencies involved - the interested
reader may find a brief typology of ocean wave phenomena in Chapter 1 of [16]. For wave energy
extraction, the oscillations of interest are the most familiar wind waves, i.e. those waves which
are generated by wind shear over the ocean surface, and have typical periods between 1 and 25
seconds. Wind waves belong to the category of gravity waves, in the sense that their propagation is
mainly governed by gravity, as opposed to capillarity. Wind waves may be further categorised into
different types of wave systems, namely wind sea and swell, the former being directly generated
by the wind forces, with relatively low periods (typically lower than 10 seconds), while the latter
are due to a gradual transfer of energy towards lower frequencies, i.e. larger periods, as waves
propagate over long distances and time scales. Typical swell wave periods are between 10 and 25
seconds.

The following paragraphs introduce the theory of linear ocean waves, also called Airy’s waves,
which are the simplest available model to account for elementary gravity waves on water. It is
then explained how a stochastic description of ocean waves can be built, starting from Airy’s
deterministic phenomenological description. More detailed developments may be found in the
important articles by St Denis and Pierson [17] and by Pierson [15], in the books by Whitham [18]

1or any other relevant, wave-related physical quantity, such as the wave excitation force defined within the scope of
linear hydrodynamics, as seen in Chapter 4
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and Ochi [6], and in the didactic course entitled “The wave model”, made available on-line by the
European Centre for Medium-range Weather Forecasting (ECMWF)2.

2.2.1 Deterministic description of elementary waves

Potential theory provides the basic framework for understanding ocean waves, although it ex-
cludes some special wave events, such as white-capping. Consider a body of water, described as a
non-viscous, homogeneous, incompressible and irrotational fluid. The three-dimensional physical
space is described by coordinates x,y and z, and by convention z = 0 corresponds to the mean wa-
ter level at rest. Since, in potential theory, the flow is assumed irrotational, the velocity of water in
each point can be written as the gradient of a potential field, φ(x,y,z, t), which satisfies the Laplace
equation within the fluid domain, as well as boundary conditions, at the free surface z = η(x,y, t)
and at the sea bottom z =−H. The Laplace equation reads:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 (2.1)

The free-surface boundary conditions for freely-propagating waves are, at z = η:

∂η

∂t
+∇φ.∇η =

∂φ

∂z
(2.2)

and
∂φ

∂t
+

1
2
(
∂φ

∂z
)2 +gη = 0 (2.3)

where Eq. (2.2) represents the fact that fluid particles cannot cross the free surface, and Eq. (2.3)
(Bernoulli’s equation) expresses the continuity of the pressure field at the interface between air
and water.

Denoting H as the water depth, the no-flow boundary condition at the sea bottom is, at z=−H:

∂φ

∂z
= 0 (2.4)

Linear wave theory assumes infinitesimally small wave amplitude, which allows the free-
surface boundary conditions of Eqs. (2.2) and (2.3) to be linearised, by expressing them at z = 0
instead of z = η, and by neglecting quadratic contributions:

∂η

∂t
=

∂φ

∂z
(2.5)

and
∂φ

∂t
+gη = 0 (2.6)

Solutions to the Laplace equation (2.1), with boundary conditions (2.5), (2.6) and (2.4), are of
the form: {

η(x, t) = η̂ei(k.x−ωt)

φ(x,y,z, t) = F(z)ei(k.x−ωt) (2.7)

where x =

(
x
y

)
denotes the horizontal position, k =

(
kx

ky

)
is called the wave number, η̂ is the

complex wave amplitude and F is a scalar function of the depth z.
The Laplace equation (2.1) imposes d2F

dz2 (z)−|k|2F(z)= 0. Together with the bottom boundary
condition (2.4), this implies that F is of the form:

F(z) =C cosh(|k|(z+H)) (2.8)

2https://www.ecmwf.int/en/learning/education-material/lecture-notes
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Using the linearised Bernoulli equation (2.6), the constant C is found to be related to the wave
amplitude η̂ through C =− ig

ω

η̂

cosh(|k|H) . Thus, F(z) is given as:

F(z) =− ig
ω

cosh(|k|(z+H))

cosh(|k|H)
η̂ (2.9)

Eq. (2.5) imposes a relationship between the oscillation frequency ω and the wave number k,
called the dispersion relation:

ω
2 = g|k| tanh(|k|H) (2.10)

Finally, a freely-propagating, linear wave with complex amplitude η̂ is described as follows:{
η(x, t) = η̂ei(k.x−ωt)

φ(x,y,z, t) =− ig
ω

cosh |k|(z+H))
cosh(|k|H) η̂ei(k.x−ωt) (2.11)

where k and ω are related by the dispersion relation. In real conventions, with η̂ = |η̂|eiϕ, Eq.
(2.11) may be rewritten:{

η(x, t) = |η̂|cos(k.x−ωt +ϕ)

φ(x,y,z, t) = g
ω

cosh |k|(z+H))
cosh(|k|H) |η̂|sin(k.x−ωt +ϕ)

(2.12)

In the case where the depth H is sufficiently large, with respect to the wavelength 1/|k|, to be
considered infinite, the deep water dispersion relation is:

ω
2 = g|k| (2.13)

The phase velocity measures the speed at which the crest of a single wave, with frequency ω,
propagates horizontally. In deep water, the phase velocity is calculated as:

cϕ =
ω

|k|
=

√
g
|k|

=
g
ω

(2.14)

The group velocity measures the speed at which wave energy is transported by a wave train -
see Chapter 11 of [18]. The group velocity is defined as cg =

∂ω

∂|k| which, in deep water, becomes:

cg =
1
2

√
g
|k|

=
1
2

g
ω

=
1
2

cϕ (2.15)

Thus, for linear, deep-water waves, the group velocity is half the phase velocity. Note that the
dispersion relation is modified in the presence of current, or in the case of a slowly varying bottom
profile H(x, t). However, for the sake of simplicity this is not considered here. For more insight
on the rich and difficult concept of group velocity, the reader is referred to Chapter 11 of [18].

The non-constant value of cϕ and cg (across frequencies) indicates that deep-water waves are
dispersive, i.e. that waves of different frequencies propagate at different speeds. This fact is
essential to explain the randomness of ocean waves.

2.2.2 From a deterministic to a stochastic wave description

Eq. (2.12) describes an elementary wave, as first described by Airy - see the historical perspective
on water wave theory presented by Craik [19]. However, from visual observation of the ocean
surface, it is evident that Eq. (2.12) does not account for the complicated pattern of the water
surface. In particular, considering the wave elevation at a single location, which is referred to
as a point measurement, from Eq. (2.12) the time history of the free surface should be a simple
sinusoidal function. Hence, a more sophisticated description is necessary to account for the actual
ocean surface.
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From the linearity of the governing equations, any superposition of solutions of the form
(2.12), with various frequencies, phases and propagation directions, is also a solution to the linear
equations (2.1), (2.5) and (2.6). The free-surface elevation for such a solution is given as:

η(x, t) =
N

∑
n=1

An cos(kn.x−ωnt +ϕn) (2.16)

where each pair kn,ωn satisfies the dispersion relation.
It would be possible, locally, to approximate the ocean surface using a representation such as

Eq. (2.16). Consider the simplified case of point measurements of the wave signal, η(t), recorded
at x = 0 without loss of generality. The signal is first recorded for a finite duration. The recorded
section can be approximated, with any arbitrary degree of accuracy, by means of Fourier series:

η̃(t) =
N

∑
n=1

An cos(ωnt +ϕn) (2.17)

However, if Eq. (2.17) were used to predict the wave elevation at time instants t, beyond the
section where the Fourier amplitudes and phases have been determined, it would soon be observed
that the model η̃ no longer follows the actual wave elevation η. Thus, any finite-order Fourier
approximation of the form (2.16) is only valid “locally”, and has no descriptive capability beyond
the horizontal space and the time period where the approximation has been carried out. Clearly,
Eq. (2.16) is not yet a satisfactory model for an actual sea state.

In fact, as already suggested in Section 2.1, it is more useful to consider the actual sea surface
as the result of uncountable, infinitesimal elementary random contributions, which originate from
phenomena taking place at various instants in time and locations in the ocean - waves may indeed
have travelled hundreds of kilometres before reaching the region where they are being observed.
Therefore, a model which inherently represents the randomness of the wave elevation provides a
better understanding of the phenomenon under study. In 1952, Pierson [20] gave rigorous mathe-
matical consistency to such a point of view, by describing ocean waves using the theory of random
noise, a theory which had been developed throughout the previous decade, in the field of telecom-
munication, by researchers such as Rice [21] and Wiener [22].

According to Pierson, the wave elevation in one point is now written as follows [15, 17]:

η(t) =
∞∫

ω=0

cos(ωt +ϕ(ω))
√

2Sηη(ω)dω (2.18)

which cannot be understood as an ordinary integral. Eq. (2.18) is the limit, when ωmax grows to
infinity, of the following integral:

ωmax∫
ω=0

cos(ωt +ϕ(ω))
√

2Sηη(ω)dω (2.19)

Eq. (2.19) is a Fourier-Stieltjes integral (see for example [23]) which is defined as:

lim
max |ωk+1−ωk|→0

N

∑
k=1

cos(ω′kt +ϕ(ω′k))
√

2Sηη(ω
′
k)(ωk−ωk−1)

with

{
ω0 = 0 < ... < ωk < ωk+1 < ... < ωN = ωmax

∀k, ω′k ∈ [ωk−1;ωk]

(2.20)

where:

• ϕ(ω) is a random function of ω, uniformly distributed in [0;2π[, and such that ϕ(ω) at all
frequencies are statistically independent from each other;
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• Sηη(ω) [m2.s] is a positive function, called spectral density function (SDF), energy spec-
trum, or simply spectrum. It represents the mean squared amplitude of the waves with
frequency ω;

• ω0 = 0 < ... < ωk < ωk+1 < ... < ωN = ωmax forms an arbitrary partition, or ‘net’, of the
interval [0;ωmax]. The Fourier-Stieltjes integral (2.19) is the limit of the random sum in Eq.
(2.20) as the net becomes infinitely refined.

Eq. (2.18) is a stochastic integral. The independence of the phases of all infinitesimal ran-
dom components, combined with the central limit theorem, ensures that the resulting probability
distribution of the wave process is Gaussian. Indeed, the central limit theorem states that, given
a sequence of independent random variables Xi, and under specific conditions3 on the variance of

the Xi, the sum
N
∑

i=1
Xn tends to a normal distribution as N grows to infinity, even if the individual

random variables Xi are not Gaussian (see any textbook on probabilities and statistics, such as
[25]). This lays the foundation for the Gaussian statistical description of ocean waves.

Now considering the spatial distribution of the free surface, Eq. (2.18) is easily generalised to:

η(x, t) =
y

k,ω

cos(k.x−ωt +ϕ(k,ω))
√

2Sηη(k,ω)dωdkxdky (2.21)

Since, following linear wave theory, the frequency ω and wave number |k|=
√

k2
x +k2

y follow
the dispersion relation, it is in general useless to describe the wave spectrum in 3 dimensions
(ω, kx and ky). Instead, the spectrum can be specified in terms of the wave number only as
Sηη(k), or as a function of frequency, ω, and direction of the wave vector, θ (while the wave
number magnitude is governed by ω through the dispersion relation). With the latter possibility,
and defining a directional spectrum Sηη(ω,θ), in m2s/rad, the wave field takes the form of the
following Fourier-Stieltjes integral:

η(x, t) =
x

ω,θ

cos
[
|k|(ω)(cos(θ)x+ sin(θ)y)−ωt +ϕ(ω,θ)

]√
2Sηη(ω,θ)dωdθ (2.22)

where |k|(ω) and ω satisfy the dispersion relation. For each frequency ω, the directional and
non-directional spectra are related through the following equation:

Sηη(ω) =

2π∫
θ=0

Sηη(ω,θ)dθ (2.23)

In Eqs. (2.18) and (2.22), for each possible realisation of the random function ϕ(ω,θ), there
corresponds a function η(x, t), which may then be termed a realisation of the underlying spectrum
Sηη(ω,θ). Therefore, as stressed by St Denis and Pierson [17], for a given SDF Sηη(ω,θ), Eqs.
(2.18) and (2.22) in fact represent an infinity of realisations of the random function η(x, t), which
are all generated following the same statistical properties.

Thus, the sea surface η(x, t) is now described as a random function, indexed by time t and
position x, and generated through the random integrals of Eqs. (2.18) and (2.22). The basic
properties of this random function are now presented in Section 2.2.3, while more details about
random functions in general may be found in [23].

3In the case of Eq. (2.20), the random sequence Xi is not identically distributed; therefore Lindeberg’s version of the
central limit theorem must be employed, which requires that the variance of the Xi is finite and satisfies the so-called
Lindeberg’s condition - see [15] and Chapter 10 of [24].
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2.2.3 The Gaussian sea state: fundamental properties

First of all, as already mentioned, η(x, t) is a Gaussian random function, which formally means
that, for any discrete set of points {(x1, t1), ...(xn, tn)}, the set {η(x1, t1), ...η(xn, tn)} follows a
multivariate Gaussian distribution. The Gaussian wave model implies, in particular, that the prob-
ability law followed by the free surface elevation, sampled at one location, is a normal random
variable.

If Sηη(ω,θ) remains constant over time, and over the horizontal space, then η(x, t) is stationary
and homogeneous, which means that the statistical properties of the function do not vary over time
or in the horizontal space. Since η(x, t) is Gaussian, stationarity and homogeneity reduce to the
fact that the covariance between η, measured at any two points (x1, t1) and (x2, t2), only depends
on the relative position x2− x1 and time t2− t1, which is called weak stationarity (resp. weak
homogeneity) [25]. Thus, a covariance function Rηη(r,τ) can be defined, such that for all (x1, t1)
and (x2, t2):

〈η(x2, t2)η(x1, t1)〉= Rηη(x2−x1, t2− t1) (2.24)

In particular, the variance, defined as the average 〈η(x, t)2〉, is also equal to Rηη(0), and does
not depend on the location x or time t, and thus can be simply denoted 〈η2〉, or more commonly
σ2.

Furthermore, the covariance function and the SDF constitute a Fourier transform pair, which is
a property referred to as the Wiener-Khinchine theorem [23, 25]. The Wiener-Khinchine relation
will be further detailed in Chapter 3, where it will be of particular importance.

Finally, another important property stems from the Gaussian representation of Eqs. (2.18)
and (2.22), namely ergodicity [15], which means that statistics, based on time averages or space
averages, are equal to statistics based on ensemble averages. For example, the variance, which is
mathematically defined as the ensemble average 〈η(x, t)2〉, can also be obtained by computing the
time or space average of η(x, t)2 for any specific realisation of η(x, t):

σ
2 = 〈η2〉= lim

T→∞

1
T

T∫
0

η̂(x∗, t)2dt = lim
Lx,Ly→∞

1
LxLy

Lx∫
x=0

Ly∫
y=0

η̂(x, t∗)2dxdy (2.25)

where η̂ denotes a specific realisation of the function η, x∗ in the second member of the equality
indicates that time-integration is carried out at a fixed location x∗, and t∗, in the third member of
the equality, indicates that integration in the horizontal plane is carried out at fixed time t∗.

Assuming the stationary, homogeneous and ergodic Gaussian wave representation of Eqs.
(2.18) and (2.22), the random function η(x, t), i.e. the sea state, is entirely characterised by its
SDF Sηη(ω,θ). The Gaussian model thus provides a unified, elegant and relatively simple math-
ematical framework for the description of a random sea. In spite of its apparent simplicity, the
Gaussian representation of random waves lends itself to a wealth of analysis which can be best ap-
preciated in the book by Ochi [6]. In the field of wave energy, and other engineering applications,
many parameters of interest can be derived from the wave spectrum, as a complement to those
which can be directly estimated from wave time series. Such parameters will not be enumerated
here; their definitions may be found in [26]. Only the most common parameters are introduced at
this stage:

• For any integer j, the spectral moment of order j is defined as:

m j =

∞∫
ω=0

ω
jSηη(ω)dω (2.26)

In particular, m0, which is the area under the wave spectrum, measures the average energy
of the random process, and is equal to the variance [25]. Therefore, the following equality
holds:

m0 = σ
2 = Rηη(0) (2.27)
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• The significant wave height Hs is defined as the average peak-to-trough height of the one
third largest waves. Assuming a narrow-band spectrum, which means that the free surface
elevation does not have any positive minima or negative maxima, the distribution of wave
amplitudes follows a Rayleigh distribution, and Hs can be estimated directly from the wave
spectrum (in which case it is usually denoted Hm0) as:

Hs ≈ Hm0 = 4.01
√

m0 (2.28)

In general, actual wave spectra are not narrow banded, which complicates the calculation of
Hs; however the error in using the simplified Eq. (2.28) is an overestimation always smaller
than 8% [6].

• The peak wave period, Tp, corresponds to the inverse of the frequency which has the highest
energy in the wave spectrum, while the mean energy wave period, Te, is calculated from the
spectrum as:

Te =
m−1

m0
(2.29)

The Gaussian representations of Eqs. (2.18) and (2.22), with a given SDF Sηη(ω,θ), remain
valid over a period of time and a geographical area, where it can be reasonably assumed that the
wave energy distribution, across frequencies and directions, remains constant - in other words, the
stationarity and homogeneity assumptions are verified. In reality, the sea state slowly evolves in
time and space. However, it is generally accepted that the sea state can be considered “locally”
stationary, over durations less than 1 to 3 hours and distances of several kilometres, although the
latter order of magnitude may be reduced in the case of a complex local bathymetry or coastline.
Beyond such time and geographical scales, the variations in the statistical characterisations of
the sea surface are generally dominated by slow changes in meteorological conditions while, on
shorter scales, the dominant effect is the short-term variability of the random function η. The
latter point is often relatively neglected or misunderstood by engineers and researchers, and will
be exemplified in Chapter 3, using real wave data.

Thus, over a long period, the wave conditions in a given location can be modelled as a sequence
of Gaussian wave spectra. Similarly, the wave conditions, encountered by a ship or an offshore
structure throughout its life as discussed in 2.1, are usefully characterised by means of a large
sequence of Gaussian wave spectra. Therefore, Gaussian wave fields form the fundamental tool
to characterise wave loads in naval and offshore engineering, and to describe sea states in weather
prediction models.

Before Section 2.4 provides more practical illustrations of ocean wave spectra, with a discus-
sion on appropriate wave spectral representations in the context of wave energy, Section 2.3 dis-
cusses the range of validity of the Gaussianity assumption, as far as WEC systems are considered.
Also note that hydrodynamic theory, which has only been the subject of a succinct presentation in
the present section, is given more attention in Chapter 4, dedicated to the mathematical modelling
of wave energy converters.

2.3 Beyond the Gaussian description

It is important to understand the limitations and the range of validity of the Gaussian description.
In particular, two key assumptions may be questioned:

• Conceding that linear wave theory, as presented in Section 2.2, accurately describes ocean
waves, and assuming that ocean waves are indeed generated by a large number of events,
why should it be assumed that all the infinitesimal wave components have independent
phases?

17



• If some of the assumptions of linear wave theory are violated, i.e., if some non-linear effects
are taken into account in the physical description of waves, can the Gaussian model remain
useful?

An initial answer to both questions is provided by empirical evidence. Based on observations
at sea and laboratory tests, the consensus is that, quoting Ochi [6], “waves can be considered a
Gaussian random process even in severe seas if the water depth is sufficiently deep”. In fact,
the Gaussian wave description is successfully employed in practice, since it forms the basis of
operational weather forecasting models, which consider that, for sufficiently short time scales (1
to 3 hours) and geographical spans (several kilometres), the sea is locally Gaussian, while the
so-called energy balance equation describes how the wave spectrum slowly evolves in time and
space4.

The independence of the wave components also finds theoretical justifications, which are elo-
quently discussed by Hasselmann in Appendix B of [27]. The general idea relies on considering
the wave field as a sum of uncountable, possibly interacting wave groups. Even if some of these
wave groups were initially correlated, they subsequently propagate in time and space, at different
speeds because of the dispersive nature of water waves, so that they eventually become separated,
and the correlation between them can only be observed by indefinitely expanding the domain of
analysis: “The separations between dependent wave groups increase indefinitely with time, so that
the statistical information disperses to infinity and can be recovered only by continually extend-
ing the spatial domain of the analysis” [27]. Therefore, in practice, since a wave field is always
examined over a limited domain, the observable wave properties are Gaussian.

As far as non-linearities are concerned, it is useful to distinguish broadly between “strong”
non-linearities, which are incompatible with the Gaussianity assumption, and “weak” non-linearities,
which do not necessarily contradict it.

Strongly non-linear sea states typically display a marked asymmetry between wave peaks and
troughs, the latter being sharper while the former are relatively flat. Such patterns are typically
observed in shallow waters, where the waves tend to lose their dispersive property, or in deep
water in very strong sea states. The departure from Gaussianity in shallow water is discussed more
precisely in Chapter 9 of [6]. An empirical separation law between Gaussian and non-Gaussian
regimes is proposed, based on significant wave height and depth. For example, in a depth of 20m,
a strong sea state with Hm0 = 5m separates Gaussian from non-Gaussian regimes. Similarly, in
deeper water, strong seas and fast transient meteorological conditions may lead to non-Gaussian
statistics, see for example [28]. In particular, the probability of occurrence of rogue waves may be
explained by such departures from Gaussian statistics [28]. For non-Gaussian seas, the spectrum
(which only measures second-order statistics) does not suffice for the complete characterisation
of the random process under study. Higher-order spectral analysis (bi-spectrum, tri-spectrum) can
be used, for example, in the study of random waves in shallow water [29]. Eventually, strongly
non-linear waves may typically break, which is obviously not represented in any Gaussian model.
As far as WECs are concerned, only the study of extreme conditions, or of specific WEC concepts
operating in sufficiently shallow waters, may necessitate the modelling of non-Gaussian wave
inputs.

Weak non-linearities are based on the idea that the solution of the linearised equations provides
a satisfactory starting point, to describe small-but-finite disturbances of the free surface [30]. The
non-linear wave field is then analysed by means of non-linear perturbations, in terms of a small
(but finite) parameter, usually the wave steepness.

In particular, weak non-linearities account for resonant interactions between waves of different
frequencies, which were first evidenced by Phillips [31, 32]. Two interacting waves, yielding a
third wave at a frequency different from the first two waves, is referred to as three-wave interaction,
while three waves, giving birth to a fourth one is called four-wave interaction, and so on. Phillips
showed that three-wave interaction does not exist for deep-water gravity waves, so that four-wave

4https://www.ecmwf.int/en/learning/education-material/lecture-notes
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interaction is the dominant non-linear process for those waves. Non-linear interactions amongst
water waves have been studied at a deterministic level, i.e. by considering elementary interactions
between a small number of waves, as well as from a stochastic point of view, i.e. by considering
non-linear interactions in a random wave field with a broad spectrum [33]. The latter, stochastic,
approach is referred to as wave turbulence theory [34]. Wave turbulence theory was pioneered
by Hasselmann [35, 36, 37], who first proposed a model to calculate four-wave interactions in a
random wave field. Four-wave interactions have been found essential to explain how the wave
spectrum slowly evolves in time and space and, in particular, how the wave spectrum broadens to
low frequencies which cannot be generated directly under the effect of wind [30]. As such, the
computation of spectral energy transfers due to four-wave interactions is a challenging and crucial
aspect of modern operational ocean weather forecasting models [5], referred to as 3rd generation
wave models. Note that, in numerical weather forecasting models, the other terms, namely wind
forcing and wave dissipation, which govern the evolution of the wave spectrum in the energy
balance equation, are also essentially non-linear phenomena.

In spite of their importance in the evolution of wave conditions, it is generally assumed that
non-linear energy transfers take place over relatively large time and geographical scales, without
significantly affecting the local Gaussian nature of the wave field, considering a small enough time
and geographical range. Again, quoting Hasselmann [27]: “The coupling between interacting
wave groups which satisfy the resonance conditions leads to a small energy transfer and a weak
statistical dependence between the wave groups. After interacting, the wave groups propagate
away from one another and the statistical correlations disperse into a fine structure. The Gaussian
hypothesis implies that the fine structure can be ignored for the development of the field forwards
in time. Or in other words, in subsequent interactions (involving new sets of wave groups which
interact for the first time) the interacting components can be regarded as statistically independent.”

Many other types of weakly non-linear wave phenomena exist, and their study is still a very
active research area, with a rich literature (see, for example, reviews in [33] and [34]) with con-
nections to other branches of theoretical physics, such as plasma waves and optics. Therefore,
this brief discussion by no means constitutes a comprehensive review, but it merely emphasises
the fact that a Gaussian statistical representation, if its limitations are correctly understood, is not
incompatible with the presence of weak non-linearities.

Finally, strong non-linear effects may occur as a result of wave interaction with the WEC
structure. However, such effects are to be distinguished from non-linearities in the undisturbed
wave field. The modelling of non-linear fluid-structure interactions, discussed in Chapter 4, is not
incompatible with the fact that the undisturbed, far-field waves, which essentially represent the
independent forcing term for the system under study, are statistically Gaussian. Overall, it seems
reasonable to assume that, for the vast majority of WEC concepts and operating conditions, the
independent wave forcing terms can be modelled as a Gaussian statistical process.

2.4 Spectrum characterisation for wave energy applications

It has been explained, in Sections 2.2 and 2.3, why the fundamental characterisation of the wave
input, for typical WEC operating conditions, takes the form of a Gaussian random function, of
which the statistical properties are entirely specified by a SDF. Therefore, the statement formulated
in the introduction of this chapter, that the WEC response should be studied in the sea states
typically experienced throughout its lifetime, may now be rephrased more accurately by replacing
“sea states” with “wave spectra”. A realistic characterisation of the WEC response thus requires
that the wave SDFs are represented with sufficient accuracy for the intended objective.

A particularly important task is power production assessment, or simply power assessment,
which consists of evaluating the WEC or WEC farm power production over its lifetime, in a
selected location. At the current development stage of WEC technologies, power assessment is
essential to evaluate and compare the potential of various technologies at different locations [4, 38,
39, 40, 41, 42, 43, 44]. In the future, power assessment will also be instrumental in determining the
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economic viability of specific wave energy projects. Power assessment may not only provide a raw
figure for the average WEC power production, but may also, in a wider sense, include the study of
the WEC production variability over different time, and geographical, scales [43, 45, 46, 47, 48].

In addition to power production, other aspects of the WEC performance may be analysed by
means of numerical simulations, and thus also necessitate an appropriate wave spectral descrip-
tion: for example, dimensioning the device to ensure its survivability may be carried out through
fatigue analysis using cycle counting, or by accurately assessing the probability of occurrence
of some specific events (such as exceeding a given threshold of force or position), as discussed in
Chapter 14 of [3]. Both approaches require a detailed statistical knowledge of the device dynamics
over its lifetime, and therefore present challenges which are similar to those of power assessment.
However, for the sake of simplicity, and because until now the bulk of the research effort on WEC
technology has focused on power production, this section (2.4) focusses on how accurately wave
spectra should be described, in the specific context of power assessment.

A comprehensive study on power assessment methodologies would also include a discussion
on WEC physical modelling and numerical simulations. The detailed presentation of those topics
is reserved for Part II (Chapters 4 and 5) of this thesis.

2.4.1 Real wave dataset

Throughout the remainder of this section, and in Chapter 3 of this thesis, a real wave dataset,
kindly provided by the Irish Marine Institute, is used as a particular real-world case study. The
Irish Marine Institute has wave elevation measurement buoys operating at several locations off
the coast of Ireland. The dataset considered here consists of one year of wave data, recorded in
a site off County Mayo in the West of Ireland, several miles away from the town of Belmullet5.
Although the buoys record many variables, for the purpose of the present section, only free surface
elevation data was used, and processed in order to obtain wave spectra.

The wave elevation data was originally organised into files corresponding to 30 minutes of
wave elevation, recorded at a rate of fs = 1.28 Hz. Unfortunately, there is a significant proportion
of missing half-hourly files, approximately 30-40%, corresponding to periods of time where the
buoy was not operating properly. A complete insight into the seasonal variability of the meteo-
rological conditions would require significantly more data - typically 10 years of complete data.
However, the dataset is large enough to provide meaningful examples.

Each 30-min wave elevation data file is processed, so as to obtain a 30-min wave spectrum
estimate, in several steps:

• The thirty minutes of data are split into overlapping 3-min segments.

• In each segment, the signal is windowed through a tapered cosine function (or Tukey win-
dow) [49].

• The SDF is estimated for each segment, by means of an FFT.

• Finally, the SDF estimates in all segments are averaged to obtain the 30-min SDF.

Several remarks are appropriate. Firstly, the number of frequencies in the SDF is determined
by the characteristics of the individual data segments. In particular, the cut-off frequency is de-
termined as fmax =

1
2∆t

= 1
2 fs = 0.64Hz, and the frequency step is ∆ f =

1
Tseg

= 0.0056Hz, where
Tseg is the duration of individual data segments. Furthermore, it was found that the methodology
and settings, used here to calculate the half-hourly spectra, are very similar to those used, within
the WaveRider measurement buoys themselves, for the same purpose6. Finally, averaging the

5http://www.marine.ie/Home/site-area/data-services/real-time-observations/wave-buoys
Belmullet buoy: Wave DataWell Wave Rider “Berth B”, Lat. 54.2339, Long. -10.1429, year 2010

6http://www.datawell.nl/Support/Documentation/Manuals.aspx
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(a) Tp = 10s, γ = 3.3, varying Hm0 (b) Hm0 = 2m, γ = 3.3, varying Tp (c) Hm0 = 2m, Tp = 10s, varying γ

Figure 2.1: Examples of JONSWAP SDFs with varying parameters Tp, Hm0 and γ

SDF of all segments is essential to obtain spectral estimates which are less affected by short-term
variability.

Once half-hourly wave spectra have been obtained, it is also easy to obtain hourly or 3-hourly
wave spectra, depending on the intended objective. For example, hourly spectra are obtained by
averaging every two consecutive half-hourly SDFs.

2.4.2 Parametric wave spectra

Actual ocean wave spectra, Sηη(ω,θ), exhibit a variety of shapes. In particular:

• The spectrum can be more or less energetic, which corresponds to larger or smaller values
of Sηη(ω,θ), respectively.

• The spectrum can have a greater content in the low frequencies (long and slowly-oscillating
waves) or, in contrast, in the high frequencies (short, quickly-oscillating waves).

• The spectrum may be uni-modal, which means that Sηη(ω,θ) has only one spectral peak
corresponding to one wave system, or multi-modal, when two or more wave systems are
combined, thus resulting in a spectrum with two or more peaks. Multi-modal wave spectra
may occur, for example, when swell waves (which have low frequencies) are combined with
a wind sea (which has a high-frequency content).

• Sηη(ω) may be sharply concentrated around a peak frequency, or may be more broad-
banded.

• Sηη(ω,θ) may be strongly concentrated in one direction (long-crested waves) or exhibit
strong directional spread (short-crested waves).

Physical considerations and empirical measurements have allowed the formulation of various
parametric models for wave spectra, which represent spectral shapes under different idealised
conditions, see for example Chapter 2 of Ochi’s book [6]. For non-directional spectra, the most
commonly encountered formulations are the Pierson-Moskowitz spectrum (for a fully-developed
sea) [50], the Bretschneider spectrum (suitable for a developing sea) [51], and the JONSWAP
formulation [52] for wind-generated seas with fetch limitations (the Pierson-Moskowitz spectrum
is, in fact, a limit case of the JONSWAP formulation).

As an example, Fig. 2.1 shows non-directional wave spectra following the JONSWAP for-
mulation. The JONSWAP formulation has three free parameters, usually taken as the peak wave
period Tp, the significant wave height Hm0 , and a peak enhancement factor γ which can, in realistic
conditions, take values between 1 and 6, with a typical default of 3.3 [6].
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  0.05  0.1

30

210

60

240

90270

120

300

150

330

180

0

0

2

4

6

8

10

12

14

16

(b) smax = 75

Figure 2.2: Examples of directional JONSWAP spectra with a Mitsuyasu spreading function, using
two different spreading parameters smax (Hm0 = 2m, Tp = 10s, γ = 3.3)

To account for the directional distribution of wave energy, analytical formulations are also
available. The directional spectrum is often described by means of a parametric, directional
spreading function, D(ω,θ), such that:

Sηη(ω,θ) = D(ω,θ)Sηη(ω) (2.30)

where Sηη(ω) is the non-directional spectrum and, for each frequency ω,

2π∫
0

D(ω,θ)dθ = 1 (2.31)

so that Eq. (2.23) is verified. Several formulations exist for the spreading function D(ω,θ), such
as the cosine-square, Mitsuyasu, Hasselmann and Borgman’s formulae [6]. In particular, the Mit-
suyasu formula is widely used for engineering applications, and is considered reasonably realistic
[53]. Denoting θp as the peak wave direction and ωp = 2π/Tp the peak frequency, the Mitsuyasu
directional spreading function is:

D(θ,ω) =
22s−1

π

Γ(s+1)2

Γ(2s+1)
|cos(

θ−θp

2
)|2s (2.32)

where the parameter s is frequency-dependent, with:

s =

{
smax(ω/ωp)

5 for ω≤ ωp

smax(ω/ωp)
−2.5 for ω > ωp

(2.33)

The parameter smax governs the concentration of the wave energy around the peak direction,
and thus depends on the nature of the wave system considered. A large smax value indicates a
spectrum sharply concentrated around its mean direction. Values such as “10, 25 and 75 for wind
waves, swell with short decay distance, and swell with long decay distance, respectively” [53],
may be used. Fig. 2.2 shows two examples of directional spectra, obtained from a JONSWAP
spectrum (Hm0 = 2m, Tp = 10s, γ = 3.3) and a Mitsuyasu spreading function with smax = 25 and
smax = 75, respectively.

Parametric spectral formulations are extremely useful in practice. Indeed, they characterise
the complete spectrum by means of several scalar values only - usually two. In particular, this
simplifies the task of data storage, and eases the computations in numerical weather prediction
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Figure 2.3: Example of scatter diagram showing the probability of occurrence for each hourly sea
state, characterised by Hm0 and Te

models. Furthermore, assuming a given spectral formulation, many statistical quantities can be
derived using analytical formulae [6]. Finally, when it comes to measuring real ocean wave spec-
tra, if a parametric formulation is assumed, the entire spectrum can be deduced from just two or
three scalar parameters (for example m0, Tp and θp), which are easily measurable using relatively
simple devices and methods.

2.4.3 The power matrix approach

The most usual methodology for power production assessment of a given WEC at a specific site
consists of calculating the convolution between the site scatter diagram and the device power ma-
trix, see for example [4] and [38]. Such an approach characterises each sea state by means of
only two parameters. The parameters recommended in the IEC standard TS 62600-101 [54], for
wave energy resource assessment, are the significant wave height Hm0 , and the mean energy wave
period Te, as defined in Eqs. (2.28) and (2.29). A two-parameter representation implicitly assumes
that all wave spectra, at the site of interest, can be described in a given parametric form charac-
terised by two parameters, such as a Bretschneider spectrum, a Pierson-Moskowitz spectrum, or a
JONSWAP spectrum with a fixed value for the peak enhancement factor γ.

The scatter diagram (or scatter table) has two entries corresponding to the two chosen spectral
parameters. It represents, for each pair of parameters, the probability of occurrence of the cor-
responding sea state. The scatter diagram must be evaluated based on sufficiently long historical
data, at least 10 years according to IEC TS 62600-101 [54, 55]. Such historical data may have
been recorded at the site of interest (if a measurement device has been operating at the site for a
sufficiently long time), or reconstructed from numerical ocean models [56], which is referred to as
hindcast data [5]. An example of a scatter diagram is given in Fig. 2.3, which has been constructed
from hourly wave spectra corresponding to the Belmullet wave dataset, although the record is far
too short and incomplete to comply with the recommended 10 years.

The power matrix is a concise WEC representation, showing the WEC output, in terms of
average power production, as a function of the two parameters describing the sea state. The value
in each cell of the power matrix is computed through numerical simulations, where the wave
spectrum has the chosen parametric shape, with height and period parameters corresponding to
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the cell indices. An example of a power matrix is shown in Fig. 2.4, which is an adaptation of the
power matrix for the flap-type wave energy device studied in [57], and described in more detail in
Chapter 5 of this thesis. A JONSWAP spectrum is assumed, with γ = 3.3. Note that the device
operational range does not cover all sea states, in order to guarantee its physical integrity.

Denoting pi, j as the value in cell i, j of the scatter diagram, and Pi, j as the value in cell i, j of
the power matrix, the average annual power production can be simply computed as:

Pannual = ∑
i

∑
j

pi, jPi, j (2.34)

The power matrix approach has clear benefits:

• The approach only necessitates a characterisation of the wave input in terms of two pa-
rameters, and thus does not require the availability of hindcast data with a comprehensive
description of each wave spectrum.

• Assuming that long enough hindcast data are available, with a comprehensive description
of each wave spectrum, calculating the WEC output for each individual spectrum could be
a computationally prohibitive task. In particular, as discussed in Chapter 4 of this thesis,
when the WEC dynamical model is non-linear, numerical simulations are usually carried
out using time-domain integration, which is relatively slow. In contrast, the power matrix
approach only requires the WEC output to be calculated for each cell of the power matrix.

However, the power matrix approach is subject to significant limitations in terms of accu-
racy, since two-parameter wave spectra cannot reflect the variety of spectral shapes which are
encountered in real seas. This is illustrated in Fig. 2.5, which shows three wave spectra, from the
Belmullet dataset, along with JONSWAP spectra having the same (Hm0 ,Te) pairs (and γ = 3.3).
Although the sea state on the left hand-side is reasonably well described by the JONSWAP shape,
this is not the case for the two other sea states. In particular, bi- or multi-modal sea states are
poorly represented.

In fact, in many locations, the sea condition is multimodal during a significant part of the
year. For example, at the four locations studied in [4], namely North-West Denmark, North Spain,
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Figure 2.5: Three wave spectra recorded in Belmullet, along with JONSWAP spectra having the
same Hm0 and Te (with γ = 3.3)

Chile and West Ireland, unimodal sea states only represent from 45% to 60% of the total sea states
recorded throughout the year. Finally, the directional spread of wave energy cannot be described
in an omnidirectional spectrum formulation.

Given that the more energetic sea states are closer to theoretical spectral shapes (as also illus-
trated in Fig. 2.5), it could be assumed that the error in using a power matrix is relatively modest
[46]. Furthermore, some WECs are insensitive to wave directionality and to the high-frequency
content of the input wave spectrum, in which case a sea state characterisation through an omni-
directional, two-parameter, spectrum may be sufficient to predict the WEC output. But in a wide
variety of cases, WECs are sensitive to the wave direction and, more often than not, are sensitive
to the energy distribution across wave frequencies. Therefore, describing sea states as a simple
(Hm0 ,Te) pair may lead to significant over- or underestimation of the WEC power output. In [4],
it is shown that, for some of the WECs studied, the power output error, for a given spectrum de-
scribing a 3-hour sea state, could amount to as much as a 200 % overestimation of the true power
production.

Within the scope of resource assessment, the errors for individual wave spectra may be aver-
aged out when considering annual power production. However, even over such a long time scale,
results of [4] tend to show that significant errors, of the order of 20 % of the true average annual
power, may remain for some WEC types and geographical locations. The author of this thesis also
carried out a study [57], regarding the limitations of the power matrix approach, where similar
orders of magnitude are found.

In addition, the level of sophistication of current numerical ocean models makes it possible to
describe local wave conditions much more precisely than through just two parameters. In state-
of-the-art models such as in [56], sea states are described as discretised, full-directional spectra,
with a spectral resolution of 30 frequencies and 24 directions, without assuming any predefined
spectral shape or combination of spectral shapes. Therefore, it can be reasonably expected that,
for the purpose of power assessment in a given location, hindcast data can be obtained featuring a
comprehensive characterisation of each wave spectra.

Assuming availability of accurate hindcast data, two approaches can be identified to overcome
the limitations of the power matrix approach:

• Run numerical simulations to obtain the WEC output in each spectrum of the historical or
hindcast dataset;

• Adopt an improved, possibly multidimensional version of the power matrix approach, where
the wave spectra are described by more than two parameters.

The former possibility can only be reasonably considered if an efficient numerical simulation
method is available, which can be challenging if the WEC dynamical model is non-linear [3]. The
second part of this thesis is dedicated to innovative numerical techniques which can address such
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a challenge. The latter solution - improving the spectral parametrisation - is only briefly discussed
in the following subsection (2.4.4).

2.4.4 Improved spectral parametrisations

A comprehensive approach would consist of describing the wave spectrum as the sum of a finite
number of wave systems [58], each one being described through a standard spectral shape with
two or three parameters, e.g. Hm0 , Te and θp. Such an approach could provide an accurate and
physically-meaningful description of any wave spectrum. But the number of possible parameter
combinations of the multi-dimensional power matrix increases exponentially with the number of
parameters, so that it may be computationally prohibitive to fill-in the multi-dimensional power
matrix by means of experiments or numerical simulations. Additionally, many combinations of
parameters would, in fact, never be met in the location considered, thus resulting in unnecessary
computational overhead at the stage of calculating the cells of the multidimensional power matrix.

As a result, some authors have focused on more concise parametric sea state descriptions,
suggesting only one or two more parameters in addition to Hm0 and Te [59, 60]. For WECs, or
WEC farms, which exhibit a strong sensitivity to the incident wave direction, the average direction
of the main wave system may be a relevant additional parameter. Other suggested additional
spectral parameters generally provide information about the wave spectrum directional spread
[60], or about the wave spectrum frequency spread (or spectral bandwidth) [59, 60]. However, for
the WECs tank-tested in [60], the directional spread only has a very minor impact on the WEC
performance.

Concerning the energy spread of the wave spectrum across frequencies, it is suggested both in
[60] and in [59] to use an additional parameter related to the spectral bandwidth of the spectrum.
Indeed, spectral bandwidth has a strong influence on wave groups (i.e. groups of successive waves
exceeding a given threshold) [6] which, in turn, may strongly influence power production [61].
Many different parameters exist, which measure the spectral bandwidth [6, 59]. For example, in
[59], the spectral broadness ε0, defined as

ε0 =

√m0m−2

m2
−1
−1 (2.35)

is found to be an interesting measure, which does not over-represent high frequencies and improves
the accuracy of the WEC output power calculation. However, in general, the most appropriate
spectral bandwidth parameter seems to depend on the WEC model considered [59].

Bandwidth parameters are particularly suitable for WECs with a broadband response [59], but
may not be sufficient for any WEC and sea state, since even a triplet of values (wave height, wave
period, spectral bandwidth) may still be the same for a range of significantly different sea states.
In [4], for example, in the range of sea states studied, despite the fact that the WEC performance
for a fixed (Hm0 ,Te) pair roughly follows a linear trend with respect to ε0, it can also be seen that
even with the same (Hm0 ,Te,ε0) triplet, significantly different power values can be obtained.

An interesting formulation is suggested in [46] where, for a given Hm0 ,Tp pair, the spectral
shape is characterised by two additional parameters, both taking continuous values between 0 and
1, and governing, respectively, the degree of bimodality and the degree of prevalence of swell
over wind sea. Both parameters are directly computed from the omnidirectional spectrum, with-
out resorting to any spectral partitioning method. The total number of parameters then remains
relatively modest, and yet may allow the WEC power output to be assessed more accurately.

Another interesting method is the MaxDiss selection technique, used in [4]: the power matrix
has 3 entries, namely Hm0 , Tp, and the broadness parameter ε0. Within the historical wave data at
a specific location, a limited number of spectra are chosen, which span the range of (Hm0 ,Tp,ε0)
triplets encountered at the site under study. Then, instead of assuming a JONSWAP spectral shape,
the power matrix is built using the selected sea states, combined with an interpolation technique.
The resulting power matrix is thus based on a more faithful representation of the spectra which
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characterise the location, at moderate computational cost. However, the resulting WEC power
matrix is site-specific, and the procedure would have to be carried out again for studies in other
locations.

2.5 Summary

In order to develop wave energy technology, numerical WEC simulations in specified sea states are
necessary. To generate realistic forcing terms for such simulations, consistent stochastic models
for ocean waves are crucial, which are representative of average wave statistics, and also describe
the short-term variability of real ocean waves.

This chapter has explained the theoretical foundations which lead to describing the sea state
as a stationary, homogeneous, Gaussian random field, which reduces to a stationary Gaussian
process when the wave elevation is considered at a single location. All the statistical properties of
such a Gaussian random field are provided by its SDF. The Gaussian description of ocean waves
does not explain the variety of strong non-linear wave phenomena observed in the ocean, and
cannot account for the slow evolution of sea states in time and space. Nevertheless, the Gaussian
assumption can be reasonably expected to hold for the vast majority of WEC operating conditions,
and doubtlessly provides a fundamental framework to understand the short-term variability of
wave records. In a non-Gaussian, stationary sea state, such as those which can occur in shallow
waters and with strong meteorological conditions, spectral analysis can still be employed, although
it does not provide a complete statistical characterisation of the wave process. Non-Gaussian sea
states, however, will not be considered in the rest of this thesis.

Throughout its lifetime, a WEC will operate in a long series of sea states, i.e. SDFs, which
can be modelled using historical data when available, or hindcast data from numerical weather
prediction algorithms. In order to determine long terms statistics on the WEC behaviour, in partic-
ular for power assessment, simplified SDF representations are usually employed, to avoid running
numerical WEC simulations across a large number of different sea states. Unfortunately, such ap-
proaches can yield erroneous estimates. However, if efficient numerical methods were available,
WEC simulations in each sea state of the hindcast dataset could be achieved within a reasonable
amount of time. This is the primary motivation to develop the innovative numerical methods for
wave energy applications, which will be the subject of Part II of this thesis.

Most importantly, a clear working assumption can be established for the remainder of this
work: the forcing term in numerical WEC models can be statistically described as a Gaussian
process (possibly multivariate if there are several forcing terms). The numerical synthesis of such
Gaussian wave inputs, with the statistical properties corresponding to a specified SDF, is discussed
in Chapter 3.

At first glance, the outcome of this chapter may look somewhat lean: indeed, the notion of
a wave spectrum could be considered common knowledge amongst researchers and engineers in
the wave energy field. However, in practice, this notion is most often reduced to the simulation
of the wave input as a finite sum of sinusoidal functions with random phases, and amplitudes de-
rived from the wave spectrum. Such a simple, physically intuitive representation tends to conceal
the more profound meaning of the wave spectrum, and the physical and statistical grounds upon
which such a representation is based. Accordingly, the thorough discussion on the Gaussian wave
representation and its range of validity, as far as WECs are concerned, justifies the length of this
chapter.

Finally, the statistical view of ocean waves is not only fruitful for the purpose of realistic
simulations. Although this is not directly related to the core topic of this thesis, the Gaussian rep-
resentation can also be made the most of for real-time wave forecasting, a challenging task which
has important prospects in many naval and offshore industries, including wave energy; applica-
tions include real-time WEC power-maximising control [9], helicopter landing, offshore heavy
lifting, installation, access of personnel to offshore wind turbines, etc. The author of this thesis
has proposed a method for real-time wave forecasting, entirely based on the Gaussian statisti-
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cal representation, and which exploits the correlation structure between measured and predicted
values of the wave elevation (or any other wave-related physical quantity) [62, 63]. Under the
Gaussianity assumption, the proposed method has been proven to be statistically optimal (in a
mean-square error sense), and can also provide a lower bound on the forecast error, with any given
measurement configuration. Those developments, although they naturally stem from the work
presented in Chapters 2 and 3, are beyond the scope of this thesis, which focusses on the sole task
of WEC simulation.
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Chapter 3
Simulation of Gaussian waves with
specified spectrum

3.1 Introduction

Determining the output of a wave energy system in a specified wave spectrum (in terms, for ex-
ample, of power absorption, or any other physical variable of interest), requires the generation of
finite-duration wave time series, or realisations, which accurately reflect the statistical properties
of the underlying sea state. Furthermore, as pointed out in Chapter 2, the assumption of a Gaus-
sian sea is generally relevant for wave energy applications [6]. Therefore, this chapter focuses on
the realistic generation of Gaussian wave time series from specified spectra, and discusses various
methods to produce such time series.

Although the calculations and numerical examples provided in this chapter are for the gener-
ation of free-surface elevation (η) time-series, they can be readily extended to any other quantity
related to the wave process through a linear relation, such as surface velocity, pressure, or ex-
citation forces on marine structures. This is briefly discussed in Section 3.5 in the end of this
chapter.

Furthermore, this chapter considers η(t) as a point (i.e. univariate) random process, which de-
scribes the wave elevation at a single location. The generation of a spatially-distributed, Gaussian
random wave field (as opposed to wave process), η(x, t) is out of the scope of this thesis; however,
the considerations developed in this chapter may be relatively easily extended to the more general
case of a Gaussian random field.

Methods for Gaussian process generation can be broadly classified into those relying on a
superposition of sinusoidal functions, with amplitudes determined from the wave spectrum (here-
after termed wave superposition methods, or WS), and those relying on the filtering of white noise
through an AR, MA, or ARMA model (hereafter termed filtering methods) [64].

Filtering vs wave superposition methods

Filtering methods rely on the fact that a stationary Gaussian process can be modelled as the out-
put of a linear system driven by white noise [25]. Once such a linear system has been identified,
the simulation consists of generating an uncorrelated white noise sequence, which is subsequently
filtered through the calculated linear filter. The choice of a linear filter, yielding a good approxima-
tion to the target process spectrum, is not unique. For example, the filter may be formulated either
as an AR, MA, or more generally as an ARMA process. Furthermore, several methods exist to
build an appropriate AR, MA or ARMA model, some of which are reviewed in [65] and [64]. Fil-
tering techniques allow infinitely long time series to be generated, which accurately reproduce the
stochastic properties of the target ocean wave spectrum. In particular, unlike harmonic superposi-
tion methods (as detailed further in Section 3.3), filtering methods are not subject to self-repetition
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issues.
WS methods follow from the spectral representation of stationary processes, and from the

Wiener-Khinchin relation, which states that the spectral density function (SDF) and the auto-
correlation function (ACF) of a stationary random process are a Fourier transform pair [65, 66, 67,
68]. As will be further detailed in Sections 3.3 and 3.4, the random wave process is expressed as a
finite sum of sinusoids, with frequencies spanning the target spectrum bandwidth, and amplitudes
randomly derived from the target spectrum at the corresponding frequencies. As the frequency
discretisation is refined (thus letting the number of components tend to infinity), the target process
is perfectly approximated. Random wave simulation requires the generation of random amplitudes
for each frequency component, and the application of an inverse discrete Fourier transform to
obtain the time-series. How the spectrum is discretised, and how the random amplitudes are
chosen, offer a number of options, which are discussed in Sections 3.3 and 3.4. WS, compared to
filtering methods, shows several significant benefits from an engineering standpoint, including the
following:

1. The methods are fast and simple - in particular, a time series with an arbitrarily small time
step may be generated through Fourier transformation of the randomly-generated compo-
nent amplitudes. The random amplitudes are directly derived from the wave spectrum, and
no filter needs to be designed.

2. The methods are physically intuitive, in the sense that each individual wave component may
represent an elementary wave, satisfying the wave propagation equations (see Chapter 2) -
although here intuition can be sometimes misleading, since the Gaussian wave model relies
on an infinite set of wave components, as opposed to a finite number of them: WS methods,
which can merely approximate a finite-length realisation of the target wave spectrum, are
not to be confused with the Fourier-Steltjes integrals of Eqs. (2.18) and Eqs. (2.22).

3. More importantly, representing a random wave signal through a superposition of sinusoids
at different frequencies allows the calculation of the steady-state response of wave-driven,
linear dynamical systems very efficiently in the frequency domain, without resorting to time-
domain integration. In fact, as developed in Part II of this thesis, the frequency-domain wave
input representation can also be made the most of, in calculating the response of non-linear
systems.

In view of the aforementioned benefits, it comes as no surprise that WS methods are widespread
in naval and offshore engineering, as well as in the wave energy field. WS will therefore be the
focus of this chapter.

Wave superposition methods

WS methods may be further classified following two criteria:

• The frequency discretisation may be either harmonic (the frequency components are the
multiples of a frequency step, or fundamental frequency, ∆ f ), or non-harmonic;

• For a given discretisation of the spectrum (harmonic or non-harmonic), the amplitudes of the
wave components may be chosen either randomly (with variance depending on the spectrum
magnitude), or deterministically (in which case only the phase of the wave components is
random). The random- and deterministic-amplitude variants are hereafter abbreviated as
RA and DA, respectively.

RA WS methods can represent the randomness of sea waves as observed in nature [69, 70],
while DA methods are statistically correct only when the number of frequency components tends
to infinity [21]. However, DA has been deemed attractive by many engineers [71, 72], perhaps
because it is somewhat more simple than WS, and because each random realisation produces
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spectral estimates that closely match the target spectrum, thus possibly reducing the number or
length of the simulations necessary to obtain an accurate estimate of a specific statistical quantity
[73]. In 1984, Tucker et al. [71], in a controversial technical note, drew engineer’s and researcher’s
attention to the “common mistake” consisting of using DA methods, claiming that using DA could
result in erroneous estimates of wave statistics, especially wave group statistics. Nevertheless,
later works by other researchers did not support their claim [74, 75, 76]: for various statistics,
DA seems to produce unbiased estimates with respect to RA, although with less variance [76]. In
more recent years, there has often seemed to be a lack of awareness about the implications of the
choice of either RA or DA. The Det Norske Veritas guidelines, in 2011, promote the use of the
theoretically correct method (RA) [77], while it is stated in a relatively recent report [78], from
the European network Marinet (Marine Renewables Infrastructure Network for emerging Energy
Technologies), that the DA method is the default approach for random wave generation in most
experimental wave tanks. Finally, the implications of using either RA or DA methods in a wave
energy context are studied in [79], although the statistical properties of the generated time series
are not clearly specified.

Harmonic discretisation methods (either DA or RA) present the drawback of producing peri-
odic time series with period Tper = 1/∆ f , where ∆ f is the frequency step. Therefore, the length
of generated signals is structurally limited to T = 1/∆ f . In an era where the computational cost
associated with WS could be an important factor to take into consideration, researchers proposed
alternative WS methods to produce long, non-periodic time series, using only a relatively small
number of frequency components, chosen in a non-harmonic way in order to avoid self-repetition
of the generated signal [70, 75, 80, 81]. Although statistical distortion is suggested by the works
of some authors [75, 82] as a result of non-harmonic WS, such methods are still considered in
recent research [83, 84] and reports [78].

Chapter organisation

In view of the above discussion concerning WS methods, the rest of this chapter is organised in
sections with the following objectives:

• Section 3.2 identifies, in a clear and rigorous way, the statistical properties which should be
expected from the realistic random simulation of ocean waves with a specified spectrum.
Special attention is given to finite-length estimation of 2nd-order statistics, with practical
illustrations by means of real wave data.

• In the light of the target statistical properties identified, Section 3.3 shows that harmonic
WS methods are suitable for realistic random wave generation, and clarifies the differences
between harmonic RA and DA simulated processes. Harmonic RA can realistically repro-
duce all desired statistical properties. Using DA, some realism is lost, but more accurate
estimates of 2nd-order statistics can be obtained using shorter, or fewer, simulations.

• Section 3.4 systematically analyses non-harmonic superposition methods, namely equal-
area and random-perturbation techniques, in view of the aforementioned desired statistical
properties, and rigorously examines the resulting statistical distortion.

• Section 3.5 discusses the results of the preceding sections, and formulates recommendations.
More precisely, it is advocated that the alternative be simply between harmonic RA or DA,
depending on the specific problem considered, while using non-harmonic WS techniques is
not encouraged.

• Finally, the salient points and findings of this chapter are summarised in Section 3.6.
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3.2 Problem specification: properties of finite-length wave records in
Gaussian sea states

3.2.1 Probability law for a finite-length data record

Consider a stationary, ergodic Gaussian sea. Since it is a stationary, Gaussian random process [25],
the wave elevation process is entirely characterised by its mean, which is assumed zero (〈η〉= 0)
and its ACF Rηη, defined as

Rηη(τ) = 〈η(t)η(t + τ)〉 (3.1)

which only depends on τ due to the process being stationary. Rηη(τ) and the wave spectral density
Sηη( f ) are related through the Wiener-Khinchin relation:

Sηη( f ) = 2
∞∫
−∞

Rηη(τ)e−i2π f τdτ (3.2)

and

Rηη(τ) =
1
2

∞∫
−∞

Sηη( f )ei2π f τd f (3.3)

which can be reformulated as:

Rηη(τ) =

∞∫
0

Sηη( f )cos(2π f τ)d f (3.4)

Examples of wave spectra, described in a JONSWAP parametric form (Joint North Sea Wave
Project, [52]) are pictured on the left hand-side of Fig. 3.1. The corresponding ACFs, obtained
through numerical integration of the Wiener-Khintchine relation of Eq. (3.4), are represented on
the right hand-side of the figure. All three spectra in Fig. 3.1 have the same Hm0 and Tp values,
but different peak enhancement factors γ.

Two remarks are appropriate. Firstly, the ACF of typical wave spectra consists of damped os-
cillations, fading out to zero after a few tens of seconds. As far as the discrete ACF is concerned,
it means that it is possible to find a lag τcor such that for τ ≥ τcor,Rηη(τ) ≈ 0. As can be appre-
ciated in Fig. 3.1, more sharply concentrated (or peaky) spectra have a larger correlation length.
Secondly, it can be considered that the wave spectrum is zero above some frequency fc - typically
of the order of 0.5 Hz. This is reinforced by the fact that most marine devices, such as ships or
WECs, act as low-pass filters, so that they are relatively insensitive to the high-frequency content
of the wave spectrum.

In the remainder of this chapter, and unless otherwise specified, a JONSWAP spectrum with
Hm0 = 2m, Tp = 10s and γ = 1.5 (shown in Fig. 3.1a) is retained as an illustrative example.

Now, consider a conceptual experiment where η is recorded over a finite duration T (either
continuously or at regularly-spaced instants). Repeating the experiment many times, as illustrated
in Fig. 3.2, it would be observed that the sequence η(t), for t ∈ [0;T ], is never the same for any
two experiments. More precisely, η(t) is a stationary Gaussian random function of a discrete or
continuous set t ∈ [0;T ] [23]. Furthermore, the covariance between the wave elevation measured
at different instants separated by τ follows Eq. (3.4). The randomness of the experiment, and
the statistical properties which characterise it, could be appreciated by considering the ensemble
statistics, i.e. statistics obtained through averages over the set of experiments (as opposed to time-
domain averaging).

Strictly speaking, when generating so-called ‘realisations’, corresponding to a given spectrum,
the aim should be, in fact, to reproduce the above experiment, consisting of sampling free-surface
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(a) γ = 1.5

(b) γ = 3.3

(c) γ = 5

Figure 3.1: SDF (left) and corresponding ACF (right), for JONSWAP spectra [52] with Hm0 = 2m,
Tp = 10s, and three different peak enhancement factors.
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Figure 3.2: Illustrative example: free-surface elevation η being repeatedly sampled in the same
sea state, over a duration T = 100s.

elevation values from a sea with the target spectrum. Therefore, two criteria are necessary and
sufficient for the generated signal, y(t), t ∈ [0;T ], to be an accurate representation of the target
Gaussian sea:

• C1: The generated signal y(t) should be a zero-mean Gaussian random function of t ∈ [0;T ];

• C2: The covariance function of the generated signal should satisfy Eq. (3.4) for all τ∈ [0;T ].

Similarly to the conceptual sampling experiment, the randomness of the generated signal can
only be appreciated by repeated generation of the finite-length signal, whereby ensemble statistics
can be characterised.

Note that, in addition to the two conditions C1 and C2 stated above, some authors have also
deemed ergodicity as an important property to be satisfied by the generated signal [65, 67], which
means that time-domain statistics (evaluated over an infinitely-long time horizon) should equal
ensemble statistics (obtained through a large enough number of repetitions of the random ex-
periment). However, formulated in the way chosen here, the ergodicity property does not matter,
because only finite-length pieces of random signals are considered. Thus, the interest of the ergod-
icity property is more theoretical than practical and, in fact, C1 and C2 are sufficient to perfectly
reproduce, in a statistical sense, the proposed sampling experiment.

The objectives of the random simulation are now explicitly formulated, and no other property
is needed in addition to the two conditions C1 and C2 stated above, for a simulated wave signal to
be representative of a given sea state.

3.2.2 Finite-length variance estimator in Gaussian sea states

In many engineering applications, important information is derived from the variance, or mean-
square value, of certain physical variables. Examples include:
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• Evaluation of the significant wave height Hm0 , derived from the variance of the wave eleva-
tion signal;

• Calculation of the mean-square difference between two simulated signals, or between pre-
dicted and measured signals;

• Calculation of the average power absorbed by WECs, usually obtained as a quadratic form
on some of the WEC outputs, typically velocity, as will be detailed further in Section 3.5
and in Chapter 4.

Given a zero-mean signal x, recorded or simulated over a duration T , the mean-square value
of the signal is evaluated as

σ̂
2 =

1
T

T∫
t=0

x2(t)dt (3.5)

If x is a random signal, Eq. (3.5) is merely an estimate, which generally differs from the
‘actual’ variance σ2. In particular, because the free-surface elevation η is a random process, quan-
tities x which depend on η are also random, and hence σ̂2 differs from σ2. However, repeating the
calculation over many instances of the random signal x would provide a more accurate estimate
of σ2. The degree to which σ̂2 fluctuates around σ2 determines the level of uncertainty associated
with any given estimate σ̂2 and, in a Monte-Carlo framework, provides guidelines with respect
to the number of experiments which should be carried out in order to obtain a reliable enough
estimate.

Therefore, when carrying out experiments (either recorded or simulated) in a random sea,
a good understanding of how finite-length estimates vary with respect to their average value is
essential, since failing to do so may result in erroneous conclusions due to a particular instance, or
set of instances, of the random sea.

In Eq. (3.5), the process x is not specified. However, in the following, the signal considered is
the wave elevation itself, and therefore σ2 (resp. σ̂2) corresponds to m0 (resp. m̂0), the zeroth-order
spectral moment of the wave elevation process (resp. its estimate).

If the finite-length simulated wave signal, y, accurately reflects the properties of a random sea,
as clarified in Section 3.2, then m̂0 evaluated from y should, in general, not be equal to its statistical
average m0, but should instead exhibit some fluctuation around it, with the same magnitude as m0
estimates would do in actual Gaussian seas. As will be seen in Sections 3.3 and 3.4, the different
WS methods have contrasting properties in this respect. Therefore, prior to analysing the different
WS methods, the properties of the finite-length estimator of the wave elevation variance in actual
Gaussian seas are examined.

Of course, the above remarks, concerning the process variance, are also true for any other
statistics (estimates of the spectrum of a signal, higher-order statistics, etc). Furthermore, in many
applications, the variable of interest x is not η, but some other quantity which results from the
waves, such as the pressure forces acting on a mechanical structure. However, it can be rea-
sonably assumed that an appropriate representation of the randomness of η results in a suitable
representation of the randomness of x. Therefore, focussing this section on η and its variance
estimator m̂0 keeps the discussion relatively simple, but with fairly general significance.

Theoretical calculations

In this subsection, it is examined how finite-length estimates m̂0, in a stationary Gaussian sea,
randomly differ from the actual m0 of the underlying spectrum.

Assume that m̂0 is obtained through integration of the squared wave signal over a period of
time T :

m̂0 =
1
T

∫ T

0
η(t)2dt (3.6)
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The variance of m̂0 can be computed as:

var[m̂0] = 〈m̂2
0〉−〈m̂0〉2

= 〈
( 1

T

T∫
t=0

η(t)2dt
)2〉−m2

0

= 〈 1
T 2

T∫
t1=0

T∫
t2=0

η(t1)2
η(t2)2dt1dt2〉−m2

0

=
1

T 2

T∫
t1=0

T∫
t2=0

(
〈η(t1)2

η(t2)2〉−m2
0
)
dt1dt2

(3.7)

In the expression above, since for any t1 and t2, the random variables η(t1) and η(t2) are jointly
Gaussian, Isserlis’s theorem [85] may be applied, to yield:

〈η(t1)2
η(t2)2〉= 〈η(t1)2〉〈η(t2)2〉+2〈η(t1)η(t2)〉2

= m2
0 +2Rηη(t2− t1)2 (3.8)

Hence,

var[m̂0] =
2

T 2

T∫
t1=0

T∫
t2=0

Rηη(t2− t1)2dt1dt2 (3.9)

Using a change of variables on the integral on t2, followed by a simple integration by parts,
yields:

var[m̂0] =
2

T 2

T∫
t1=0

T−t1∫
t=−t1

R2
ηη(t)dtdt1

=
2

T 2

([
t1

T−t1∫
t=−t1

Rηη(t)2dt
]T

0
−

T∫
t1=0

t1
(
Rηη(T − t1)2−Rηη(−t1)2)dt1

)

=
2

T 2

(
T

0∫
−T

Rηη(t)2dt +
T∫

0

t1Rηη(T − t1)2dt1−
T∫

0

t1Rηη(t1)2dt1
)

(3.10)

Using the fact that Rηη is even, and carrying out a change of variable in the second integral,
gives:

var[m̂0] =
2

T 2

(
T

T∫
0

Rηη(t)2dt +
T∫

0

(T − t)Rηη(t)2dt−
T∫

0

tRηη(t)2dt
)

=
4
T

T∫
0

(1− t
T
)Rηη(t)2dt

(3.11)

Finally, again exploiting the evenness of Rηη, the following expression is obtained:

var[m̂0] =
2
T

∫ T

−T
(1− |t|

T
)Rηη(t)2dt (3.12)
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Figure 3.3: Variance of the m0 estimator, m̂0, depending on the length of the estimation interval T

When T grows, and becomes significantly larger than the autocorrelation length of the process
(beyond which Rηη(t) is zero), the term |t|

T Rηη(t)2 tends to zero for all t, so that Eq. (3.12) can be
approximated as:

var[m̂0]≈
2
T

∫
∞

−∞

Rηη(t)2dt

≈ 1
T

∫
∞

0
Sηη( f )2d f

(3.13)

where the second equality results from the Wiener-Khintchine (3.2) and Parseval’s [6] theorems.
Then, for large values of T , the variance of the m0 estimator follows an asymptotic law in 1

T , which
can be found e.g. in [25], and is used in [61].

For the sea state pictured in Fig. 3.1a, Eq. (3.12) and its asymptotic approximation (3.13) are
numerically computed, and compared in Fig. 3.3. Unsurprisingly, when m0 is estimated over a
very long period T of the signal, each estimate is always almost exactly equal to m0, and hence
the estimator variance tends to zero (asymptotically with 1

T ) when T tends to infinity. In contrast,
when considered over a shorter time period, individual m0 estimates can differ significantly from
m0.

It will also prove useful, in the next section, to have var[m̂0] expressed as a function of the
SDF. Replacing Rηη(t) in Eq. (3.11) with its expression given by the Wiener-Khinchine relation
(3.3), it is straightforward to find that

var[m̂0] =
1
2

∞∫
−∞

∞∫
−∞

Sηη( f )Sηη( f ′)Λ[π( f − f ′)T ]2d f d f ′ (3.14)

where

Λ[x] =

{
sin(x)

x if x 6= 0
1 if x = 0

(3.15)

The function Λ[x] is represented in Fig. 3.4.
Note that, as an alternative to the above calculations leading to Eq. (3.12), which assume con-

tinuous sampling, a discrete-time analogue to Eq. (3.12) can be derived. Considering N regularly-
spaced samples of η, the m0 estimator is given as

m̂0 =
1
N

N

∑
n=1

η
2
n (3.16)

where ηn = η(n∆t) and N∆t is equivalent to the duration T in the continuous-time calculations of
Eqs. (3.6) to (3.12). Then, using Isserlis’s theorem [85] similarly to the continuous-time case, the
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Figure 3.4: Function Λ(x)

variance of the estimator can be shown to be:

var[m̂0] =
2
N

N

∑
n=−N

(1− |n|
N

)Rηη(n∆t)2 (3.17)

which is the discrete-time analogue of Eq. (3.12), and is equivalent to the expression derived in
[86].

Experimental validation using real wave data

The variability of m̂0 with respect to m0 can be evidenced by means of real sea wave records,
using the Belmullet dataset documented in Section 2.4.1. For the sake of illustration, a specific
time period of 24 hours is chosen, during which the wave conditions show little evolution, so
that the wave elevation process can be reasonably considered as a stationary Gaussian process, in
spite of the relatively long dataset considered, well beyond the 30-min to 3-hour duration usually
deemed compatible with the stationarity assumption. The 24 hour period starting on March 28th,
2010, at 2:00 am, meets such requirements, as illustrated in Fig. 3.5, where it can be seen that the
3-hourly wave spectra undergo little change throughout the day.

Fig. 3.6 shows how the variance estimate, m̂0, calculated using Eq. (3.16), varies more when
considered over shorter durations. When estimated every three hours, each estimate m̂0 remains
close to the 24-h average (consistent with the weak variability of the 3-hourly spectrum, pictured
in Fig. 3.5). In contrast, m̂0 measured every 10 minutes shows significant variability compared to
the 24-h average.

Of course, in practice, the wave conditions (characterised by the wave spectrum) are never
perfectly stationary, since the meteorological conditions rarely stop evolving completely - as gov-
erned by the energy balance equation, mentioned in Section 2.3. As discussed in Chapter 2, it
is important to keep in mind that, for the wave elevation process to be considered as stationary,
the duration under study must be small, compared to the rate at which meteorological conditions
evolve.

Fig. 3.7 shows, in each 3-hour window, the empirical variance of the 10-min m0 estimate (i.e.
all the 18 ten-min m̂0, within each 3-hour window, are used to estimate the empirical var[m̂0]).
The empirical var[m̂0] is compared to a theoretical one, obtained by applying Eq. (3.13) to each 3-
hourly spectrum, with an estimation interval T = 10 min. Assuming that the sea state is stationary
over the whole day, the empirical and theoretical var[m̂0] are also computed for the whole 24 hours
of data (again for T = 10min). It can be seen that the empirical var[m̂0], estimated every 3 hours,
is consistent with, but does not exactly match the theoretical one, which can be attributed to two
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Figure 3.5: Eight consecutive 3-hourly wave spectra (Belmullet, starting 28 March 2010, 02:00).
The lighter the colour, the more recent the spectrum.

Figure 3.6: m̂0 estimated over 24-h, every 3 hours and every 10 minutes (Belmullet, starting 28
March, 2010, 02:00).
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Figure 3.7: Theoretical and empirical variance of m̂0 for an estimation interval T = 10 minutes
(Belmullet, starting 28 March 2010, 02:00).

reasons. Firstly, the empirical var[m̂0] is estimated based on a limited number of points (18 in each
3 hours of data), so that it exhibits some variability compared to its average value (which is better
approximated by the 24-hour value). Secondly, the sea condition is never exactly stationary, so
that var[m̂0] presents some variability, not only due to short-term estimations, but also due to the
variability of the sea state (relatively small in this specific dataset). The second effect is reflected
in the 24-hour empirical var[m̂0] being slightly higher than the theoretical one, which would be
obtained if the sea condition were perfectly stationary.

In order to illustrate the difference between the variability due to the change in wave conditions
(i.e. in the wave spectrum) and the variability of m̂0 due to finite-duration sampling, Figs. 3.8
through 3.10 show another example, also based on data recorded at the Belmullet location, in
which the meteorological conditions are rapidly evolving. It can be observed that:

• The 3-hourly m̂0 estimate varies relatively slowly, which corresponds to the gradual change
in the wave spectrum as a result of the weather evolution.

• In contrast, m̂0, estimated every 10 minutes, shows an additional, ‘noisy’ variability, which
adds to the slow pattern resulting from the weather evolution. As illustrated earlier, in
Fig. 3.6, this noisy variability would exist, even if the weather conditions were not rapidly
evolving, and is the result of m̂0 being estimated over finite-duration (10-min) samples.

Consistently with Eq. (3.13), var[m̂0] is larger in more energetic sea states. Similarly to Fig.
3.7, Fig. 3.10 shows, in each 3-hour window, the empirical and theoretical variances of the 10-min
m0 estimate. Again, as in Fig. 3.7, empirical results differ to some extent from theoretical ones. In
particular, due to the sea state evolving rapidly, the empirical m̂0 tends to present more variability
then the theoretical m̂0, within each 3-hour period.

As seen in Figs. 3.7 and 3.10, the main limitation of empirical observations is that it is impos-
sible to perfectly separate the effects of the sea state evolution from those due to the limited time
duration over which spectral estimates are calculated. Overall, it is difficult to quantify accurately
how the empirical statistical properties of the sea (such as var[m̂0]) should compare to theoretical
ones, and some degree of discrepancy should always be expected between empirical and theoret-
ical results. Nevertheless, real sea observations still clearly validate, at least qualitatively, the key
points of this subsection.

In summary, for the statistically-realistic simulation of a stationary sea state, as defined in
Section 3.2.1, the generated time series should have variability properties similar to the 28 March
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Figure 3.8: Eight consecutive 3-hourly wave spectra (Belmullet, starting 18 March 2010, 08:00).
The lighter the colour, the more recent the spectrum.

Figure 3.9: m̂0 estimated every 3 hours and every 10 minutes (Belmullet, starting 18 March 2010,
08:00).
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Figure 3.10: Theoretical and empirical variance of m̂0 for an estimation interval T = 10 minutes
(Belmullet, starting 18 March 2010, 08:00).

2010 dataset, studied in Figs. 3.5 through 3.7. For example, if 10-min time series are generated
repeatedly, the variance of each realisation should present variability with respect to m0, such as
the recorded 10-min samples in Fig. 3.9. However, for some applications, it may be preferable
to use simulation methods which produce second-order statistics with less variability, in order to
obtain accurate estimates using relatively few, or short, simulations. This option is reflected in the
alternative between the random amplitude and the deterministic amplitude harmonic superposition
methods, which are the subject of the next section.

3.3 Harmonic superposition methods

Harmonic superposition is a widely used method to generate random signals from a specified SDF.
Define the cut-off frequency fc, beyond which the spectrum Sηη is assumed to be zero (possibly,
fc is related to the time step of the generated signal via the Nyquist relation, so that fc = 1/2∆t,
but alternatively, the signal may be generated with a time step more refined than 1/2 fc, in which
case FFTs cannot be employed). Define a positive integer M and divide the interval [0; fc] into
M+1 frequencies fk = k∆ f ,∀k ∈ {0...M}, with ∆ f = fc/M. Furthermore, define

νk = Sηη( fk)∆ f (3.18)

The harmonic discretisation of the spectrum is illustrated in Fig. 3.11. ∆ f is the width of each
red bar, and the area under the kth bar represents νk.

From the discretisation in Fig. 3.11, two methods are usually employed to generate a random
time-series. With the Random Amplitude (RA) variant, hereafter denoted HRA, y is generated as:

y(t) =
1
2

M

∑
k=−M

υke−2iπ fkt (3.19)

where ∀k ≥ 0, υk = ak + ibk, where ak and bk are chosen as independent, normally distributed
random variables with zero-mean and variance νk, and υ−k = υ∗k where ∗ denotes the complex-
conjugate [72]. Also note that υ0 = 0, since ν0 = 0. The HRA realisation can also be formulated
as:

y(t) =
M

∑
k=0

Ak cos(2π fkt +ϕk) (3.20)
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Figure 3.11: Spectrum discretisation for the harmonic superposition method (M = 50).

where the ϕk are randomly chosen, following a uniform distribution in [0;2π], and the Ak follow
a Rayleigh distribution with variance 2νk. The two RA formulations, in (3.19) and (3.20), are
strictly equivalent with, in fact, A2

k = a2
k +b2

k = |υk|2.
With the Deterministic Amplitude (DA) variant, hereafter denoted HDA, y is generated as:

y(t) =
1
2

M

∑
k=−M

υke−2iπ fkt (3.21)

where ∀k≥ 0, υk =
√

2νke−iϕk , and the ϕk are chosen as independent random variables, uniformly-
distributed in [0;2π]. Similarly to Eq. (3.20), the HDA realisation may be formulated as:

y(t) =
M

∑
k=0

Ak cos(2π fkt +ϕk) (3.22)

where Ak =
√

2νk.
Both HRA and HDA methods produce periodic realisations with period Tper = 1/∆ f , and

therefore the frequency step limits the length of the simulated signals that can be achieved. The
controversy, relative to the use of RA or DA methods, has been briefly mentioned in Section 3.1.
In particular, with the HDA method, as detailed hereafter, the generated signals have the very same
variance at each realisation. In the following, the HDA and HRA methods are examined, in the
light of the analysis carried out in Section 3.2.

3.3.1 HRA

3.3.1.1 Law of the generated process

Let us consider the random process y(t) generated through the HRA method. Let us consider
a finite collection of time instants, ti, i ∈ [1;N], and y = (y(t1), ...y(tN))T . From Eq. (3.19), the
components of y are given as

yi = y(ti) =
1
2

M

∑
k=−M

υke−2iπ fkti =
M

∑
k=0

ak cos(2iπ fkti)+bk sin(2iπ fkti) (3.23)

so that y is a linear combination of the ak and bk, k ∈ {1...M}, which are zero-mean Gaussian.
Therefore, y itself is a Gaussian random vector. Having shown that every discrete set of samples
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of the generated random signal y(t) has a multivariate Gaussian distribution, it follows from the
definition of a Gaussian process (see for example [23]) that the generated process y(t) is Gaussian.

The ACF of the generated process y can be calculated. From the definition of υk, it can be
easily verified that ∀k, l ∈ {−M...M}, 〈υkυ∗l 〉= 2νkδ(k− l). Thus, recalling that y is real-valued,
and using the linearity of the expected value, the covariance between y(t) and y(t + τ) can be
calculated as follows:

〈y(t)y(t + τ)〉= 〈y(t)y∗(t + τ)〉

= 〈1
2

M

∑
k=−M

υke−2iπ fkt × 1
2

M

∑
l=−M

υ
∗
l e2iπ fl(t+τ)〉

=
1
4
〈

M

∑
k=−M

M

∑
l=−M

υke−2iπ fkt
υ
∗
l e2iπ fl(t+τ)〉

=
1
4

M

∑
k=−M

M

∑
l=−M

〈υkυ
∗
l 〉e−2iπ fkte2iπ fl(t+τ)

=
1
4

M

∑
k=−M

〈υkυ
∗
k〉e2iπ fkτ

=
M

∑
k=0

νk cos(2π fkτ)

(3.24)

The above quantity does not depend on t, so that the generated random process is stationary
and, replacing νk with its expression in Eq. (3.18), the ACF of the generated process is:

Ryy(τ) =
M

∑
k=0

S(k∆ f )cos(2πk∆ f τ)∆ f (3.25)

Finally, the generated process is a stationary Gaussian process, and it is possible to calculate
its autocorrelation function, Ryy, given in Eq. (3.25). Eq. (3.25) is, in fact, a Riemann approxi-
mation of the Wiener-Khinchin relation expressed in Eq. (3.4). Reducing ∆ f , the accuracy of the
approximation can be made arbitrarily good. However, Ryy is periodic, which reflects the fact that
each generated signal is periodic, with a period Tper = 1/∆ f . Fig. 3.12 shows the approximations
to the target ACF, obtained for increasing values of M, i.e. decreasing values of ∆ f .

It can be observed, from Fig. 3.12, that:

• The chosen simulation time T should be lower than, or equal to, 1/∆ f (the self-repetition
period of the generated signal). For example in Fig. 3.12b, simulating a signal longer than
100s would be pointless, since no additional information is generated beyond 100s. As a
consequence, if ∆ f is large (Fig. 3.12a), only very short duration signals can be usefully
generated.

• If ∆ f is large (Figs. 3.12a and 3.12b), the ACF is significantly distorted, even for relatively
small lag values well inside [0;1/∆ f ], as illustrated in Fig. 3.12a.

• With a small enough ∆ f , and with a simulation time T � 1/∆ f , the approximation to the
target ACF is excellent over the complete duration of the simulated signal. For example,
this is the case in Fig. 3.12c up to T ≈ 140s, or in Fig. 3.12d, up to T ≥ 200s.

• With small enough ∆ f , and choosing T = 1/∆ f , the approximation to the target ACF is
excellent well inside the simulated signal, but the first and last samples are correlated due to
the periodicity issue, for example considering T = 1/∆ f = 200s, in Fig. 3.12c.
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(a) M = 20 (∆ f = 0.025)

(b) M = 50 (∆ f = 0.01)

(c) M = 100 (∆ f = 0.005)

(d) M = 200 (∆ f = 0.0025)

Figure 3.12: Rηη vs Ryy, for the spectrum of Fig. 3.1a, using HRA or HDA methods with various
numbers of frequency components.
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Furthermore, the generated process is not ergodic. Indeed, it is easy to check that the ACF,
estimated from an infinitely-long realisation of the signal, can be calculated as:

lim
T→∞

1
2T

T∫
−T

y(t)y∗(t + τ)dt =
1
2

M

∑
0
|υk|2 cos(2π fkτ) (3.26)

which depends on the specific realisation considered because, as seen in Eq. (3.20), |υk| follows a
Rayleigh distribution with variance 2νk. However, as discussed in Section 3.2, ergodicity is not an
important property to be reproduced by the generated signal, since only finite-length realisations
are considered.

Given the above remarks, based on Fig. 3.12, the following guidelines should apply:

• ∆ f should be chosen ‘small enough’. Based on Fig. 3.12, a rule of thumb could be that
Tper = 1/∆ f (the self-repetition period) be larger than twice the correlation length of η.
Alternatively, another simple criterion could be that the area under the discretised spectrum,
M
∑

k=0
Sηη( fk)∆ f , approximates m0 with a given accuracy.

• For a given, small enough ∆ f :

– Choosing T > 1/∆ f is generally pointless, since the generated signal repeats itself, so
that no new information is derived by additional simulation time beyond 1/∆ f ;

– Choosing T = 1/∆ f , the generated signal is periodic, resulting in correlation between
the first and last generated samples. Depending on the intended use of the simulation,
periodicity may or may not be an issue, as will be further detailed in the remainder of
this section;

– Choosing T � 1/∆ f , the ACF of the generated signal accurately matches the target
wave process for all lags within the simulation period.

In summary, the HRA method accurately reproduces the Gaussian properties and the ACF of
the target process, provided that ∆ f is chosen small enough, and that the simulation time T is
chosen less than 1/∆ f .

3.3.1.2 Variance estimator

The HRA method meets the two conditions, C1 and C2, defined in Section 3.2.1, if ∆ f is small
enough, and for T < 1/∆ f . For T = 1/∆ f , the generated signal is periodic, therefore resulting in
statistical correlation between the first and the last generated samples. In this subsection, the sta-
tistical properties of the finite-length variance estimator m̂0, obtained from simulated time series,
are examined and compared to those expected from a true wave signal, as previously detailed in
Section 3.2.2. It is verified that, using the HRA method, m̂0 presents realistic variability around
m0, even when T = 1/∆ f .

Assume that ∆ f is chosen small enough to allow for an accurate SDF discretisation. Assume
that m0 is estimated based on the generated signal, y, with T ≤ 1/∆ f :

m̂0 =
1
T

T/2∫
−T/2

y(t)2dt (3.27)

where, to simplify further calculations, the estimation interval is chosen symmetric with respect to
the origin.

Noting that y(t) = y∗(t), and replacing y(t) with its expression in Eq. (3.19) yields:

m̂0 =
1
T

T/2∫
t=−T/2

1
4

M

∑
k=−M

M

∑
l=−M

υkυ
∗
l e−2iπ( fk− fl)tdt. (3.28)
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It is easy to verify that

1
T

T/2∫
t=−T/2

e−2iπ( fk− fl)t = Λ[π( fk− fl)T ] (3.29)

so that

m̂0 =
1
4

M

∑
k=−M

M

∑
l=−M

υkυ
∗
l Λ[π( fk− fl)T ] (3.30)

Taking the expected value, and using the fact that 〈υkυ∗l 〉 = 2δ(k− l)νk, the following is ob-
tained:

〈m̂0〉=
M

∑
k=0

νk (3.31)

which, replacing νk with its expression Sηη( fk)∆ f given by the harmonic discretisation, yields

〈m̂0〉=
M

∑
k=0

Sηη( fk)∆ f (3.32)

Therefore 〈m̂0〉, obtained from the HRA method, is an accurate approximation of the m0 value
of the target spectrum, provided that ∆ f is small enough. It is now examined how m̂0 fluctuates
around its average, i.e. the variance var[m̂0] = 〈m̂2

0〉−〈m̂0〉2 is calculated.

m̂2
0 =

(1
4

M

∑
k=−M

M

∑
l=−M

υkυ
∗
l Λ[π( fk− fl)T ]

)2

=
1

16

M

∑
k,l,m,n=−M

υkυ
∗
l υmυ

∗
nΛ[π( fk− fl)T ]Λ[π( fm− fn)T ]

(3.33)

In the expression above, the terms Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] are deterministic quantities,
while the terms υkυ∗l υmυ∗n are random. Using the linearity of the expected value:

〈m̂2
0〉=

1
16

M

∑
k,l,m,n=−M

〈υkυ
∗
l υmυ

∗
n〉Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] (3.34)

To simplify the terms 〈υkυ∗l υmυ∗n〉 in the quadruple sum, several cases must be distinguished,
depending on whether the variables υi are independent, or not, from each other. In fact, ∀i, j, υi

and υ j are independent random variables iff |i| 6= | j|. Also note that ∀i, 〈υi〉 = 0, 〈υ2
i 〉 = 0 and

〈υiυ
∗
i 〉= 2νi.

Case 1

Amongst |k|, |l|, |m|, |n|, the absolute value of one of the indices is different from the three others
- say |k|, without loss of generality. Then, 〈υkυ∗l υmυ∗n〉= 〈υk〉〈υ∗l υmυ∗n〉. Since 〈υk〉= 0,

〈υkυ
∗
l υmυ

∗
n〉= 0 (3.35)

Case 2

|k|= |l|, |m|= |n| and |k| 6= |m|. Then,

〈υkυ
∗
l υmυ

∗
n〉= 〈υkυ

∗
l 〉〈υmυ

∗
n〉 (3.36)

If l = −k, 〈υkυ∗l 〉 = 〈υ2
k〉 = 0; similarly, if n = −m, 〈υmυ∗n〉 = 0. Therefore, within Case 2,

〈υkυ∗l υmυ∗n〉 is non-zero only when k = l and m = n, yielding

〈υkυ
∗
k〉〈υmυ

∗
m〉= 4νkνm (3.37)

In addition, with k = l and m = n,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− fk)T ]Λ[π( fm− fm)T ] = Λ[0]Λ[0] = 1 (3.38)
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Case 3

|k|= |m|, |l|= |n| and |k| 6= |l|. Then,

〈υkυ
∗
l υmυ

∗
n〉= 〈υkυm〉〈υ∗l υ

∗
n〉 (3.39)

For Case 3, the above product is non-zero only if m =−k and n =−l:

〈υkυ−k〉〈υ∗l υ
∗
−l〉= 〈υkυ

∗
k〉〈υ∗l υl〉= 4νkνl (3.40)

In addition, with m =−k and n =−l,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− fl)T ]Λ[π( f−k− f−l)T ]

= Λ[π( fk− fl)T ]Λ[π(− fk + fl)T ]

= Λ[π( fk− fl)T ]2
(3.41)

Case 4

|k|= |n|, |l|= |m| and |k| 6= |l|. Then, similarly to Case 3, 〈υkυ∗l υmυ∗n〉= 〈υkυ∗n〉〈υ∗l υm〉 is non-zero
only if n = k and m = l:

〈υkυ
∗
k〉〈υ∗l υl〉= 4νkνl (3.42)

In addition, with m =−k and n =−l,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− fl)T ]Λ[π( fl− fk)T ] = Λ[π( fk− fl)T ]2 (3.43)

Case 5

|k|= |l|= |m|= |n|.

Sub-case 5a

Three indices (say k, l,m) are equal, while the fourth index (say n) is equal to −k. Then writing,
in polar form, υk = Akeiϕk , with Ak Rayleigh distributed and ϕk independent of Ak, uniformly
distributed in [0;2π]:

〈υkυ
∗
l υmυ

∗
n〉= 〈υkυ

∗
kυkυk〉

= 〈A4
ke2iϕk〉

= 〈A4
k〉〈e2iϕk〉

= 0

(3.44)

since 〈e2iϕk〉= 0.

Sub-case 5b

k = m, l = n = −k: Then, using the fact that, for a zero-mean Gaussian random variable x with
variance σ2, 〈x4〉= 3σ4:

〈υkυ
∗
−kυkυ

∗
−k〉= 〈(υkυ

∗
k)

2〉
= 〈(a2

k +b2
k)

2〉
= 〈a4

k〉2〈a2
k〉〈b2

k〉〈b4
k〉

= 3ν
2
k +2ν

2
k +3ν

2
k

= 8ν
2
k

(3.45)

In addition,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− f−k)T ]Λ[π( fk− f−k)T ] = Λ[2π fkT ]2 (3.46)
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Sub-case 5c

k = l and m = n =−k, or k = l = m = n. Then, as for Sub-case 5b:

〈υkυ
∗
kυkυ

∗
k〉= 〈(υkυ

∗
k)

2〉
= 8ν

2
k

(3.47)

In addition,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− fk)T ]Λ[π( fk− fk)T ] = 1 (3.48)

The sum in Eq. (3.34) can now be split into the cases and sub-cases detailed above:

〈m̂2
0〉= 0

+
1
16

M

∑
k=−M

M

∑
m=−M
|m|6=k

4νkνm

+
1
16

M

∑
k=−M

M

∑
l=−M
|l|6=k

4νkνlΛ[π( fk− fl)T ]2

+
1
16

M

∑
k=−M

M

∑
l=−M
|l|6=k

4νkνlΛ[π( fk− fl)T ]2

+0

+
1
16

M

∑
k=−M

8ν
2
kΛ[2π fkT ]2

+
1
16

M

∑
k=−M

8ν
2
k +

1
16

M

∑
k=−M

8ν
2
k

(3.49)

The latter expression can be developed so as to avoid inequality conditions in the double sums:

〈m̂2
0〉=

1
16

M

∑
k=−M

M

∑
m=−M

4νkνm−
1

16

M

∑
k=−M

4νkν−k−
1
16

M

∑
k=−M

4νkνk

+
1
16

M

∑
k=−M

M

∑
l=−M

4νkνlΛ[π( fk− fl)T ]2−
1

16

M

∑
k=−M

4νkν−kΛ[2π fkT ]2− 1
16

M

∑
k=−M

4νkνk

+
1
16

M

∑
k=−M

M

∑
l=−M

4νkνlΛ[π( fk− fl)T ]2−
1

16

M

∑
k=−M

4νkν−kΛ[2π fkT ]2− 1
16

M

∑
k=−M

4νkνk

+
1
16

M

∑
k=−M

8ν
2
kΛ[2π fkT ]2

+
1
16

M

∑
k=−M

8ν
2
k +

1
16

M

∑
k=−M

8ν
2
k

(3.50)

Using ν−k = νk, and simplifying redundant terms:

〈m̂2
0〉=

1
4

M

∑
k=−M

M

∑
m=−M

νkνm +
1
2

M

∑
k=−M

M

∑
l=−M

νkνlΛ[π( fk− fl)T ]2 (3.51)

The first term is, in fact, equal to (
M
∑

k=0
νk)

2 = 〈m̂0〉2, so that the variance of the m0 estimator is:

var[m̂0] = 〈m̂2
0〉−〈m̂0〉2 =

1
2

M

∑
k=−M

M

∑
l=−M

νkνlΛ[π( fk− fl)T ]2 (3.52)
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Replacing νk with Sηη( fk)∆ f yields:

var[m̂0] = 〈m̂2
0〉−〈m̂0〉2 =

1
2

M

∑
k=−M

M

∑
l=−M

Sηη( fk)Sηη( fl)Λ[π( fk− fl)T ]2∆ f ∆ f (3.53)

which is a Riemann approximation of the double integral in Eq. (3.14).
The above calculations may seem cumbersome and tedious. However, it will be seen in further

subsections that calculating var[m̂0] for all other WS methods can be carried out using the very
same steps, so that it is valuable to develop them here in detail.

In the specific case of the HRA method, calculations could be made, in fact, considerably
simpler. Because the generated process y is Gaussian, it is possible to use Isserlis’ theorem [85],
and to derive the very same calculations as in Eqs. (3.9) through (3.12), this time applied to the
simulated signal (as opposed to the real wave signal), so that:

var[m̂0] =
4
T

∫ T

0
(1− t

T
)Ryy(t)2dt (3.54)

Replacing Ryy in Eq. (3.54) with (3.24), and integrating, yields Eq. (3.53). However, as will be
seen in the following subsections, Isserlis’ theorem [85] only applies when the generated process
follows a Gaussian law, which is not the case for all WS methods.

Assuming small enough ∆ f , the ACF is accurately reproduced for lag values τ� 1/∆ f , as
seen in Fig. 3.12. Therefore, given Eq. (3.54), if T � 1/∆ f the variance of the m0 estimator
matches the variance that should be obtained from the target process, given by Eq. (3.12). In
addition, it is interesting to examine how var[m̂0] is affected when T approaches 1/∆ f or, in other
words, when m0 is estimated from a periodic generated signal with period 1/∆ f . To that end, it
can be seen immediately that, for T = 1/∆ f , all terms of the double sum in (3.53) are zero, except
for k = l. Therefore, with T = 1/∆ f , Eq. (3.53) becomes

var[m̂0] =
M

∑
k=1

S2
ηη( fk)∆ f ∆ f

=
1
T

M

∑
k=1

S2
ηη( fk)∆ f

(3.55)

which approximates Eq. (3.13). Therefore, even though for T values close to 1/∆ f , the variance
of m̂0 obtained from the HRA-generated signal may not exactly be equal to the variance of m̂0
obtained from a true wave signal, it is shown that, for T = 1/∆ f , the variance of m̂0 follows the
asymptotic law of the true var[m̂0]. Thus, the self-repetition issue, at the end of the simulation
window [0;1/∆ f ], does not have a significant impact on the variance of the m0 estimator, which
remains realistic even for T close to 1/∆ f .

The latter result is numerically confirmed in Fig. 3.13 where, for the same frequency discreti-
sation variants as in Fig. 3.12, the variance of m̂0 is plotted for both the actual signal using Eq.
(3.11), and for the HRA-generated signal using Eq. (3.54), for estimates over intervals of length
T ranging from 0 to 1/∆ f . For M = 20, due to the insufficiently accurate spectrum discretisation,
the variance of m̂0 tends to be overestimated using the HRA method. In other words, repeatedly
generating a signal using the HRA method with M = 20, and computing, for each realisation, m̂0
using Eq. (3.27) with any T chosen within ]0;1/∆ f ], the fluctuations of the m0 estimate around its
mean value are slightly larger than if m̂0 was repeatedly estimated, from a record of length T , in a
real sea with the target spectrum. In contrast, for M = 50, M = 100 and M = 200, the variance of
m̂0, obtained from the simulated signal, is realistic for all T values within [0;1/∆ f ], in spite of the
self-repetition of the generated signal illustrated in Fig. 3.12.

In summary, the foregoing means that, choosing ∆ f small enough to allow for an accurate
discretisation of the SDF, and using the HRA method to simulate signals of length T ≤ 1/∆ f ,
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(a) M = 20 (∆ f = 0.025)

(b) M = 50 (∆ f = 0.01)

(c) M = 100 (∆ f = 0.005)

(d) M = 200 (∆ f = 0.0025)

Figure 3.13: var[m̂0], for different estimation intervals T , for the target wave process vs the process
generated through the HRA method (using the same M values as in Fig. 3.12). For the generated
process, var[m̂0] is only shown for relevant values of T , i.e. for T ≤ 1/∆ f . The target spectrum is
the one of Fig. 3.1a.
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the finite-length variance estimator, calculated over a part or the totality of the generated signal,
presents variations with respect to m0, which are representative of the variations which would be
observed using actual wave records.

3.3.2 HDA

3.3.2.1 Law of the generated process

Unlike the HRA method, the signal generated through the HDA method is not Gaussian, or, more
precisely, only tends to a Gaussian process as ∆ f tends to zero (or equivalently as M tends to in-
finity), see [87], cited in [65]. Based on Eq. (3.22), the simplest way to verify the non-Gaussianity
of the distribution is to note that y is bounded by the sum of Ak,k ∈ {1...M}: in other words, the
probability that

y >
M

∑
k=0

√
2νk (3.56)

is zero while, in theory, a non-degenerate Gaussian random variable is not bounded.
Although the signal generated using the HDA method is non-Gaussian, its ACF can be calcu-

lated as in Eq. (3.24), yielding the very same result as Eq. (3.25):

Ryy(τ) =
M

∑
k=0

Sηη(k∆ f )cos(2πk∆ f τ)∆ f (3.57)

Therefore, the process generated through the HDA method is non-Gaussian, wide-sense sta-
tionary, and its ACF is an accurate approximation of the target ACF, when ∆ f is sufficiently small.
Like HRA-simulated signals, the HDA method generates periodic signals, with period 1/∆ f .

In fact, the HDA method corresponds to a very specific subset of possible HRA realisations,
in which for all k in {1...M}, a2

k +b2
k = 2νk. Then, some of the inter-simulation variability is lost,

a noteworthy manifestation of which is the fact that the sample signal variance, m̂0, of a signal
generated through the HDA method, fluctuates less around m0 than it should in the actual target
sea state. In particular, when T = 1/∆ f , the estimator m̂0 is equal to its average at each realisation:

m̂0 = 〈m̂0〉=
M

∑
k=0

Sηη(k∆ f )∆ f (3.58)

which would, of course, not be the case if the signal were recorded from an actual sea state.
However, for some applications, the latter property can give the HDA method significant ben-

efits over the HRA method. Consider, for example, a linear or non-linear system, driven by the
wave elevation η. Assume that some variable x of the system is of particular interest, and that the
variance of the process x must be estimated through numerical simulations. If the HRA method is
used, the estimate of var[x] may differ considerably for each simulation (unless the simulation time
is set to a large value), thus reflecting the realistic randomness of the underlying simulated wave
process. Therefore, using the HRA method, a long simulation, or alternatively, a large number of
short simulations, must be carried out to obtain an estimate of var[x] with a reasonably small confi-
dence interval. In contrast, using the HDA method, the sample variance of each simulated signal x
may present significantly less variability. Thus, a smaller number of simulations (or equivalently,
a shorter simulation) may be necessary to obtain an estimate of var[x] with a small confidence
interval. This property will be put to good use in Chapters 6 and 7 of this thesis.

Finally, it is easy to check that the generated HDA signal is ergodic, in the sense that the ACF,
as evaluated through integration of y(t)y(t+τ) over t ∈ [−∞;+∞] for a specific realisation, is equal
to its sample-domain average given in Eq. (3.57)1. Nevertheless, as discussed earlier in Section
3.2, the interest of verifying the ergodicity property is more theoretical than practical.

1In fact, this also holds when y(t)y(t + τ) is integrated over any time interval of width multiple of 1/∆ f .
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3.3.2.2 Variance estimator

As mentioned above below Eq. (3.58), with T = 1/∆ f , the sample variance m̂0 of each HDA-
generated signal is equal to its average 〈m̂0〉. In this subsection, it is investigated how the variability
of m̂0 is affected in the more general case where T ≤ 1/∆ f .

Assume that ∆ f is chosen small enough to allow for an accurate SDF discretisation. Assume
that m0 is estimated based on the generated signal, y:

m̂0 =
1
T

∫ T

0
y(t)2dt (3.59)

Identically to the case of the HRA method, Eq. (3.34) can be written, and the same five
cases described for the quadruple sum can be analysed separately. Cases 1 through 4 (whereby
|k|, |l|, |m|, |n| are not all identical) yield the very same results as for the HRA case. However, due
to the variables υk being non-Gaussian, Case 5 (|k|= |l|= |m|= |n|) must be revisited as follows:

Case 5

|k|= |l|= |m|= |n|.

Sub-case 5a

Three indices (say k, l,m) are equal, while the fourth index (say n) is equal to −k. Then, writing
υk in polar form as υk = Akeiϕk , with Ak =

√
2νk and ϕk uniformly distributed in [0;2π]:

〈υkυ
∗
l υmυ

∗
n〉= 〈υkυ

∗
kυkυk〉

= A4
k〈e2iϕk〉

= 0

(3.60)

since 〈e2iϕk〉= 0.

Sub-case 5b

k = m, l = n =−k:

〈υkυ
∗
−kυkυ

∗
−k〉= 〈(υkυ

∗
k)

2〉
= A4

k

= 4ν
2
k

(3.61)

In addition,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− f−k)T ]Λ[π( fk− f−k)T ] = Λ[2π fkT ]2 (3.62)

Sub-case 5c

k = l and m = n =−k, or k = l = m = n. Then, as for Sub-case 5b:

〈υkυ
∗
kυkυ

∗
k〉= A4

k

= 4ν
2
k

(3.63)

In addition,

Λ[π( fk− fl)T ]Λ[π( fm− fn)T ] = Λ[π( fk− fk)T ]Λ[π( fk− fk)T ] = 1 (3.64)
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Figure 3.14: Function Λ(x)2

Finally, splitting the sum in Eq. (3.34) in terms of all cases and sub-cases yields:

var[m̂0] =
1
2

M

∑
k=−M

M

∑
l=−M

νkνlΛ[π( fk− fl)T ]2−
1
4

M

∑
k=−M

ν
2
kΛ[2π fkT ]2− 1

2

M

∑
k=−M

ν
2
k (3.65)

which differs from Eq. (3.53) by the subtraction of positive terms. The double sum represents the
‘correct’ variability (which would be obtained using the HRA method), while the two other sums
represent the ‘missing’ variability.

Thus, as expected, the m0 estimator presents less variance with the HDA method, than with
the HRA method: from one realisation to the next, m̂0 varies less than it should around 〈m̂0〉. In
particular, when T = 1/∆ f , Λ[π( fk − fl)T ]2 = δ(k− l), so that Eq. (3.65) yields var[m̂0] = 0,
which shows that, as mentioned earlier in this section, the estimator m̂0 calculated over a periodic
realisation of length 1/∆ f is the same at each instance of the generated signal, and equal to

〈m̂0〉=
M

∑
k=0

Sηη( fk)∆ f (3.66)

Furthermore, the function Λ2[x] is represented in Fig. 3.14. For any x, such that |x| ≥ 5,
Λ(x)� 1. In addition, for the target spectrum in Fig. 3.11, and more generally for common
wave spectra, the SDF, and thus νk, are approximately zero below some frequency in the region
of 0.025-0.05 Hz. Therefore, in the second sum of Eq. (3.65), those terms corresponding to
fk ≤ 0.15 are zero, while those for larger fk are negligible if 2π fkT ≥ 5, which is always true for
T ≥ 5/(2π×0.025)≈ 30s. Thus, for T ≥ 30s, Eq. (3.65) can be simplified to

var[m̂0] =
1
2

M

∑
k=−M

M

∑
l=−M

νkνlΛ[π( fk− fl)T ]2−
1
2

M

∑
k=−M

ν
2
k (3.67)

where the double sum in (3.67) is equal to var[m̂0] in the HRA case, and the second term represents
the ‘missing’ variability.

With the same discretisation settings as in Figs. 3.12 and 3.13, Fig. 3.15 shows the variance
of m̂0, for both the actual signal, calculated using (3.12), and for the signal generated through the
HDA method, calculated using (3.65), with T ranging from 0 to 1/∆ f . It can be observed how,
using the HDA method, the variability of the energy content across realisations of the signal, is
significantly underestimated, going to zero for T = 1/∆ f . In other words, repeatedly generating
a finite-length wave signal using the HDA method, the sample variance calculated in each signal
tends to be unrealistically close to m0, even for T < 1/∆ f . Estimated over T = 1/∆ f , the sample
variance is always identically equal to its average.
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(a) M = 20 (∆ f = 0.025)

(b) M = 50 (∆ f = 0.01)

(c) M = 100 (∆ f = 0.005)

(d) M = 200 (∆ f = 0.0025)

Figure 3.15: var[m̂0], for different estimation intervals T , for the target wave process vs the process
generated through the HDA method (using the same M values as in Fig. 3.12). For the generated
process, var[m̂0] is only shown for relevant values of T , i.e. for T ≤ 1/∆ f . The target spectrum is
the one of Fig. 3.1a.
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3.4 Non-harmonic superposition methods

It follows from the preceding section that the HRA method realistically reproduces the statisti-
cal properties of a finite-length wave signal recorded in the target wave spectrum, except for the
periodicity issue, which arises only when the simulated duration T approaches 1/∆ f . However,
even with T = 1/∆ f , the properties of the (arguably) most important statistic, m̂0, remain real-
istic, in as much as m̂0 presents appropriate variability across simulations. In contrast, the HDA
method certainly has realistic properties in terms of ACF functions, but does not yield a Gaussian
signal. Furthermore, the variability of the HDA signal statistics across simulations is not well
represented, with m̂0 presenting unrealistically small variability. However, the latter point can also
be an advantage to obtain estimates with a small confidence interval, using only a small number
of simulations.

In spite of the above, which supports the fact that harmonic superposition methods are ap-
propriate for simulating a Gaussian sea, some authors have introduced non-harmonic (NH) WS
methods, to avoid periodicity in the generated signal. Non-harmonic methods rely on a discretisa-
tion of the target spectrum, whereby the frequencies are not evenly spaced. In the so-called equal
area (EA) method, the frequency range is discretised into intervals with equal spectral energy -
see, for example, [80], Chapter 11 of [83], or more recently [84]. In the random perturbation (RP)
method, the frequency range is primarily discretised harmonically, but at each realisation, each fre-
quency is shifted by a small random perturbation, as proposed in [67, 81], of magnitude d f � ∆ f .
The RP approach supposedly “eliminates” the “deficiency” of self-repetition [65]. Both EA and
RP approaches can be generated using a random amplitude variant (EARA, resp. RPRA) or a
deterministic amplitude variant (EADA, resp. RPDA), although, for the RP method, deterministic
amplitudes are used in [81] and [67].

Non-harmonic methods should, according to their supporters, generate arbitrarily long, non-
periodic signals, with a small number of frequency components. The issue pointed out in [65]
for NH discretisation is that the FFT algorithm cannot be used to generate sample wave signals
(because of the non-harmonic frequency discretisation); however, computation time is unlikely to
be an issue with modern computers. This section shows that NH discretisation methods present
a more significant drawback, which is that the ACF of the generated signals may differ from the
target ACF. The consequences of the mismatch between the NH-generated and the target statistical
properties have been experimentally observed, for example in [71], [88] and [82]. The present
section provides theoretical insight to support the empirical observations of [71, 82, 88].

3.4.1 The equal-area method

3.4.1.1 Law of the generated process

Let us define the cut-off frequency fc, such that Sηη( f ) is considered to be zero for all f ≥ fc. In
the equal-area (EA) method, the interval [0; fc] is divided into M intervals Ik,k ∈ [1;M], chosen
such that all the intervals define the same area ∆E under the spectrum:

∀k ∈ [1;M],
∫

Ik

Sηη( f )d f = ∆E =
1
M

∫ fc

0
Sηη( f )d f (3.68)

Fig. 3.16 illustrates the equal-area discretisation of the wave spectrum, for M = 20. The area
under each yellow bar is equal do ∆E.

For all k, define fk as the middle point of the interval Ik, and νk = ∆E. Then, similarly to Eqs.
(3.19) and (3.21), the signal is generated as

y(t) =
1
2

M

∑
k=−M

υke−2iπ fkt (3.69)
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Figure 3.16: Spectrum discretisation for the equal-energy method, with M = 20.

Both random-amplitude and deterministic-amplitude methods may be used to generate time
series from the equal area discretisation:

• In the EARA variant, for k ≥ 0, υk = ak + ibk, where ak and bk are independent, Gaussian
random variables with variance νk, and υ−k = υ∗k . Similarly to the HRA case, the resulting
process is Gaussian.

• In the EADA variant, for k ≥ 0, υk =
√

2νke−iϕk and υ−k = υ∗k , where ϕk is uniformly
distributed in [0;2π]. Similarly to the HDA case, the resulting process is non-Gaussian.

With both EARA and EADA variants, it is possible to compute the ACF of the generated
signal, identically to the calculations in Eq. (3.24):

Ryy(τ) =
M

∑
k=0

νk cos(2π fkτ) (3.70)

Since νk = ∆E,

Ryy(τ) = ∆E
M

∑
k=0

cos(2π fkτ) (3.71)

which can be reformulated as

Ryy(τ) =
M

∑
k=0

Sk cos(2π fkτ)∆ fk (3.72)

where ∆ fk is the width of Ik and Sk = ∆E/∆ fk is the average value of the SDF in the interval Ik.
Although, from Eq. (3.72), Ryy(τ) may be seen as a Riemann approximation of Eq. (3.4),

from Eq. (3.71) it can be seen that all sinusoidal components have equal amplitude, and thus
Ryy(τ) does not fade out to zero as it should if the target ACF were actually matched. As a result,
the ACF can be significantly distorted, as shown in Fig. 3.17, if the number of components is not
chosen large enough. By increasing M, the amplitude of the unwanted oscillations observed in the
ACF is reduced; however, a relatively large M is necessary for the ACF to be ‘small enough’: in
Fig. 3.17, M = 100 seems to be an appropriate compromise. However, the main benefit of using
the EARA approach, which is the use of fewer frequency components than the HRA method, to

57



(a) M = 20

(b) M = 50

(c) M = 100

(d) M = 200

Figure 3.17: Rηη vs Ryy, for the spectrum of Fig. 3.1a, using the EARA or EADA methods with
various numbers of frequency components.
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Figure 3.18: Rηη vs Ryy, for the spectrum of Fig. 3.1a, using the EARA or EADA methods, with
M = 100 and large simulation time.

generate an arbitrarily long signal, is not evident, since with the HRA method, M ≈ 100 is also a
suitable choice.

Furthermore, the amplitude of the unwanted ACF oscillations tends to grow for larger lag
values, as shown in Fig. 3.18 with M = 100. Therefore, it is definitely not true to say that the EA
discretisation allows the simulation of arbitrarily long signals with the target ACF properties.

Finally, note that the unwanted oscillations of the ACF, observed in Fig. 3.17, and obtained
from theoretical calculations, correspond to the ones experimentally pointed out in [82].

3.4.1.2 Variance estimator

In the following calculations, it is examined whether the distortion of the ACF function, observed
in Fig. 3.17, affects var[m̂0] and makes it different from what it should be in the target wave
process.

With the EARA method

The variance of the m0 estimator, for the EARA method, is obtained using the same calculations
as for the HRA case, thus yielding Eq. (3.53). Replacing νk in Eq. (3.53), with its expression ∆E,
yields:

var[m̂0] =
1
2

∆E2
M

∑
k=−M

M

∑
l=−M

Λ[π( fk− fl)T ]2

=
1
2

M

∑
k=−M

M

∑
l=−M

Sηη( fk)Sηη( fl)Λ[π( fk− fl)T ]2∆ fk∆ fl

(3.73)

Again, the above expression is an approximation of Eq. (3.14). For a given number of com-
ponents M, the approximation (3.73) is more accurate than with equally-spaced frequencies. This
can be verified in Fig. 3.19a: even with M = 20, var[m̂0] almost perfectly matches that, which
should be obtained from the target wave process, while with the same M, the HRA method (Fig.
3.13a) yields an inaccurate var[m̂0].

However, in Eq. (3.73), all terms tend to zero with 1/T 2 with T increasing, except for k = l.
Therefore, var[m̂0] tends to M∆E2 = m2

0/M, when T tends to infinity, instead of going to zero
following a law in 1/T . Thus, for large T values, var[m̂0] tends to be overestimated, although the
influence of this residual value is not visible for the relatively small time durations shown in Fig.
3.19. In other words, repeatedly generating long signals using the EARA method, and calculating
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(a) M = 20

(b) M = 50

(c) M = 100

(d) M = 200

Figure 3.19: var[m̂0], for different estimation intervals T , for the target wave process vs the process
generated through the EARA method (using various M values). The target spectrum is the one of
Fig. 3.1a.
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(a) M = 20

(b) M = 50

(c) M = 100

(d) M = 200

Figure 3.20: var[m̂0], for different estimation intervals T , for the target wave process vs the process
generated through EADA (using various M values). The target spectrum is that of Fig. 3.1a.
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Figure 3.21: var[m̂0], for long estimation intervals T , for the target wave process vs the process
generated through EARA and EADA methods, with M = 100. The target spectrum is that of Fig.
3.1a.

m̂0 in each of them, the observed fluctuations of m̂0 around 〈m̂0〉 would tend to be unrealistically
large. The magnitude of the overestimation decreases with 1/M.

With the EADA method

The variance of the m0 estimator, for the EADA method, is obtained using the same calculations
as for the HDA case, thus yielding Eq. (3.65). Using νk = ∆E yields:

var[m̂0] =
1
2

∆E2
M

∑
k=−M

M

∑
l=−M

Λ[π( fk− fl)T ]2−
1
4

∆E2
M

∑
k=−M

Λ[2π fkT ]2−M∆E2 (3.74)

Similarly to Eq. (3.67), for T ≥ 30s, and using ∆E = m0/M, Eq. (3.74) can be further simpli-
fied into

var[m̂0] = ∆E2
M

∑
k=−M

M

∑
l=−M

Λ[π( fk− fl)T ]2−
m2

0
M

(3.75)

In Eq. (3.75), the first sum represents var[m̂0] as obtained with the EARA method. For large
T , the double sum tends to m2

0/M with 1/T 2, so that var[m̂0] tends to zero with 1/T 2. The law in
1/T 2 (instead of 1/T ) implies that, for large T values, var[m̂0] is necessarily underestimated with
respect to the correct value. However, as can be appreciated in Fig. 3.20, the inaccurate asymptotic
behaviour does not have any visible effect for T ≤ 200s. In fact, for T ≤ 200s, var[m̂0] is clearly
more realistic with the EADA method, than it is with the HDA method (Fig. 3.15): for an identical
number of components M, the m0 estimator from EADA signals presents more realistic variations
than that from HDA signals.

The asymptotic behaviour of var[m̂0] is examined in more detail in Fig. 3.21, for M = 100
components. With the EARA method, the estimator variance var[m̂0] becomes more and more dis-
tinct from the target estimator variance as T approaches 1000s, because, with the EARA method,
var[m̂0] tends to the asymptotic value, m2

0/M, while the correct var[m̂0] continues to decrease to
0 with 1/T . However, it is only for large T (T ≈ 1000s) that var[m̂0] from EARA simulations
becomes incorrect. With the EADA method, var[m̂0] tends to 0 as 1/T 2, resulting in visible un-
derestimation of var[m̂0] with respect to the target value.

Overall, the benefits of using the EA discretisation method, over harmonic discretisation, are
not clear. Certainly, the signals generated through the EARA or EADA methods are not periodic,
which avoids the strict limitation of T ≤ 1/∆ f on the signal duration, resulting from the HRA
and HDA approaches. However, the ACF of the generated EARA or EADA signals is distorted
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with respect to the target ACF, over the complete span of the generated signal. This contrasts with
the HRA and HDA methods, whereby choosing T small enough with respect to 1/∆ f guarantees
that the target ACF is accurately approximated over the whole length of the simulation. The
spurious correlation, observed in the generated EARA and EADA signals, may induce errors into
the statistical analysis of simulation results.

Using either EARA or EADA methods, with a relatively small number of components M, the
variability of the finite-duration m0 estimator is realistically reproduced for relatively small T -
which is not the case for the HDA method. However, as discussed in Section 3.3, the possibility
of generating signals which all have the same variance can also be seen as a benefit of the HDA
method. Furthermore, as shown by the incorrect asymptotic behaviour of var[m̂0], it is certainly
not true to say that EARA or EADA methods allow for the simulation of arbitrarily long wave
signals, using a small number of frequency components, without inducing statistical inaccuracies.

Even if a relatively small number of components could be used to generate long wave signals
using EA methods, it should also be noted that, for each wave spectrum, the EA discretisation
involves accurate integration of the spectrum in order to build equal-area frequency intervals. Fur-
thermore, EA implies that the set of frequencies differs for each spectrum, which may complicate
the frequency-domain analysis of wave-driven dynamical systems.

In summary, especially in applications where simulations must be carried out from a variety
of wave spectra, the apparent benefits of the EA discretisation method are probably more than
offset by the possible inaccuracies in the ACF function, and by the time-consuming spectrum
discretisation procedure.

3.4.2 The random-perturbation method

3.4.2.1 Law of the generated signal

Define fk = k∆ f , with ∆ f = fc/M, as for the harmonic superposition methods presented in Section
3.3. With the RP method, the signal y is generated as

y(t) =
1
2

M

∑
k=−M

υke−2iπ f ′kt (3.76)

where υk = ak+ibk have either random or deterministic amplitude, and f ′k is randomly generated as
f ′k = fk +εk, where the εk are independently generated random perturbations, following a uniform
distribution in [−d f ,d f ], where d f is a parameter chosen by the user. The authors who introduced
the RP method [81] recommend choosing d f � ∆ f .

y(t) may be reformulated as

y(t) =
1
2

M

∑
k=−M

α̃k(t)e2iπ fkt (3.77)

where α̃k(t) = υke−2iπεkt . This time, even if the coefficients υk have random amplitudes, y(t)
cannot be proven to be Gaussian, because terms of the form cos(εkt) or sin(εkt) are not Gaussian.
However, the ACF of the generated signal can be computed:

〈y(t)y∗(t + τ)〉= 1
4

M

∑
k=−M

M

∑
l=−M

〈α̃k(t)α̃∗l (t + τ)〉e−2iπ fkte2iπ fl(t+τ) (3.78)

The above sum can be examined under three cases:

1. For |k| 6= |l|, α̃k(t) and α̃l(t + τ) are independent, so that

〈α̃k(t)α̃∗l (t + τ)〉= 〈α̃k(t)〉〈α̃∗l (t + τ)〉= 0 (3.79)

63



2. For k =−l, using independence of υk and e−2iπεkt and 〈α2
k〉= 0:

〈α̃k(t)α̃∗l (t + τ)〉= 〈α̃k(t)α̃k(t + τ)〉= 〈α2
k〉〈e−2iπεkte−2iπεk(t+τ)〉= 0 (3.80)

3. For k = l, using independence of υk and e−2iπεkt and 〈υkυ∗k〉= 2νk:

〈α̃k(t)α̃∗l (t + τ)〉= 2νk〈e2iπεkτ〉 (3.81)

Recalling that εk is uniformly distributed in [−d f ;d f ], it can be easily calculated that

〈e2iπεkτ〉=
sin(2πd f τ)

2πd f τ
(3.82)

Finally,

〈y(t)y∗(t + τ)〉= 1
2

M

∑
k=−M

νk
sin(2πd f τ)

2πd f τ
e2iπ fkτ (3.83)

which only depends on τ. Therefore y is wide-sense stationary, and its ACF is

Ryy(τ) =
sin(2πd f τ)

2πd f τ

M

∑
k=0

Sηη( fk)cos(2π fkτ)∆ f (3.84)

Eq. (3.84) is equal to the ACF of Eq. (3.25), obtained through harmonic superposition, mod-
ulated by the function Λ(2πd f τ). Three cases may be considered:

• If, as advocated in [81], d f � ∆ f , then Λ(2πd f τ) ≈ 1 for τ ≤ 1/∆ f , and therefore Ryy(τ)
remains the same as for the case of harmonic superposition, as seen in Fig. 3.22b. Thus, it
is illusory to think that RP circumvents the issue of self-repetition.

• If d f � ∆ f , then Ryy(τ) is significantly affected for τ well within [0;1/∆ f ], as seen in Fig.
3.22d.

• More interesting is the case where d f is set to a reasonable compromise, such that Λ(2πd f τ)≈
1 over the correlation length of the target signal, but Λ(2πd f τ) is sufficiently close to zero
for τ≥ 1/∆ f , as in Fig. 3.22c.

3.4.2.2 Variance estimator

As for HRA or HDA methods, the variance estimator can be calculated as:

m̂0 =
1
4

M

∑
k=−M

M

∑
l=−M

υkυ
∗
l Λ[π( f ′k− f ′l )T ] (3.85)

However, this time, ( f ′k − f ′l ) = ( fk − fl) + (εk − εl) is, in fact, a random variable, so that
Λ[π( f ′k− f ′l )T ] is a random variable as well, rather than a deterministic quantity.

With the RPRA method

With the RPRA method, the same calculations as for the HRA method can be derived, with the
exception that the deterministic terms Λ(π( fk− fl)) are replaced with random variables Λ(π( f ′k−
f ′l )). The following expression is obtained:

var[m̂0] =
1
2

M

∑
k=−M

M

∑
l=−M

νkνl〈Λ[π( f ′k− f ′l )T ]
2〉 (3.86)
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(a) Λ(2πd f τ)

(b) d f = 0.1∆ f

(c) d f = ∆ f

(d) d f = 10∆ f

Figure 3.22: Rηη vs Ryy, for the spectrum of Fig. 3.1a, using RPRA or RPDA methods, with
M = 100 and three different values for d f .
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Eq. (3.86), because of the terms in 〈Λ[π( f ′k− f ′l )T ]
2〉, cannot be calculated analytically, and is

thus less straightforward to analyse than Eqs. (3.53) and (3.73). However, for all k 6= l, 〈Λ[π( f ′k−
f ′l )T ]

2〉 is bounded above as follows:

0≤ 〈Λ[π( f ′k− f ′l )T ]
2〉 ≤ 〈 1

(π( f ′k− f ′l )T )
2 〉 (3.87)

Therefore, var[m̂0] can be bounded as follows:

1
2

M

∑
k=−M

ν
2
k ≤ var[m̂0]≤

1
2

M

∑
k=−M

ν
2
k +

1
T 2

1
2

M

∑
k=−M

M

∑
l=−M

l 6=k

νkνl〈
1

(π( f ′k− f ′l ))
2 〉 (3.88)

Replacing νk with Sηη( fk)∆ f shows that var[m̂0] tends to
M
∑

k=0
Sηη( fk)

2∆ f 2 as at least 1/T 2.

Therefore, similarly to the EARA method, var[m̂0] is overestimated for large T values.

With the RPDA method

With the RPDA method, the same calculations as for the HDA case can be derived, with the
exception that the deterministic terms Λ(π( fk− fl)) are replaced with random variables Λ(π( f ′k−
f ′l )). The following expression is obtained:

var[m̂0] =
1
2

M

∑
k=−M

M

∑
l=−M

νkνl〈Λ[π( f ′k− f ′l )T ]
2〉− 1

4

M

∑
k=−M

ν
2
k〈Λ[2π f ′kT ]2〉− 1

2

M

∑
k=−M

ν
2
k (3.89)

Using the same bounds as for the RPRA case, it is found that

0≤ var[m̂0]≤
1

T 2
1
2

M

∑
k=−M

M

∑
l=−M

l 6=k

νkνl〈
1

(π( f ′k− f ′l ))
2 〉 (3.90)

so that var[m̂0] tends to zero in at least 1/T 2. Therefore, similarly to the EADA method, var[m̂0]
tends to be underestimated for large T values.

Given the fact that, for both RPRA and RPDA methods, var[m̂0] cannot be obtained analyti-
cally, numerical RPRA and RPDA simulations are run to obtain empirical estimates of var[m̂0] for
various estimation intervals, with M = 100s and d f = ∆ f . The results are shown in Fig. 3.23, and
confirm that, with the RPRA method, var[m̂0] tends to the predicted asymptotic value with 1/T 2

while, with the RPDA method, var[m̂0] tends to zero with 1/T 2, i.e. faster than var[m̂0] from the
correct signal. Therefore, the qualitative behaviour is the same for the EARA and RPRA methods
(resp. the EADA and RPDA methods), but the magnitude of the inaccuracies is greater for the RP
method than for the EA method, in spite of an identical number of components M = 100.

Overall, using RP methods, it is possible to avoid the generation of periodic signals, and to
make the ACF of the generated signal fade out to zero, without increasing the number of frequency
components. To obtain such a result, and in contrast to the commonly advocated procedure, the
parameter d f , which governs the magnitude of the random frequency perturbation, should not be
set to a value smaller than ∆ f , but instead equal to or larger than ∆ f . However, d f should not be
chosen so large so as to distort the ACF over the correlation length of the target process.

In fact, RPRA and RPDA methods can be seen as variants of the harmonic superposition
techniques, whereby the initial choice of complex amplitudes (υk, in the formalism of this chapter)
is slowly phase-modulated with e−2iπεkt , at a speed which is different, and randomly chosen, for
each component k. The modulation speed, limited by the parameter d f , must not be too slow (in
which case periodicity still occurs), or too fast (in which case the short-term ACF properties of the
signal are distorted).
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Figure 3.23: var[m̂0], for long estimation intervals T , for the target wave process vs the process
generated through RPRA and RPDA methods, with M = 100 and d f = ∆ f . For RPRA and RPDA
methods, var[m̂0] is obtained empirically using 500 simulations. The target spectrum is that of Fig.
3.1a.

Nevertheless, for both RPRA and RPDA methods, the generated process is not Gaussian, so
that a correct ACF function does not ensure that the generated signal has all the desired statistical
characteristics of the target wave process. In particular, it is shown that, for time series generated
with the RPRA method, the m0 estimator presents more variability than it should as the estima-
tion interval grows. In contrast, with the RPDA method, the variability of the m0 estimator is
under-represented. This is a particular manifestation of the generated signals not being statisti-
cally accurate simulations of the target signal. Similarly to the EADA and EARA methods, it
is certainly not true to say that RPRA or RPDA methods allow for the simulation of arbitrarily
long wave signals, using a small number of frequency components, without introducing statistical
inaccuracy.

Furthermore, like EA, RP implies that the set of frequencies differs for each random realisa-
tion, which may both complicate the frequency-domain analysis of wave-driven dynamical sys-
tems, and constitute a significant computational burden if a large number of wave signals must be
generated.

In summary, the apparent benefits of the RP discretisation method are probably more than
offset by possible statistical inaccuracies, and by the time-consuming signal generation procedure.

3.5 Discussion

3.5.1 Extension to other simulated variables

This chapter is primarily focused on simulating the wave elevation η. However, the results extend,
at least qualitatively, far beyond this sole variable. Consider a linear system, which is driven
by the wave elevation process, and consider any output x of such a process. Define Hηx( f ), the
complex frequency-domain transfer function which relates the wave elevation to the output of
interest. Then, under the Gaussian random excitation η, x is also a Gaussian random process, with
SDF given by Sxx( f ) = |Hηx( f )|2Sηη( f ) [25]. Therefore, the simulation techniques applicable to
any other variable related to η via a linear transfer function can be analysed in the same way as
developed in Sections 3.2 through 3.4.

Previous work, carried out within the scope of this thesis [89], considered the specific case of
a WEC, modelled as a linear system, and driven by random waves. For a linear WEC model, it is
easy to show [89] that the following two procedures are statistically equivalent:

• Procedure 1: a) Generate a time series of η using any of the WS methods described above;
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b) Obtain the steady-state output x using a time-domain simulation method in the generated
η.

• Procedure 2: Apply the same WS method as in Procedure 1, using Sxx( f ) instead of Sηη( f ),
to generate a random time series of the output x.

The only difference between the two procedures is that, in Procedure 2, the phase relation-
ship between a specific instance of η and the corresponding x is not modelled (because η is not
explicitly simulated). For a linear WEC system, the equivalence between Procedures 1 and 2 has
important consequences: as explained in [89], using the HDA method and calculating the steady-
state WEC response over a period T = 1/∆ f , the average absorbed power in the target sea state,
〈P〉, can be calculated using only one random simulation.

For non-linear WEC models, although 〈P〉 estimated over T = 1/∆ f may vary from run to run,
the variability of 〈P〉 remains significantly smaller than it would be using the HRA method [79],
thus requiring fewer simulations for a given confidence level. However, for a non-linear system,
it cannot be proven, to the best of the author’s knowledge, that using the HDA method produces
unbiased estimates with respect to HRA. Therefore, if possible, some preliminary simulations
should be carried out, to ascertain whether the HDA and HRA methods yield the same results, as
further exemplified in Chapter 6 of this thesis.

3.5.2 Extension to other statistics

In general, the primary goal of running statistically accurate simulations of random processes is
to estimate one or several statistical quantities. Throughout this chapter, the quantity taken as an
example was the variance, m0. It has been shown that for a given spectrum discretisation method,
DA and RA variants yield the same average value 〈m̂0〉, which is a good approximation to m0 if the
spectrum is discretised with sufficient accuracy. DA, however, yields estimates m̂0 which present
less variability around 〈m̂0〉 than using RA. In short, as far as m0 is concerned, DA yields unbiased
estimates, with less variability than RA.

As briefly mentioned in Section 3.1, the latter observation seems to hold for a number of other
statistical quantities, such as peak frequency, groupiness factor, maximum wave height, steepness,
etc. as suggested in experiments carried out by a number of authors [74, 75, 76], including the
work reported in [89], carried out within the scope of this thesis.

Nevertheless, it must be stressed that DA yielding unbiased estimates may not necessarily be
true for any statistical quantity.

3.5.3 Comparison between simulation methods

As shown in Section 3.3, harmonic WS methods satisfy conditions C1 and C2, and thus are suit-
able for random wave simulation, under the condition that the spectrum discretisation is accurate
enough (in the examples of this chapter, ∆ f ≈ fc/100), and that the simulation time T is less than,
or equal to 1/∆ f . Given the capabilities of modern computers, it is extremely unlikely that such
requirements would represent significant limitations.

In contrast, there seems to be no strong rationale for using any of the non-harmonic WS meth-
ods. In particular, using EARA or EADA methods, it seems difficult to determine a clear limit for
the simulation time beyond which the ACF becomes distorted (while using HRA or HDA meth-
ods, 1/∆ f is a simple choice). With RPRA or RPDA methods, the setting of d f may be delicate,
but with the example spectrum studied in this chapter, self-repetition can be avoided for d f ≈ ∆ f ,
while preserving a satisfactory ACF. However, with RP more so than with EA, the variability of
the m0 estimate is not accurately reproduced, when T is large. In addition, for both EA and RP,
the generation process is significantly more complicated and time consuming than with harmonic
discretisation.

Therefore, choosing between the HRA and HDA methods seems to be the most reasonable
alternative.
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Table 3.1: Summary table of wave superposition methods - assuming M ≥ 100

HRA HDA
Gaussian? Yes No
ACF Accurate up to T ≈ 1/∆ f Accurate up to T ≈ 1/∆ f
var[m̂0] (T ≤ 1/∆ f ) Realistic Underestimated; 0 for T = 1/∆ f
var[m̂0] (T > 1/∆ f ) ———— not relevant ———— ———— not relevant ————

EARA EADA
Gaussian? Yes No
ACF Gradually distorted as T increases Gradually distorted as T increases
var[m̂0] (T ≤M/ fc) Realistic Realistic
var[m̂0] (T > M/ fc) Overestimated for T �M/ fc Underestimated for T �M/ fc

RPRA (with d f ≈ ∆ f ) RPDA (with d f ≈ ∆ f )
Gaussian? No No
ACF Accurate for all T Accurate for all T
var[m̂0] (T ≤ 1/∆ f ) Realistic Underestimated
var[m̂0] (T > 1/∆ f ) Overestimated Underestimated

3.6 Summary

It has been shown that two conditions are necessary and sufficient for the simulated wave process
to be statistically representative of the target sea state: (C1) the generated process should be Gaus-
sian, and (C2) its ACF should satisfy the Wiener-Khinchine relation with the target spectrum, for
all lag values within the intended simulation length. In particular, the Gaussian distribution fol-
lowed by the target process introduces significant variability in the wave statistics estimated over
finite-length time intervals. This variability is more particularly exemplified for the finite-length
estimator of the signal variance m0, using real wave time series and theoretical analysis.

Harmonic and non-harmonic wave superposition methods have been thoroughly analysed and
compared, using conditions C1 and C2 as guidelines. The corresponding findings are summarised
in Table 3.1.

Harmonic WS methods constitute a simple and clear alternative. For applications where it is
essential that the short-term variability of natural ocean waves be accurately simulated, the HRA
method is appropriate. In such a case, and if periodicity must absolutely be avoided, ∆ f can simply
be chosen such that 1/∆ f exceeds T by more than the correlation length of the wave process. With
such settings, the HRA method satisfies C1 and C2. Alternatively, if accurate statistics must be
estimated from relatively few and short simulations, the HDA method may be considered a more
suitable option. However, for the system under study (linear or non-linear) and the statistics of
interest (variance or other), it should be ascertained that the HDA method produces unbiased
estimates with respect to the HRA method.

Non-harmonic discretisation methods, in contrast, introduce statistical distortion. With EA,
the ACF of the generated process may be significantly impacted, which can only be mitigated by
increasing the number of frequency components. Furthermore, for large estimation intervals, the
variance of the m0 estimator is either overestimated (with the EARA method) or underestimated
(with the EADA method). As far as RP is concerned, unlike the commonly advocated procedure
[81] whereby d f � ∆ f , the parameter d f should be chosen at least equal to ∆ f , but not so large
as to affect the generated process ACF for small lag values. The resulting process, however, is
non-Gaussian, and for estimation intervals T ≥ 1/∆ f , the variance of the m0 estimator is either
overestimated (with the RPRA method), or underestimated (with the RPDA method).

Thus, it is not true to say that non-harmonic WS methods allow the simulation time to be ar-
bitrarily extended, without increasing the number of frequency components. Clearly, the potential
benefits of non-harmonic discretisation schemes are offset by hidden statistical distortion, and by
the additional complexity introduced by the simulation procedures.

Finally, if the intended simulation length is so large that WS methods constitute a significant
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computational burden, white-noise filtering techniques may be considered. However, it must be
stressed that, providing requirements C1 and C2 are met, there should be no difference between
simulating one extremely long time series, or many shorter time series with the same total simu-
lated length. Therefore, it seems unlikely that any practical case may be found, where harmonic
WS methods would not be relevant as a realisation technique.
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Part II

A harmonic balance technique for the
numerical simulation of non-linear

wave energy converter models
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Chapter 4
Wave energy converter models

4.1 Introduction

Numerical WEC simulation

Given the high cost of physical experiments (both in wave tanks and at sea), the development of
wave energy concepts relies, to a large extent, on numerical simulations [3]. Gradual improve-
ment in available computational power, and scientific progress in WEC modelling, have jointly
contributed to making increasingly realistic simulations achievable.

The modelling and numerical simulation of WECs significantly differ from that of ships or
other marine structures [3], both in its aim and in the associated challenges:

• The aim of WEC simulation is, most of the time, oriented towards power production assess-
ment, while for other marine applications, the focus is mostly on structural design. Nev-
ertheless, it may be reasonably argued that, if wave energy technologies are to converge
and be developed to an industrial scale, the aims of WEC simulations should also include
structural design - see, for example, Chapter 14 of [3].

• In traditional marine applications, waves are seen as a disturbance of which the effects
should be minimised. Therefore ships and marine structure are designed not to resonate
in ocean waves, and to keep their oscillatory motion relatively small, which is, most of
the time, consistent with the use of linear hydrodynamic theory. In contrast, wave energy
converters may be designed to undergo large amplitude motions in order to maximise power
capture, which makes linear theory inadequate [11, 90].

The numerical simulation of WECs or WEC systems involves a suitable model, and a suitable
solution technique. At this stage, the terms simulation, model and solution technique (or method),
as employed in this thesis, deserve proper definitions:

1. Model, or mathematical model: A differential equation, or a set of differential equations,
which describe the dynamical behaviour of a wave energy system.

2. Solution method, or numerical solution method: A numerical technique, or a combina-
tion of numerical techniques, which may be used to compute the solution for the differential
equations of a wave energy device model.

3. Accordingly, the simulation of a WEC consists of calculating, using an appropriate numer-
ical method, the solution for the differential equation of a WEC model.

The above definitions differ from the terminology employed in other works, such as [3], where
the term “model” is interchangeably used for what is referred to, in this thesis, as model, solution
method, or simulation. The author of this thesis believes that the distinction is important. For
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example, a linear differential equation (the model) may be solved by means of various solution
methods, such as time-domain numerical integration, or frequency-domain calculations.

As mentioned in the introduction, the focus of this thesis is on applications where the speed of
numerical calculations is of primary importance. Computational efficiency is crucial, in particular,
when extensive simulation is required, e.g. for power assessment, whereby the WEC outcome
must be calculated in a large number of sea states (see Chapter 2), or for WEC optimisation,
whereby a wide range of design parameters have to be quickly evaluated. Real-time control of
WECs [9] is another application where models must lend themselves to efficient calculations. As
a consequence, the main objective of this chapter is to define a reasonably general formulation
for WEC models, which can offer an appropriate degree of realism, while being amenable to
efficient solution methods as required in the applications identified. This elementary formulation
is a prerequisite for introducing the harmonic balance method in Chapter 5.

The variety of WEC modelling approaches

There exists a variety of WEC models for numerical simulation, with various strengths depending
on the intended use and on the specific device considered. For a review of numerical modelling
approaches, the reader is referred to the book of Folley [3]. As far as hydrodynamic modelling
is concerned, the range of existing approaches extends from linear, time-invariant models, some
of which are not significantly more complicated than a mass-spring-damper system, to compu-
tational fluid dynamics (CFD), which solves the full hydrodynamic interaction governed by the
Navier-Stokes equations. Nevertheless, even the simplest WEC models, entirely described by lin-
ear theory, lend themselves to a wealth of theoretical analysis [7] which has kept its relevance until
nowadays, well into the era of CFD.

Linear models can be solved efficiently, significantly faster than real-time1, using frequency-
domain calculations. In contrast, CFD runs much slower than real-time and, as such, is only
suitable for specific applications, such as the study of extreme events or particular physical phe-
nomena. Between those two extremes, there exists a range of approaches where a lesser or greater
amount of realism is added, through the addition or removal of assumptions.

In recent years, renewed interest in non-linear hydrodynamic WEC modelling has emerged in
relation to control. Indeed, power-maximising control of wave energy devices, mentioned in the
introduction, is known to have the potential to help reducing the levelised cost of energy (LCOE)
for wave energy technologies, by maximising the amount of power absorbed, at a given capital cost
[9]. Power-maximising control strategies tend to magnify the amplitude of the motions undergone
by the WECs, which invalidates the assumption of small motion [11], essential for the validity
of linear hydrodynamics. Therefore, there is a need for more realistic WEC models, which are
not only computationally tractable, but also present themselves in a mathematical form amenable
to the theoretical tools of model-based control. The development of such models has been under
investigation at COER (see for example the work of Giorgi [91]), where this thesis has been carried
out.

Although hydrodynamic interaction has been the focus of the discussion in the previous para-
graphs, it is only a part of a complete WEC model. In particular, in comparison to hydrodynamic
modelling, the conversion of mechanical energy into electrical energy through the power take-off
(PTO) system has received far less interest in academic publications. Wave-to-wire modelling
approaches for WEC systems, i.e. including PTO components, are reviewed in [92]. Mooring
systems, which have also been relatively overlooked, may play an equally important role in the
dynamics of WEC systems [93].

1i.e. the run time for one second of simulation is� 1s.
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Solution methods

Of course, models and solution methods are not independent from each other, some solution
methods being more appropriate than others for specific types of models. Thus, the challenge
of numerical simulation consists of finding an appropriate mathematical model and a compatible
numerical solution technique. In fact, more often than not, models are designed, or modified, so
as to be amenable to certain solution techniques: for example, the linearisation of a non-linear
system around an equilibrium point is commonplace procedure, which allows frequency-domain
calculations to be employed.

Adding more realism into a model often comes at the price of increasing the computational
cost associated with its simulation: the solution method may have to be changed to a more so-
phisticated one in order to accommodate a new type of differential equation; the dimension of
the model may increase, etc. For example, when non-linear effects are taken into account, the
usual frequency-domain analysis is typically replaced with time-domain integration [3] to solve
the dynamical equations. Furthermore, as will be further discussed throughout the remainder of
this section, a clear-cut gap exists between those models which are “distributed in space”, and
thus expressed as a set of partial differential equations (PDE), such as the Navier-Stokes equations
[94], and those which can be expressed as integro-differential equations (IDEs), such as Cummins’
equation [95] (see Section 4.3.3), or ordinary differential equations (ODEs), for example when the
convolution term of Cummins’ equation is approximated by means of a state-space representation
[96]. ODEs and IDEs usually have low dimension (typically less than 10 for a single device), and
thus can be solved relatively easily and efficiently. In addition, ODE models lend themselves to
analysis tools and control methods from the theory of non-linear dynamical systems [97]. IDE and
ODE descriptions thus form a suitable category of models for computationally-efficient solution
methods and control calculations.

More specifically, in the remainder of this thesis, IDE models refer to differential equations
combining:

• linear or non-linear terms which ‘statically’ depend on the state variables, as in ODEs;

• linear memory terms represented in integral form.

In general, IDE WEC models are written in a mathematical form similar to the following:

ẋ(t) = f(x(t), t)+
∞∫

0

K(τ)x(t− τ)dτ (4.1)

If the convolution kernel K is zero, Eq. (4.1) reduces to an ODE. For simplicity, and since
ODEs form a special case of IDEs, both ODEs and ‘strict’ IDEs (containing an integral term)
will be referred to as IDE models. Eq. (4.1) will be given a more specific mathematical form
throughout the rest of this chapter, with an emphasis on non-linear terms and memory terms,
which present the most challenge from the point of view of numerical simulation.

The focus of this chapter is on clarifying what types of physical WEC models can be described
by an IDE, and on identifying more specific formulations than Eq. (4.1), in the context of WEC
modelling.

Chapter organisation

The rest of this chapter is organised as follows:

• Section 4.2 introduces the basic principles of WEC modelling, involving three main subsys-
tems: the coupled fluid-structure system, the PTO system and the mooring system.
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• Models for WEC hydrodynamic interaction problems are briefly reviewed in Section 4.3.
A generic formulation for hydrodynamic interaction models is proposed, with clearly un-
derstood limitations, and with a specific emphasis on the most computationally challenging
modelling terms: non-linear terms and linear memory terms.

• Models for PTO systems are briefly discussed in Section 4.4, with an emphasis on their
mathematical formulation.

• Models for mooring systems are briefly discussed in Section 4.5, with an emphasis on their
mathematical formulation.

• Based on the preceding sections, a generic IDE formulation for WEC models is proposed
and discussed in Section 4.6.

• The main contributions and salient points of this chapter are summarised in Section 4.7.

4.2 WEC modelling: general principles

The variety of WEC operating principles and concepts makes it difficult to propose a general
formulation for WEC models. However, it can safely be asserted that any WEC system comprises
one or several moving components which are activated by the surrounding fluid. The term “moving
component” may be understood in a broad sense: for example, in oscillating water columns, the
air column may be modelled as a rigid piston (see, for example, [98] and other work carried
out at Instituto Superior Tecnico in Lisbon University), and therefore may be seen as a “moving
component”, although it is not strictly speaking part of the WEC itself2.

Therefore, the basis of WEC hydrodynamic modelling is Newton’s second law, which relates
the motion of moving parts to the forces exerted onto the WEC system. As articulated in Chapter
2 of [3], forces can be split into external forces, due to the hydrodynamic interaction between the
WEC and the surrounding fluid, and reaction forces, which are due to the mechanical effect of the
power take-off (PTO) system, or to the mooring arrangement. Also taking into account the gravity
force, Newton’s second law then reads:

Mbξ̈ = fg + f f + fpto + fm (4.2)

where:

• ξ represents the generalised coordinates describing the dynamics of those WEC moving
parts, which are directly activated under the mechanical action of the waves, and dots rep-
resent time derivatives;

• Mb denotes the inertia matrix of the moving parts, which are directly activated under the
mechanical action of the wave;

• fg is the force due to gravity;

• f f is the force exerted by the fluid onto the moving parts;

• fpto represents the forces exerted by the PTO system;

• fm represents the forces exerted by the mooring system.

2This is but one instance where it is useful to employ the term WEC system, as opposed to WEC: the model of the
WEC system may also include the description of physical elements or phenomena which are not physically part of the
WEC (as a manufactured device), but which participate in the WEC operation.
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Figure 4.1: Schematic diagram of a WEC model

Eq. (4.2) does not imply that the forces are independent from each other.
In the following, the bold letter f represents a generalised force, composed of a force, a torque,

or both. When forces, or torques, need to be expressed separately, they are denoted F and T. For
example, the mooring (generalised) force is defined as:

fm =

(
Fm

Tm

)
(4.3)

Apart from the gravity force, which is straightforwardly calculated, the calculation of the three
other forces, f f , fpto and fm, requires that the corresponding systems - hydrodynamic interaction,
PTO system, mooring system - are modelled with sufficient accuracy. In fact, in a realistic model,
moorings, PTO and hydrodynamic interaction would all have their own internal dynamics. Thus,
a WEC model can be said to describe the interaction of the wave-activated moving parts with
three subsystems: the surrounding fluid (hydrodynamic interaction), the mooring system, and the
PTO system. Those three essential components are schematically represented in the diagram of
Fig. 4.1, and are discussed in the next subsections, with a more detailed focus on hydrodynamic
interaction which has been, by far, the subject of most academic work related to WECs.

4.3 Models for hydrodynamic interaction

The motion of the surrounding fluid, and its interaction with the moving WEC, are governed by
the laws of fluid mechanics. The set of partial differential equations which govern fluid mechanics,
in the most general case, are called the Navier-Stokes equations, and have been well established
since the middle of the XIXth century [94]. The model defined by the Navier-Stokes equation has
proved able to describe the motion of any known fluid with excellent accuracy. However, given
the highly complicated and non-linear nature of the Navier-Stokes equations, analytical solutions
are only available under very restrictive sets of assumptions, and even the numerical solution of
specific problems in physics or engineering is carried out under various simplifying assumptions,
so that, as formulated by Katz [94], “the science of fluid mechanics has focused on simplifying this
complex mathematical model and on providing partial solutions for more restricted conditions.”

Accordingly, the typology of hydrodynamic models for WEC systems mostly reflects the
choices made in terms of simplifying assumptions. The brief overview which follows browses

76



from the less restrictive to the most restrictive modelling approaches. The resulting order of pre-
sentation for the various modelling approaches does not follow any chronological progression -
quite the contrary in fact, since the most complete models for describing the fluid dynamics only
became computationally tractable in relatively recent years, using CFD, while the most restrictive
models, such as Cummins’ equation [95], have been analysed and have led to exploitable results
for more than 50 years. The books from Folley [3] and Molin [99] are a valuable companion to
the following subsections.

4.3.1 The Navier-Stokes equations and CFD simulations

For applications of any practical significance in hydrodynamic engineering, including the mod-
elling of wave energy systems, the Navier-Stokes equations reduce to the mass and momentum
conservation equations, to which relevant boundary conditions are added, typically at the vertical
and horizontal boundaries of the domain considered, and on the surface of the device. Note that,
for WEC modelling, the fluids of interest are both water and air, since the WEC system may be in
contact with both.

Modelling the fluid compressibility is, in most WEC-related applications, unnecessary (Chap-
ter 6 of [3]), but may be useful to study extreme events such as wave slamming. In the following,
only the more usual case of the incompressible Navier-Stokes equations is considered. For an
incompressible fluid, the mass conservation equation (or continuity equation), in its differential
form, reads as follows:

∇.u = 0 (4.4)

where u is the velocity vector field. The momentum conservation equation, again for an incom-
pressible fluid, can be given as:

ρ(
∂u
∂t

+u.∇u) = ρFdist−∇p+µ∇
2u (4.5)

where ρ is the fluid density, p is the pressure, µ is the fluid viscosity coefficient, and Fdist represents
a distributed force per unit mass (e.g. gravity).

Eqs. (4.4) and (4.5), together with boundary conditions, form the model which describes the
dynamics of the fluid surrounding the WECs. The boundary conditions at the contact surface with
the WEC and, conversely, the pressure force exerted by the fluid onto the WEC, together make the
hydrodynamic interaction a coupled model.

The solution of Eqs. (4.4) and (4.5) can be carried out numerically using CFD techniques,
which include both “traditional” CFD (relying on a spatial discretisation of the fluid domain), and
the more recent technique of smooth particle hydrodynamics (SPH), which represents the fluid
as a mass of interacting particles. Details on the available numerical software, and existing CFD
studies applied to WEC systems, may be found in Chapter 6 of [3], or [100]. The most common
CFD method in the wave energy field is termed Reynolds-averaged Navier-Stokes (RANS) [101]
and solves for Eqs. (4.4) and (4.5).

CFD can also be used to solve simplified versions of Eqs. (4.4) and (4.5). In particular, the
Euler equation corresponds to the case where the fluid viscosity coefficient, µ, is assumed equal
to zero. In [101], both RANS and Euler simulations are compared for a cylindrical heaving point-
absorber (HPA) wave energy device3. While RANS simulations can account for dissipative effects
due to both viscosity and vorticity, with the Euler formulation, dissipative terms are solely due to
vorticity. Results from [101] suggest that, for a full-scale heaving point-absorber, the dominant
dissipative effects are due to vortex shedding, while viscosity only plays a minor role. In such a
case, the Euler equations may be an appropriate model.

Modelling the WEC dynamics using the full Navier-Stokes or Euler equation is vital, for
applications involving the detailed study of extreme events, specific physical phenomena or to

3Heaving point-absorbers are a category of wave energy devices, operating in the vertical (heave) mode of motion,
and of small dimension relative to the typical incident wavelength.
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validate simplified modelling approaches. Nevertheless, the heavy computational requirements
associated with CFD make the approach, as yet, inadequate for quick and extensive calculations.
Thus, more tractable modelling approaches for WEC hydrodynamics are essential.

Finally, note that “CFD”, in its common acceptance, refers to numerical tools for the solution
of the Navier-Stokes equations with relatively few simplifying assumptions, such as Eqs. (4.4)
and (4.5). However, strictly speaking, the term “CFD” could also apply to the numerical solution
of simpler versions of the Navier-Stokes equations, such as potential flow models discussed in the
next subsection.

4.3.2 Non-linear potential flow models

In the non-linear potential flow approach, starting from Eqs. (4.4) and (4.5), two additional as-
sumptions are made, which greatly simplify the incompressible Navier-Stokes equations:

• The fluid is inviscid, i.e. viscous effects are neglected (as for the Euler equation);

• The fluid is irrotational.

Such assumptions are generally acceptable far from the boundary layer [94], but they may be
unrealistic in the vicinity of the interface between the device and the fluid. Assuming inviscid
and irrotational flow, it can be shown that the velocity field u can be expressed as the gradient of a
so-called (scalar) velocity potential φ, so that u =∇φ. The continuity and momentum conservation
equations then take the form of the Laplace equation (here expressed in Cartesian coordinates):

∇
2
φ =

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 (4.6)

and Bernoulli’s equation:

gz+
p− pa

ρ
+

1
2

∇φ.∇φ+
∂φ

∂t
= 0 (4.7)

where pa denotes the atmospheric pressure.
At the free-surface, the dynamic boundary condition, obtained by applying Bernoulli’s equa-

tion at the free-surface, reads:

gη+

[
1
2

∇φ.∇φ+
∂φ

∂t

]
z=η

= 0 (4.8)

The free-surface kinematic boundary conditions states that a fluid particle at the free surface
stays at the free surface (or cannot cross the free surface); in other words, the velocity of the fluid
normal to the free surface must be equal to the free-surface velocity. In mathematical terms, the
kinematic boundary condition requires that, in z = η(x,y, t),

∂η

∂t
+

∂η

∂x
∂φ

∂x
+

∂η

∂y
∂φ

∂y
=

∂φ

∂z
(4.9)

At the contact surface between a solid body and the fluid, a no-flow condition through the
solid surface applies, which is mathematically expressed, at all points P of the contact surface, as:

nP.u = nP.∇φ (4.10)

where u is the velocity of the point P belonging to the solid, and n is the unit vector, normal to the
contact surface at P, and pointing towards the fluid domain. In particular, at the sea bottom:

nP.∇φ|z=−h = 0 (4.11)

Condition (4.10), applied to a floating body, is a normal velocity condition, and makes the fluid
motion dependent on the body velocity while, conversely, the body motion is influenced by the
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pressure force exerted by the fluid onto the body surface, which can be calculated from Bernoulli’s
equation if φ is known. Therefore, the hydrodynamic interaction is, again, a coupled problem.

Finally, the conditions at the horizontal boundaries of the fluid domain depend on the problem
considered - regarding, for example, whether the simulated domain corresponds to a wave tank or
to open sea. In particular, for open-sea simulations, far-field conditions may apply [7], expressing
the fact that, far from the solid body interacting with the fluid, the influence of the solid body
on the flow must tend to zero. The various boundary conditions will receive further attention in
Section 4.3.3.

Different approaches exist for the solution of a non-linear potential flow model, which can
be broadly classified into Mixed Eulerian-Lagrangian (MEL) schemes and high-order spectral
(HOS) methods4 - see Chapter 5 of [3]. HOS methods are relatively efficient compared to MEL
schemes, and therefore are particularly suitable for simulations of a wave field within a large
domain and over long periods. However, unlike MEL methods, HOS cannot model overturning
waves.

By definition, a significant limitation of potential flow models is their inability to capture drag
effects due to viscosity and vortex shedding, which can be important for appropriately modelling
the fluid close to a wave energy device. A possible solution could be the coupling of a HOS solver
(for the far-field) with CFD (in the vicinity of the device) - see Chapter 5 of [3].

Both the incompressible Navier-Stokes equations (4.4) and (4.5), which are usually solved
using CFD, and the more restrictive non-linear potential flow model (4.6) and (4.7), share a sig-
nificant drawback, from the point of view of computational tractability, and ease of theoretical
analysis of the WEC dynamics: the formulation of both categories of models is primarily con-
tinuous in space and, as such, expressed as a set of partial differential equations. Therefore, the
dimension of the problem to solve is, in theory, infinite, although the numerical solution eventually
relies on some discretisation of the modelling equations.

The next two sections deal with categories of models, which take the form of IDEs, as defined
in the introduction to this chapter.

4.3.3 Linear hydrodynamic models and Cummins’ equation

IDE hydrodynamic models typically have a relatively small dimension (corresponding, roughly, to
the number of hydrodynamic degrees of freedom). Even though the study of wave energy arrays
can make the dimension of the model significantly larger, the dimension of IDE models is by no
means comparable with the large number of variables involved in the numerical solution of the
Navier-Stokes, Euler or Laplace equations, in the models of Sections 4.3.1 and 4.3.2.

As yet, IDE WEC models are mainly based on the theory of linear potential flow, whereby the
kinematic and dynamic free-surface boundary conditions, and the no-flow condition (on the body
hull), are linearised, assuming that the wave height is small compared to the wave length, and that
the body motion is small enough for the wetted surface to remain approximately constant.

While this section focuses on linear models, stemming from the linear potential flow theory,
the next section (4.3.4) presents non-linear extensions of the linear potential flow model, and
discusses alternative ways by which new IDE models might be developed, able to capture the
realistic features of the Navier-Stokes equations of (4.4) and (4.5).

4.3.3.1 Dynamical equations for a freely-floating body

In this subsection, the motions of a freely-floating body, with six degrees of freedom, is consid-
ered. The following developments also extend, with relatively few changes, to structures with
constrained motions (e.g. a bottom-mounted flap-type device), or structures with multiple bodies
(interconnected or not).

4HOS methods are an example of spectral methods [102], applied to a problem in fluid mechanics: the spatial
distribution of the potential flow is expressed as a series expansion, which is integrated forward in time. Spectral
methods, of which the harmonic balance technique forms a special case, will be introduced in the next chapter.
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Figure 4.2: Reference frame definition for a freely-floating body

Table 4.1: Conventional names of the six fundamental hydrodynamic degrees of freedom

Notation Name
xG Surge
yG Sway
zG Heave
rx Roll
ry Pitch
rz Yaw

Let us define Oxyz the reference frame in which the fluid motion is described. At rest, the
gravity centre of the floating body, G, occupies a position G0 which is assumed, without loss of
generality, to be vertically aligned with O, as shown in the left-hand-side of Fig. 4.2. Define a
reference frame GXY Z, attached to the body and such that, at rest, GXY Z coincides with G0xyz.
As sketched in Fig. 4.2, the body motion is entirely described by the position of G relative to G0,
noted (xG,yG,zG), and by the rotation of GXY Z with respect to Gxyz, noted (rx,ry,rz).

Assuming small rotation angles, the coordinates in G0xyz of any point P belonging to the solid
body, with coordinates (XP,YP,ZP) relative to G, can be obtained as:

xP :=

xP

yP

zP

=

xG

yG

zG

+

XP

YP

ZP

+

rx

ry

rz

×
XP

YP

ZP

 (4.12)

and the velocity of the point P is obtained as:

uP :=

ẋP

ẏP

żP

=

ẋG

ẏG

żG

+

ṙx

ṙy

ṙz

×
XP

YP

ZP

 (4.13)

The terminology for the six fundamental hydrodynamic degrees of freedom, inherited from the
naval tradition and summarised in Table 4.1, is employed to describe the motions of wave energy
converters. By convention, in the wave energy field, the x axis is usually chosen aligned with the
main wave direction.
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Define ξ as the generalised body coordinates:

ξ =



xG

yG

zG

rx

ry

rz

 (4.14)

and Mb the inertia matrix of the body:

Mb =



M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 IXX IXY IXZ

0 0 0 IY X IYY IY Z

0 0 0 IZX IZY IZZ

 (4.15)

Assuming that the only external forces acting on the body are the gravity force and the pressure
forces from the fluid (viscosity is neglected), Newton’s second law is written as follows:

Mbξ̈ =

(
Fp +Fg

Tp

)
(4.16)

where Fp ∈ R3 is the resultant of the pressure forces, Fg is the gravity force, and Tp ∈ R3 is the
moment of the pressure forces about the gravity centre G. Fp and Tp are expressed as:

Fp =−
x

P∈Sw

p nP dS−
x

P∈S w

panP dS (4.17)

and
Tp =−

x

P∈Sw

p
−→
GP×nP dS−

x

P∈S w

pa
−→
GP×nP dS (4.18)

where Sw denotes the (instantaneous) wetted surface of the floating body, as illustrated in Fig. 4.2,
and nP is the unit vector normal to the body surface in point P, pointing outwards.

In Eqs. (4.17) and (4.18), the pressure must be deduced from Bernoulli’s equation which, in
turn, implies that the fluid motion is known.

4.3.3.2 Linearised fluid equations

Assuming that potential flow theory is valid, i.e. that the fluid is inviscid and irrotational, the
Laplace equation remains identical to (4.6):

∇
2
φ =

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 (4.19)

Neglecting quadratic contributions, Bernoulli’s equation (4.7) may be linearised as:

gz+
p− pa

ρ
+

∂φ

∂t
= 0 (4.20)

Bernoulli’s equation can be used to express the pressure in the fluid domain as a function of
the potential φ:

p = pa +ρ(
∂φ

∂t
−gz) (4.21)
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Outside the fluid domain, p = pa. Assuming a constant and uniform atmospheric pressure pa,
it is easy to see that the contribution of pa to the overall pressure force (4.17) and torque (4.18),
when integrated over the total surface of the body Sw ∪ S w, amounts to zero. Therefore, in Eqs.
(4.17) and (4.18), only the term ρ( ∂φ

∂t −gz) needs to be explicitly integrated over Sw:

Fp =−
x

P∈Sw

ρ(
∂φ

∂t
−gz) nP dS (4.22)

and

Tp =−
x

P∈Sw

ρ(
∂φ

∂t
−gz)

−→
GP×nP dS (4.23)

The various boundary conditions are also linearised. The non-linear dynamic boundary con-
dition (4.8) is linearised, assuming that variations of η are small, and that φ and its derivatives are
small, which allows the quadratic terms to be neglected:

gη+
∂φ

∂t

∣∣∣∣
z=0

= 0 (4.24)

Neglecting quadratic terms again, the kinematic boundary condition (4.9) is linearised as:

∂η

∂t
=

∂φ

∂z
(4.25)

Using the dynamic boundary condition, expressing the constraint at z = 0 instead of η (because η

is assumed small), the kinematic boundary condition becomes:[
∂2φ

∂t2 +g
∂φ

∂z

]
z=0

= 0 (4.26)

The no-flow condition (4.10) is responsible for the coupling between the fluid and the body
motion. It reads:

nP.uP = nP.∇φ for P ∈ Sw (4.27)

where uP is the velocity of the point P belonging to the solid, and nP is the unit vector, normal to
the body surface at P, and pointing towards the fluid domain. For motions of small amplitude, the
linearisation of the no-flow condition (4.27) consists of expressing it over the mean wetted surface
S 0

w, as opposed to the instantaneous wetted surface Sw:

nP.uP = nP.∇φ for P ∈ S 0
w (4.28)

Furthermore, the no-flow condition also applies on the sea bottom z =−H, which yields:

∂φ

∂z
|z=−H = 0 (4.29)

Finally, depending on the problem considered, far-field conditions apply [7, 99], and will be
given more detail when appropriate.

4.3.3.3 Hydrostatic terms

A first step towards the solution of the dynamical equations (4.16) consists of combining the
static pressure term −ρgz of Bernoulli’s equation (4.21), together with gravity, into a hydrostatic
restoring force and torque, which represents the balance between gravity and Archimedes force
and torque.

More specifically, integrating the hydrostatic pressure −ρgz over the wetted surface Sw yields
the hydrostatic (or Archimedes) force and torque:
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Figure 4.3: Schematic diagram of hydrostatic force and torque exerted onto a freely-floating body.
In the right-hand-side diagram, the smaller modulus of Fhp, with respect to that of Fg, results in a restoring
force directed downwards. The misalignment of ~GB with the vertical axis results in a torque which tends to
restore the body to its inclination at rest.

• The hydrostatic force
Fhp(ξ) =

x

P∈Sw(ξ)

ρgz nP dS (4.30)

is vertically-oriented, pointing upwards, with modulus ρVd(ξ), where Vd(ξ) is the displaced
volume of fluid, when the body is in position ξ;

• The hydrostatic torque

Thp(ξ) =
x

P∈Sw(ξ)

ρgz
−→
GP×nP dS =

−→
GB(ξ)×Fhp(ξ) (4.31)

where B is called the buoyancy centre and is equal to the centroid of the displaced volume
of fluid, when the body is in position ξ. The subscript hp stands for ‘hydrostatic pressure’.
Note that, because Fhp is always vertically oriented, the third component of Thp(ξ), corre-
sponding to the torque in yaw (axis Oz), is always zero.

When the floating body is in hydrostatic equilibrium (which, given the chosen convention for
the frame G0xyz, corresponds to ξ = 0), the following conditions hold:

• The force Fhp cancels gravity Fg; therefore, the weight ρV0 of the displaced volume of fluid
at rest, V0, is equal to the body mass;

• The torque Thp is zero, therefore, the buoyancy centre B0 (in equilibrium) is vertically
aligned with the centre of gravity.

The hydrostatic equilibrium position is represented in the left-hand-side diagram of Fig. 4.3.
Consider a displacement ξ with respect to the equilibrium position, illustrated in the right-

hand-side diagram of Fig. 4.3. The geometry of the submerged volume is modified, thus resulting
in a non-zero vertical force Fhp +Fg, and a non-zero torque Thp about the pitch and roll axis,
since the buoyancy centre is no longer vertically aligned with G. Note that surge, sway and yaw
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motion does not modify the geometry of the immersed volume, so that it has no impact on the total
hydrostatic force and torque.

Define Fs = Fhp+Fg and Ts = Thp. Assuming that the displacement ξ is small, Fs and Ts can
be expressed linearly as a function of the displacement ξ, as follows (see Appendix A of [99]):

fs =

(
Fs

Ts

)
=−Shsξ (4.32)

where

Shs =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 Szz Szrx Szry 0
0 0 Srxz Srxrx Srxry 0
0 0 Sryz Sryrx Sryry 0
0 0 0 0 0 0

 (4.33)

is called the hydrostatic stiffness matrix. The components of Shs are calculated from the geometry
of the floating body in hydrostatic equilibrium, as follows:

Szz = ρg
s

S 0
CSA

dS

Srxz = Szrx = ρg
s

S 0
CSA

Y dS

Sryz = Szry =−ρg
s

S 0
CSA

XdS

Srxrx = ρg(V0‖
−−→
GB0‖+

s

S 0
CSA

Y 2dS)

Sryry = ρg(V0‖
−−→
GB0‖+

s

S 0
CSA

X2dS)

Srxry = Sryrx =−ρg
s

S 0
CSA

XY dS

(4.34)

where S 0
CSA is the cross-sectional area formed by the intersection of the body in equilibrium with

the fluid surface at rest (see Fig. 4.3).
The floating body is hydrostatically stable if fs, when the body is displaced, tends to restore

it to its hydrostatic equilibrium position. In general, floating structures, including WECs, are
designed to ensure hydrostatic stability. In such a case, Fs (resp. Ts) is called hydrostatic restoring
force (resp. torque).

4.3.3.4 Wave-body interaction

Define the vector NP, for each point P of Sw, as:

NP =

(
nP−→

GP×nP

)
(4.35)

Having expressed the hydrostatic restoring force and torque as in Eq. (4.32), and using the
notation NP of Eq. (4.35), Newton’s second law (4.16) is now written as:

Mbξ̈+Shsξ =−
x

P∈Sw

ρ
∂φ

∂t
NP dS (4.36)

Considering that variations in the wetted surface are small, the integration over Sw is approxi-
mated by integration over the wetted surface at rest, S 0

w:

Mbξ̈+Shsξ =−
x

P∈S 0
w

ρ
∂φ

∂t
NP dS (4.37)

84



To proceed further with the solution, given the problem linearity, it is useful to assume that
the fluid follows a sinusoidal motion at a single frequency ω, and to consider the forced, steady-
state, response of the floating body (at the same frequency). Thus parametrised, the fluid and body
motions can be written as follows:{

φ(x,y,z, t) = ℜ{φ̂(x,y,z)e−iωt}
ξ = ℜ{ξ̂e−iωt}

(4.38)

and the problem amounts to finding the complex function φ̂(x,y,z) and vector ξ̂. Furthermore, the
total complex potential φ̂ can be written as the sum of three contributions:

• The incident potential, φ̂I , corresponds to the undisturbed wave field in the absence of the
floating body.

• The diffracted potential, φ̂D, corresponds to the modification of the incident wave field
because of the presence of the body (considered at rest). Together, the incident and diffracted
potentials must satisfy the no-flow condition (4.28) on the hull surface at rest S 0

w:

nP.∇(φ̂D + φ̂I) = 0 for P ∈ S 0
w (4.39)

• The radiated potential, φ̂R, is due to the motion of the body in its six degrees of freedom,
and therefore can be written as the sum of six contributions:

φ̂R =
6

∑
d=1
−iωξ̂d φ̂Rd (4.40)

where φ̂Rd is the radiated potential generated by the body when it is forced to oscillate in the
mode d with unit amplitude.

The total potential is given as:
φ̂ = φ̂I + φ̂D + φ̂R (4.41)

The incident potential φ̂I is given by Airy’s wave theory (see Chapter 2). For a wave with
amplitude A propagating along the direction θ, and defining η̂(ω,θ) = Ae−iϕ the wave elevation is
given as follows:

η(t) = ℜ{Aeik̃(ω)(xcosθ+ysinθ)−i(ωt+ϕ)}= ℜ{η̂(ω,θ)eik̃(ω)(xcosθ+ysinθ)e−iωt} (4.42)

and the incident potential is written as:

φ̂I(x,y,z) =−A
ig
ω

cosh(k̃(ω)(z+H))

cosh(k̃(ω)H)
eik̃(ω)(xcosθ+ysinθ)−iϕ

=−η̂
ig
ω

cosh(k̃(ω)(z+H))

cosh(k̃(ω)H)
eik̃(ω)(xcosθ+ysinθ)

(4.43)

where ω and the wave number k̃(ω) satisfy the dispersion relation (2.10).
The linearised fluid equations, introduced in Section 4.3.3.2, and satisfied by the diffracted

potential φ̂D, are summarised as follows:

∇2φ̂D = ∂2φ̂D
∂x2 + ∂2φ̂D

∂y2 + ∂2φ̂D
∂z2 = 0 in the fluid domain Laplace equation

[−ω2φ̂D +g ∂φ̂D
∂z ]z=0 = 0 Kinematic boundary condition

∂φ̂D
∂z |z=−H = 0 No-flow condition at the sea bottom

nP.∇φ̂D =−nP.∇φ̂I for P ∈ S 0
w No-flow condition on the body hull

lim
r→∞

√
r( ∂φ̂D

∂r − ik̃(ω)φ̂D) = 0 where r =
√

x2 + y2 Far-field condition
(4.44)
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The far-field condition is valid for waves diffracted by a body in the two directions of the
horizontal plane. It expresses the fact that, in the distance, diffracted waves propagate radially,
have a wave number k̃(ω), and an amplitude decreasing in 1/

√
r (for energy conservation) [99].

The radiated potential satisfies the same equations as the diffracted potential, except for the
no-flow condition on the body hull. For each of the six potentials φ̂Rd , from Eqs. (4.13) and (4.40),
it is easy to find that the no-flow condition (4.28) takes the following form:

nP.∇φ̂Rd = NPd for P ∈ S 0
w (4.45)

where NPd represents the dth component of NP.
Therefore, the equations, introduced in Section 4.3.3.2, and satisfied by the radiated potential

φ̂R, are summarised as follows:

∇2φ̂Rd =
∂2φ̂Rd

∂x2 +
∂2φ̂Rd

∂y2 +
∂2φ̂Rd

∂z2 = 0 in the fluid domain Laplace equation

[−ω2φ̂Rd +g
∂φ̂Rd

∂z ]z=0 = 0 Kinematic boundary condition
∂φ̂Rd

∂z |z=−H = 0 No-flow condition at the sea bottom
nP.∇φ̂Rd = NPd for P ∈ S 0

w No-flow condition on the body hull

lim
r→∞

√
r(

∂φ̂Rd
∂r − ikφ̂Rd ) = 0 where r =

√
x2 + y2 Far-field condition

(4.46)
Although analytical solutions for the radiation-diffraction problem can be found in some cases,

such as vertical cylinders [99], for more general structures the problem is solved numerically using
boundary element methods (BEMs), with a discretisation of the body hull geometry. In the wave
energy community, the most common BEM solvers are WAMIT5 and NEMOH6, both of which
have been employed in the case studies presented in Part III of this thesis.

Integrating the pressure due to the incident and diffracted potentials over S 0
w yields:

fD + fI =−
x

P∈S 0
w

ρ(
∂φI

∂t
+

∂φD

∂t
)NP dS

= ℜ{[iω
x

P∈S 0
w

ρ(φ̂I + φ̂D)NP dS]Ae−i(ωt+ϕ)}

= ℜ{[iω
x

P∈S 0
w

ρ(φ̂I + φ̂D)NP dS]η̂e−iωt}

(4.47)

The force Fe := FD +FI and the torque Te := TD +TI are called excitation force and ex-
citation torque, respectively. Assuming that the incident and diffracted potentials have been
computed for a wide range of frequencies and directions of the incoming wave, it is now possi-
ble to define a complex transfer function Hηe(ω,θ) which relates the incoming wave elevation in
complex form, η̂(ω,θ), to the resulting excitation force and torque. Hηe(ω,θ) is given as:

Hηe(ω,θ) = iω
x

P∈S 0
w

ρ(φ̂I(ω,θ)+ φ̂D(ω,θ))NP dS (4.48)

Assuming that the incident wave field consists of a superposition of wave trains η̂(ω,θ) of
different frequencies and travelling along different directions, the total excitation force and torque
are given as:

fe(t) = ∑
ω

∑
θ

ℜ{f̂e(ω,θ)e−iωt} (4.49)

where
f̂e(ω,θ) = Hηe(ω,θ)η̂(ω,θ) (4.50)

5http://www.wamit.com/
6https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-toolbox-192933.kjsp
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If the effects of incident and diffracted waves must be examined individually, it is also possible
to separately express the force (resp. torque) due to the incident potential φI - called the dynamic
Froude-Krylov force (resp. torque) - and the force (resp. torque) due to the diffracted waves:{

f̂FK,d(ω,θ) = HηI(ω,θ)η̂(ω,θ)

f̂D(ω,θ) = HηD(ω,θ)η̂(ω,θ)
(4.51)

where 
HηI(ω,θ) = iω

s

P∈S 0
w

ρφ̂I(ω,θ)NP dS

HηD(ω,θ) = iω
s

P∈S 0
w

ρφ̂D(ω,θ)NP dS
(4.52)

Now consider the radiation force, due to the body motion in the mode d:

fRd (t) =−
x

P∈S 0
w

ρ
∂φR

∂t
NP dS

= ℜ{[
x

P∈S 0
w

ω
2
ρφ̂Rd NP dS]ξ̂de−iωt}

(4.53)

Define the following (column) vectors:
ARd =−ℜ{

s

P∈S 0
w

ρφ̂Rd NP dS}

BRd =−ωℑ{
s

P∈S 0
w

ρφ̂Rd NP dS}
(4.54)

fRd (t) can be written as

fRd (t) = ℜ{(−ω
2ARd − iωBRd )ξ̂de−iωt} (4.55)

For general oscillations, involving the six modes simultaneously, the six corresponding contri-
butions are summed:

fR(t) = ℜ{
6

∑
d=1

(−ω
2ARd − iωBRd )ξ̂de−iωt} (4.56)

which is more conveniently written in matrix form as:

fR(t) = ℜ{(−ω
2AR− iωBR)ξ̂e−iωt} (4.57)

where AR =
[
AR1 · · ·AR6

]
BR =

[
BR1 · · ·BR6

] (4.58)

Finally, for oscillations combining different frequencies, the total radiation force reads:

fR(t) = ℜ{∑
ω

(−ω
2AR(ω)− iωBR(ω))ξ̂(ω)e−iωt} (4.59)

The frequency-dependent matrices AR(ω) and BR(ω) are called the radiation added mass
matrix and the radiation damping matrix, respectively.

The transfer functions HηI(ω,θ), HηD(ω,θ), the radiation matrices AR(ω) and BR(ω), as well
as Shs, are the typical outputs provided by hydrodynamic BEM solvers. Once the BEM solver
has been run, solving the linear dynamical equations is straightforward, provided that the other
forces (PTO and mooring system) are also modelled linearly. For example, assume that there is
no PTO force, i.e. fpto = 0. Assume that the mooring system (see Section 4.5) exerts a linear
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restoring force in the surge and sway direction (to prevent the floating body from drifting away)
and a restoring moment in yaw (to maintain the body aligned with a prescribed direction of the
Oxy plane):

fm =−Smξ (4.60)

with

Sm =



SmXX 0 0 0 0 0
0 SmYY 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Smrzrz

 (4.61)

Now, for any combination of incoming waves with different frequencies and directions, and
described in complex form η̂(ω,θ), the WEC motion can be calculated as follows:

ξ(t) = ℜ{∑
ω

∑
θ

ξ̂(ω,θ)e−iωt} (4.62)

where for each frequency ω and direction θ, ξ̂(ω,θ) is the solution of the following linear system:

[−ω
2(Mb +AR(ω))− iωBR(ω)+Sm +Shs]ξ̂(ω,θ) = f̂e(ω,θ) (4.63)

and f̂e(ω,θ) is calculated as in Eq. (4.50).
Eq. (4.63) computes the steady-state WEC response to a variety of wave inputs. It is possible

to define WEC transfer functions, which relate the solution ξ̂(ω,θ) to the wave input:

• If the wave input is considered to be the excitation force, then the transfer function Heξ(ω)
is calculated as

Heξ(ω) = [−ω
2(Mb +AR(ω))− iωBR(ω)+Sm +Shs]

−1 (4.64)

• If the wave input is considered to be the wave elevation, for a wave propagating along a
given direction θ, then the transfer function Hηξ(ω,θ) is calculated as

Hηξ(ω,θ) = Heξ(ω)Hηe(ω,θ) (4.65)

4.3.3.5 Cummins’ equation

Assuming that linear potential flow theory is valid to describe hydrodynamic interactions, Eq.
(4.63) is not yet entirely satisfactory. Firstly, no transient is modelled when solving Eq. (4.63);
therefore, it is not possible to use Eq. (4.63) to know how the WEC reaches its steady-state
motion in the incoming waves. Furthermore, some terms, other than those involved in Eq. (4.63),
may need to be modelled in a non-linear way. For example, the PTO or mooring systems may
be modelled in a non-linear fashion. Besides, as detailed in the subsection 4.3.4.1, some non-
linear correction terms may be added to Eq. (4.63) in order to account for appropriate non-linear
hydrodynamical effects.

Therefore, Eq. (4.63) needs an equivalent representation in the time domain. If the wave
excitation occurs at a single frequency ω, the time-domain equivalent for Eq. (4.63) is a simple
second-order linear system written as:

[Mb +AR(ω)]ξ̈+BR(ω)ξ̇+[Sm +Shs]ξ = fe(t) (4.66)

where
fe(t) = ∑

θ

ℜ{Hηe(ω,θ)η̂(ω,θ)e−iωt} (4.67)
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Difficulties arise when the wave input is polychromatic, i.e. contains more than one frequency.
Indeed, the radiation force coefficients in Eq. (4.63) are frequency-dependent, which makes it
impossible to use a classical linear second-order equation as a time-domain equivalent representa-
tion. Instead, Cummins [95] proposed to use the theory of integro-differential equations to model
a ship’s motion in an arbitrary wave field. Starting from the assumptions underlying linear hy-
drodynamic theory, the notion of response superposition - which usually means that a system’s
response is the sum of its responses to each individual sinusoidal input - is generalised by stating
that the ship’s and fluid’s responses to infinitesimal impulses may be summed. Such an approach
yields the well-known Cummins’ equation [95]:

[Mb +A∞]ξ̈+

∞∫
τ=0

KR(τ)ξ̇(t− τ)dτ+[Sm +Shs]ξ = fe(t) (4.68)

where the radiation impulse response kernel, KR(τ), and the radiation infinite-frequency added
mass, A∞, are related to the radiation frequency-dependent damping and added mass matrices,
BR(ω) and AR(ω), through Ogilvie’s relations [103]:

BR(ω) =
∞∫

τ=0
KR(τ)cos(ωτ)dτ

AR(ω) = A∞− 1
ω

∞∫
τ=0

KR(τ)sin(ωτ)dτ

(4.69)

and 
KR(τ) =

2
π

∞∫
τ=0

BR(ω)cos(ωτ)dω

A∞ = lim
ω→∞

AR(ω)
(4.70)

Cummins’ equation (4.68) was extensively validated in real seas for the response of ship mo-
tion, including in severe seas [103]. Eq. (4.68), and its frequency-domain equivalent (4.63), also
form the basis for the vast majority of hydrodynamic WEC models [8], and have been studied
extensively [7].

4.3.3.6 Approximation methods for the radiation memory terms

The convolution term in Cummins’ equation represents a significant computational burden in
time-marching numerical integration procedures. A direct computation of the convolution inte-
gral makes it preferable to use numerical schemes with a fixed time step (see Chapter 3 of [3]).
Alternatively, to circumvent the need for the direct computation of the integral, various methods
have been proposed in the literature [104], which approximate the radiation memory terms, using
a state-space approximation or Pronys method [96]. Both approaches result in the system dynam-
ical equations being expressed as an ODE, where the number of states depends on the order of the
radiation approximation.

In particular, with state-space approximation approaches, Eq. (4.68) is augmented as follows:{
[Mb +A∞]ξ̈++Css

R xss
R +[Sm +Shs]ξ = fe(t)

ẋss
R = Ass

R xss
R +Bss

R ξ̇
(4.71)

where xss
R is a ‘non-physical’ state-vector, of which the size depends on the order chosen for the

state-space approximation, and Ass
R , Bss

R and Css
R are matrices of appropriate dimensions, deter-

mined so that the transfer function of the following state-space system:{
ẋss

R = Ass
R xss

R +Bss
R ξ̇

fss
R = Css

R xss
R

(4.72)
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is a satisfactory approximation to the transfer function H
ξ̇R(ω) := iωAR(ω)+BR(ω) which, from

Eq. (4.57), relates the body velocity to the resulting radiation force.
A dynamical equation in the form of Eq. (4.71) can be easily recast in a state-space form (as

a 1st-order ODE), for which more elaborate integration schemes, with adaptive time steps, can be
employed. An example of such an integration scheme, widespread in the context of WEC sim-
ulation [3], is the Dormand-Prince solver, which is the default method in the Matlab/Simulink7

simulation environment. It is estimated in [96] that state-space or Pronys methods allow for a
reduction in the computational time by a factor between 8 and 80, with respect to the direct con-
volution approach. Nevertheless, the overall modelling accuracy is sensitive to the quality of the
radiation approximation [96] while, with direct convolution and a constant integration time step
method (such as a Runge-Kutta method), the accuracy of the radiation force calculation is guaran-
teed, when the time step tends to zero [104]. One of the case studies of Chapter 6 will provide the
opportunity to examine these aspects in practice.

4.3.4 Bridging the gap between non-linear hydrodynamic modelling and IDE WEC
models

Cummins’ equation (4.68), and its frequency-domain equivalent (4.63), rely on linear hydrody-
namic theory, and thus may become inaccurate when some of the assumptions of linear hydro-
dynamics are violated. In particular, as stressed in the introduction to this chapter, WECs may
be designed to resonate in incident waves, thus violating the assumption of small motions [11].
Furthermore, neglecting drag forces due to the fluid viscosity and vortex shedding may result in
overestimated WEC motion [101] and power absorption [57]. However, given the high computa-
tion cost associated with the PDE non-linear models of Sections 4.3.1 and 4.3.2, it is tempting to
preserve Cummins’ equation as the basis for the model formulation, improved through the addition
of appropriate non-linear correction terms, as discussed in Section 4.3.4.1.

Such approaches are theoretically inconsistent, because they violate the linearity assumptions,
while preserving an equation structure which was initially justified based on those very assump-
tions. Nevertheless, they deserve to be detailed here, because they may improve the realism of
the hydrodynamic model results, at a relatively modest computational cost compared to that of
CFD and the non-linear potential flow solvers of Sections 4.3.1 and 4.3.2. However, it must be
stressed that there is, as yet, no published validation study to confirm the empirical validity of
such approaches. Therefore, Section 4.3.4.2 also briefly discusses alternative ways in which new
IDE models might be developed, in order to capture the realistic features of the Navier-Stokes
equations (4.4) and (4.5), while remaining of small dimension, and avoiding the theoretical pitfall
associated with the models of Section 4.3.4.1.

4.3.4.1 Non-linear extensions to Cummins’ equation

To account for vorticity- or viscosity-induced dissipative forces, the most common method consists
of adding the so-called Morison drag formula [105] to Eq. (4.68) which, in the context of WECs,
expresses the dissipative drag term as a quadratic function of the relative velocity between the
undisturbed oscillatory flow and the moving body [38]:

fdis =−
1
2

ρAdisCdis|ξ̇−uI|(ξ̇−uI) (4.73)

where uI is the velocity of the undisturbed incident flow φI , Adis is a matrix of characteristic areas
and Cdis is a matrix of drag coefficients, which must be identified empirically. Assuming that the
body velocity is significantly larger than the fluid velocity, a simplified form for Eq. (4.73) is often
found in the literature - see for example [8, 106, 107] and Chapter 4 of [3]:

fdis =−
1
2

ρAdisCdis|ξ̇|ξ̇ (4.74)
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Sometimes, a linear dissipative term −Cdis,l ξ̇ is also added to Eq. (4.74) [106, 107] so that,
defining Cdis,q := 1

2 ρAdisCdis as the quadratic drag coefficient of Eq. (4.74), the total drag force is
expressed as follows:

fdis =−Cdis,l ξ̇−Cdis,q|ξ̇|ξ̇ (4.75)

The identification of drag coefficients is not a simple task, and is subject to significant un-
certainty [101]. Therefore, a sensitivity analysis can be carried out, to assess the impact of the
accuracy of the identified coefficients upon the simulation results. In [38], which assesses the
performance of a selection of WEC concepts, it is found that varying Cdis, from 1 to 4 times its
nominal value, does not change the calculated power production by more than 30%. However,
results in [38] do not assume that the WECs considered are operating under resonant-type control,
which would likely enhance viscous dissipation effects. In [101], it is suggested to compare re-
sults from physical experiments or from a RANS solver (which include both fluid viscosity and
vorticity effects) with those of an Euler solver (which only models vorticity effects), in order to
discriminate the viscous effects (which do not scale through Froude scaling) from vorticity effects
(which do scale through Froude scaling). Such a procedure could make the scaling of identified
drag coefficients more robust. Although the results of [101] do not consider resonant-type control,
they are based on monochromatic waves which match the WEC resonant frequency.

In addition to enhancing drag forces, amplifying the device motion may result in geometric
non-linearities, due to the fact that the wetted surface Sw cannot be considered constant and equal
to S 0

w any more: in particular, the simplified expression of Eq. (4.32) for the static pressure terms
is no longer acceptable, and the dynamic pressure ρ∂φ/∂t cannot be integrated over S 0

w as in Eq.
(4.37). A possible remedy consists of integrating the static and incident dynamic pressure over the
exact instantaneous wetted surface, as opposed to the wetted surface at rest, while radiation and
diffraction terms remain modelled linearly [8, 11, 90, 108]. The integration of the static pressure
over Sw yields the so-called non-linear static Froude-Krylov force, while the integration of the
dynamic incident pressure term ρ∂φI/∂t yields the so called non-linear dynamic Froude-Krylov
force. The sum of static and dynamic non-linear Froude-Krylov forces is simply referred to as
the non-linear Froude-Krylov force. The Froude-Krylov forces are thus given by the following
equations: 

fst
FK(ξ, t) =

s

P∈Sw(ξ,t)
ρgzNPdS

fdyn
FK (ξ, t) =−

s

P∈Sw(ξ,t)
ρ

∂φI
∂t NPdS

fFK(ξ, t) = fst
FK(ξ, t)+ fdyn

FK (ξ, t) =−
s

P∈Sw(ξ,t)
ρ[ ∂φI

∂t −gz]NPdS

(4.76)

where φI = φ̂I(x,y,z)e−iωt is given by combining Eqs. (4.38) and (4.43). The integration do-
main Sw(ξ, t) is calculated from the instantaneous body position ξ and from the free-surface η

corresponding to the undisturbed incident wave. It is also possible to include, in Eq. (4.76), the
‘incident’ quadratic terms ρ

2 ∇φI.∇φI of the Bernoulli equation (4.7), see for example [90, 108]
but, for the sake of simplicity, such an option is not considered in this discussion.

Whether or not the quadratic terms are included, it is easily verified that the sum of the static
and incident dynamic pressure fields, taken at the free surface η, are not zero which, when calcu-
lating the integrals in (4.76), is physically unrealistic. Therefore, the incident potential flow can
be modified using a change of variables called Wheeler stretching [109]:

φ̂
W
I (x,y,z) = φ̂I(x,y,ζ) (4.77)

where

ζ :=
H(z−η)

H +η
(4.78)

Alternatively, and somewhat more rigorously, the incident potential can be calculated from non-
linear wave theory, for example by running a HOS solver with no device (if polychromatic waves
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are considered) [110], or by using semi-analytical formulations such as Stokes waves [111] (for
monochromatic, deep-water waves), cnoidal waves [111] (for monochromatic, shallow-water waves),
or Rienecker-Fenton waves [112] (whereby, for monochromatic, deep- or shallow-water waves,
the incident potential flow is numerically approximated using a truncated Fourier expansion so as
to satisfy the non-linear boundary conditions of Section 4.3.2). Preserving Airy’s formulation for
the incident potential is compared with Rienecker-Fenton’s waves in [11], while Airy’s formula-
tion, the Wheeler stretching approach, Rienecker-Fenton’s waves (for monochromatic waves) and
HOS (for polychromatic waves) are compared in [113].

In practice, integrating the incident pressure can be carried out numerically through a discreti-
sation of the hull. A remeshing routine may be used [90, 108] to discretise at best the instantaneous
wetted surface Sw; alternatively, a fine mesh can be used for the hull discretisation, so that integra-
tion over Sw only requires selecting those panels which are immersed [114]. In some cases, such
as axisymmetric heaving point absorbers, analytical formulations can be used, which circumvent
the need for a discretisation of the hull, and thus greatly reduce the computation time of non-linear
Froude-Krylov force calculations [115].

Non-linear extensions to Cummins’s equation can doubtlessly provide valuable qualitative in-
sight into the importance of different non-linear dynamical effects. To that end, idealised, archety-
pal WEC models can be used as valuable case studies, as investigated at COER in recent years
[11, 90, 113]. In particular, comparing cylindrical and spherical heaving point absorbers, [11]
shows the major effect of non-linear static Froude-Krylov forces, when the device is made to
resonate in incoming waves.

There are, at least, two major theoretical inconsistencies in non-linear Froude-Krylov ap-
proaches:

• The flow decomposition into its incident, diffracted and radiated components, in Eq. (4.41),
stems from the linearity of the whole fluid-structure coupled problem, while the aim of
non-linear Froude-Krylov approaches is precisely to model non-linear effects;

• Even if the flow decomposition is assumed true, keeping diffraction and radiation forces
modelled linearly is questionable, especially if the device undergoes large vertical excur-
sions.

The rationale behind such an abuse of the linear potential flow theory is that, for a body which
is small compared to the wave length, such as a heaving point absorber, radiation and diffrac-
tion forces are small compared to Froude-Krylov forces. Note, however, that under controlled
conditions, the control force acting onto the WEC tends to cancel static terms (such as the static
Froude-Krylov force) [116], which might enhance the relative importance of modelling dissipative
terms (such as radiation and drag forces). Therefore, non-linear Froude-Krylov extensions would
need empirical validation under controlled conditions which, to the best of the author’s knowledge,
is still missing in the literature.

Non-linear extensions to Cummins’ equation are included, for example, in the open-source
WEC simulation software WECSIM 8, which offers the possibility of calculating Froude-Krylov
forces non-linearly [117], and adding a viscous drag term in the simplified quadratic form of Eq.
(4.74) [107].

Without giving any additional detail about viscous drag or non-linear Froude-Krylov force cal-
culations, it can be reasonably claimed that the non-linear effects associated with such extensions
of Cummins’ equation will be written in a mathematical form such as:

fnl = fnl(ξ(t), ξ̇(t), ẽ1(t), ẽ2(t), ..., ẽNF.T.(t)) (4.79)

where ẽ1(t), ẽ2(t), ..., ẽNF.T.(t) are a set of NF.T. forcing terms, which depend on the incident waves.
For example, considering the Morrison formula of Eq. (4.73), fnl depends on the WEC velocity

8https://wec-sim.github.io/WEC-Sim/
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ξ̇ and on the incident flow velocity uI . Similarly, the non-linear Froude-Krylov integrals of Eq.
(4.76) depend on the WEC position (ξ) and on wave-dependent forcing terms (the incident pressure
terms which enter into account in the integrals).

4.3.4.2 Towards new types of IDE models?

Under the restrictive assumptions of linear hydrodynamics, the fluid-structure interaction problem
can be expressed as a function of the body dynamics only, as seen in Section 4.3.3. However,
Section 4.3.4.1 suggests that preserving such an advantageous formulation, while introducing non-
linear corrections, unavoidably leads to encountering theoretical inconsistencies and, as far as
non-linear Froude-Krylov forces are concerned, has not been demonstrated empirically. However,
removing assumptions brings back to equations which are distributed in space, as in Sections 4.3.1
and 4.3.2.

In addition, it should be stressed that, even if non-linear extensions to Cummins’ equation
were shown to have a wide range of empirical validity, such approaches rely on linear hydrody-
namic BEM solvers, which usually take a significant amount of time to compute the hydrodynamic
coefficients corresponding to the hull geometry of the WEC under study. Within the scope of hy-
drodynamic optimisation, even if Eq. (4.68) (possibly with some non-linear correction term) could
be solved efficiently, calculating linear hydrodynamic coefficients at each cost function evaluation
could turn out to be computationally prohibitive.

A possible solution could be the development of black-box or grey-box parametric models,
identified from experiments, as proposed in [91]. However, such models rely heavily on the spe-
cific experiments chosen for the identification, and therefore may not be suitable for applications
such as control and optimisation, where the operational space of the system is difficult to know
(or guarantee) a priori (in terms of wave input, but also in terms of parameter values in the case of
optimisation).

A possible way to avoid such shortcomings could consist of going back to the Navier-Stokes,
Euler or non-linear potential flow equations, and to apply model order reduction techniques. Typi-
cally, in the field of fluid dynamics, model order reduction schemes first consider the Navier-Stokes
equation, discretised in space [118]:

dxNS

dt
= f(xNS, t) (4.80)

where x often has dimension NNS larger than 106. The state vector is projected onto a set of basis
functions, via a matrix Φ, as well as the discretised Navier-Stokes equation (4.80), via a matrix
Ψ. If the two sets of basis functions are bi-orthonormal (see [118]), the resulting reduced-order
model takes the following form:

daNS

dt
= Ψ

T f(ΦaNS, t) (4.81)

where aNS, of dimension Na� Nx, is the projection of xNS and constitutes the reduced-order state
vector. Therefore, the model to simulate is that of Eq. (4.81), formulated in terms of aNS, instead of
that of Eq. (4.80). In the case of the incompressible Navier-Stokes equations, which are pertinent
for wave energy applications, such an approach can be particularly advantageous, thanks to the
quadratic form of the non-linearities, which makes the evaluation of f in Eq. (4.81) very efficient.

There are various possibilities to determine appropriate projections. Many popular methods
are based on the state vector trajectory xNS obtained from specific experiments [118, 119], which
can be problematic in control and optimisation, for the same reason as the black-box or grey-box
parametric models discussed above: the operational space of the system is not known a priori.
For such applications, moment-matching model-order reduction techniques [119], which focus on
reproducing the input-output behaviour of the system (as opposed to accurately reconstructing the
whole state xNS), could make the reduced-order model less dependent on specific experiments.

To the author’s knowledge, model order reduction of the Navier-Stokes, Euler or non-linear
potential flow equations has not yet been investigated for the hydrodynamic modelling of WECs,
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and could be an interesting path to investigate towards realistic and tractable models, suitable in
particular for efficient simulation, optimisation and control.

4.3.5 Summary

In summary, from Sections 4.3.3 and 4.3.4, provided that a suitable IDE model can be determined,
the hydrodynamic interaction component of the WEC dynamics in Eq. (4.2) may be written in the
following form:

L f {ξ}−n f {ξ, t}− e f (t)− fm− fpto = 0 (4.82)

with L f {ξ}= [Mb +A∞]ξ̈+C f ξ̇+S f ξ+
∞∫

τ=0
KR(τ)ξ̇(t− τ)dτ

n f {ξ, t} := n f (ξ, ξ̇, t),
(4.83)

where, depending on the modelling option:

• e f (t) may be the excitation force, the diffraction force, or any other additive forcing term
derived from the incident wave;

• C f represents a linear damping term (such as a linear viscous drag term) and S f represents
a linear restoring coefficient (typically the hydrostatic stiffness);

• n f {ξ, t} represents some non-linear modelling terms dependent on ξ, its time-derivative,
and the time-dependence represents possible forcing inputs derived from the incident wave,
as in Eq. (4.79).

From the discussion of Section 4.3.4.2, in alternative formulations, more state variables may
be included in addition to ξ, in order to describe more realistically the fluid-structure interaction
dynamics.

Although, throughout this section, the case of a single floating body was considered, the mod-
elling of a more complex system (for example involving several interconnected moving parts, or
arrays or interacting WECs) would not fundamentally modify the form of Eq. (4.82).

Finally, note that the forcing terms (e f (t), as well as the possible forcing terms in n) are said,
above, to be ‘derived from the incident wave’. In practice, this means that those signals can be
derived from some independent wave input, typically the wave elevation at some reference point
in the horizontal plane. From Chapters 2 and 3, such a wave input can be considered a Gaussian
process, and thus may be generated using harmonic superposition, as discussed thoroughly in
Chapter 3.

4.4 Models for the PTO system

4.4.1 PTO components

The PTO system is responsible for converting the motion of the moving parts into exploitable
energy. The conversion stages can be detailed as described in Fig. 4.4, adapted from [92] and
[120]:

• The transmission stage converts the reciprocating motion of the moving parts into a rotary
motion, exploitable by a rotary generator. The transmission system may consist of a hy-
draulic system, a mechanical gearbox or, more rarely, a pneumatic or magnetic transmission
system. If a linear generator is employed instead of a rotary generator, the transmission
stage is not necessary, which is described in the lower part of Fig. 4.4.

• In the generation stage, the rotary generator converts the rotation mechanical energy into
electricity. With a linear generator, the motion of the generator is, instead, reciprocating.
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Figure 4.4: Schematic diagram of the most common PTO system components for WECs, adapted
from [92] and [120]

• Finally, in order to comply with grid requirements, a power converter may be used to ensure
prescribed quality of the output power delivered to the grid.

4.4.2 Towards parsimonious PTO models

WEC models which, in addition to representing the hydrodynamic interaction, include all conver-
sion stages of the PTO systems, are referred to as wave-to-wire models. Given the scope of this
chapter, it is important to determine the mathematical forms, which wave-to-wire models can take.
From this perspective, it is useful to examine a particular example of a wave-to-wire WEC model,
recently developed and validated at COER [121, 122, 123], and which certainly articulates all the
main issues associated with the incorporation of the PTO dynamics in a WEC system model. The
PTO model introduced and validated in [121, 122] comprises:

• a hydraulic circuit, activated under the effect of a piston rigidly connected to the WEC
moving component;

• a rotary generator, activated by a hydraulic motor driven by the hydraulic circuit;

• a back-to-back power converter.

From [121, 122], it appears clearly that the three conversion stages can be modelled in state-
space form, i.e. without requiring distributed variables, or without the use of memory terms as in
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Figure 4.5: Simplified diagram of a WEC PTO system components, adapted from [125], with a
hydraulic circuit for the transmission stage, and a rotary generator for the generation stage. The
conversion stage is not modelled.

Cummins’ equation (4.68). The more accurate the model, the more state variables must be added
to account for specific physical effects. The number of additional variables necessary to describe
the PTO system dynamics seems relatively reasonable - of the order of 6 for the PTO system in
the complete model, without taking into account the conditioning stage. An issue, more important
than the number of variables, is in fact that the time scales of the dynamics, corresponding to
the different subcomponents, presents significant diversity: As studied in [124], the hydraulic
system is a stiff system if compressibility effects are modelled, with dynamics orders of magnitude
faster than those of the WEC motion. Furthermore, the electrical components of the generator are
also subject to fast dynamics. Those high-frequency dynamics represent a major computational
burden, since they imply that a very fine time step should be used, when numerically solving the
corresponding differential equations.

A possible remedy consists of designing PTO models, which capture the essential dynamics
of the WEC-PTO interaction, and provide realistic results in terms of power generation, without
necessarily representing in detail the totality of the internal dynamics of the PTO system. Such
a pragmatic approach is studied in [123] and [124], where the possibility of simplifying different
parts of the PTO system description is investigated. A first step consists of excluding the power
conditioning stage from the model, as illustrated in Fig. 4.5. Indeed, while the generator dynamics
indeed have an influence on the power converter, the power converter has little or no influence onto
the generator dynamics, so that the generator model can be decoupled from that of the converter.
One is then left with variables to describe the hydraulic circuit dynamics (xhc), and variables to
describe the generator dynamics (xgen).

Furthermore, it is found in [123] and [124] that, by neglecting compressibility effects in the
hydraulic circuit, as well as transient electrical dynamics in the generator, the number of variables
for the whole PTO system is reduced to only one (the generator rotational speed), while main-
taining excellent agreement with the results of the complete wave-to-wire model, in terms of PTO
force, pressure and power production, both on average and considering time-histories, and includ-
ing experiments where the WEC is under reactive control. Note that, in this simplified model, it
is found essential to preserve a realistic description of the various loss terms, which occur in the
hydraulic piston and in the hydraulic motor, and which, fortunately, do not necessitate the addition
of more state variables. The fast dynamics in the hydraulic and electrical subsystems, which were
of negligible magnitude compared to the wave input dynamics, are eliminated by the model sim-
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plifications. This permits all dynamics considered in the model to have similar time scales, from
the wave input to the power output.

4.4.3 Summary

In summary, if the internal dynamics of the PTO system do not need to be modelled accurately,
the PTO force may be written as a linear or non-linear function hpto of the moving component
dynamics, as follows:

fpto = hpto(ξ, ξ̇) (4.84)

Alternatively, if some internal dynamics of the PTO system must be explicitly modelled, as in
[123, 124] and Fig. 4.5, Eq. (4.84) may be augmented with appropriate variables xpto as follows:{

ẋpto = gpto(xpto,ξ, ξ̇, t)
fpto = hpto(ξ, ξ̇,xpto)

(4.85)

where the first equation represents the internal PTO dynamics.
The results discussed in Section 4.4.2 suggest that xpto need not be of large dimension, and

that its dynamics described by Eq. (4.85) can have the same time scale as those of the moving
parts, described in Eq. (4.82).

4.5 Models for mooring dynamics

4.5.1 Basic principles

Modelling the interaction of the moving parts with the mooring system can be important for many
WECs, with the exception of devices which are directly mounted on the seabed or on some fixed
structure. The following discussion is primarily based on [93], which reviews mathematical mod-
els for mooring systems in the context of wave energy. Mooring systems comprise a combination
of the following components: anchors, buoys, weights and lines, which are schematically repre-
sented in Fig. 4.6. Those elements can be arranged following a variety of mooring configurations
[93] including one or several mooring lines.

The basis of mooring system modelling is, like for the WEC moving parts, Newton’s equation,
applied to the different components of the mooring system. The most challenging components to
model are, by far, the mooring lines, which in essence constitute distributed systems because the
modelling variables depend on the curvilinear distance s along the line. The complete description
of a mooring line may involve a significant number of variables, some of which are illustrated in
Fig. 4.6:

• Input variables: the forcing terms for the mooring line dynamical equations include, at
least, the position of the connection point between the line and the WEC moving part. This,
with the force exerted by the mooring line onto the WEC, creates the coupling between the
mooring and WEC dynamics. Some external forcing terms may be added, such as wave
forces and currents acting directly onto the mooring components.

• Distributed variables: some of the unknown variables in the mooring dynamical equations
are distributed across the curvilinear distance s along the line, such as the line position rl(s)
and its derivatives, as well as the tension Tl(s) along the mooring line.

• Scalar variables: some important variables, entering into account in the mooring line dy-
namical equations, are not distributed, such as the length of the mooring line or the coordi-
nates of the touchdown point.
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Figure 4.6: Schematic diagram of typical mooring components - adapted from [93]

Because of the distributed variables, the mooring line dynamical models usually take the form of
partial differential equations, where the two integration variables are t and s.

In addition to coupling with the WEC motion, the physical effects which can be taken into ac-
count include the buoyancy and weight of the mooring line components, the inertial and damping
effects due to hydrodynamic interaction of the mooring components with the surrounding fluid,
and possible interactions with the sea bottom. Specific dynamics such as snap loads can also be
given particular attention. Finally, note that the mooring line may, in fact, connect the floating
body to the PTO system. In such a case, the interaction between the mooring line and the PTO
system must also be considered.

The mathematical models can be classified into two broad categories: static and quasi-static
models on the one hand, and dynamic models on the other hand.

4.5.2 Static and quasi-static models

Assuming constant environmental load, the focus of static models is to determine the equilibrium
position of the WEC-mooring coupled system. Typically, by forcing the WEC to remain at a
prescribed position away from its equilibrium position, the static mooring line position (described
by the catenary equation [93]) is solved, and the static restoring force exerted by the mooring
system onto the WEC can be determined. Applying such a procedure across a range of WEC
positions provides curves of static restoring forces, illustrated in Fig. 4.7 (adapted from [126]).

In a quasi-static approach, although the WEC is modelled dynamically, the mooring system is
assumed to be, at each instant, in static equilibrium. As a result, the mooring force onto the WEC
can be modelled as a static restoring force (linear or non-linear), such as the one illustrated in Fig.
4.7, in the form:

fm = f̃m(ξ) (4.86)

4.5.3 Dynamic models

Dynamic models represent the WEC and mooring system dynamics in a coupled way (similarly
to the PTO dynamics being described using additional variables). In general, dynamic models
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Figure 4.7: An example of static mooring restoring forces - adapted from [126]

require a spatial discretisation of the mooring lines, in order to transform the corresponding PDEs
into a set of ODEs. Three main approaches are identified for mooring line discretisation:

• the lumped mass approach, which represents the mooring line as a chain of interconnected
mass-spring-damper systems;

• finite-differences, which describe the mooring line by means of infinitesimal differential
elements;

• finite element methods, whereby within each small ‘segment’ (or element) of the mooring
line, the variables are described by means of basis functions (typically, Legendre polyno-
mials). Compared to the lumped mass approach, finite element methods can provide more
accurate results using a smaller number of discretised variables [93].

Solving for the discretised PDEs is essential to accurately model the mooring dynamics, but
may result in the addition of a large number of variables in the overall WEC system model. Within
the context of computationally-efficient WEC simulations, e.g. for power assessment, more con-
cise representations may be desirable. In particular, some researchers have focused on how to
describe the mooring force fm directly as a function of the WEC coordinates ξ and their time-
derivatives [93, 127, 128]. Typically, high-fidelity simulations or physical experiments are run
choosing appropriate conditions, and the results are used to identify a concise model in a pertinent
mathematical form fm = f̃m(ξ, ξ̇, ξ̈):

• A possible approach consists of linearising the mooring system model, either by linearising
the governing equations directly, or by finding linear transfer functions from the results
of high-fidelity simulations or physical experiments. In such a case, it is easy to define a
transfer function Hξm such that, in complex form, the WEC position and the mooring force
are related as follows:

f̂m(ω) = Hξm(ω)ξ̂(ω) (4.87)

However, a linear description can be highly inaccurate [93].
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• Based on high-fidelity simulations, physical experiments, or directly from the governing
equations, another approach is to identify the parameters of some non-linear function, typ-
ically a polynomial (although Volterra models and artificial neural networks have also been
reported [93]). For example, in [128] and other works by the same authors, including [127]
in a wave energy context, the mooring force is expressed as a Taylor expansion up to cubic
order, involving position, velocity and acceleration of the floating body.

The main difficulty associated with system identification procedures is that they must be based
on experiments or simulations, which span a broad enough range of conditions, representative of
those which the WEC will experience.

Similarly to the fluid-structure interaction problem, discussed in Section 4.3.4.2, model-order
reduction techniques may be used, based on the mooring equations directly.

4.5.4 Summary

In summary, if a static or quasi-static model is suitable, or if an accurate system identification is
successfully carried out, a concise representation can be formulated, whereby the mooring system
is not explicitly modelled, and the mooring force is directly provided as some linear or non-linear
function of ξ and its derivatives:

fm = f̃m(ξ, ξ̇, ξ̈) (4.88)

With consideration to the following chapter, the case where f̃m is given in a polynomial form is of
particular interest, because polynomial functions are infinitely smooth in their arguments.

Alternatively, it may be necessary to retain an explicit representation of the mooring system
internal variables. In such a case, denoting xm as the state variables associated with the mooring
system components, the interaction between the WEC and the mooring system can be given in the
following (linear or non-linear) state-space form:{

ẋm = gm(xm,ξ, ξ̇, ξ̈, t)
fm = hm(xm,ξ, ξ̇, ξ̈, t)

(4.89)

where the dependence on t of gm and hm expresses the fact that environmental variables, such as
waves or current, may also directly act on the mooring components.

4.6 A generic formulation for IDE WEC models

Finally, from Sections 4.2, 4.3, 4.4 and 4.5, it is now possible to give a little more substance to Eq.
(4.1). Assuming that each of the three subsystems (hydrodynamic interaction, PTO system and
mooring system) are modelled with explicitly-represented internal dynamics ξ, xpto and xm, Eqs.
(4.2), (4.82), (4.89) and (4.85) can be combined to yield a model of the form:

L{x}−n{x, t}− e(t) = 0 (4.90)

where:

• The vector x comprises the variables modelling the three subsystems:

x =

 ξ

xpto

xm

 (4.91)

• The linear terms L take the following form:

L{x}= (M+M∞)ẍ+Cẋ+Sx+
∞∫

τ=0

K(τ)ẋ(t− τ)dτ (4.92)
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• The non-linear terms n{x, t} can be detailed as:

n{x, t} := n(x, ẋ, ẍ, t) (4.93)

where the time-dependence represents forcing inputs derived from the incident waves, as
discussed in Section 4.3.5. To represent the forcing terms more explicitly, Eq. (4.93) can be
further detailed as:

n(x, ẋ, ẍ, t) = n(x, ẋ, ẍ, ẽ1(t), ẽ2(t), ..., ẽNF.T.(t)) (4.94)

where ẽ1(t), ẽ2(t), ..., ẽNF.T.(t) are forcing terms, all derived from one or more independent
wave inputs;

• e(t) represents an additive forcing input, derived from the incident waves.

The inertia, damping and stiffness matrices M, C and S, in Eq. (4.92), as well as the non-linear
function n in Eq. (4.76), can involve contributions from the three subsystems. In contrast, it is
more likely that the convolution and added mass terms, K and M∞, only describe the radiation
effects in that part of the model, describing the hydrodynamic interaction, and therefore can be
further specified as: 

K(τ) =

KR(τ) 0 0
0 0 0
0 0 0


M∞ =

A∞ 0 0
0 0 0
0 0 0


(4.95)

At this stage, consistently with Eq. (4.95), it is convenient to define the frequency-dependent
added mass and damping matrices A(ω) and B(ω), defined as:

A(ω) =

AR(ω) 0 0
0 0 0
0 0 0


B(ω) =

BR(ω) 0 0
0 0 0
0 0 0


(4.96)

where [A(ω),B(ω)] on the one hand, and [KR(τ),A∞] on the other hand, are related through
Ogilvie’s formula (4.69) and (4.70). A(ω) and B(ω) will be useful in Chapter 5.

The formulation of Eq. (4.90) has the merit of articulating, in a generic way, two components,
namely memory terms and non-linear effects, which are often present in WEC models, and which
are computationally challenging: the former because they tend to slow down time-domain numer-
ical simulations, and the latter because they make linear frequency-domain calculations (which
would circumvent the issue of memory terms) impossible.

The forcing terms of the model represented by Eq. (4.90), which consist of e(t) and ẽ1(t), ẽ2(t),...,
ẽNF.T.(t) inside the expression for n, deserve a detailed discussion. Throughout the rest of this the-
sis, the forcing,terms will be assumed to derive from one or more external incident wave signals
(such as the wave elevation at some reference location), which are assumed Gaussian, following
Chapter 2, and constitute the true forcing input to the system represented by Eq. (4.90). As seen in
Chapter 3, such incident wave signals can be numerically simulated using harmonic superposition
(either HRA or HDA). In such a case, the incident wave signal is periodic with period noted T ,
and it can be realistically assumed that all the forcing terms, e(t) and ẽ1(t), ẽ2(t),..., ẽNF.T.(t), are
also periodic with period T .

In fact, in all the WEC model examples considered throughout the rest of this thesis (see
Chapters 5 and 6):
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• The incident wave signal is considered to be the free-surface elevation η(t), measured at
some reference point of the horizontal plane, assuming that the incident waves are unidirec-
tional;

• All the forcing terms are linearly derived from η(t).

As a consequence, if η is simulated using harmonic superposition, every forcing term involved
in Eq. (4.90) can be easily derived, by multiplying the frequency-domain coefficients of η with
appropriate transfer functions. This will be most clearly illustrated through the example of a
spherical heaving point-absorber, developed in Chapter 6.

However, for the harmonic balance method to apply, as introduced in the next chapter, it is
enough to know that each of the forcing terms e(t) and ẽ1(t), ẽ2(t),..., ẽNF.T.(t) is periodic with
the same period T , without necessarily assuming that the relationship between the incident wave
signals (say, η) and every forcing term is linear.

4.7 Summary

Current modelling approaches for WECs have been briefly reviewed, concerning the three main
subsystems composing a WEC model: the hydrodynamic interaction coupled system, the PTO
system and the mooring system. For each of the three subsystems, the chosen perspective was to
understand which models lend themselves to a mathematical representation as a set of ODEs or
IDEs, and what degree of realism can be reasonably expected from such models, which have the
significant benefit of avoiding spatially-distributed variables. Finally, a generic IDE formulation
for WEC models is proposed in Eq. (4.90), which encompasses as many WEC models as possible
without resorting to spatially-distributed variables, and explicitly articulates both non-linear terms
and memory terms, which are a salient and challenging feature of numerous IDE WEC models.

The chosen mathematical representation is a non-autonomous IDE, i.e. forcing terms are
present. Those forcing terms can be referred to as the “wave inputs” to the model, and they derive
from one or more external incident wave signals (such as the wave elevation at some reference
location), which are modelled as Gaussian processes, following Chapters 2 and 3. When the
incident wave signal is generated using harmonic superposition, all the forcing terms in Eq. (4.90)
can be assumed to be periodic.

Admittedly, this chapter does not bring any new piece of knowledge in the field of wave energy.
Therefore it may seem that its main outcome - Eq. (4.90) - is not worth the somewhat lengthy
discussion which precedes it. However, since Eq. (4.90) and its variations will be the basis, upon
which the harmonic balance technique is applied to the WEC simulation problem in Chapter 5, it is
preferable to ensure that the reader is convinced, beforehand, that such a formulation is reasonably
broad and realistic. While Eq. (4.1) is somewhat imprecise, it is now clear where Eq. (4.90) stands
within the broader panorama of WEC modelling: it can safely be said that the formulation of Eq.
(4.90) is capable of including mooring and PTO systems, modelled with a satisfactory degree of
realism, and that its range of applicability, concerning hydrodynamic interaction, has been defined.

Furthermore, the basic aspects of WEC modelling detailed throughout this chapter will prove
useful when introducing practical case studies, at the end of Chapter 5 and in Part III of this thesis.
Finally, concerning hydrodynamic interaction, the author believes that the discussion of Section
4.3.4 can help in bridging the gap between ‘traditional’ WEC hydrodynamic modelling on the one
hand, and the field of system dynamics and control on the other hand.
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Chapter 5
The harmonic balance method for the
numerical simulation of wave energy
converters

5.1 Introduction

Numerical simulation approaches for IDE WEC models

Chapter 4 has given an overview of WEC modelling approaches, and has defined a class of WEC
models described by equations in the form of Eq. (4.90). In the wave energy community, for
WEC models such as (4.90), two main types of simulation methods are traditionally employed:
frequency-domain calculations (when the non-linear terms n reduce to zero), and time-domain nu-
merical integration schemes, already briefly discussed in Section 4.3.3.6 (when non-linear effects
must be considered, or when transient dynamics are under investigation). Time-domain integra-
tion is orders of magnitude slower than frequency-domain calculations, in particular due to the
computational cost of evaluating the radiation memory terms at each integration step. Techniques
which approximate radiation memory terms (in a state-space form, or using Prony’s method) cir-
cumvent the use of a convolution integral, at the cost of increasing the dimension of the system,
while introducing approximation errors.

A third possibility consists of using statistical linearisation (termed “spectral models” by Fol-
ley [3]), which has been applied for a statistical characterisation of the WEC model outputs with
specific types of non-linear effects. Statistical linearisation, in its current implementation for WEC
simulation, operates under the assumption that both inputs and outputs can be modelled as station-
ary Gaussian processes, and consists of an iterative procedure in order to find the SDF for the
output of interest. As per the procedure detailed in Chapter 4 of [3], only velocity-dependent non-
linear terms can be handled, as investigated in [129], because the method linearly approximates the
mechanical work of the non-linear forces, which is always zero for static forces. However, more
recent work [130] shows that the method can be extended to static non-linear terms, by consider-
ing the average reactive energy associated with the non-linear forces, instead of their mechanical
work. In its domain of application, statistical linearisation is orders of magnitude more efficient
than time-domain integration, for providing estimates of the WEC output power or the SDF of any
variable of interest. However, by definition, it eventually results in some input-dependent linear
approximation for the non-linear dynamical terms, which can affect the results accuracy. In par-
ticular, the method is not suitable for calculating the solution trajectory of the WEC dynamical
equation [129]. Furthermore, statistical linearisation implies that the wave input is Gaussian, and
therefore cannot handle individual sinusoids as inputs.

Given the limitations of existing simulation methods for WEC IDE models, the author of

103



this thesis is convinced that there is scope for investigating other numerical techniques, which
accommodate realistic IDE models, and remain more computationally attractive than time-domain
integration. This could facilitate the development of wave energy technology, via efficient and
accurate power assessment, and via the possibility of carrying out advanced design optimisation
that go beyond linear hydrodynamics.

The harmonic balance method

Commonly used in several engineering applications, such as non-linear electric circuit analysis,
vibration analysis of large-scale mechanical systems and fluid dynamics, the harmonic balance
(HB) method is a special case of spectral methods1, whereby the steady-state solution of a differ-
ential equation with periodic forcing terms is parametrised in terms of Fourier series. As will be
further detailed throughout this chapter, the HB method efficiently and accurately deals with the
two challenging features of Eq. (4.90), namely the convolution terms and the non-linear modelling
terms.

The HB method results in the numerical solution being parametrised using a relatively small
number of parameters (the Fourier expansion coefficients of the approximate solution), in contrast
to time-domain integration procedures, where the solution must be calculated at a potentially large
number of time steps. The method avoids the need for simulating transient dynamics, which is
beneficial when only the steady-state WEC behaviour is of interest. Under conditions which will
be specified throughout this chapter, the HB method also has appealing properties in terms of
accuracy, since a small increase in the number of basis functions can decrease the error norm by
several orders of magnitude.

Concerning computational time, the efficiency of the HB method largely depends on the qual-
ity of its practical implementation. More specifically, the HB method results in a non-linear alge-
braic equation of the following form:

r(x̂) = 0 (5.1)

where x̂ is a vector representing the coefficients of the Fourier expansion of the unknown solution,
and r is a residual vector. Eq. (5.1) is usually solved for x̂, using Newton’s method or other
related gradient-based algorithms. The explicit computation of the Jacobian of r in Eq. (5.1) is
instrumental in improving the computational efficiency of the solution. Therefore, in this chapter,
the practical details of the residual Jacobian computation are given appropriate care.

Finally, given the associated solution parametrisation, HB provides an interesting framework
to explore the solution space, when some parameters of the WEC model or forcing terms vary.
In particular, the sensitivity equation [97], which expresses how the solution changes for a small
change in specific model parameters, can be solved at little computation cost using HB. This can
be used to obtain an advantageous starting guess for the solution of Eq. (5.1), when the HB
equation has already been solved for a closely-related WEC model or forcing signal, as will be
detailed in Chapter 6. The sensitivity equation can also be used within the scope of gradient-based
WEC optimisation, as will be shown in Chapter 7. Therefore, this chapter also presents how the
sensitivity equation can be solved within the HB framework.

Chapter organisation

The rest of this chapter is organised as follows:

• The HB method is introduced in Section 5.2, within the broader framework of spectral
methods;

• Section 5.3 presents the HB formulation for WEC models described by Eq. (4.90);

1not to be confused with the terminology “spectral models” in [3]
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• Section 5.4 gives additional detail on the numerical method employed for the solution of the
WEC HB equation;

• Based on an introductory example of a WEC model, Section 5.5 discusses further some of
the fundamental properties of the HB method, in terms of practical implementation, accu-
racy, and comparison with time-domain numerical integration schemes;

• Considering a WEC model depending continuously on, and differentiable with respect to
some design parameters, Section 5.6 shows how the sensitivity equation is efficiently solved
in the HB framework;

• Section 5.7, based on the preceding sections, outlines a methodology for efficient WEC
simulation employing HB;

• Finally, the main contributions of this chapter are summarised and discussed in Chapter 5.8.

5.2 The harmonic balance method: theoretical background

5.2.1 Spectral methods

Consider an integro-differential equation of the form:

H {y,s}= e(s) (5.2)

where e is a forcing term, s is the integration variable (space or time), H {.} is an integro-
differential operator, which may be either linear or non-linear, and y(s) is the unknown solution.
Eq. (5.2) may also be subject to boundary conditions.

Define a suitable family of basis functions, Φn(s), for n ∈ N. Spectral methods consist of
searching for an approximation of y by a combination of a finite number of basis functions:

y(s)≈ yN(s) :=
N

∑
n=0

ŷnΦn(s) (5.3)

Define

ŷN =


ŷ0
ŷ1
...

ŷN

 (5.4)

and define the residual function

r(ŷN ,s) := H {yN ,s}− e(s) (5.5)

Then, the spectral method consists of finding a vector of coefficients ŷN , which makes r(ŷN ,s)
as small as possible. The basic idea of spectral methods, as presented here, does not specify
whether the differential equation is scalar- or vector-valued. In the latter case, y(s), e(s) and Φn(s)
must be thought of as vector-valued functions of the variable s. The dimension of the integration
variable s has not been specified either, but the presentation of spectral methods would remain the
same for a multi-variate problem, i.e. if s were vector- rather than scalar-valued.

Many variants of spectral methods exist, which are defined by the choice of the functional ba-
sis, and the way the residuals are minimised. Concerning the functional basis, the most widespread
family of functions are Chebyshev polynomials, which should be used as a default method [102].
However, with periodic boundary conditions, i.e. when the solution is assumed periodic in the
integration domain, Fourier series are more appealing [102] (although Chebyshev polynomials

105



can work too). As discussed in Section 4.7, the steady-state WEC simulation problem is typi-
cally formulated as an IDE with periodic forcing terms, and thus lends itself particularly well to a
parametrisation in terms of harmonic sinusoids.

Using Fourier or Chebyshev polynomials, and assuming that the actual solution is infinitely
smooth2, spectral methods are said to have an exponential convergence rate [102], which means
that, when increasing the order N of the approximation, the error decreases faster than any law
of the form N−β, β ∈ R+. In applications, the convergence rate is ultimately governed by the
presence or not, and nature of singularities, i.e. by the possible presence of discontinuities in the
solution or one of its derivatives.

The residuals can be minimised in many different ways; however, as pointed out in [131], cited
in Chapter 3 of [102], most methods to minimise r can be analysed in the common framework of
“mean weighted residuals”. Given the interval of integration [smin;smax], define an inner product
between two functions f and g in L2([smin;smax]):

( f |g) :=
smax∫

smin

f (s)g(s)w(s)ds (5.6)

where w(s) ≥ 0 is a suitable weighting function. Then, the N + 1 spectral coefficients of ŷN are
found by solving for N +1 “mean weighted residual” equations(

ψi(s)|r(ŷN ,s)
)
= 0, i ∈ {0,1, ...N} (5.7)

where the ψi are appropriately-chosen “test functions”. Concerning the choice of test functions
ψi, the two most interesting cases are pseudo-spectral (PS) and Galerkin methods.

Pseudo-spectral, or collocation methods

In PS methods, the test functions are chosen as

ψi(s) = δ(s− si) (5.8)

where the si form a grid of “collocation points” and δ(s) is the Dirac delta function. In essence,
ŷN is determined by solving the following system of N +1 equations:

r(ŷN ,si) = 0, i ∈ {0,1, ...N} (5.9)

The appropriate choice of collocation points depends on the problem considered and on the
choice of basis functions φi. With a Fourier basis and periodic boundary conditions, a uniform
grid is typically used [132].

Galerkin method

In the Galerkin method, the test functions are chosen to be identical to the basis functions:

ψi(s) = φi(s) (5.10)

so that the residuals are, in fact, projected onto the chosen functional basis, and ŷN is found by
setting the spectral coefficients of the residuals to zero.

Note that, given the inner product specified in Eq. (5.6), basis functions are typically chosen
orthogonal with respect to each other. Indeed, for an orthogonal set of basis functions (which is

2i.e. its derivatives of any order exist, and are continuous

106



the case for both Fourier and Chebyshev polynomials), the coefficients of the expansion of any
function

f (s) =
∞

∑
n=0

f̂nΦn(s) (5.11)

can be computed using the inner product as:

f̂n =
(Φn| f )
(Φn|Φn)

(5.12)

5.2.2 The Harmonic Balance method

In the remainder of this thesis, the integration variable will be time, so that s is replaced with t.
This deserves a brief discussion, because time-domain integration (s = t) is not the most usual
application of spectral methods [102]. Instead, the integration variables are more often spatial.
In fact, for differential equations involving both space and time derivatives, the solution is more
usually expanded in space only, while integration in time is solved through a time-marching pro-
cedure [102, 133]. More specifically, given a spatial coordinate x and the time coordinate t, the
solution is searched amongst expansions of the form

yN(x, t) =
N

∑
n=0

ŷn(t)φn(x) (5.13)

In other words, the expansion is spatial, and its coefficients are time varying. An example
application for the three-dimensional simulation of ocean waves may be found in [134], and in
HOS methods to solve the non-linear potential flow equations, as discussed in Section 4.3.2.

However, in some applications, spectral methods can be used successfully for the solution of
differential equations in the time domain. In particular, problems which are time-periodic or quasi-
periodic [135] lend themselves to a Fourier spectral approach, which approximates the steady-state
solution of the non-linear differential equation considered. In such a context, the Fourier spectral
(or Fourier-Galerkin) approach, is usually referred to as the harmonic balance (HB) method.

A brief review of the diverse applications and variants of the HB method can be found in the
introduction of [135]. Engineering applications include, in particular, analysis and simulation of
non-linear electric circuits, aeroelastic systems, periodic flows in fluid dynamics, and vibration in
mechanical engineering (especially for large-scale mechanical problems). The HB framework also
provides tools for the theoretical study of non-linear dynamical systems, in particular, bifurcation
and stability analysis.

The mathematical foundations, upon which the HB method can be justified, are studied in
[136], [137], and more recently, in [138]. Specifically, given a non-autonomous, non-linear, peri-
odic differential equation, for which an approximate solution has been found (regardless of how
it has been found), conditions are given for the existence of an exact solution in the vicinity of
the approximate solution, and bounds on the approximation error are provided. However, those
results are generally not used when the HB method is applied in practice [138].

5.2.3 Relevance of the HB method to the problem of WEC simulation

This subsection examines why HB can be identified as a relevant framework for the solution of
the WEC differential equation, by highlighting similarities between the WEC simulation problem,
and other types of problems which have been successfully solved using the HB approach.

In HB applications, the forcing term in the dynamical equation, e(t), is assumed periodic in
time. Typically, the forcing term is even assumed harmonic at a single frequency [135]. How-
ever, the forcing term is sometimes assumed to be multi-harmonic. In particular, the HB method
has been used by some authors to determine the power spectrum of non-linear mechanical sys-
tems under random excitation [139]. As seen in Chapter 3 of this thesis, for the specific case
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of Gaussian waves, a stationary random process may be approximated using a Fourier expansion
covering the process spectrum [23]. Therefore, both the random excitation and the solution may
be approximated using Fourier series, thus resulting in a HB problem, where the forcing term
is multi-harmonic. By generating several samples of the excitation process, and solving for the
Fourier approximation of the system response for each sample, the power spectrum of the re-
sponse process can be estimated [139, 140, 141]. Likewise, the input to the WEC model, in a
given wave spectrum, is also random, and can be modelled as a multi-harmonic, periodic signal,
as thoroughly examined in Chapter 3. Therefore, from the point of view of the forcing terms,
the WEC simulation problem is similar to the non-linear vibration analysis problems successfully
treated in [139, 140, 141].

When large-scale, non-linear mechanical systems are considered, the application of Newton’s
second law typically yields second-order differential equations of the form [135]:

Mẍ+Cẋ+Sx−n(x, ẋ) = e(t) (5.14)

where x represents the unknown displacement solution, M is the inertia matrix, C the damping
matrix, S the stiffness matrix, n is a non-linear function of the system variables, and e(t) is the
forcing term. WEC models, because they contain a mechanical part, as discussed in Chapter 4,
can also be written in the form of second-order differential equations, with a combination of linear
and non-linear terms, articulated in Eq. (4.90). Large-scale problems in structural dynamics, with
formulations of the form (5.14), can be accurately solved using the HB method, reportedly orders
of magnitude faster than time-marching schemes [142]. Although IDE models of single WEC sys-
tems typically have small dimension (of the same order of magnitude as the hydrodynamic degrees
of freedom), WEC array models may be seen as large-scale mechanical systems. Therefore, the
benefits of the HB method, as observed in [135] or [142], may extend to the simulation of WEC
systems, and WEC arrays in particular.

In non-linear circuit analysis [132, 143, 144], a slightly different type of equation is usually
solved using the HB method:

∞∫
0

K(τ)v(t− τ)dτ+n(v, v̇)+ is(t) = 0 (5.15)

where v is the vector of (unknown) voltages at the circuit nodes and v̇ their time derivatives;
the source current is(t) represents the forcing term, assumed periodic; n is a non-linear current
function; finally, K(τ) is the impulse-response kernel associated with the linear part of the circuit.

Eq. (5.15) is a first-order IDE. As seen, for example, in [143, 144], when the solution is
parametrised in terms of Fourier basis functions, the linear memory (or convolution) term can
be easily calculated, using the frequency-domain transfer function corresponding to the impulse-
response kernel K(τ). Thus, using the HB method, the computational cost of calculating the
convolution integral is avoided. As seen in Chapter 4, IDE WEC models derived from a non-linear
extension of Cummins’ equation also typically contain a convolution integral, due to the radiation
memory effect. As will be further detailed in Section 5.3, the treatment of the convolution integral
in the HB framework also proves highly beneficial for WEC simulation.

Note that the electrical analogue has been used for a long time in the analysis of linear WEC
models [7], as a means to assist in the theoretical understanding of WEC dynamics, and to apply
well-known electrical engineering methods to the modelling, analysis and control [9] of WEC
systems. Interestingly, the analogy can be extended to non-linear electrical circuit and WEC sys-
tem models. In [145], and other works by the same authors, a systematic representation of WEC
systems through equivalent electrical circuits is examined, including non-linear effects associated
with the mooring line and the PTO system. The application of the HB technique to WEC sim-
ulation, as examined in the next sections and chapters, suggests that, beyond the simple analogy
between non-linear WEC and electric circuit models, powerful numerical tools for non-linear cir-
cuit simulation can be successfully transposed to non-linear WEC model simulation.
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5.3 Application of the harmonic balance method for the simulation
of wave energy converters

As discussed in Chapter 4, Eq. (4.90) describes the WEC system dynamics in residual form. In
Eq. (4.90), the non-linear term n{x, t} denotes a non-linear function n(x, ẋ, ẍ, t). For simplicity
and ease of notation, throughout the rest of this chapter, it will be assumed that n depends on x up
to the first-order derivative only, i.e. n{x, t} := n(x, ẋ, t). However, all the developments presented
easily extend to the more general case of second-order derivatives.

5.3.1 Projection of the variables onto the Fourier basis

The Fourier spectral method (i.e. the HB method) is applied for the numerical solution of Eq.
(4.90). Define ∆ω = 2π/T , the period of the forcing terms (and presumably of the solution),
an integer Nω, and for n = 1...Nω, ωn = n∆ω. Each component of the unknown solution x(t) is
expressed as a Fourier series:

∀d ∈ {1...D}, xd(t) =
1√
2

x̂d,0 +
Nω

∑
n=1

x̂d,2n−1 cos(ωnt)+ x̂d,2n sin(ωnt) (5.16)

where D is the dimension of x.
The expansion (5.16) is the application, for the special case of a Fourier functional basis, of

the generic expansion of Eq. (5.3). In Eq. (5.16), there are 2Nω +1 basis functions involved, with

φ0(t) =
1√
2

and

{
φ2n−1(t) = cos(ωnt)
φ2n(t) = sin(ωnt)

for n = 1...Nω (5.17)

If the very same formalism as in Eq. (5.3) were rigorously adopted, the expansion of Eq.
(5.16) should be described as being of order 2Nω. However, throughout the rest of this thesis, the
expansion of Eq. (5.16) will be referred to as being of order Nω, to more clearly convey the idea
of a Fourier expansion up to the Nth

ω harmonic.
Define the following inner product (.|.), for any functions f and g in L2([0;T ]):

( f |g) :=
2
T

T∫
0

f (t)g(t) dt (5.18)

The chosen Fourier basis is obviously orthonormal with respect to the inner product (.|.).
Accordingly, the Fourier coefficients of any function f in L2([0;T ]) can be recovered as:

f̂0 =
1
T

T∫
t=0

f (t) dt

f̂2n−1 =
2
T

T∫
t=0

cos(ωnt) f (t) dt

f̂2n =
2
T

T∫
t=0

sin(ωnt) f (t) dt

(5.19)

After those preliminary remarks on the Fourier basis, the expansion of the vector-valued x(t)
is constructed. For i = 0...2Nω, note

x̂i =

 x̂1,i
...

x̂D,i

 (5.20)

which corresponds to the ith (vector-valued) coefficient in the expansion of x(t). In other words,

x(t) =
1√
2

x̂0 +
Nω

∑
n=1

cos(ωnt)x̂2n−1 + sin(ωnt)x̂2n (5.21)
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Concatenating the x̂i together, the solution x(t) is entirely characterised by the vector x̂ ∈
RD(2Nω+1) defined as:

x̂ =

 x̂0
...

x̂2Nω

 (5.22)

From the trigonometric functional basis, define 2Nω + 1 diagonal matrix-valued functions
ϕi(t) ∈ RD×D: 

ϕ0(t) = 1√
2
ID

ϕ2n−1(t) = cos(ωnt)ID

ϕ2n(t) = sin(ωnt)ID

(5.23)

and concatenate them into a matrix Φ(t) ∈ RD×(2Nω+1)D, defined as:

Φ(t) =
(
ϕ0(t) ϕ1(t) · · · ϕ2Nω

(t)
)

(5.24)

Accordingly, given the parametrisation x̂, x(t) is conveniently expressed as:

x(t) =
2Nω

∑
i=0

ϕi(t)x̂i = Φ(t)x̂ (5.25)

The derivatives of x(t) can be readily expanded in terms of the coefficients of x(t):

ẋ(t) =
Nω

∑
n=1
−ωn sin(ωnt)x̂2n−1 +ωn cos(ωnt)x̂2n (5.26)

so that 
ˆ̇x0 = 0RD

ˆ̇x2n−1 = ωnx̂2n

ˆ̇x2n =−ωnx̂2n−1

(5.27)

Define a block-diagonal matrix Ω ∈ RD(2Nω+1)×D(2Nω+1) as:

Ω =


Ω0 0 · · · 0
0 Ω1 · · · 0
...

...
. . .

...
0 0 · · · ΩNω

 (5.28)

where the matrices on the diagonal are given as:
Ω0 = 0D

Ωn =

(
0D ωnID

−ωnID 0D

)
for n = 1...Nω

(5.29)

Then, the expansion of the first-order derivative, ˆ̇x, is given as

ˆ̇x = Ωx̂ (5.30)

Similarly, the expansion of the second-order derivative, ˆ̈x, is given as:

ˆ̈x = Ω
2x̂ (5.31)

Note that Eq. (4.90) may also be expressed as a first-order IDE, by considering a different
state vector x̄ defined as: {

x̄1 := x
x̄2 := ẋ

and x̄ :=
(

x̄1
x̄2

)
(5.32)
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so that Eq. (4.90) may be recast in terms of x̄ and its first-order derivative alone. However, such
a formulation requires a two-fold increase in the number of variables: instead of being of size D
like x, the state vector x̄ is of size 2D, thus resulting in a residual equation of size 2D. In the
spectral formulation, first- and second-order derivatives (and, in fact, derivatives of any order)
are straightforwardly expressed, without any approximation, as a function of the expansion of x,
as seen in Eqs. (5.30) and (5.31). Therefore, from a practical point of view, there is no strong
rationale for adopting a “first-order” formulation. Instead, it is better to preserve the “second-
order” formulation of Eq. (4.90), which is treated in an easy way using a spectral method, and
maintains the problem size as small as possible.

The linear terms in Eq. (4.90) deserve special attention. Assume that x is expanded as

x(t) =
1√
2

x̂0 +
Nω

∑
n=1

cos(ωnt)x̂2n−1 + sin(ωnt)x̂2n (5.33)

Replacing x with its expansion in the linear part of Eq. (4.90), detailed in Eq. (4.92), L{x}
yields:

L{x, t}=
Nω

∑
n=1
−ω

2
n[M+M∞]x̂2n−1 cos(ωnt)−ω

2
n[M+M∞]x̂2n sin(ωnt)

+
Nω

∑
n=1

ωnCx̂2n cos(ωnt)−ωnCx̂2n−1 sin(ωnt)

+
1√
2

Sx̂0 +
Nω

∑
n=1

Sx̂2n−1 cos(ωnt)+Sx̂2n sin(ωnt)

+
Nω

∑
n=1

[∫ ∞

τ=0
K(τ)ωn cos(ωn(t− τ)) dτ

]
x̂2n−

[∫ ∞

τ=0
K(τ)ωn sin(ωn(t− τ)) dτ

]
x̂2n−1

(5.34)

Recalling that, as defined in Eqs. (4.96) and (4.95), [K(τ),M∞] are related to frequency domain
equivalent matrices [A(ω),B(ω)] through Ogilvie’s formula (4.69) and (4.70), the convolution
terms can be simplified as follows:

∫
∞

τ=0
K(τ)cos(ωn(t− τ)) dτ = cos(ωnt)

∫
∞

τ=0
K(τ)cos(ωnτ) dτ+ sin(ωnt)

∫
∞

τ=0
K(τ)sin(ωnτ) dτ

= cos(ωnt)B(ωn)−ωn sin(ωnt)[A(ωn)−M∞]

(5.35)

where the second equality is deduced from Ogilvie’s relation [103], given in Eqs. (4.69) and
(4.70). Similarly:

∫
∞

τ=0
K(τ)sin(ωn(t− τ)) dτ =−cos(ωnt)

∫
∞

τ=0
K(τ)sin(ωnτ) dτ+ sin(ωnt)

∫
∞

τ=0
K(τ)cos(ωnτ) dτ

= ωn cos(ωnt)[A(ωn)−M∞]+ sin(ωnt)B(ωn)

(5.36)
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Finally, L has the following expansion:

L{x, t}=
Nω

∑
n=1
−ω

2
nMx̂2n−1 cos(ωnt)−ω

2
nMx̂2n sin(ωnt)

+
Nω

∑
n=1

ωnCx̂2n cos(ωnt)−ωnCx̂2n−1 sin(ωnt)

+
1√
2

Sx̂0 +
Nω

∑
n=1

Sx̂2n−1 cos(ωnt)+Sx̂2n sin(ωnt)

+
Nω

∑
n=1

ωnB(ωn)x̂2n cos(ωnt)−ωnB(ωn)x̂2n−1 sin(ωnt)

+
Nω

∑
n=1
−ω

2
nA(ωn)x̂2n−1 cos(ωnt)−ω

2
nA(ωn)x̂2n sin(ωnt)

(5.37)

Define a block-diagonal matrix L ∈ RD(2Nω+1)×D(2Nω+1), as follows:

L =


L0 0 · · · 0
0 L1 · · · 0
...

...
. . .

...
0 0 · · · LNω

 (5.38)

where the matrices on the diagonal are given as:
L0 = S

Ln =

(
S−ω2

n[M+A(ωn)] ωn[C+B(ωn)]

−ωn[C+B(ωn)] S−ω2
n[M+A(ωn)]

)
for n = 1...Nω

(5.39)

Then, if x̂ represents the coefficients of the Fourier expansion of x, the linear terms L{x} are
readily expanded as

L̂ = Lx̂ (5.40)

Accordingly, for a given solution x̂, the inertial and linear terms can be expressed in time as:

L{Φ(t)x̂, t}= Φ(t)Lx̂ (5.41)

Eqs. (5.40) and (5.41) are important, because they show that the linear terms can be treated
easily using a Fourier spectral approach: while the original formulation (4.90) involved a convo-
lution product, if a solution parametrised in terms of Fourier series is considered, the linear terms
can be calculated in a particularly simple way. Also note that the matrix L has relatively few
non-zero entries, so that operations involving L are computationally cheap.

An additional remark is appropriate with respect to the additive input e(t). If the WEC system
is simulated in regular, linear waves, then the additive input will take the form of a single sinusoidal
function, with period Tw. The fundamental frequency ∆ω in the Fourier expansion may thus be
chosen as ∆ω = 2π/Tw, and e(t) is exactly expressed as

e(t) = Φ(t)ê (5.42)

where

ê =



0RD

ê1
ê2

0RD

...
0RD


∈ RD(2Nω+1) (5.43)
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If, instead, irregular, linear Gaussian waves are simulated, it has been seen in Chapter 3 that a
wave signal can be correctly generated as a sum of harmonic sinusoids (HRA or HDA methods).
Then, if ∆ω is the fundamental frequency which allows for an accurate discretisation of the target
spectrum, e(t) is expressed as

e(t) = Φ(t)ê (5.44)

where

ê =



ê0
ê1
ê2
...
...

êNω


∈ RD(2Nω+1) (5.45)

and the components êi are randomly derived from the wave spectrum, following either HRA or
HDA. Of course, if some of the dimensions d = 1...D do not represent hydrodynamic degrees of
freedom, the corresponding entries of each term êi =

(
ê1,i · · · êD,i

)T should be chosen equal to
zero.

Finally, given a parametrisation of x as a trigonometric series specified by the vector x̂, and
using Eqs. (5.25), (5.30), (5.31), (5.41) and (5.42), the residual equation of Eq. (4.90) can be
written as follows:

∀t ∈ [0;T ], Φ(t)Lx̂−n
(
Φ(t)x̂,Φ(t)Ωx̂, t

)
−Φ(t)ê = 0 (5.46)

In summary, this subsection explains how the variable x and its derivatives are projected onto
the chosen functional basis (in this case, a Fourier basis), which is the essence of spectral methods.
It also shows how the linear terms in the dynamical equations are readily expanded as a function
of the expansion of x. Finally, the additive excitation term can also be specified in terms of
Fourier series. As a result, the residual equation (4.90), expressed as a function of the chosen
parametrisation x̂, takes the form of Eq. (5.46). The latter equation may be solved using different
“mean-weighted residual” approaches, as discussed previously in Section 5.2.1. In the following
subsections, the Galerkin and the PS approaches are considered in detail.

5.3.2 Galerkin formulation

In the Galerkin approach, the residuals are projected onto the chosen functional basis, i.e. the
trigonometric functions for the case of the HB method. Given that the linear and excitation terms
are readily projected as Lx̂ and ê, respectively, Eq. (5.46) results in the following set of D(2Nω+1)
equations :

Lx̂− n̂(x̂)− ê = 0RD(2Nω+1) (5.47)

where 

n̂0(x̂) = 1
T

T∫
t=0

n
(
Φ(t)x̂,Φ(t)Ωx̂, t

)
dt

n̂2n−1(x̂) = 2
T

T∫
t=0

cos(ωnt)n
(
Φ(t)x̂,Φ(t)Ωx̂, t

)
dt

n̂2n(x̂) = 2
T

T∫
t=0

sin(ωnt)n
(
Φ(t)x̂,Φ(t)Ωx̂, t

)
dt

(5.48)

Eq. (5.47) corresponds to a proper harmonic balance equation, because it states that the
Fourier coefficients, associated with the linear, non-linear and forcing terms in the dynamical
equation, must cancel each other, for every order of the Fourier expansion up to Nω.

The HB equation is typically solved using an iterative root-finding method, such as the Newton-
Raphson procedure [146], which will be described in more detail in Section 5.4. At each iteration
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of the solution procedure, the residuals given by the left-hand side of Eq. (5.47), as well as their
Jacobian, must be evaluated, which can be a challenging task for the non-linear terms n̂(x̂).

In specific cases, the Fourier coefficients n̂ may be obtained analytically, as a non-linear func-
tion of the coefficients x̂. In particular, this task is relatively straightforward when non-linearities
are in quadratic or cubic form, see for example [141]. With such non-linearities, the Newton-
Raphson procedure is made considerably more simple and efficient. In [140, 141], it is suggested
to carry out a cubic approximation of the non-linear terms at each iteration of the Newton-Raphson
algorithm. Other researchers [147, 148] propose a methodology to recast the dynamical equations
(4.90) in a way which only involves quadratic non-linear terms, even if the original non-linear
terms are not in a polynomial form [148]. This latter possibility, although it may be an interesting
path for future work, has not been investigated within the scope of this thesis.

Instead, no further assumption is made on the nature of the non-linearities, apart from their
being differentiable. In such a case, the baseline method consists of evaluating the Fourier coef-
ficients n̂ (and their derivatives for the Jacobian computation) by means of numerical integration.
To that end, n

(
Φ(t)x̂,Φ(t)Ωx̂, t

)
and its derivatives with respect to the components of x̂ must be

calculated at a discrete number of points in [0;T ], before the integrals can be evaluated through
finite differences.

Discretise the interval [0;T ] into Nt points t j = j∆t, j = 1...Nt , with ∆t = T/Nt . Define

ΦNt :=


Φ(t1)
Φ(t2)

...
Φ(tNt )

 (5.49)

For a reasonably accurate calculation of the Fourier coefficients, Nt must be greater than, or
equal to 2Nω +1. Furthermore, it is easily found that

2
Nt

Φ
T
Nt

ΦNt = INω
(5.50)

The non-linear terms are discretised in time in the form of a vector nNt (x̂) containing the
non-linear term, evaluated at each time t j, for a given solution x̂:

nNt (x̂) :=

 n
(
Φ(t1)x̂,Φ(t1)Ωx̂, t1

)
...

n
(
Φ(tNt )x̂,Φ(tNt )Ωx̂, tNt

)
 ∈ RNt D (5.51)

From Eq. (5.48), and using a rectangle integration rule, n̂ may be evaluated as follows:

n̂(x̂)≈ 2
Nt

Φ
T
Nt

nNt (x̂) (5.52)

Therefore, in practice, the 2Nω +1 equations which are solved can be written as follows:

Lx̂− 2
Nt

Φ
T
Nt

nNt (x̂)− ê = 0RD(2Nω+1) (5.53)

More detail about the solution method through iterative root-finding algorithms is given in Sec-
tion 5.4, with a particular focus on the explicit computation of the Jacobian of the residuals. The
aim of introducing Eq. (5.53) at this stage is merely to better highlight the relationship between
the Galerkin and PS formulations, the latter being the subject of Section, 5.3.3.
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5.3.3 Pseudo-spectral formulation

With the PS formulation, the residuals are set to zero at Nt := 2Nω +1 collocation points. Using a
Fourier functional basis, the points can be taken to be uniformly spaced [102]. Define the vector
LNt ∈ RDNt , which represents the linear terms taken at the Nt collocation points, as

LNt :=

L{x, t1}
...

L{x, tNt}

 (5.54)

Similarly, define

eNt :=

 e(t1)
...

e(tNt )

 ∈ RDNt (5.55)

Given the expansion specified by x̂, the linear and forcing terms at the Nt collocation points,
LNt and eNt , can be calculated respectively as:

LNt = ΦNt Lx̂ and eNt = ΦNt ê (5.56)

where ΦNt is defined in Eq. (5.49).
LNt depends on the unknown vector x̂, but eNt does not, and thus can be pre-computed. Finally,

the set of Nt algebraic equations to solve is:

ΦNt Lx̂−nNt (x̂)−ΦNt ê = 0RDNt (5.57)

Using the rectangle rule for the numerical approximation of the Galerkin harmonic balance
equation (5.47), it can be seen from Eqs. (5.53) and (5.57) that the Galerkin and PS formulations
are very similar to each other. In particular, choosing Nt = 2Nω + 1 in the Galerkin formulation,
using Eq. (5.50), and multiplying Eq. (5.57) with 2

Nt
ΦT

Nt
on the left hand-side, the two formulations

are strictly equivalent. Increasing Nt of the Galerkin method beyond 2Nω + 1, which is known
as oversampling [132], may improve the accuracy of the Galerkin technique, for a given order
Nω. In the limit as Nt tends to infinity (and thus the rectangle approximation approaches the
exact integrals (5.48)), the solution x̂ obtained corresponds to the first Nω harmonics of the exact
solution. However, the gain in accuracy should be balanced against the additional computational
burden of a more accurate integral calculation. For more detail, the reader is referred to [132] and
[102].

Therefore, the Galerkin and PS formulations are strictly equivalent if, in the Galerkin formula-
tion, the Fourier integrals are approximated with a rectangle rule using Nt = 2Nω+1 points. How-
ever, the Galerkin formulation offers the flexibility of improving the solution accuracy through
oversampling, at some additional computational cost. A brief practical comparison of the two
approaches is presented in Section 5.5, where it will be shown that little benefit is obtained from
oversampling.

Finally, note that of Eqs. (5.47) and (5.57), only the former is, strictly speaking, a harmonic
balance method. With the PS formulation of Eq. (5.57), the residuals are not set to zero through
cancellation of harmonics, but through collocation. Yet, the application of the PS formulation, for
the solution of mechanical problems with a large number of harmonics, is sometimes termed high
dimensional harmonic balance [149], although it should be more accurately termed trigonometric
collocation [150].

5.4 Solving the harmonic balance equation

As mentioned in Section 5.3.2, in this work, the residual equation is solved using an iterative root-
finding algorithm. More specifically, gradient-based methods, derived from the Newton-Raphson
procedure [146], are used to solve non-linear equations (5.53) and (5.57).
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The basic Newton-Raphson algorithm is recalled here. Either Eqs. (5.53) or (5.57) can be
formulated as follows:

r(x̂) = 0RD(2Nω+1) (5.58)

where r represents the residual vector, either in the frequency domain (Eq. (5.53)) or at the collo-
cation points (Eq. (5.57)).

Choose an initial solution, x̂(0). Then, at each iteration k of the method, with k ≥ 1, the
residuals r and their Jacobian, denoted ∂r

∂x̂ , are evaluated at the current solution x̂(k), and the next
iterate x̂(k+1) is found by solving the following linear system:

r(x̂(k))+
∂r
∂x̂

∣∣∣∣
x̂(k)

(x̂(k+1)− x̂(k)) = 0RD(2Nω+1) (5.59)

The algorithm stops when the chosen norm of the residuals r falls below a predefined threshold
ε, where the norm is typically the Euclidean norm. Newton’s algorithm is represented in the
diagram of Fig. 5.1, assuming that the Galerkin version (5.53) of the HB method is used. In Fig.
5.1, it can be seen that an initial solution is found by solving the linear problem L′x̂(0) = ê, where
L′ denotes a matrix, constructed in a way similar to L, obtained for a linearised version of Eq.
(4.90). The choice of an appropriate initial solution is further discussed in Section 5.4.2.

A crucial step of Newton’s method is the computation of the residual function Jacobian at
the current iterate, ∂r

∂x̂ |x̂(k) , which is a D(2Nω + 1)×D(2Nω + 1) matrix. For some problems, it is
impossible, or cumbersome, to find an exact formulation for the Jacobian. In such cases, the Jaco-
bian is usually numerically estimated through a finite-difference method [146]. However, Jacobian
evaluation through finite differences can be computationally costly, and is subject to inaccuracies
which may negatively affect the computation time, by increasing the number of Newton iterations.
Therefore, it is preferable, when possible, to compute the gradient explicitly. Fortunately, both
equations (5.53) and (5.57) lend themselves to explicit Jacobian calculation, which is detailed
hereafter.

5.4.1 Explicit Jacobian computation of the residuals

5.4.1.1 The pseudo-spectral case

In the pseudo-spectral case, from Eq. (5.57), the residual function is given as:

r(x̂) = ΦNt Lx̂−nNt (x̂)−ΦNt ê (5.60)

where Nt = 2Nω +1 and nNt is defined as in Eq. (5.51).
The Jacobian of the non-linear terms is the only challenging calculation. For a given time t,

the Jacobian of the non-linear terms n at time t, with respect to the time-domain values of x(t) and
ẋ(t), is given as:

∂n
∂x

(t) =


∂n1
∂x1

· · · ∂n1
∂xD

...
. . .

...
∂nD
∂x1

· · · ∂nD
∂xD


x(t),ẋ(t),t

∈ RD×D (5.61)

and

∂n
∂ẋ

(t) =


∂n1
∂ẋ1

· · · ∂n1
∂ẋD

...
. . .

...
∂nD
∂ẋ1

· · · ∂nD
∂ẋD


x(t),ẋ(t),t

∈ RD×D (5.62)

where the subscript x(t), ẋ(t), t means that each component ∂ni/∂x j (resp.∂ni/∂ẋ j) is evaluated at
the point (x(t), ẋ(t), t).
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Solve L′x̂(0) = ê

Set k = 0

Calculate residuals:
r(x̂(k)) = Lx̂(k)− 2

M ΦT
MnM(x̂(k))− ê

Is |r(x̂(k))| ≤ ε?

Solution found:
x̂ = x̂(k)

Compute ∂r
∂x̂ |x̂(k)

Solve r(x̂(k))+ ∂r
∂x̂ |x̂(k)(x̂

(k+1)− x̂(k)) = 0RD(2Nω+1)

Set k = k+1

INITIALISATION

NEWTON STEP

YES

NO

Figure 5.1: Application of Newton’s method to solve the HB equation

Recalling that x(t) and ẋ(t) are obtained from x̂ as Φ(t)x̂ and Φ(t)Ωx̂, respectively, the Jaco-
bian of n at time t, with respect to the components of x̂, is given as follows:

∂n
∂x̂

(t) =
∂n
∂x

(t)Φ(t)+
∂n
∂ẋ

(t)Φ(t)Ω (5.63)

Using the fact that nNt (x̂) =

n(t1)
...

n(tNt )

, the Jacobian of nNt (x̂) is given as

∂nNt

∂x̂
=


∂n
∂x̂ (t1)

...
∂n
∂x̂ (tNt )

 (5.64)
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Define the block-diagonal matrices

Dx =


∂n
∂x (t1) · · · 0

...
. . .

...
0 · · · ∂n

∂x (tNt )

 ∈ RDNt×DNt (5.65)

and

Dẋ =


∂n
∂ẋ (t1) · · · 0

...
. . .

...
0 · · · ∂n

∂ẋ (tNt )

 ∈ RDNt×DNt (5.66)

Now, using Eqs. (5.63) and (5.64), the Jacobian ∂nNt/∂x̂ is concisely specified as:

∂nNt

∂x̂
= DxΦNt +DẋΦNt Ω (5.67)

From Eqs. (5.60) and (5.67), the procedure to compute the Jacobian of r, at a given solution
x̂, can be detailed as follows:

1. Compute the time-domain solution and its derivative at discrete instants t1...tNt , as xNt =
ΦNt x̂ and ẋNt = ΦNt Ωx̂;

2. Evaluate the non-linear terms n and their derivatives, ∂n
∂x and ∂n

∂ẋ , along the trajectory {xNt , ẋNt};
use the derivatives to construct Dx and Dẋ;

3. Obtain ∂nNt
∂x̂ = DxΦNt +DẋΦNt Ω;

4. Finally, the complete Jacobian (including non-linear and linear terms) is:

∂r
∂x̂

= ΦNt L−
∂nNt

∂x̂
(5.68)

5.4.1.2 The Galerkin case

In the Galerkin case, using the rectangle integration rule, from Eq. (5.53) the residuals are given
as follows:

r(x̂) = Lx̂− 2
Nt

Φ
T
Nt

nNt (x̂)− ê (5.69)

where Nt may be larger than 2Nω +1. The Jacobian for the non-linear terms is calculated in a way
similar to the PS case, except that n and its derivatives ∂n

∂x and ∂n
∂ẋ are evaluated at Nt points in time,

where Nt is equal to, or greater than 2Nω +1. The procedure can be detailed as follows:

1. Compute the time-domain solution and its derivative at discrete times t1...tNt , as xNt = ΦNt x̂
and ẋNt = ΦNt Ωx̂;

2. Evaluate the non-linear terms n and their derivatives, ∂n
∂x and ∂n

∂ẋ , along the trajectory {xNt , ẋNt};
use the derivatives to construct Dx and Dẋ;

3. Obtain ∂nNt
∂x̂ = DxΦNt +DẋΦNt Ω;

4. Finally, the complete Jacobian (for non-linear and linear terms) is:

∂r
∂x̂

= L− 2
Nt

Φ
T
Nt

∂nNt

∂x̂
(5.70)

The computations are then very similar in the PS and Galerkin approaches. However, in the
Galerkin case, if Nt > 2Nω +1, the computation of the non-linear part of the residuals, and of its
Jacobian, may be more accurate, but slower, than in the PS approach.
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5.4.2 Initialisation

The iterative solution of the HB equation requires appropriate initialisation, i.e. a relevant choice
for x̂(0). Indeed:

• It should be ensured that x̂(0) belongs to the “basin of attraction” of the solution, i.e. that
starting from x̂(0), the iterative algorithm (Newton’s method or other) converges to the solu-
tion [146].

• Assuming that x̂(0) does belong to the basin of attraction, the computation time associated
with the iterative solution linearly depends on the number of iterations. Therefore, a good
initial guess reduces the computational time.

A computationally cheap but generally appropriate initial guess is the solution to an associated
linear problem, whereby the term n is either linearised, or set to zero. x̂(0) is then found by solving

L′x̂(0) = ê (5.71)

For particularly strong non-linearities, in cases where it is not easy to find a satisfactory initial
guess for the solution, it may be possible to use a continuation method [151]. Parametrise the HB
equation (5.53) or (5.57) in terms of a scalar parameter λ ∈ [0;1] such that rλ=1(x̂) = r(x̂), and
such that the equation rλ=0(x̂) = 0 has a trivial solution. For example (using the PS formulation),
λ modulates the magnitude of the non-linear effects so that:

rλ(x̂) := ΦNt Lx̂−λnNt (x̂)−ΦNt ê (5.72)

Starting from the solution of rλ=0(x̂) = 0, the solution x̂(λ) of rλ(x̂) = 0 is numerically tracked
until x̂(λ = 1) is reached. For example, in a simplistic version of the continuation method, the
interval [0;1] is subdivided into a number K of “small enough” intervals [λk;λk+1] with λ0 = 0 <
λ1 < ... < λk < λk+1 < ...λK = 1. The solution x̂(λk+1) would be found using Newton’s method,
starting from x̂(λk) as an initial guess.

Continuation methods not only allow the solution of the original non-linear equation; they also
provide the solution for the dynamical equations within the chosen parametric space, i.e. when
the parameter λ covers [0;1]. Thus, if the parameter λ can be chosen to be physically significant,
the continuation method provides a comprehensive picture with regards to how the system reacts
to changes in the parameter of interest (in HB applications for non-linear vibration analysis, the
parameter of interest is typically the excitation frequency ω [135]). Within the scope of WEC
design, continuation methods could be a powerful tool for parametric optimisation and stability
analysis.

Although they have been briefly discussed in this subsection for the sake of completeness,
continuation methods are not covered in the rest of this thesis. However, the sensitivity of the HB
solution to the model parameters will be investigated in Section 5.6, for a case more general than
a scalar parameter. In addition, other strategies for initialising the HB algorithm will be further
explored in Chapter 6.

5.4.3 Practical implementation

In most cases, if non-linearities are not excessively strong, a simple Newton procedure can be
appropriate for solving the HB equation. As a consequence, the Newton procedure, implemented
by the author in a Matlab3 environment, and represented in Fig. 5.1, has been used to produce the
numerical results in the first works published, within the scope of this thesis, on the application of
the HB method to WEC systems [57, 129].

In subsequent work [152], it was shown that more sophisticated, but more robust gradient-
based root-finding algorithms, may be necessary for more difficult problems. The trust-region

3See https:mathworks.com
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dogleg method, available in the readily-implemented Matlab function fsolve, has thus been used
by the author as a complement to, or a substitute for the simple Newton procedure [152, 153]. The
principle of trust-region methods can be found in [146].

The HB simulation results, presented throughout the rest of this thesis, have been obtained
using the simple Newton method when convergence was not an issue, while the fsolve trust-region
dogleg algorithm was employed for more arduous cases (i.e. cases where the Newton method
sometimes failed in converging to a solution).

5.4.4 The alternating frequency/time technique

Note that gradient-based techniques are not the only possibility for solving Eq. (5.58). In partic-
ular, the alternating frequency/time (AFT) technique [154], deserves a brief discussion. Consider
the Galerkin HB equation (5.53). Define the operator T :

T : x̂ 7→ L−1[n̂(x̂)+ ê] (5.73)

It is easy to see that Eq. (5.53) can be reformulated as:

T (x̂) = x̂ (5.74)

Using the contraction mapping theorem [97], if an initial guess x̂(0) can be found sufficiently
close to the actual solution, and under certain conditions on the operator T [97], successive itera-
tions of the form

x̂(k+1) = T (x̂(k)) (5.75)

converge to the actual solution x̂∗. Iterations of Eq. (5.75) form the essence of the AFT technique
[154].

The AFT technique does not require any Jacobian calculation or matrix inversion (since L−1

need only be calculated once, at the beginning of the AFT iterations), and only requires the eval-
uation of the non-linear terms at each iteration. The AFT technique was briefly considered by the
author during the course of this thesis; however, it was found that, although each AFT iteration is
computationally cheap, many more iterations were necessary to converge, compared to Newton’s
method. Furthermore, the AFT technique appeared to be significantly less robust than Newton’s
method, the former often failing where Newton’s method only took a few iterations to converge.
As a consequence, the AFT method was discarded for the rest of this thesis.

5.5 An introductory example: a flap-type WEC in monochromatic
waves

Some of the main features of the HB method, as applied to the WEC simulation problem, are
illustrated in this section by means of a simple numerical example, namely, a flap-type WEC in a
monochromatic wave signal.

5.5.1 WEC model

The WEC model is the same bottom-mounted, pitching flap which is described in Chapter 4 of
[106]. The device is pictured in Fig. 5.2. H represents the mean water depth, also equal to the flap
height. The flap is W = 30 m wide (transverse to the wave direction), and D = 1m thick. The flap
faces the wave direction x, and rotates about the y axis. The angle of rotation with respect to the
vertical is denoted θ.

From Newton’s second law, the dynamical equation governing the rotation angle is as follows:

Iθ̈(t) = τ f (t)+ τpto(t) (5.76)
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Figure 5.2: Flap-type oscillating wave-surge converter

where I denotes the moment of inertia about the rotation axis, τ f denotes the hydrodynamic torque,
about the y axis, due to the device interaction with the surrounding fluid, and τpto(t) the torque
exerted by the PTO system. The PTO torque takes the form of a simple linear damping term:
τpto(t) =−Bptoθ̇(t). The hydrodynamic moments are further detailed as follows:

τ f (t) = τe(t)+ τh(t)+ τR(t)+ τv(t) (5.77)

where

• τe is the excitation torque;

• τR is the radiation torque, given as τR(t) =−I∞θ̈(t)−
∞∫

τ=0
KR(τ)θ̇(t−τ)dτ, where I∞ denotes

the radiation infinite-frequency added moment of inertia about the rotation axis, and KR(τ)
the radiation impulse response kernel;

• τh is the hydrostatic restoring torque, calculated as fh(t) =−Shθ(t), where Sh is the hydro-
static stiffness coefficient;

• τv is the torque due to non-linear viscous effects, represented through the combination of a
linear damping term, −Cdis,l θ̇(t), and a quadratic viscous drag term, −Cdis,q|θ̇(t)|θ̇(t) (see
[106] for more detail).

Finally, the dynamical equation can be written as:

(I+ I∞)θ̈(t)+(BPTO +Cdis,l)θ̇(t)+
∞∫

τ=0

KR(τ)θ̇(t− τ)dτ+Shθ(t)+Cdis,q|θ̇(t)|θ̇(t)+Shθ(t) = e(t)

(5.78)
The water density is ρ = 1025kg.m−3, and the body density is ρb = ρ/8. The time domain ra-

diation coefficients, I∞ and KR(τ), are related to their equivalent frequency-domain representation,
denoted AR (for the frequency-dependent added mass) and BR (for the frequency-dependent damp-
ing), through Ogilvie’s relations (4.69) and (4.70). The excitation torque transfer function, Hηe, as
well as the radiation parameters I∞, KR(τ), AR and BR, are all calculated using the hydrodynamic
software WAMIT4.
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Parameter Unit Num. value
L [m] 30
D [m] 1
H [m] 15
ρb [kg.m-3] 128.125
I [kg.m2] 2.44×108

Sh [N.m] 2.97×107

Cdis,l [N.m.s] 1×106

Cdis,q [N.m.s2] 3.7×108

I∞ [kg.m2] 2.4×108

Table 5.1: Main physical parameters of the flap-type device

Table 5.1 summarises the numerical values of the main physical parameters of the flap while,
for the sake of illustration, Fig. 5.3 shows the magnitude of the excitation torque transfer function,
|Hηe|, the radiation added mass AR and damping BR, and the impulse response kernel KR.

Eq. (5.78) can be straightforwardly formulated in the general form of Eq. (4.90), as:

L{θ}−n{θ, t}− e(t) = 0 (5.79)

with:

• The number of degrees of freedom is only D = 1, and the corresponding variable is x = θ;

• The linear operator is given as:

L{θ} := (I + I∞)θ̈(t)+(Bpto +Cdis,l)θ̇(t)+
∞∫

τ=0

KR(τ)θ̇(t− τ)dτ+Shθ(t) (5.80)

• The non-linear operator is defined as:

n{θ, t}=−Cdis,q|θ̇|θ̇ (5.81)

• The additive forcing term is e(t) = τe(t).

5.5.2 Implementation of the HB method

In this example, a monochromatic wave excitation signal, with period Tw = 12s and amplitude
Aw = 4m, is considered:

η(t) = Aw cos(ωwt) (5.82)

with ωw = 2π/Tw.
In the HB implementation, the fundamental frequency is set to ∆ω = ωw and the other fre-

quencies are defined harmonically as ωk = k∆ω. Following the calculations presented in Section
5.3.1, the block-diagonal matrix L ∈ R(2Nω+1)×(2Nω+1) is built as follows:

L =


L0 0 · · · 0
0 L1 · · · 0
...

...
. . .

...
0 0 · · · LNω

 (5.83)

4http://www.wamit.com/

122



(a) Radiation added mass AR( f ) (b) Radiation damping BR( f )

(c) Radiation impulse response kernel KR(τ) (d) Magnitude of the excitation torque transfer function Hηe

Figure 5.3: Hydrodynamic characteristics of the flap-type device: time- and frequency-domain
radiation coefficients, and frequency-domain excitation torque coefficients

where the matrices on the diagonal are given as:
L0 = Sh

Lk =

(
Sh−ω2

k [I +AR(ωk)] ωk[BPTO +Cdis,l +BR(ωk)]

−ωk[BPTO +Cdis,l +BR(ωk)] Sh−ω2
k [I +AR(ωk)]

)
for k = 1...Nω

(5.84)
The excitation torque is projected onto the Fourier basis as the vector

ê =



0
ê1
ê2
0
...
0


(5.85)

with ê1 = ℜ{Hηe(ωw)}Aw and ê2 = ℑ{Hηe(ωw)}Aw.
For the explicit Jacobian computation, detailed in Section 5.4.1, the partial derivatives of

the non-linear terms with respect to position and velocity are given as ∂n/∂θ = 0 and ∂n/∂θ̇ =
−Cdis,q|θ̇|.

In the following subsections, to make the reader familiar with the HB framework, these fun-
damental features of the method are examined:

• How the root-finding algorithm converges to the solution, and how the ‘strength’ of the
non-linear effects can have an impact on the number of iterations;

• How the approximation error of the HB solution (as compared to the exact mathematical
solution), decreases with the number of harmonics Nω;

• How the Galerkin and PS versions of the HB method compare to each other;
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• How the HB method compares to a standard time-domain numerical integration scheme,
namely the second-order Runge-Kutta method [14].

5.5.3 Root-finding algorithm

As a first introduction to the HB method working principle, Fig. 5.4 illustrates how the root-finding
Newton algorithm converges to the solution of the HB equation (starting from the linearised solu-
tion, obtained by setting Cdis,q to zero and solving Lx̂(0) = ê). In addition, the quadratic viscous
drag coefficient is set to three different values: C∗dis,q = 0.5Cdis,q, C∗dis,q =Cdis,q and C∗dis,q = 2Cdis,q,
to analyse the impact of higher or lower non-linear effects. In this example, the PS approach
(Nt = 2Nω +1) is used, and the order of the Fourier approximation is Nω = 10.

Intuitively, larger non-linear forces imply that the solution is further from the initial (linear)
solution x̂(0). As a consequence, the root-finding algorithm requires more iterations before reach-
ing the solution, as visible in Fig. 5.4a, which shows the residuals decreasing at each iteration of
the Newton method, for the three different values of C∗dis,q. In the three cases, the residual norm
decreases rapidly with the number of iteration, at an exponential rate (i.e. the norm is proportional
to ρn, where 0 < ρ < 1). The root-finding algorithm stops when the residuals reach a predefined
tolerance value (in this case, |r(x̂)| ≤ 10−6).

Fig. 5.4b shows the solutions for θ(t) corresponding to the three levels of non-linearity, as
well as the linear initial solution. As can be expected, a larger level of viscous damping tends to
reduce the motion amplitude.

5.5.4 Convergence rate and accuracy

The previous subsection illustrates how the root-finding algorithm converges towards the solution
of the HB equation, as the root-finding algorithm iterates, i.e., schematically, as Eq. (5.59) is
recursively applied. Choosing a different root-finding algorithm, or computing the Jacobian less
accurately, may yield a different, possibly slower, convergence rate [146], but should converge to
the same solution.

This subsection examines another crucial aspect of the HB convergence properties, namely,
how much accuracy is gained by increasing the number Nω of harmonics. The convergence of
spectral methods to the exact solution, as Nω increases, is examined in detail in [102], to which
the reader is referred to for more insight.

Of course, increasing the order Nω of the solution expansion yields more accurate results, in
the sense that the error between the HB (approximate) solution and the exact solution decreases.
However, it is typically the case that the exact solution is not known (otherwise, why would one
need to use the HB method?), so that some indirect estimate of the error should be found. To that
end, two facts are of particular interest:

• The rate of convergence to the actual solution is governed by the singularities, induced by
the non-linear terms. In particular, if all the functions involved in the differential equation
are infinitely smooth, the convergence rate is exponential, which means that, asymptoti-
cally, the approximation error is proportional to ρNω , where 0 < ρ < 1. Therefore, in such
a case, increasing Nω by just one or several units can improve the solution accuracy by
one or several orders of magnitude. On the contrary, singularities negatively affect the con-
vergence rate [102]. For example, if the solution has discontinuous first-order derivatives,
the convergence rate is only quadratic (i.e. the error decreases in N−2

ω ); if the solution has
discontinuous second-order derivatives, the convergence rate is only cubic, etc.

• Without knowing the actual solution, the order of magnitude of the approximation error can
be evaluated based on the norm of the last coefficient of the solution (ŷNω

in the notations of
Eq. (5.3)), if the type of convergence rate is known. For example, assuming an exponential
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Figure 5.4: Convergence of the HB algorithm to the non-linear solution with three levels of
quadratic viscous damping - flap-type WEC, monochromatic wave excitation with Tw = 12s and
Aw = 4m.
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Figure 5.5: Magnitude of the last harmonic of the HB solution as a function of the number of
harmonics, with a quadratic viscous drag term (discontinuous second-order derivative) vs a cubic
viscous drag term (infinitely smooth) - flap-type WEC, monochromatic wave excitation with Tw =
12s and Aw = 4m.

convergence rate, it is easy to show [102] that the error is of the same order of magnitude as
the last coefficient, ŷNω

, in the solution expansion.

In general, if the non-linearities involved in the dynamical equations have discontinuous ith-
order derivatives, it is easy to see that the solution will have discontinuous (i+1)th-order deriva-
tives: indeed, considering a system cast in state-space form ẋ = f(x, t), the term f(x, t) has discon-
tinuous ith-order derivatives; therefore the solution

x(t) =
t∫

τ=0

f(x(τ),τ)dτ (5.86)

has discontinuous (i+1)th-order derivatives.
In the chosen numerical example, the non-linear term, n{θ, t} = −Cdis,qθ̇|θ̇|, has a discon-

tinuous second-order derivative. Therefore, the solution has discontinuous third-order derivatives
which implies that the convergence rate may not be exponential, but rather algebraic in N−4

ω -
which is empirically verified in the following paragraphs.

The logarithmic plot of Fig. 5.5 show the magnitude |aNω
| of the last harmonic of the HB solu-

tion (using the PS formulation) for Nω = 1...40, where |aNω
| =
√

x̂2
2Nω

+ x̂2
2Nω+1. Asymptotically,

|aNω
| decreases algebraically in N−5

ω .
As explained in [102], the error, encountered by using a PS method of order Nω, is roughly

bounded from above by the sum of the magnitudes of the coefficients aN′ω , for all N′ω > Nω, which
represent the terms of the solution expansion discarded as a result of an approximation of order
Nω. Mathematically, this statement is expressed as follows:

|eNω
| ≤

∞

∑
N′ω=Nω+1

|aN′ω | (5.87)

Even if the coefficients aN′ω , for N′ω > Nω, have not been computed, their sum can be estimated
if the convergence type (algebraic, exponential, etc.) of the coefficients is known. In the present
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case, the sequence |aNω
| decreases algebraically, say |aNω

| ≈ kN−β

ω for some constant k and β > 1.
Using the simple fact that∫

∞

s=Nω+1
ks−βds≤

∞

∑
N′ω=Nω+1

kN′−β

ω ≤
∫

∞

s=Nω

ks−βds (5.88)

it is not hard to show that, if |aNω
| is in the order of N−β

ω , the approximation error |eNω
| decreases

in N−β+1
ω . Therefore, in the case considered here, since from Fig. 5.5 the magnitude of the last

Fourier coefficient of the solution decreases as N−5
ω , the HB solution error decreases as N−4

ω , which
is what was expected.

For the sake of comparison, Fig. 5.5 also presents the results obtained when the non-linear,
quadratic viscous drag term is replaced with a cubic damping torque, thus making the non-
linearities infinitely smooth. This time, |aNω

| (and hence the approximation error) decreases expo-
nentially, thus even more rapidly than with the quadratic formulation. It can also be seen that when
Nω is large enough, the error reaches the machine accuracy, and hence the coefficients obtained by
increasing the order of the HB method are not relevant any more, but instead fluctuate randomly,
which is termed the “round-off plateau” in [102].

5.5.5 Galerkin vs PS formulation

So far, for simplicity, the PS method was chosen for the purpose of numerical illustration, because
the PS formulation implies no tuning of the parameter Nt , which otherwise governs the number of
points used to approximate the integrals in the Galerkin formulation. It has already been explained
in Section 5.3.3 that the PS formulation is strictly equivalent to a Galerkin method with Nt =
2Nω +1, assuming a rectangular numerical integration rule. In this subsection, the relative merits
of the PS and Galerkin approaches are further investigated. It is shown that there is little rationale
in adopting the Galerkin approach with a value for Nt significantly larger than 2Nω +1.

To that end, Fig. 5.6 shows the magnitude of the last Fourier coefficient of the solution, for
Nω = 1...40, using three variants:

• Galerkin, using Nt = 2Nω +1, i.e. the PS approach;

• Galerkin, using Nt = 100;

• Galerkin, using Nt = 400.

Thus, in the second and third variants, the number of collocation points, which are used to
approximate the integrals in the HB equation (5.53), is set to a value larger than 2Nω +1.

As can be appreciated in Fig. 5.6a, in the two Galerkin methods (with Nt = 100 and Nt = 400),
the coefficients aNω

, for even Nω, are zero to machine accuracy. That is because the non-linearity in
the dynamical equation is an odd function, and thus, only makes odd harmonics of the fundamental
frequency appear in the exact solution. In the PS approach (Nt = 2Nω +1), when Nω is even, the
last coefficient of the expansion is found to be non-zero, because the number of integration points,
2Nω +1, is odd. This, however, does not affect the accuracy of the solution because, as explained
in [102], what really governs the solution accuracy is the “envelope” of the coefficients of the last
harmonic [102], which can be studied, in the present case, by only considering odd values of Nω,
as shown in Fig. 5.6b.

Examining Fig. 5.6b, it can now be clearly seen that there is almost no difference in accuracy
between the three variants considered. In fact, in the Galerkin approach, the effect of increasing Nt ,
even by a large amount, is insignificant with respect to the gain in accuracy of increasing Nω, even
by only one unit. This result corroborates those of [132]. Since increasing Nt is computationally
demanding (because the size of the matrix ΦNt increases accordingly), there is no rationale for
choosing Nt significantly larger than 2Nω + 1. In [132], it is suggested that using Nt between
2Nω +1 and 3Nω is sufficient. Throughout the rest of this thesis, the PS version of the HB method
will be employed.
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(a) For Nω = 1,2, ...40

(b) For Nω = 1,3,5, ...,41

Figure 5.6: |aNω
| for three variants of the HB formulation: Galerkin with Nt = 2Nω + 1 (PS),

Nt = 100 and Nt = 400 - flap-type WEC, monochromatic wave excitation with Tw = 12s and
Aw = 4m.
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5.5.6 The HB method vs time-domain integration

Finally, this subsection briefly discusses the properties, in terms of convergence, of a standard
numerical time-domain integration procedure, namely the 2nd-order Runge-Kutta method [14],
abbreviated as RK2. The RK2 scheme is chosen as a point of comparison for the HB method,
based on the following grounds:

• The method is simple, in the sense that the integration time step ∆tRK is the only parameter,
and remains fixed throughout the procedure;

• It is ensured, if the solution is continuous, that the numerical results converge to the exact
solution when ∆tRK tends to zero [96];

• The computation of the convolution product of Eq. (4.90) cannot be easily carried out
if the time step is not constant, as discussed in Chapter 3 of [3]. In contrast, using the
RK2 method, the convolution integral can be numerically calculated using, for example, the
rectangle integration rule.

Given the three points above, the comparison between HB and RK2 methods can be carried out
by computing RK2 results for several time step values ∆tRK , and examining how the RK2 accuracy
changes with the time step. Note that the HB method directly solves for one, steady-state, period
of the solution. In contrast, time-domain integration also models the transient response of the
system. Therefore, for a relevant comparison, the RK2 simulations cover several wave periods, in
order to ensure that transient effects have the time to fade out. Then, only the very last period of
the motion, which can be safely considered to be in steady-state, is compared with HB results.

Furthermore, in order to provide an appropriate point of comparison to assess the RK2 method
accuracy, the non-linear terms are removed (by setting Cdis,q to zero). By doing so, it is ensured
that the HB results (which then coincide with the traditional, linear frequency-domain method) are
the exact solution, and thus provide an unquestionable baseline.

The root-mean-square error encountered by RK2 integration is computed, over a full wave
period Tw (in the steady-state regime), as follows:

eRMS =

√√√√√ 1
Tw

Tw∫
t=0

(θRK2(t)−θHB(t))2dt (5.89)

which is numerically approximated as:

eRMS =

√
1

NtRK

NtRK

∑
i=1

(θRK2(i∆tRK)−θHB(i∆tRK))2 (5.90)

with NtRK∆tRK = Tw. The reader may have noticed that the numerical evaluation of the root-mean-
square error, in Eq. (5.90), requires the HB solution to be calculated at each (refined) RK2 time
step i∆tRK , where typically ∆tRK � ∆t (∆t is the time step between the collocation points of the
PS HB method). To that end, once the HB solution x̂ has been found, and defining the matrix
ΦNtRK analogously to ΦNt in (5.49), the solution x at the RK2 time steps is simply obtained as
xNtRK = ΦNtRK x̂. The results of Eq. (5.90) are shown in Fig. 5.7, where it can be seen that the
solution accuracy improves linearly with 1/∆tRK . This is in contrast to the HB method, for which
the accuracy improves more than linearly with Nω.

For now, given that most of the RK2 simulation time is spent letting the transient effects fade
out, and that a monochromatic wave excitation signal is not representative of a wave input for
a realistic simulation, any comparison in terms of computational time between the RK2 and HB
methods is at best qualitative. Because of the convolution product in Eq. (4.90), the computation
time in RK2 increases as (1/∆tRK)

2 (for a linear improvement in terms of accuracy). In the HB
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Figure 5.7: Root-mean-square error vs integration time step, for the RK2 numerical solution -
flap-type WEC, monochromatic wave excitation with Tw = 12s and Aw = 4m.

method, the computation time is expected to increase as more than N2
ω and at most N3

ω, because
of the matrix operations involved in the solution. However, the corresponding improvement in
terms of accuracy can be more than linear (in N−5

ω for the example considered in this section).
Concerning the relative merits of the HB and RK2 methods, in terms of accuracy and computation
time, more will be learnt in Chapter 6, when practical case studies, with realistic wave inputs, will
be studied.

5.6 Sensitivity equation within the harmonic balance framework

5.6.1 The sensitivity equation

This section considers models of the type of Eq. (4.90), specified in a parametric form. Define
α ∈ RNα , as a vector of Nα parameters governing, for example, the geometry of the WEC, or the
settings or dimensions of its PTO system. α is assumed to take continuous values in RNα . Eq.
(4.90) is modified in order to represent the fact that the WEC model depends on the parameters α:

L{x,α}−n{x, t,α}− e(t,α) = 0 (5.91)

where:

• The linear terms L are now allowed to depend on the parameters α, and thus take the fol-
lowing form:

L{x,α} := (M(α)+M∞(α))ẍ+C(α)ẋ+S(α)x+
∞∫

τ=0

K(τ,α)ẋ(t− τ)dτ (5.92)

• The non-linear terms n{x, t,α} can be detailed as:

n{x,α, t} := n(x, ẋ, ẍ,α, t) (5.93)

where the time-dependence represents forcing inputs derived from the incident waves, as
discussed in Section 4.3.5, and the parameters α can play a role in the non-linear modelling
terms;
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• e(t,α) represents an additive forcing input, derived from the incident waves, and possibly
depending on the parameters α.

In some circumstances, it can be interesting to know how the solution x changes, when the
parameters α change, for example when carrying out design optimisation, or if one wants to study
the sensitivity of the WEC performance to uncertainties in the modelling parameters. To that end,
it is assumed that the terms of L , n and e are continuous and differentiable with respect to the
parameters α.

In this thesis, as discussed in Section 4.6, the forcing terms in Eq. (5.91) are time-periodic
(with period T ), because they are essentially derived from a wave input, generated through har-
monic superposition. The steady-state solution x, if it exists, is also periodic with period T (which
initially justifies the choice of the HB approach). Therefore, when varying the parameter vector α,
what is in fact examined is how the periodic, steady-state, solution x varies in the space of periodic
solutions with period T .

Denote x∗ as the periodic solution for Eq. (5.91) for a specific value α∗ of the parameters. Con-
sider infinitesimal variations in the parameters α = α∗+∆α. The sensitivity equation expresses
the fact that the solution x = x∗+∆x, for α = α∗+∆α, must still satisfy the dynamical equation
(5.91). The solution to the sensitivity equation should then consist of a periodic, matrix-valued
function, ∂x

∂α

∣∣∣
α∗
(t) ∈RD×Nα , which specifies how the solution x at time t changes for infinitesimal

variations of α. In other words:

x(t)≈ x∗(t)+
∂x
∂α

∣∣∣∣
α∗
(t)∆α (5.94)

First consider a single parameter (Nα = 1). For a generic, parametric differential equation
ẋ = f(x, t,α), the sensitivity equation is written [97] as:

∂ẋ
∂α

=
∂f
∂α

+
∂f
∂x

∂x
∂α

(5.95)

where ∂f/∂x and ∂f/∂α are evaluated along the steady-state, periodic, solution x(t), resulting from
a given parameter α. Thus, Eq. (5.95) is, in essence, a linear, time-varying differential equation
of the form ẏ = a(t)y + b(t), where the time varying linear coefficients are a(t) = ∂f/∂x and
b(t) = ∂f/∂α. The solution of this linear, time-varying differential equation is ∂x/∂α.

It is not difficult to transpose Eq. (5.95) into the different formalism of Eq. (5.91), which
yields the following sensitivity equation:

∂L
∂x

∂x
∂α

+
∂L
∂α

∣∣∣∣
x∗
− ∂n

∂x

∣∣∣∣
x∗

∂x
∂α
− ∂n

∂ẋ

∣∣∣∣
x∗

∂ẋ
∂α
− ∂n

∂α

∣∣∣∣
x∗
− ∂e

∂α
= 0 (5.96)

Because of the linearity of the operator L , it can be easily checked that ∂L
∂x

∂x
∂α

= L{ ∂x
∂α
}, so that

∂x
∂α

may be found by solving the following linear, time-varying differential equation with unknown
s(t):

L{s}− ∂n
∂x

∣∣∣∣
x∗

s− ∂n
∂ẋ

∣∣∣∣
x∗

ṡ =− ∂L
∂α

∣∣∣∣
x∗
+

∂n
∂α

∣∣∣∣
x∗
+

∂e
∂α

(5.97)

Working using time-domain numerical integration, typically x∗ would be determined (using
time-domain integration), and Eq. (5.97) would then need to be solved through an additional (time-
domain) simulation. In a HB framework, it is shown in the next subsection that the sensitivity
equation can be solved using a simple matrix inversion, with little additional computation with
respect to the solution of Eq. (5.53) or (5.57).

5.6.2 The sensitivity equation in the HB framework

Since the equation initially considered, Eq. (5.91), is time-periodic, Eq. (5.97) is not only time-
varying, but also time-periodic, and can be rewritten in a HB framework. First, assuming that the
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PS version of the HB method is employed, define a matrix Ls ∈ RDNt×DNt and a vector bs ∈ RDNt

as follows: {
Ls := ΦNt L−DxΦNt −DẋΦNt Ω

bs :=−ΦNt
∂L
∂α

x̂∗+ ∂nNt
∂α

∣∣∣
x∗
+ΦNt

∂ê
∂α

(5.98)

where L, Dx and Dẋ are defined as in Eqs. (5.38), (5.65) and (5.66), respectively, ΦNt is defined in

Eq. (5.49) and, similarly to Eqs. (5.51) and (5.64), ∂nNt
∂α

∣∣∣
x∗

is defined as:

∂nNt

∂α

∣∣∣∣
x∗
=


∂n
∂α
(t1)
...

∂n
∂α
(tNt )

 (5.99)

In Eq. (5.98), it can be recognised that Ls is identical to the Jacobian of the residuals ∂r
∂x̂ ,

computed at each iteration of the HB algorithm. Therefore, Ls can be seen as a simple by-product
of the Newton (or other root-finding) procedure employed to solve the HB equation. The other
term, bs, represents the derivatives, with respect to α, of the linear, additive input and non-linear
terms, evaluated at each collocation point along the solution trajectory x∗ = ΦNt x̂∗. Once the HB
solution x̂∗ has been found, bs can be evaluated at little additional cost.

It is now possible to express the sensitivity equation in a HB framework:

Ls
∂x̂
∂α

= bs (5.100)

Solving the linear system of Eq. (5.100) provides ∂x̂
∂α

, which specifies how each Fourier coef-
ficient of the HB solution changes with respect to α.

Eq. (5.100) is readily extended to cases where α is not a scalar, but a vector of several (Nα)
parameters. Interestingly, the matrix Ls does not involve any derivative with respect to the param-
eters. For each component αi of the parameters, the corresponding vector bs,i can be evaluated
as:

bs,i :=−ΦNt

∂L
∂αi

x̂∗+
∂nNt

∂αi

∣∣∣∣
x∗
+ΦNt

∂ê
∂αi

(5.101)

Finally, defining Bs = [bs,i, · · ·bs,Nα
], the matrix ∂x̂

∂α
∈ RDNt×Nα (which is the Jacobian of the

HB solution with respect to the parameters) is calculated by solving the following linear system:

Ls
∂x̂
∂α

= Bs (5.102)

In Section 6.4, it will be explained how, when solving problems which have different but close
enough parameter values, the HB sensitivity equation can be used to improve the starting guess
for the HB algorithm. In Chapter 7, it will be shown how the HB sensitivity equation can be used
within a gradient-based algorithm for WEC parametric optimisation, to evaluate the cost function
derivative.

5.6.3 Example

The methodology outlined above, in Section 5.6.2, is applied to the flap-type WEC model, con-
sidering the viscous drag term Cdis,q as the only parameter. Considering a monochromatic input
wave with period Tw = 14s and amplitude Aw = 3m, and taking into account 7 frequencies in the
Fourier expansion of the solution, the HB equation is first solved, bs and Ls are then calculated
like in Eq. (5.98) and, finally, ∂x̂

∂α
is obtained by solving Eq. (5.100).

Then, the solution variations for changes in α =Cdis,q, with respect to a nominal value C∗dis,q,
can be estimated as follows:

x̂≈ x̂∗+
∂x̂
∂α

∆α (5.103)
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Figure 5.8: Nominal solution and variations with respect to Cdis,q - flap-type WEC, monochromatic
wave excitation with Aw = 3m, Tw = 14s
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The corresponding results are plotted in Fig. 5.8 for ∆α = ±50%α, in terms of angular posi-
tion, velocity and absorbed power.

5.7 From the wave spectrum to WEC outputs

5.7.1 From the wave spectrum to time-periodic IDEs

At this stage, by combining the outputs of Parts I and II of this thesis, it is possible to outline a
methodology to characterise the WEC outputs in a random sea, based on harmonic superposition
for the generation of input wave signals, and on the harmonic balance method to solve for the
dynamical equation in any given wave signal.

From Chapter 4, it has been established that a wide range of WEC models, including mooring
and PTO systems, can be expressed in a general form:

L{x}−n{x, t}− e(t) = 0 (5.104)

As discussed in Section 4.6, the forcing terms involved in Eq. (5.104) are all derived from one
or more incident wave signals, most typically the free-surface elevation η at some reference loca-
tion. The incident wave signals can be considered Gaussian, as discussed in Chapter 2. Hence, to
obtain a satisfactory characterisation of the WEC response in a given sea state, sample time series
of the Gaussian incident wave input must be generated, in a way which is statistically consistent
with the Gaussianity assumption and with the target wave spectrum. As seen in Chapter 3, the
incident wave input can be usefully generated using harmonic superposition. In particular, choos-
ing the length of the generated signals as T = 1/∆ f , every forcing term involved in Eq. (5.104) is
periodic with period T .

Thus, when η (or other incident wave signals) is generated using harmonic superposition,
Eq. (5.104) becomes time-periodic, and may be solved efficiently and accurately using the HB
method, described previously in this chapter. Two parameters are particularly important in the HB
implementation:

• The length of the generated signal, T , determines the frequency step ∆ f = 1/T = ∆ω/2π.
As seen in Chapter 3, too coarse a ∆ f implies that the target spectrum is not well repre-
sented - in terms of the generated time-domain signal, this means that significant distortion
is introduced in the correlation function.

• The cut-off frequency fc = ωc/2π determines the number of harmonics present in the HB
solution. Possibly, the cut-off frequency fcη

of the generated wave signal may be chosen
to be lower than that of the HB solution, fc: because of the presence of non-linear terms,
the solution may have non-zero components even for those frequencies between fcη

and fc.
While fcη

is primarily chosen so as to capture most of the relevant frequency content of
the gravity wave spectrum (which constitutes the forcing input to the system), fc essentially
governs the accuracy of the solution, as illustrated in Section 5.5 for monochromatic waves.

5.7.2 A HB procedure for WEC output characterisation in a given wave spectrum

For a given choice of fc and T , there are Nω = fc/∆ f = fc×T frequencies, which result in 2Nω+1
residual equations. If D is the dimension of the system in Eq. (5.104), the size of the problem to
solve in the HB technique is thus NHB = (2Nω + 1)×D. The computation cost of the solution is
governed by:

• The number of iterations, which in turns depends on the algorithm starting point and the
strength and nature of the non-linear effects. The computation time depends linearly on the
number of iterations.
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• The problem size NHB: at each Newton iteration, building and inverting the Jacobian ma-
trix - see Section 5.4.1 - requires matrix operations on a NHB-by-NHB matrix, which is, in
general, proportional to Nβ

HB - where 3 > β > 2, with a value depending on the efficiency of
the Jacobian computation implementation, and on the specific linear solver available. The
relationship between problem size and computation time will be empirically investigated in
Chapter 6.

Therefore, assuming a given number of iterations, the computation cost of the HB technique
primarily depends on the problem size, as more than N2

HB. However, it is more pertinent to consider
the computation cost per second of signal simulated, i.e. the computation time normalised by T :
the computation time to obtain one second of simulated signal, with the HB technique, is thus
roughly proportional to 1

T Nβ

HB ≈ (2D fc)
βT β−1. Since D is the (non-tunable) dimension of the

model, the actual trade-off which arises is between T and fc.
Consider the dependence of the computation time on T β−1: the HB method computation cost

per second of signal simulated increases at least linearly with the simulated duration. This is
in contrast with time-marching procedures, briefly discussed at the end of Chapter 4 and with
which, for a given time step, the ratio between the computational cost and the simulated duration
T remains constant, regardless of T . Hence, two significantly different procedures, depending
on whether time-domain integration or the HB method is used, can be identified. Assume that
the system output must be calculated over Ttot = 1000s of wave signal, to ensure that relevant
statistical quantities (such as power absorption) are estimated with sufficient confidence:

• With TD integration, the typical procedure consists of generating one incident wave signal
of length 1000s, as illustrated in Fig. 5.9a. Some additional time must be allowed at the
start of the simulation, to let the transient response fade out.

• With the HB method, it is preferable to run several, shorter simulations with a total length of
1000s, for example five simulations of length T = 200s, where T is chosen so as to ensure
sufficient spectral discretisation (recalling that ∆ f = 1/T ). This is illustrated in Fig. 5.9b.

In Fig. 5.9, regardless of the procedure (5.9a or 5.9b), the WEC response is simulated over
the same total duration of 1000s, in which average quantities of interest can be estimated, such
as power absorption, maximum motion amplitude, etc. Provided that T = 200s allows for a suffi-
ciently accurate discretisation of the wave spectrum, and if wave time-series in Figs. 5.9a and 5.9b
are generated through HRA (i.e. consistently with the Gaussian representation of ocean waves),
the situations in Figs. 5.9a and 5.9b should be statistically identical.

5.7.3 Settings of the HB method

For a given T , fc determines how accurate the HB solution will be for the generated wave signal
with period T . As seen in Section 5.5, increasing fc by only a small amount may improve the
accuracy by several orders of magnitude, but the exact improvement ultimately depends on the
specific nature of the non-linearities present in the dynamical model. Therefore, the dependence
of the computation time on f β

c involves a trade-off between computation cost and accuracy, which
depends on the specific dynamical model under study. How T and fc can be chosen in practice
will be examined in detail in Chapter 6.

Another important aspect to consider is how to choose between deterministic and random
amplitudes (HDA or HRA) for wave input generation. Assume that T is chosen sufficiently large
to ensure an accurate discretisation of the target spectrum:

• If HRA is adopted, each generated signal of length T has a different variance and, more
generally, statistics which differ from their long-term average, as would an actual T -second
wave record. Using Nsim simulations of length T is then exactly statistically equivalent to
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Figure 5.9: Typical WEC simulation procedures using TD integration vs the HB method
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running one simulation of length Nsim × T . However, a relatively large number of sim-
ulations may be necessary to obtain statistical estimates, such as power absorption, with
sufficient confidence.

• If HDA is adopted, each generated signal of length T has the same variance and, more
generally, statistics which are relatively close to their long-term average - which is not what
would be observed in actual wave records. However, if it can be ensured, as discussed in
Chapter 3, that HDA provides unbiased estimates of the statistical quantities of interest,
those can be obtained using relatively few simulations.

The choice between HRA and HDA will be empirically studied in Chapter 6, Section 6.6.

5.7.4 Generalisation to multi-directional incident waves

Finally, although the case of multi-directional input waves is not considered in the remainder of
this thesis, extending the proposed HB method to multi-directional random waves does not imply
strong additional difficulties. The main difference is that, in multi-directional waves, there are mul-
tiple incident wave inputs, which can be expressed in the discretised wave number space (kx,ky)
or in the discretised frequency-direction space (ω,θ): e(t) is now simply the sum of several,
possibly many, independent Gaussian contributions, corresponding to different wave directions
(or wave numbers). Similarly, the time-dependent terms in n{x, t} result from several, possibly
many, Gaussian contributions. Generating each of those elementary contributions using harmonic
superposition also results in a time-periodic system, which can be solved within the proposed
HB framework. However, in contrast to unidirectional waves, it must be ensured that the wave
spectrum discretisation, employed for time series generation, allows for a consistent directional
representation of the spectrum, in addition to an accurate frequency-wise representation. Since
such aspects have not been investigated in Part I of this thesis, the case of a multi-directional
incident waves will not be considered in the rest of this thesis.

5.8 Summary

In Section 5.2, the HB method is introduced within the broader panorama of spectral methods.
The HB method is the name usually given to a Fourier spectral method applied to the numerical
solution of a time-periodic differential equation. The relevance of the HB method, for the numer-
ical simulation of WEC models in the form of Eq. (4.90), is supported by comparison with other
engineering domains, where the HB method has been successfully applied.

Section 5.3 shows how Eq. (4.90) is transcribed into a HB residual equation, and offers two
variants of the method: the Galerkin version (whereby the solution is found through harmonic
cancellation) and the pseudo-spectral version (PS - whereby the residuals are cancelled at a set
of collocation points). Section 5.4 provides additional mathematical details, necessary for the
efficient solution of the HB equation, with particular emphasis on the explicit calculation of the
residual Jacobian.

The fundamental properties of the HB method are further examined throughout Section 5.5 us-
ing a relatively simple non-linear WEC model example, simulated for monochromatic incoming
wave signals. Of the PS and Galerkin variants of the HB method, in terms of residual minimi-
sation, it is chosen to retain the PS formulation for the remainder of this thesis, given the certain
computational overhead, and the meagre accuracy gain, with respect to the PS approach, which
can be expected from using an oversampled Galerkin approach. The relationship between the sin-
gularities in the non-linear terms of Eq. (4.90), and the convergence rate of the HB solution (i.e.
how the integration error decreases with the number of harmonics), is also empirically emphasised.

Section 5.6 considers the situation where the WEC model of Eq. (4.90) depends on modelling
parameters. In such a case, solving the so-called sensitivity equation indicates how the solution for
Eq. (4.90) changes, for infinitesimal changes in the system parameters. Within the HB framework,
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the sensitivity equation takes a particularly simple form, since it consists of a linear system, in
which the matrix to invert is identical to the HB residual Jacobian.

In Section 5.7, a methodology for the numerical simulation of WECs in random waves using
the HB method is outlined, whereby many, relatively short, simulations are favoured over long
simulations. The fundamental settings and trade-offs associated with the HB framework primarily
concern the length of individual HB-simulated signals, T , and the HB cut-off frequency, fc.

Nevertheless, this chapter tells little about the possible practical value of the proposed HB
simulation framework. In particular, it must be ascertained whether or not the HB method achieves
a better trade-off between computational cost and accuracy than standard time-domain numerical
integration procedures. Furthermore, appropriate HB method settings, in terms of T and fc, must
be determined for typical WEC models. Chapter 6 will bring answers to such questions.
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Part III

Numerical case studies
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Chapter 6
Calibration and validation of the harmonic
balance method for non-linear WEC
model simulation

6.1 Introduction

In this chapter, practical examples for WEC HB numerical simulation in irregular waves are stud-
ied in detail, with two main objectives:

• Calibration: Discuss how to sensibly choose the parameters of the HB simulation frame-
work, i.e. the cut-off frequency and simulation time, as discussed in Section 5.7, depending
on the WEC considered;

• Validation: Assess the accuracy and computational performance of the HB technique, us-
ing as a baseline the more usual approach of the RK2 time-domain numerical integration
procedure.

For a meaningful validation, a set of four WEC systems is chosen, presenting a variety of
challenges and non-linear effects, further detailed throughout this chapter: the flap-type WEC
already introduced in Chapter 5; a spherical heaving point absorber (HPA) considering non-linear
Froude-Krylov forces; an array of four cylindrical HPAs; and a model of the ISWEC device [12,
13], a pitching WEC developed at Politecnico di Torino.

It may be difficult to identify, at first glance, in what operational space the HB method should
be validated. In particular, by amplifying the WEC motion, power-maximising control strategies
[7, 9] may significantly broaden its operational range [113], and enhance the impact of non-linear
effects [11]. Therefore, when validating the HB method, it should be ensured that increased levels
of non-linear effects can be handled.

Throughout this chapter, it is assumed that all the WECs considered can be ‘controlled’ by
means of a two-parameter control law in the form fPTO = −kptoxdpto − bptoẋdpto , where dpto de-
notes the degrees of freedom through which power is transferred to the PTO system. The two
PTO parameters can be tuned for a given sea state, to improve power absorption by ensuring that
the device resonates in the incoming waves. By exploring a wide range of (kpto,bpto) settings,
it is ensured that resonance conditions will be met, and hence it can be ascertained whether or
not the proposed HB simulation method is robust to enhanced levels of non-linear effects. The
methodology employed in this chapter, for the HB method calibration and validation, consists of
the following:

• Step 1: For each WEC, a ‘design’ sea state is chosen, depending on the device characteris-
tics. In the design sea state, the HB settings fc and T are calibrated, using ‘reasonable’ PTO
parameters;
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• Step 2: Once fc and T have been chosen, the HB method is run over a wide range of
(kpto,bpto) PTO parameters. The HB method performance can thus be studied both off-
resonance and in resonant conditions, in terms of computation time and accuracy, through
comparison with the results of RK2 numerical integration. Examining the results at reso-
nance, or close to resonance, allows the HB method accuracy to be assessed when non-linear
effects are emphasized.

• Step 3: The relevance of the fc and T values initially chosen is verified in resonant condi-
tions and, if necessary, fc and T can be adjusted.

Chapter organisation

The remainder of this chapter is organised as follows:

• The WEC models corresponding to each case study are presented in Section 6.2;

• Section 6.3 examines how the parameters of the HB simulation method can be calibrated
(Step 1 above);

• A detailed comparison between the HB method and TD integration results is provided in
Section 6.4 (Step 2 above), both at resonance and off-resonance;

• The initial fc,T settings are validated ex-post, in resonant conditions (Step 3 above), in
Section 6.5;

• The relative merits of the HRA and HDA approaches are discussed in Section 6.6;

• The main outcomes of this chapter are summarised and discussed in Section 6.7.

6.2 Case studies

Different WEC models are considered, presenting a reasonable variety of challenges. For each
case, the connection with the mathematical formalism outlined in Chapter 4 is explicitly formu-
lated, and the main characteristics of each model are highlighted in relation to the HB method, in
particular:

• Number and nature of degrees of freedom: how many DoFs are there, and do they cor-
respond to moving parts in contact with the waves, or do they model the dynamics of the
mooring or PTO system?

• Typical dynamics: a small device, with relatively fast dynamics, is likely to be deployed
in a location with relatively small, high-frequency waves (Tp < 10s), while larger devices
are likely to be deployed in more energetic locations, with wave energy concentrated in the
lower part of the spectrum. Furthermore, faster dynamics are likely to require the inclusion
of more frequencies into the HB solution;

• Nature of the non-linear effects considered in the WEC model.

For each WEC considered, a linearised version of the model is also determined. The linearised
model, in addition to providing a possible starting point for the HB algorithm, is used to give an
approximate idea of the typical speed of the WEC dynamics, as shown in Section 6.2.6.
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Figure 6.1: Schematic view of a spherical heaving point-absorber

6.2.1 Flap-type oscillating wave surge converter

The first WEC model considered is the flap-type WEC already described in Section 5.5 as an
introductory example. It has only one DoF, and the non-linear dynamical effect included in the
model consists of a quadratic viscous drag term. The flap natural dynamics are relatively slow,
with a resonant period in the order of 25s. Similarly to the other WEC models considered, the
PTO control torque is modelled parametrically in the form τpto = −kptoθ−bptoθ̇. The linearised
version of the flap model is simply obtained by suppressing the quadratic drag term.

6.2.2 Spherical heaving point-absorber

Non-linear model

The second case study consists of a spherical heaving point-absorber. The buoy, a sphere with a
radius of 2.5m, is assumed to be rigidly connected to the sea bottom through the PTO system, as
illustrated in Fig. 6.1. Thus, the only degree of freedom considered is the heaving motion of the
floating buoy. The buoy density is chosen to be half that of sea water so that, at rest, the position
of the gravity centre is zG = 0. Without loss of generality, the buoy gravity centre is assumed to be
located at (x,y) = (0,0).

The hydrodynamic model used for the sphere considers a non-linear calculation of static and
dynamic Froude-Krylov forces, in the spirit of [108], as discussed in Section 4.3.4.1. Indeed, the
device has a non-constant cross-sectional area; as a consequence, if it undergoes large motions, for
example under the effect of reactive control, geometric non-linear effects may become significant.
Additionally, a viscous damping coefficient is employed, in order to represent possible viscous dis-
sipative effects. The radiation force and diffraction force remain modelled linearly. The radiation
frequency-domain coefficients AR(ω) and BR(ω) are computed using the hydrodynamic software
NEMOH1, as well as their time-domain counterparts KR(τ) (the radiation impulse-response ker-
nel) and m∞ (the radiation added mass), and the diffraction and excitation force transfer functions

1https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-toolbox-192933.kjsp
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Hηd(ω) and Hηe(ω). The non-linear terms (viscous drag and non-linear Froude-Krylov forces) are
detailed in the following.

The heaving sphere device is subject to a quadratic viscous drag force, which depends on the
relative velocity of the device with respect to the free surface, as follows:

fdis(z,η) =−Cdis,q(żG− η̇)|żG− η̇| (6.1)

Based on [155], Cdis,q can be roughly calibrated as:

Cdis,q =
1
2

ρπR2 (6.2)

where ρ denotes the density of sea water.
The non-linear computation of Froude-Krylov forces is carried out by taking into account the

instantaneous position of the device with respect to the free surface. Since the device is relatively
small with respect to typical wave lengths:

• The free surface is approximated by a plane z = η(t), where η(t) is the undisturbed free-
surface elevation at (x,y) = (0,0), as represented in Fig. 6.2.

• Over the sphere wetted surface, the dependence of the pressure field on the horizontal coor-
dinates (x,y) is neglected.

Furthermore, the dynamic pressure field is modified following the Wheeler stretching [109]
change of variable, so that the total static and incident pressure, measured at the free surface, is
exactly zero. The integration of the pressure over the instantaneous wetted surface is carried out
analytically, similarly to the approach presented in [115], and in contrast to the method in [108]
which is based on a numerical discretisation of the wetted surface. With the above assumptions,
the approach of [108] can be efficiently incorporated into the HB framework. The static pressure
force can be expressed as

ps(z) =−ρgz (6.3)

For a monochromatic wave in infinite water depth, the dynamic incident pressure (see Section
4.3) is written as follows:

pdyn(z, t,ω) = ℜ{ρgη̂(ω)e− jωt+k(ω)z} (6.4)

where k(ω) = ω2

g is the wave number, and η̂(ω) denotes the complex wave amplitude. With
the Wheeler stretching approach in infinite water depth, the dynamic pressure is modified, by
replacing z with ζ = z−η, the horizontal coordinate relative to the free surface:

pdyn(ζ, t,ω) = ℜ{ρgη̂(ω) e− jωt+k(ω)ζ}. (6.5)

The total incident dynamic pressure, due to the superposition of waves of different frequencies
and complex amplitudes, is then:

pdyn(ζ, t) = ρg
∞∫

ω=0

ℜ{η̂(ω) e− jωt}ek(ω)ζdω (6.6)

It can be easily verified that, taken at the free surface (ζ = 0), the static pressure (6.3) equals
ps =−ρgη, and the dynamic pressure (6.6) reduces to pdyn = ρgη, so that the sum of the incident
and static pressures is zero at the free surface, as per the Wheeler stretching approach. The total
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Figure 6.2: Schematic view of a spherical heaving point-absorber

vertical force due to the static pressure over the immersed surface Sw of the body can be calculated
as follows:

fs(t) =
[
−

∫
P∈Sw

−ρgzPnP dS
]
.uz

=
[ ∫
P∈Sw

ρgζPnP dS+
∫

P∈Sw

ρgη(t)nP dS
]
.uz

= ρgVim(t)−ρgη(t)Sint(t)

(6.7)

where Vim denotes the immersed volume of the body, and Sint denotes the area of the intersection
between the body and the free surface (considered to be horizontal).

For a sphere in heave, with radius R and density ρ/2, denoting ζG as the position of the sphere
gravity center relatively to the free surface, (6.7) can be analytically derived as follows:

fs(ζG, t) = ρgπ
[2

3
R3−R2

ζG +
1
3

ζ
3
G−η(t)(R2−ζ

2
G)
]

(6.8)

The total vertical incident pressure force over the body can be written as follows:

fdyn =
[
−

∫
P∈Sw

pdyn(zP) nP dS
]
.uz

=
[
−

∫
P∈Sw

ρg
∞∫

ω=0

ℜ{η̂(ω)e jωt}ek(ω)ζPdω nP dS
]
.uz

=
[
−ρg

∞∫
ω=0

ℜ{η̂(ω)e jωt}
( ∫
P∈Sw

ek(ω)ζP nP dS
)
dω
]
.uz

(6.9)

For a sphere, the integral of ek(ω)ζP over the immersed surface Sw can be analytically derived,
yielding:

∫
P∈Sw

ek(ω)ζnP dS = 2π
[
− ζG

k(ω)
− 1

k(ω)2

+(
R

k(ω)
+

1
k(ω)2 )e

−k(ω)Rek(ω)ζG
]
uz

(6.10)
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Define the following integral:

J(ζG, t) = 2πρg
∞∫

0

ℜ{η̂(ω)e− jωt}

× (
R

k(ω)
+

1
k(ω)2 )e

−k(ω)Rek(ω)ζGdω

(6.11)

and, for any integer n ∈ Z:

In(t) = 2πρg
∞∫

0

ℜ{η̂(ω)e− jωt}k(ω)ndω (6.12)

Using expressions (6.11) and (6.12), Eq. (6.9) can be expressed as

fdyn(ζG, t) = I−1(t)ζG + I−2(t)− J(ζG, t) (6.13)

Because of the term J, using the expression (6.13) directly as a non-linear modelling term
would lead to a relatively inefficient integration over ω to evaluate the non-linear term at each time
step (or HB root-finding iteration), which would slow down any simulation technique (either the
HB method, or time-domain integration). Thus, it is more interesting to carry out a development of
J(ζG, t), using a polynomial expansion of the exponential term, eζG . Define the following integral:

Jn(t) =
2πρg

n!

∞∫
0

ℜ{η̂(ω)e− jωt}

(
R

k(ω)
+

1
k(ω)2 )e

−k(ω)Rk(ω)ndω,

(6.14)

Eq. (6.13) can now be formulated as

fdyn(ζG, t) = I−1(t)ζG + I−2(t)−
∞

∑
n=0

Jn(t)ζn
G (6.15)

so that the dynamic pressure force can be expanded to any arbitrary order nmax to reach a target
degree of accuracy. Fig. 6.3 shows the first three terms of the sum in (6.15), taken in the limit case
ζG = R, for a periodic wave signal derived from a typical JONSWAP spectrum (Hm0 = 2, Tp = 10,
γ = 3.3). As can be seen in Fig. 6.3, the magnitude of the functions Jn(t) decreases rapidly with
the order n, so that, in practice, there is no noticeable difference between the results obtained with
nmax = 2 or nmax = 3. In this case study, nmax = 3 is chosen.

The PTO force, similarly to the flap-type WEC, consists of two terms, a linear damping term
−bptożG, and a restoring term −kptozG. The device natural resonance period is of the order of
3.3s, which is below typical sea wave periods. Therefore, kpto will play the role of a negative
stiffness term, with the goal of shifting the resonance of the device towards the incoming wave
period. Note that choosing kpto negative, with magnitude larger than the WEC’s linear hydrostatic
stiffness sh, yields a system with an overall negative stiffness kpto+sh, which cannot be considered
realistic since such a system would be unstable at the equilibrium point zG = 0. In fact, as will be
seen in Section 6.4.2, unstable motion can even be observed for a small but positive total stiffness
kpto + sh.

Finally, the dynamical equation describing the WEC model can be written as:

L{zG}−n{zG, t}− e(t) = 0 (6.16)
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Figure 6.3: Terms Jn(t)ζn
G of expansion (6.15), taken at ζG = R, for a typical JONSWAP spectrum

(Hm0 = 2m, Tp = 10s) (reproduced from [57])

where
L{zG}= (m+m∞)z̈G +bptożG + kptozG +

∞∫
τ=0

KR(τ)żG(t− τ)dτ

n{zG, t}=−Cdis,q(żG− η̇)|żG− η̇|+ I−1(t)(zG−η(t))+ I−2(t)−
3
∑

n=0
Jn(t)(zG−η(t))n

e(t) = fd(t)
(6.17)

where fd(t) represents the diffraction forces, linearly derived from the incoming wave elevation
η. In Eq. (6.16), all the forcing inputs present in the non-linear terms n{zG, t} are derived from
the wave elevation η, which constitutes, as discussed in Section 4.6, the only independent incident
wave signal. Therefore, to simulate a specific wave realisation using either HB or TD methods, the
complex coefficients η̂ of η are first randomly generated for a discrete set of harmonic frequencies
(using HRA or HDA, as discussed in Chapter 3), and the complex coefficients of η̇, I−1, I−2 and
Ji=0···3 are calculated according to their definition: for example, from Eq. (6.14), the complex
amplitude Ĵn(ωi) is calculated as:

Ĵn(ωi) =

[
2πρg

n!
(

R
k(ωi)

+
1

k(ωi)2 )e
−k(ωi)Rk(ωi)

n
]

η̂(ωi) (6.18)

Then, to run a simulation, all forcing signals η, η̇, etc. can be generated through Fourier
transforms. In the HB method, those signals are generated at the collocation points where the non-
linear terms are evaluated (given that the PS version of the HB method is used, as seen in Section
5.3). For RK2 integration, the forcing terms are generated for each time step of the integration
scheme.

Linearised model

The linearised model of the sphere is obtained by suppressing the quadratic drag term, and by
replacing the non-linear calculation of Froude-Krylov forces with its linear counterpart. More
specifically:

• The sum of the diffraction force and the dynamic pressure force of Eq. (6.15) are together
replaced with the excitation force fe(t), linearly derived from η using the wave elevation-
to-excitation force transfer function;
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Figure 6.4: Schematic view of an array of four cylindrical heaving point-absorbers

• The non-linear static pressure force of Eq. (6.8) is replaced with the linear hydrostatic
restoring term fs =−shzG, where sh = ρgπR2.

6.2.3 An array of four cylindrical heaving point-absorbers

Non-linear model

The modelling of wave energy converter arrays can be a challenging task, as studied in detail in
Part II of [3]. In particular, diffracted waves from each device modify the wave excitation force
experienced by every other device, while waves radiated by the motion of each device exert forces
onto every other device.

In this specific case study, an array of four identical, cylindrical heaving point absorbers is
investigated. Each device is assumed to be rigidly connected to the sea bottom through its PTO
system. The devices are arranged in a 20-by-20m square, as pictured schematically in Fig. 6.4.
The overall system considered thus has four degrees of freedom and is described by the vector

z =


z1
z2
z3
z4

 (6.19)

where zi corresponds to the vertical displacement of the gravity centre of the ith device with respect
to its equilibrium position (assumed to be at the still water level).

Because of the constant cross-sectional area of the four hulls in the heaving mode of motion, it
can be reasonably expected that geometric non-linearities are negligible. Therefore, the excitation
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and hydrostatic restoring forces are calculated within the framework of linear hydrodynamic wave
theory. The incoming waves are assumed to be unidirectional, propagating in the direction of
the axis formed by bodies 1 and 3 (or equivalently bodies 2 and 4), as shown in Fig. 6.4. The
excitation forces are:

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)

 (6.20)

where ei is the excitation force acting onto the ith device, and includes the diffraction effects
induced by the presence of surrounding devices. The frequency-domain coefficients of e are ob-
tained as ê(ω) =Hηe(ω)η̂(ω), where Hηe(ω) is the 4-by-1 free surface-to-excitation force transfer
function, and η̂(ω) denotes the frequency components of the free surface, considered at the origin
of the vertical plane. The hydrostatic restoring term is linearly expressed as:

fs =−Shz (6.21)

where Sh = shI4 and sh = ρπR2.
The devices interact with each other dynamically through the radiation forces, which are also

calculated linearly. The radiation forces involve 16 interaction terms, corresponding to the effect
of the motion of the ith body onto the jth for all pairs (i, j) ∈ {1 · · ·4}×{1 · · ·4}, and which are
expressed as follows:

fR =−M∞z̈−
∞∫

τ=0

KR(τ)ż(t− τ)dτ (6.22)

where M∞ is the 4-by-4 radiation added mass matrix and KR(τ) is the 4-by-4 radiation impulse
response kernel.

Similarly to the other case studies, the PTO force is expressed as

fpto =−Bptoż−Kptoz (6.23)

where Bpto = bptoI4 and Kpto = kptoI4, which implies that the coefficients bpto and kpto are chosen
identically for the four devices.

A Morrison quadratic drag term is added to the model, to account for possible viscous and
vortex shedding effects. For each device, the viscous force takes the following form:

fdis,i =−Cdis,q(żi− η̇i)|żi− η̇i| (6.24)

where ηi denotes the incident free surface elevation at the centre of the ith device. Based on [155],
Cdis,q can be roughly calibrated as:

Cdis,q =
1
2

ρπR2 (6.25)

where R = 5m is the radius of each device.
The dynamical equation finally reads:

L{z}−n{z, t}− e(t) = 0R4 (6.26)

with L{z}= (M+M∞)z̈+Bptoż+(Kpto +Sh)z+
∞∫

τ=0
KR(τ)ż(t− τ)dτ

n{z, t}=−Cdis,q(ż− η̇)|ż− η̇|
(6.27)

where η=
(
η1...η4

)T is the vector of the wave elevation at the centre of each device, and M=mbI4
where mb is the mass of each body. The hydrodynamic parameters for the excitation force vector,
Hηe(ω), time-domain radiation force vectors, KR and M∞, as well as their frequency-domain
counterparts BR(ω) and AR(ω), have been calculated using the WAMIT2 hydrodynamic software.

2http://www.wamit.com/
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State-space approximation of the radiation memory terms

In time-domain simulations, the computation of the radiation convolution integral can represent
the main computational burden [3, 96]. This is particularly the case with multiple hydrodynamic
degrees of freedom: in this 4-device array, the convolution product in fact represents 16 integrals.
As discussed in Section 4.3.3.6, the radiation convolution terms can be approximated using a
state-space representation. In order to ensure a fairer comparison between HB and TD methods
in general, the possibility is investigated of approximating the convolution terms by means of a
state-space representation. To that end, each of the 16 interaction terms (of body i onto body j) is
approximated in the following state-space form, of dimension DR:{

ẋss
Ri j

= Ass
Ri j

xRi j +Bss
Ri j

żi

fRi j = Css
Ri j

xss
Ri j

(6.28)

where Ass
Ri j
∈ RDR×DR , Bss

Ri j
∈ RDR×1, Css

Ri j
∈ R1×DR , and xss

Ri j
is a non-physical state vector repre-

senting the ‘internal dynamics’ of the radiation memory terms.
Note 

Ass
R :=


Ass

R1
0 0

0 . . . 0
0 0 Ass

R4

 ∈ R(16DR)×(16DR)

Bss
R :=


Bss

R1
...

Bss
R4

 ∈ R(16DR)×4

Css
R :=


Css

R1
0 0

0 . . . 0
0 0 Css

R4

 ∈ R4×(16DR)

(6.29)

where 

Ass
R j

:=


Ass

R1 j
0 0

0 . . . 0
0 0 Ass

R4 j

 ∈ R(4DR)×(4DR)

Bss
R j

:=


Bss

R1 j
0 0

0 . . . 0
0 0 Bss

R4 j

 ∈ R(4DR)×4

Css
R j

:=
(

Css
R1 j
· · · Css

R4 j

)
∈ R1×(4DR)

(6.30)

and 0 denotes matrices with zero elements of appropriate dimensions. The dynamical equation of
Eq. (6.26), augmented with the radiation state variables, is now written as follows:{

(M+M∞)z̈+Bptoż+(Kpto +Sh)z+Css
R xss

R −n{z, t}= e(t)
ẋss

R = Ass
R xss

R +Bss
R ż

(6.31)

The state-space approximation (ARi j ,BRi j ,CRi j) is determined, for each interaction i j, based on
the recently-proposed moment-matching technique [156], using the FOAMM software toolbox3

developed at COER. Note that, given the symmetry of the problem, there are in fact only 3 types of
interactions: from a given body onto itself, from a given body onto its nearest neighbours, and from
a given body onto that located at the opposite corner of the square formed by the four bodies (see
Fig. 6.4). Therefore, the FOAMM application needs only to be run three times, which is sufficient

3http://www.eeng.nuim.ie/coer/downloads/
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to provide each entry of the matrices Ass
R , Bss

R and Css
R . With the moment-based approach, the

approximation is carried out by choosing key interpolating frequencies, at which it is ensured that
the approximating system exactly matches the behaviour of the target system. The size DR of the
resulting state-space system is twice the number of interpolating frequencies. In this work, two
approximations are employed: one obtained by using only one interpolating frequency (DR = 2),
and one by using two interpolating frequencies (DR = 4).

Linearised model

The linearised model corresponding to Eq. (6.26) is obtained by simply suppressing n, i.e. the
quadratic terms (the first-order derivative of the quadratic terms, at the origin, is zero)4.

6.2.4 The ISWEC device

Non-linear model

Developed at Politecnico di Torino, the ISWEC (Inertial Sea Wave Energy Converter) is a device
which produces energy from ocean waves, by exploiting the gyroscopic effect, generated by the
combination of the hull pitching motion with the rotation of a flywheel, in a gyroscope system
enclosed within the hull. The ISWEC working principle is described in more detail in [126]. Fig.
6.5 illustrates the main system components of the ISWEC device: the hull, the gyroscope (rotating
in its frame), and the PTO system which exploits the back-and-forth rotation ε of the gyroscope
frame about the PTO axis.

The hull is entirely sealed, thus isolating all the internal mechanical components from the sea.
Sea waves induce a pitch motion ry onto the hull. The flywheel rotates about its axis with a reg-
ulated angular speed ϕ̇pto which, combined with the hull pitching motion, generates a gyroscopic
torque acting onto the gyroscope frame, about the PTO axis OX . As a result, the entire gyroscope
frame rotates back and forth about the PTO axis (precession motion), with an angle ε.

Although the ISWEC primarily captures energy from the pitch hydrodynamic degree of free-
dom, in practice the hull also moves in the other hydrodynamic DoFs, in particular heave and
surge. However, for the sake of simplicity, the ISWEC heave and surge motion is omitted in the
remainder of this thesis, which effectively neglects the mooring dynamics. Therefore, the sys-
tem has two DoFs only: one for the hull (pitch, denoted ry), and one for the gyroscopic system
(precession about the PTO axis, denoted ε).

The hydrodynamic interaction of the pitching hull with the incoming waves is described
through Cummins’ equation, with the addition of a quadratic viscous damping term:

(I + I∞)r̈y +
∫

∞

τ=0
KR(τ)ṙy(t− τ)dτ+ shry +Cdis,q|ṙy|ṙy− Jgϕ̇ptoε̇cosε = τw (6.32)

where I is the system inertia about the pitching axis, the radiation forces in the pitching mode
are represented through the added inertia I∞ and impulse response kernel KR, sh is the hydrostatic
stiffness in pitch, Cdis,q is a quadratic viscous drag coefficient, and τy represents the incoming wave
torque, calculated from the free surface using a transfer function Hηe(ω). All hydrodynamic co-
efficients, in the frequency domain (Hηe(ω), AR(ω), BR(ω)) and in the time domain (I∞, KR) have
been computed using the WAMIT hydrodynamic software5. Cdis,q has been primarily calibrated
using 1:20 scale prototype wave tank tests, and subsequently scaled via Froude relationships - see

4Note that, in the spirit of statistical linearisation, as presented in Chapter 4 of [3], an alternative approach consists of
determining a linear approximation to the quadratic viscous drag. Such an approximation, however, requires an iterative
procedure, which must be carried out for each specific wave input considered, and for every change in the other system
parameters. In other words, a linear approximation for the quadratic terms would be simulation-dependent. Such a
possibility is not investigated here.

5http://www.wamit.com/
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Figure 6.5: Schematic view of an ISWEC-like pitching device. The length, width and height of
the hull are 15m, 8m and 5m, respectively.
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Chapter 2 of [157]. Finally, the term Jgϕ̇ptoε̇cosε, where Jg is the flywheel moment of inertia
about its rotation axis, represents a non-linear coupling under the effect of the gyroscope system.

The ISWEC PTO dynamics are determined by expressing the motion of the gyroscope system
about the PTO axis:

Igε̈+ Jgϕ̇ptoṙy cosε = τpto (6.33)

where Ig is the inertia of the whole gyroscope system (flywheel and frame) about the precession
axis, and τpto is the torque exerted by the PTO system onto the gyroscope system. Similarly to
the other WECs studied in this chapter, a two-parameter PTO control force is introduced, in the
form τpto = −bptoε̇− kptoε. Note that energy is transmitted between the pitching motion and the
gyroscope system through the non-linear coupling term Jgϕ̇ptoṙy cosε.

Finally, the dynamical equation for the ISWEC model takes the following form:

L{x}−n{x}− e(t) = 0R2 (6.34)

where 

x =

(
ry

ε

)
L{x}= (M+M∞)ẍ+Cẋ+Sx+

∞∫
τ=0

KR(τ)ẋ(t− τ)dτ

n(x) =

(
−Cdis,q|ṙy|ṙy + Jgϕ̇ptoε̇cosε

−Jgϕ̇ptoṙy cosε

)

e(t) =

(
τw(t)

0

)
(6.35)

and 

M =

(
I + I∞ 0

0 Ig

)

C =

(
0 0
0 cpto

)

S =

(
sh 0
0 kpto

)

KR(τ) =

(
KR(τ) 0

0 0

)
(6.36)

Linearised model

The linearised model is obtained by suppressing the quadratic viscous term, and by linearising the
non-linear coupling term about the origin, thus yielding:

Mẍ+C′ẋ+Sx+
∞∫

τ=0

KR(τ)ẋ(t− τ)dτ = e (6.37)

where

C′ =
(

0 −Jgϕ̇pto

Jgϕ̇pto cpto

)
(6.38)

and all other matrices are defined as in the non-linear model of Eq. (6.34).
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6.2.5 Power calculations

Before proceeding further, the method employed to calculate the WEC power must be specified.
In the four examples described in Sections 6.2.1 to 6.2.4, the internal dynamics of the PTO system
are not fully described; therefore, only the power absorbed by the PTO system is used to measure
the WEC performance (as opposed to the power delivered to the grid). Assume that power is
transmitted to the PTO system through one of the modes of motion of the WEC, noted dpto. The
average absorbed power can be calculated over one period of the simulated signal as follows:

P =− 1
T

T∫
t=0

fpto(t)ẋdpto(t)dt (6.39)

xdpto is obtained from the vector x(t), comprising the totality of the system DoFs, through
an output matrix Cpto of size D× 1, consisting of zeros except for a unity coefficient at index
dpto. The vector of the Fourier expansion of xpto is obtained from x̂ as x̂pto = Mptox̂, where
Mpto ∈ R(2N+1)×(2N+1)D is defined as follows:

Mpto =


Cpto 0 · · · 0

0 Cpto 0 0

0 · · · . . . 0
0 · · · 0 Cpto

 (6.40)

Accordingly, the PTO force is represented in the frequency domain as

f̂pto =−bptoMptoΩx̂− kptoMptox̂ (6.41)

Finally, from Eqs. (6.39) and (6.41), it is easy to show that P can be obtained from the HB
solution x̂ as follows:

P = bptox̂T Qptox̂ (6.42)

where
Qpto = Ω

T MT
ptoMptoΩ (6.43)

Note that kpto does not appear in the power calculation: this is because the mechanical work
of the static term, −kptoxpto, cancels out over each period of a periodic signal.

6.2.6 Design sea states

Table 6.1 summarises the main characteristics of the WEC models under study. For each case, a
design sea state is identified, which will be subsequently used throughout the validation study in
the remainder of this chapter. The natural period of each system is identified by considering the
corresponding linearised model, based on which the wave elevation-to-position transfer function
is calculated, and the resonant period is identified.

The two systems having the larger natural periods (the flap-type WEC and the cylindrical
HPAs) are studied in a JONSWAP [52] sea state with parameters (Hm0 = 2m,Tp = 12s,γ = 3.3).
In such a sea state, the cylindrical HPAs, which have a resonant period smaller than that of the
typical incident waves, will be reactively controlled with a negative stiffness coefficient kpto, while
the flap-type device will be reactively controlled with a positive stiffness coefficient.

The two devices having the smaller natural periods (the spherical HPA and the ISWEC device)
are studied in a less energetic JONSWAP sea state with (Hm0 = 1m,Tp = 7s,γ = 2). Such a sea
state is typical at the ISWEC design location, off the coast of Pantelleria island [13], or at a small-
scale wave energy test site such as the one in Galway Bay studied in [57], which would be suitable
for a small device like the spherical HPA. The different value for γ, employed for the smaller
devices, is chosen because wave spectra in less energetic locations, such as Pantelleria or Galway
Bay, are usually less sharply concentrated around their peak frequency, as reported in [57]; it is
therefore meaningful to include a wave spectrum with a broader frequency content in the analysis.
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Table 6.1: Summary table of the main characteristics of the studied WEC models

Flap Spherical HPA Cyl. HPA array ISWEC
Natural period 25s 3.3s 5.9s 4.6s (hull)

Design sea state


Tp = 12s
Hm0 = 2m
γ = 3.3


Tp = 7s
Hm0 = 1m
γ = 2


Tp = 12s
Hm0 = 2m
γ = 3.3


Tp = 7s
Hm0 = 1m
γ = 2

Nb. of DoFs 1 1 4 2
Nb. of hyd. DoFs 1 1 4 1
Non-linear effects Quad. visc. drag Froude-Krylov forces; Quad. visc. drag PTO dynamics;

Quad. visc. drag Quad. visc. drag

6.3 Calibration of the HB method

As outlined in Section 5.7 and in the introduction to this chapter, tuning the HB method essen-
tially consists of choosing pertinent values for T and fc, ensuring a satisfactory trade-off between
computation time and accuracy. To that end, each WEC model is simulated using the HB method
in its design sea state, under a reasonably large range of ( fc,T ) parameters, and with 20 indepen-
dent HDA sea state realisations. For all cases, the HB algorithm is initialised using the linearised
WEC model, and a simple Newton algorithm is then chosen to reach the non-linear HB solution.
For each ( fc,T ) pair, the central processing unit (CPU) time is averaged over the 20 independent
realisations. For all devices, bpto is first manually tuned by quickly trying a range of values. kpto

is set to zero, except for the ISWEC device, for which kpto = 0 results in ill-defined steady-state
dynamics6, thus making it preferable to set kpto to an arbitrary small value.

At this preliminary stage, as with any simulation method (HB or other), the values chosen for
kpto and bpto need not be finely tuned, and should only be of a sensible order of magnitude. When
the WEC models are subsequently run over a wider range of conditions, it will become clearer
what values for kpto and bpto are of specific interest.

6.3.1 Problem size and HB computation time

First, the link between computation time and problem size is examined empirically. In Fig. 6.6,
for each pair of ( fc,T ) settings, the problem size NHB is calculated as NHB = T × fc×D, where D
is the number of DoFs, and the corresponding calculation time tcpu is shown as a dot in the scatter
plot. The Newton method is used to solve the HB equation. All computation times are obtained
from a Matlab implementation, run on a 3.50 GHz, 8-core Intel R© processor, as will be the case for
all other numerical results, presented in the remainder of this thesis.

As discussed in Section 5.7, because the HB algorithm involves inverting matrices of size
NHB, the computation time is expected to be, at best, proportional to Nα

HB, where 2 < α < 3. It
is found empirically that, with the available Matlab software, for large problem sizes (beyond
roughly NHB ≈ 2000), the CPU time indeed seems to be dominated by the matrix inversion at each
Newton iteration, with a cost, in seconds, proportional to Nβ

HB, where β is found to lie between 2.3
and 2.5. In Fig. 6.6, the dotted lines represent a fitted curve in N2.4

HB. The trend identified remains
relatively consistent across the four cases studied.

Note that, for each WEC considered, the number of iterations to reach the solution was found
to present very little variability across the range of problem sizes explored: between 3 and 4
iterations were necessary for three of the devices: the flap-type device, the spherical HPA and the
ISWEC device, while generally only 2 iterations were necessary for the array case study. As a

6In the model of Eq. (6.34), the only stiffness contribution for the second degree of freedom, i.e. ε, is kpto. This
means that the linearised ISWEC model is ill-defined, in the sense that the matrix L′ in Eq. (5.71) is singular. In
physical terms, there are an infinity of steady-state solution, each of which having an arbitrary average precession angle
ε0.
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(c) Array of 4 cylindrical HPAs
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Figure 6.6: HB computation time vs problem size, for the four WEC models under study. The
dotted lines represent a fitted curve in the form Nβ

HB, where NHB is the problem size and β = 2.4.
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consequence, there is no doubt that the trends, observed in Fig. 6.6, in terms of CPU time, are
accounted for by the problem size alone, not by the number of Newton iterations. The results of
Fig. 6.6 thus empirically illustrate the fundamental fact that the HB solution cost is more than
proportional to the problem size and, in fact, increases more than quadratically with the problem
size. The next subsection explores how a trade-off can be found between T and fc.

6.3.2 Tuning the cut-off frequency and simulation period

As discussed in Section 5.7, a pertinent indicator for computational performance consists of the
calculation time per second of signal simulated. Therefore, the raw average computation time
tcpu is normalised by the simulated time tsim = T . As far as accuracy is concerned, and based
on the considerations developed in Section 5.5, it is pertinent to use the norm of the last Fourier
coefficient of the HB solution as a qualitative measure of the HB solution error. However, the
system variables considered for the various case studies do not have the same magnitude. Thus,
for a comparable error measure, for each case the norm of the last harmonic (of order Nω) is
normalised by the norm of the solution (involving all the terms of the expansion up to Nω):

error ≈

√√√√√‖x̂2Nω
‖2 +‖x̂2Nω+1‖2

2Nω+1
∑

n=0
‖x̂n‖2

(6.44)

In addition to the normalised solution accuracy, which quantifies how accurate the HB solution
is for a given wave input signal, it is important to ensure that the chosen period T is sufficient for
a satisfactory statistical characterisation of the WEC outputs, as discussed in Section 5.7. In par-
ticular, the period T should be long enough to avoid any significant distortion in the WEC output
power calculations. Therefore, for each ( fc,T ) pair, the average power (over the 20 realisations)
is calculated using Eq. (6.42), and normalised by the ‘reference’ power P∗, calculated with the
largest fc and largest T values.

Flap-type device

Figure 6.7 shows the results obtained, over the chosen range of ( fc,T ) settings, in terms of the three
criteria identified (numerical accuracy as estimated through the magnitude of the last harmonic of
the solution; statistical accuracy of the average power; computation time).

As shown in the bottom-left graph (in logarithmic scale) of Fig. 6.7, the numerical accuracy
of the solution improves more than linearly with the cut-off frequency. It is possible to define
an ‘acceptable zone’ where the numerical accuracy remains below a given threshold. Choosing,
for example, 10−4, it is ensured that the changes in the solution, induced by the addition of more
harmonics, are insignificant (less than 10−4 times the magnitude of the solution).

The top-right graph of Fig. 6.7 shows a similar contour plot, this time not on a logarithmic
scale, where the accuracy in terms of power calculations is measured: a value of 100% means that
the calculated power is virtually the same as the most accurate power calculation available, while
a value of, for example, 110%, represents a 10% power overestimation. It can be seen that power
accuracy has little sensitivity to the frequency range (because the vast majority of the wave energy
content is concentrated within relatively low frequencies), but largely depends on the simulation
period T , when T is particularly small. From the top-right graph of Fig. 6.7, another acceptable
zone can be identified, within which the error committed in terms of power calculations is below,
for example, 1%.

Finally, the bottom-right contour plot in Fig. 6.7 shows, in logarithmic scale, the computation
time per second of signal simulated. The intersection of the two previously-defined ‘acceptable
zones’ allows for determining an ( fc,T ) pair (represented by a thick purple dot), which ensures
that the chosen criteria, in terms of numerical and statistical accuracies, are satisfied at the smallest
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Figure 6.7: Flap-type WEC

possible computation cost. From the contour lines, it can be clearly seen in which direction, in
the ( fc,T ) space, the computation time increases the most. For example, increasing T (moving
the purple dot to the right) is less costly, in comparison to increasing fc (moving the purple dot
upwards).

For the flap-type device, a cut-off frequency fc = 0.5Hz and a simulation period T = 100s
are found to be an appropriate compromise. In any case, throughout the rest of this chapter,
the HB method will be further validated, and it will be possible to adjust, ex-post, the settings
approximately carried out here.

Spherical HPA

The same procedure is repeated for the spherical HPA, in its design sea state, as shown in Fig. 6.8.
On the one hand, from the bottom-left contour plot, the cut-off frequency necessary to achieve the
chosen threshold of 10−4 is significantly larger than for the flap-type device. On the other hand,
from the top-right contour plot, too small a cut-off frequency does not only affect the accuracy
of the solution, but also introduces significant errors in the estimated power - in fact, the peak
wave frequency is fp = 1/Tp ≈ 0.14Hz, so that a cut-off frequency of 0.2Hz is barely larger than
fp, and thus leaves a significant fraction of the incoming spectrum energy out of the frequency
discretisation. However, the power accuracy improves rapidly with the cut-off frequency. As far
as the simulation time T is concerned, the requirements are even less stringent for the spherical
HPA than for the flap-type device, to fall within 1% of the reference power value. However, as
seen in the bottom-right plot, increasing T from 50 to, say, 100s, does not significantly increase
the computation time, so that T = 100s is chosen (like for the flap-type WEC), while fc is set to a
value of 0.8Hz.
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Figure 6.8: Spherical heaving point absorber

Array of 4 cylindrical HPAs

Fig. 6.9 shows the same contour plots, for the array of cylindrical HPAs. The requirements, in
terms of fc and T , to meet the chosen requirements, are similar to those for the flap-type device,
with fc = 0.5Hz, T = 100s being an acceptable choice.

ISWEC

Finally, considering Fig. 6.10, the requirements, in terms of ( fc,T ) for the ISWEC device are
similar to those which are obtained for the spherical HPA. Therefore, the same settings fc = 0.8Hz,
T = 100s, are adopted.

6.4 Validation and computational performance of the HB simulation
method

As outlined in the introduction to this chapter, after fc and T have been chosen, for each case
study, HB simulations are run over a wide range of (kpto,bpto) PTO parameters, in order to identify
resonance conditions around which the HB performance can be further assessed. Three strategies
to initialise the HB algorithm are investigated:

• ‘Linear initialisation’: In this strategy, the starting guess of the HB algorithm is the solu-
tion for the linearised WEC model dynamics - which is obtained through a simple matrix
inversion, as in Eq. (5.71);
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Figure 6.9: Array of four cylindrical heaving point absorbers

Figure 6.10: ISWEC device
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• ‘Neighbour-based initialisation’: This strategy takes advantage of the likely similarities be-
tween HB solutions for neighbouring choices of PTO parameters. More specifically, the HB
equation is solved sequentially over a range of PTO parameter values (kptoi ,bpto j). Denote
x̂(i, j) as the HB solution, obtained for (kptoi ,bpto j). For every i, x̂(i,1) is solved using the
linearised solution as the initial guess, but for every j > 1, x̂(i, j) is found using x̂(i, j−1)
as a starting guess.

• ‘Sensitivity-based initialisation’: Like the neighbour-based initialisation, this strategy ex-
ploits the similarity between the solution obtained for adjacent pairs of PTO parameters, but
also uses the sensitivity equation in order to provide a more accurate initial guess. Note

αpto :=
(

kpto

bpto

)
(6.45)

At the end of the HB algorithm, the derivative of the solution with respect to αpto, ∂x̂
∂αpto

, can
be evaluated by solving the sensitivity equation, as detailed in Section 5.6. The initial guess
for x̂(i, j) is then calculated as

x̂(0)(i, j) = x̂(i, j−1)+
∂x̂

∂αpto
[αptoi, j −αptoi, j−1 ] (6.46)

RK2 time-domain simulations are also carried out, using different time steps, in order to val-
idate the proposed HB approach by comparison with a well-known technique, and to understand
the relative properties of the RK2 and HB methods, in terms of accuracy and computation time.
Of particular interest is the trend followed by the error magnitude between HB and RK2 results,
when the RK2 time step tends to zero. A comparison is also provided in terms of computation
time per second of the simulated signal. Because of their relatively high computation cost when
the time step becomes small, RK2 simulations are only run over a restricted range of (kpto,bpto)
conditions, which is further detailed in the following subsections.

6.4.1 Flap

The flap-type WEC model is examined first. Fig. 6.11 shows the average power P over a wide
range of kpto,bpto parameters. An optimal pair k∗pto,b

∗
pto can be clearly identified, which maximises

power absorption within the parametric control space.
Having set bpto to its optimal value b∗pto, the performance of the HB method is examined

more closely in comparison to RK2 integration, by varying kpto only, as illustrated by the thick
purple dots in Fig. 6.11. This allows both non-resonant (when kpto is far from k∗pto) and resonant
conditions (when kpto is close to k∗pto) to be encountered. RK2 simulations are run for the same
wave input, by adding an appropriately long transient time, as illustrated in Fig. 6.12. Different
RK2 time steps are investigated, between ∆t = 0.05s and ∆t = 0.002s.

It is useful to start with a visual comparison of the solutions obtained using HB and TD simu-
lations. Fig. 6.12 shows an example of solutions obtained with the HB method (purple lines) and
RK2 (green lines; the time step is set to 0.005s) for the same wave input. The solid lines represent
the case where the PTO damping is set to b∗pto while there is no reactive control term; the dotted
lines represent the results obtained by using the two optimal PTO parameters, b∗pto and k∗pto.

The signal period is T = 100s, as per the HB settings determined in Section 6.3. Note however,
in Fig. 6.12, the 50s additional simulation time allowed in addition to the signal period T . This
is to allow the transient dynamics to fade out in the RK2 simulation. The excitation signal e(t)
(upper graph), over the time interval [−50;0], is simply the repetition of e(t) over the interval
[50;100]. Unlike RK2, the HB method only solves for the steady-state dynamics (and therefore
the HB solution over [−50;0] is a repetition of the solution over [50;100]). In contrast, the RK2
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Figure 6.11: Average absorbed power in a wide range of (kpto,bpto) parameters, for the flap-type
WEC, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s and
γ = 3.3.

solution has transient dynamics, only visible in the first few tens of seconds. The accuracy of the
two techniques (RK2 and HB methods) are only compared over the time interval [0;T ], where
RK2 simulation results are assumed to be in steady-state, as highlighted in Fig. 6.12.

As can be appreciated in Fig. 6.12, except for the transient time, HB and RK2 results seem
virtually identical, which is encouraging as a first comparison of the HB method with a well-
established technique. Also note how the reactive control term strongly amplifies the device dy-
namics and absorbed power. In fact, it can be verified that, with k∗pto, the velocity and excitation
are in phase with each other, which is the well-known goal which power-maximising WEC control
strategies aim to achieve [9].

The difference between RK2 and HB results must be analysed more thoroughly than through
simple visual examination of the time-domain trajectories. Fig. 6.13 shows the average absorbed
power obtained with the HB method, and with the RK2 method using different time steps, when
kpto varies, while bpto is fixed to its optimal value b∗pto. RK2 results seem to converge towards
HB results when ∆t decreases. Too coarse a time step results in significant error in terms of
estimated absorbed power and, remarkably, that error is more significant close to the optimal
settings (k∗pto,b

∗
pto), where the device is in resonance. Recall that, with the RK2 method, it is

ensured that the numerical solution tends to the exact mathematical solution, when the time step
approaches zero. Therefore, when it is observed that, as the RK2 time step approaches zero, RK2
results tend to the HB solution, the latter can then be safely considered to be so close to the exact
solution, that it can be used as a baseline (as an extension of the methodology, presented in Section
5.5.6, where the WEC model was linear). That is why the difference between HB and RK2 results
is termed ‘error’ while, strictly speaking, both method yield approximation errors.

The accuracy of RK2 results, with respect to HB results, are further examined in Fig. 6.14 for
different time steps, along with the computational cost associated with each time step. The relative
error, in terms of absorbed power, is calculated as follows:

eP = 100× PRK2−PHB

PHB
(6.47)
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Figure 6.12: Example of time-domain trajectories obtained with the HB and RK2 solution tech-
niques, for the flap-type WEC, in a 100-s wave input generated from a JONSWAP spectrum with
Hm0 = 2m, Tp = 12s and γ = 3.3.
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Figure 6.13: Absorbed power from simulation results, using HB and RK2 with several different
time steps, over a range of kpto values (bpto is set to b∗pto), for the flap-type WEC, in a 100-s wave
input generated from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s and γ = 3.3.

where PRK2 is the absorbed power calculated from RK2 simulations using Eq. (6.39), and PHB

is the absorbed power calculated from HB simulations using Eq. (6.42). eP is averaged over the
range of kpto values shown in Fig. 6.13.

A normalised root-mean-square error value measures the relative difference between solutions
obtained using the RK2 and HB methods, as follows:

eRMS = 100×

√
1
T

T∫
t=0

(xRK2− xHB)2 dt√
1
T

T∫
t=0

x2
HB dt

(6.48)

where xRK2 (resp. xHB) is the system variable for which the relative error is measured (θ, in the
case of the flap-type WEC). The numerator of Eq. (6.48) is obtained through numerical integration
with the time step of the RK2 method, as in Eq. (5.90), while the denominator can be obtained
directly as the Euclidean norm of the HB solution:√√√√√ 1

T

T∫
t=0

x2
HB dt =

√√√√2Nω+1

∑
k=1

x̂2
k (6.49)

eRMS is averaged over the range of kpto values shown in Fig. 6.13.
As can be appreciated in Fig. 6.14, both relative errors (in terms of absorbed power and

solution trajectory) tend to zero linearly as the RK2 time step decreases. This suggests that the
HB solution is so accurate, that it can be seen as the limit of the RK2 solution, when the RK2 time
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Figure 6.14: Computation time (top graph) and accuracy (middle and bottom graph) of RK2
simulations with different time steps, for the flap-type WEC, in a 100-s wave input generated
from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s and γ = 3.3. Results are averaged over the
range of kpto values shown in Fig. 6.13.

step tends to zero. The top graph of Fig. 6.14 indicates that the RK2 computation cost increases
rapidly when ∆t is reduced. A closer examination of the relative magnitude of the computation
time for the different time steps indicates that the computational costs increases at a rate between
1/∆t and 1/∆t2, due to the radiation convolution term, as discussed in Section 4.3.3.6.

Finally, the computational performances of RK2 and HB methods are more closely investi-
gated in Fig. 6.15. Unlike RK2 simulations, which are only run with varying kpto values while
bpto is set to b∗pto, HB simulations are run while varying both kpto and bpto parameters. Therefore,
for each kpto,i value, the HB computation time is averaged over the range of bpto, j conditions. The
relative merits of the three proposed HB initialisation methods are also assessed.

From Fig. 6.15, it can be seen that, unsurprisingly, the RK2 computation time remains consis-
tent across the full range of PTO settings. In contrast, for the HB method, different PTO settings
can result in problems which are more or less ‘difficult’ to solve, in the sense that they necessitate
a larger or smaller number of iterates to reach the solution. In particular, close to the optimal
PTO stiffness term k∗pto, which makes the device resonate and hence magnifies the effect of non-
linearities, the number of iterations (and hence the HB method computation time) tends to increase
slightly, regardless of the HB initialisation strategy.

From the two graphs in Fig. 6.15, different HB initialisation strategies results in slightly dif-
ferent computational performance. Clearly, the neighbour-based initialisation does not reduce
the average number of HB iterations, with respect to the linear initialisation strategy, which in-
dicates that, in this specific case study, the solution of the linearised WEC model, with bpto j , is
a slightly better starting point than the (non-linear) HB solution with the adjacent setting bpto j−1 .
However, unlike linear initialisation, the neighbour-based initialisation does not necessitate any
additional numerical operation (while the linear initialisation necessitates the solution of a linear
system). Therefore, the overall computational performance of the HB method with the linear and
neighbour-based initialisation strategies remain similar, as seen in the top graph of Fig. 6.15. In
contrast, the sensitivity-based initialisation brings a noticeable reduction of the average number of
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Figure 6.15: Computation time per second of the simulated signal (top graph) using the HB method
with three different initialisation methods, and RK2 with different time steps (from the largest to
the smallest marker size: ∆t =0.05s, 0.02s, 0.01s, 0.005s, 0.002s), for the flap-type WEC, in a 100-
s wave input generated from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s and γ = 3.3. The
bottom graph shows the number of HB iterations for the three different initialisation strategies.
All computation times are obtained from a Matlab implementation, run on a 3.50 GHz, 8-core Intel R©

processor.
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HB iterations, thus resulting in a slightly better computational performance.
However, the changes in computational performance induced by the different HB initialisation

strategies are marginal, compared to the gap between RK2 and HB computational cost. Overall,
the computation gain obtained by using the HB technique is large: with respect to RK2 integration,
the HB method is between approximately 20 times faster (when the RK2 time step is set to 0.05s)
and 3000 times faster (when the RK2 time step is set to 0.002s). For a ‘reasonable’ RK2 time step
of 0.01s, which ensures that power absorption is assessed with a 1% error, the RK2 method is 250
times slower than the HB method.

Finally note that, for the RK2 results, the measured computation time per second of signal
simulated does not take into account the requirement of simulating additional time for allowing
transient dynamics to fade out. Therefore, in practice, the RK2 computation time should be slightly
larger than the values shown in Figs. 6.14 and 6.15.

6.4.2 Spherical HPA

The same comparison procedure, presented for the flap-type WEC in Section 6.4.1, is implemented
for the spherical HPA, using T = 100s and fc = 0.8Hz, as per Section 6.3. Unlike the HB results
for the flap-type WEC, which were obtained using a simple Newton method, with the spherical
HPA, the HB algorithm convergence can be problematic for a couple of PTO combinations close
to resonance; therefore a more robust zero-finding procedure is chosen, namely the trust-region
dogleg algorithm, readily implemented in the Matlab fsolve function, as discussed in Section 5.4.3.

Fig. 6.16 shows the power absorbed across the chosen range of PTO parameters. In contrast to
the flap-type WEC, which necessitates positive kpto values to achieve optimal power absorption,
the spherical HPA requires negative kpto values to be tuned to the incoming waves. An optimal
combination k∗pto,b

∗
pto can be clearly identified, resulting in a threefold increase in power absorp-

tion, with respect to settings where no reactive control term is allowed. Note, however, that 9 data
points are missing - for the lowest bpto values and the largest kpto magnitude. This is because the
HB algorithm failed to converge in those configurations within the chosen maximum number of
iterations (set to 200). This point will be further examined at the end of this subsection.

Comparison of HB results with RK2 results is carried out over the restricted range of PTO
conditions, represented by the thick purple dots in Fig. 6.16. As shown in Fig. 6.17, the difference
between RK2 and HB results, in terms of power absorption, although smaller than for the flap-
type WEC, shows a qualitatively similar behaviour, with a reduced difference as the RK2 time
step tends to zero.

Similarly to the flap-type WEC, the accuracy and speed of the RK2 simulations are further
assessed in Fig. 6.18, where it is seen that the relative error between RK2 and HB results also
decreases, when the RK2 time step tends to zero. However, compared to the flap-type WEC, the
magnitude of the relative error is significantly smaller, even with the coarser RK2 time step. In
addition, a small residual RMS difference (in the order of 0.1%) seems to persist when the RK2
time-step tends to zero. It was found that increasing the HB cut-off frequency by a small quantity
(from 0.8 to 1Hz) suppresses the residual difference, which means that this difference must be
interpreted as the inaccuracies, introduced by the HB solution being cut-off at fc. Such a small
error, however, is deemed negligible, and thus fc is maintained at a value of 0.8Hz.

The computational performance of both HB and RK2 methods are shown in Fig. 6.19. As for
the flap-type WEC, HB simulations are run for varying kpto and bpto parameter values and, for each
kpto value, the HB computation time is averaged over the range of bpto conditions. Those cases,
where the algorithm did not converge, are not included in the calculated average computational
time and number of iterations.

From Fig. 6.19, concerning the HB method with linear initialisation, there is an increase
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Figure 6.16: Average absorbed power in a wide range of (kpto,bpto) parameters, for the spherical
HPA, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 1m, Tp = 7s and
γ = 2.
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Figure 6.18: Computation time (top graph) and accuracy (middle and bottom graph) of RK2
simulations with different time steps, for the spherical HPA, in a 100-s wave input generated
from a JONSWAP spectrum with Hm0 = 1m, Tp = 7s and γ = 2. Results are averaged over the
range of kpto values shown in Fig. 6.17.

in the number of iterations around and beyond resonance, i.e. when |kpto| becomes close to, or
larger than, |k∗pto|. This results in an increase in the HB computation cost for such kpto values.
In contrast, using either the neighbour-based or sensitivity-based initialisation approaches give a
consistent number of iterations, and hence computation cost, across kpto values.

In spite of similar numbers of iterations for the flap-type WEC and spherical HPA, when the
neighbour- and sensitivity-based initialisation strategies are employed, the HB method is approx-
imately 2 times slower for the sphere than it is for the flap-type WEC. This is because the ( fc,T )
combination adopted for the spherical HPA in Section 6.3 is less favourable, in view of the con-
siderations developed in Sections 5.7 and 6.3, since T is identical for both WECs, while fc is 60%
larger for the spherical HPA than for the flap-type WEC. The computational gain, with respect
to RK2 simulations, however, remains significant; the HB method is between 10 and 1500 times
faster, depending on the RK2 time step.

Finally, it is interesting to examine more closely the conditions in which the HB algorithm
does not converge. To that end, Fig. 6.20 shows the solution trajectories obtained with both HB
and RK2 methods. In Fig. 6.20a, the time-domain trajectory zG as well as the instantaneous
absorbed power P(t), obtained with (k∗pto,b

∗
pto), are shown for both HB and RK2 methods. There

is no distinguishable difference between RK2 and HB results. For comparison, the solution for
the linearised model is also plotted, in order to highlight how strongly the non-linearities affect
the WEC dynamics. Furthermore it can be seen that the WEC motion amplitude is significantly
greater than the wave elevation (also plotted on the figure): this is because the reactive control
term k∗pto allows the device to resonate in incoming waves.

Fig. 6.20b shows the simulation results for the same wave input, when bpto is set to a smaller
value (1×104) than b∗pto (4×104), which corresponds to one of the cases of Fig. 6.16 where the
HB method does not converge. Since the HB method does not converge, only RK2 results are
plotted. It can be seen that the WEC dynamics become unstable from t ≈ 45s: At that instant, the
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Figure 6.19: Computation time per second of the simulated signal (top graph) using the HB method
with three different initialisation methods, and RK2 with different time steps (from the largest to
the smallest marker size: ∆t =0.05s, 0.02s, 0.01s, 0.005s, 0.002s), for the spherical HPA, in a
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Figure 6.20: Solution of the dynamical equation for kpto = k∗pto and two different bpto values, using
HB and RK2 methods, for the spherical HPA, in a 150-s wave input generated from a JONSWAP
spectrum with Hm0 = 1m, Tp = 7s and γ = 2.
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Figure 6.21: Average absorbed power in a wide range of (kpto,bpto) parameters, for the array of
four cylindrical HPAs, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 =
2m, Tp = 12s and γ = 3.3.

WEC becomes fully submerged, and the proposed dynamical model of Eq. (6.16) is not physically
consistent any more. Schematically, while the non-linear static term starts decreasing, the linear
reactive control term continues pushing the device downwards. Of course, the model could be
modified for more realism, by correcting the expression for the pressure integral when the WEC
becomes fully submerged or fully dry, and by modifying the reactive control term in a non-linear
way (as in [57] and [152]) in order to reduce the occurrence of unstable motion. However, as
reported in [152], even such modifications do not ensure that the WEC motion is stable regardless
of the choice of kpto.

Also note, from Fig. 6.20b, that, while the non-linear WEC model has unstable dynamics, the
linearised WEC model has a stable periodic solution. This illustrates the complexity of employing
non-linear dynamical models, of which the properties in terms of stability and existence of periodic
solutions [97] are difficult to predict a priori, but are nevertheless important, and may be masked
by the use of a linear approximation.

6.4.3 Array of 4 cylindrical HPAs

Fig. 6.21 shows the absorbed power calculated using the HB method, for the array of 4 cylindrical
HPAs, across the chosen range of PTO parameters. Again, a clear optimum can be found, and the
PTO damping is set to its optimal value b∗pto for further comparison between RK2 and HB results.
Note that bpto and kpto are set to an identical value for each of the four devices.

For this case study, RK2 simulations, calculating the full convolution product, were so slow
that the range of RK2 time steps investigated was limited to only three values, namely 0.05s, 0.02s
and 0.01s. Those three values are sufficient for a meaningful comparison between HB and RK2
results, similar to that already presented for the flap-type WEC and for the spherical HPA.

Fig. 6.22 compares the absorbed power, calculated using the HB method, and with RK2 inte-
gration using different time steps, with the full convolution calculation and with the two different
state-space approximations. From Fig. 6.22, HB and RK2 results yield nearly identical power
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Figure 6.22: Absorbed power from simulation results, using the HB and RK2 methods with several
different time steps, over a range of kpto values (bpto is set to b∗pto), for the array of four cylindrical
HPAs, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s
and γ = 3.3. For the RK2 simulations, the full convolution is compared with two state-space
approximations.

absorption values, when the full convolution product is calculated in the RK2 simulation. This is
examined in more detail in Fig. 6.23 which shows that, similarly to the previous case studies, RK2
results converge to the HB results when the RK2 time step decreases. In magnitude, however,
the HB/RK2 difference is smaller than for the flap-type WEC; even with a relatively coarse 0.05s
time-step, RK2 produces a 0.6% error only, in terms of power absorption.

In contrast to RK2 using the full convolution calculation, state-space approximations - which
do not change the simulation method, but the model, following the terminology specified in the
introduction to Chapter 4 - introduce significant errors which are larger in magnitude, than those
introduced by the use of a large time-step. From Figs. 6.22 and 6.24, the relative error, in terms
of power absorption, is larger close to resonance; while the state-space approximation introduces
relatively modest errors when kpto is set to zero (P being overestimated by approximately 1% only,
for DR = 4, and 3% for DR = 2), the relative error reaches as much as 5% with DR = 4 (22% with
DR = 2) when kpto is set to its optimal value.

The errors introduced by the state-space approximation are further examined in Fig. 6.25,
without any reactive control term (kpto = 0, Fig. 6.25a), and then with the optimal reactive control
parameter (kpto = k∗pto, Fig. 6.25b). Given the symmetry of the problem (see Fig. 6.4), the
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solutions for z1 and z2 are identical to each other, and the solutions for z3 and z4 are identical to
each other as well. Therefore, it is sufficient to visualise the solution for z1 and z3 only. In the
case where kpto = 0, as seen in Fig. 6.25a, each device simply follows the waves, and it is barely
possible to visually detect any difference between the solution obtained with the HB method, that
obtained with the RK2 method using full convolution summation, and those obtained using RK2
with the state-space approximations. In contrast, when kpto is set to k∗pto, as seen in Fig. 6.25b, the
motion of each device is significantly amplified. This time, while the RK2 solution, using the full
convolution, remains virtually identical to the HB solution, the RK2 simulations, using the two
state-space approximations, present visible inaccuracies.

As yet, the author of this thesis has no definitive explanation to account for the increase in
relative errors, when the WEC approaches optimal control conditions. It could be interesting to
see if such results extend to other devices and state-space approximation techniques, but the focus
of this thesis is on the simulation method, rather than on the modelling itself. The beginning of an
answer might be the fact that, under optimal or close-to-optimal power-maximising WEC control,
the control forces tend to cancel the hydrostatic terms [116], thus making the velocity-dependent
terms, such as radiation forces, of primary importance in the resonant WEC dynamics. Thus,
under optimal or close-to-optimal control conditions, the simulation results may be significantly
more sensitive to any modelling error in the velocity-dependent terms, including radiation forces.

In terms of computational performance, both state-space approximation techniques yield a
significant reduction in the RK2 computation time; for ∆t = 0.01s, the two state-space approxi-
mations allow for approximately 20 times faster simulations than with the full convolution calcu-
lation. However, RK2 simulations, with both state-space approximation techniques, remain sig-
nificantly slower than the HB method, between 2 times slower if a coarse time step of ∆t = 0.05s
is employed, and 10 times slower with ∆t = 0.01s.

The HB method, in contrast, has a smaller computation time, while ideally preserving the
solution accuracy. It can be seen, in Fig. 6.26, that there is little difference between the computa-
tional efficiency of the HB method, run with the three different initialisation strategies: Although
the sensitivity-based strategy does modestly reduce the average number of iterations, this benefit
is partly offset by the cost of solving the sensitivity equation.

Also, note that the dimension of the radiation state vector xR is 4×4×DR, as seen in Section
6.2.3, and that the physical state vector is of size 8 (for the four position and velocity values).
Therefore, the size of the complete state vector for RK2 simulations is 8 + 16× 2 = 40 with
DR = 2, and 8+16×4 = 72 (nearly twice as large) for DR = 4. If the cost of each RK2 iteration
is assumed to be roughly proportional to the square of the state vector size, one could expect an
almost fourfold increase in computation time, between DR = 2 and DR = 4. However, examining
Fig. 6.26, the difference in computation time between the two approximations seems modest, of
the order of 10%. This is because, when the convolution term is absent from the calculations, the
computational cost of RK2 simulations is dominated by the cost of executing a loop over the large
number of RK2 iterations, rather than by the cost of the individual operations carried out at each
iteration. As a consequence, it is worth noting that little additional computational benefit can be
expected from reducing the size of the radiation state vector. Conversely, increasing the size of
the state vector, by increasing the order of the state-space approximation, may improve the result
accuracy, with little additional overhead.

6.4.4 ISWEC device

For the ISWEC device, similarly to the spherical HPA, convergence issues were observed under a
small number of PTO parameter values (with large reactive control terms and low damping values),
when the Newton method was used to solve the HB equation. However, using the trust-region
dogleg algorithm, instead of the simple Newton method, allowed the HB method to converge for
almost all the PTO settings considered. The only exception occurred for kpto = 1.2× 105 and
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Figure 6.25: Example of solution trajectories in terms of position and instantaneous power for the
array of four cylindrical HPAs, off-resonance and in resonant conditions, obtained from the HB
method, RK2 with a full convolution calculation, and RK2 with state-space radiation approxima-
tions using DR = 2 and DR = 4. The time series are generated from a JONSWAP spectrum with
Hm0 = 2m, Tp = 12s and γ = 3.3.
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Figure 6.26: Computation time per second of the simulated signal (top graph) using the HB method
with three different initialisation methods, and RK2 with different time steps (from the largest to
the smallest marker size: ∆t =0.05s, 0.02s, 0.01s, 0.005s, 0.002s), for the array of four cylindrical
HPAs, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 2m, Tp = 12s and
γ = 3.3. The bottom graph shows the number of HB iterations for the three different initialisation
strategies.
All computation times are obtained from a Matlab implementation, run on a 3.50 GHz, 8-core Intel R©

processor.
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Figure 6.27: Average absorbed power in a wide range of (kpto,bpto) parameters, for the ISWEC
device, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 1m, Tp = 7s and
γ = 2.

the smallest bpto value, for which the HB method with the neighbour-based initialisation did not
converge, which illustrates the sensitivity of the HB method to the choice of initial solution.

Fig. 6.27 shows the absorbed power for the range of PTO settings considered, with a clearly
identifiable optimal setting for kpto and cpto. Note that the ISWEC device has a third tunable
PTO parameter, namely the gyroscope rotational speed ϕ̇pto. However, such a possibility is not
investigated in this chapter, and ϕ̇pto is simply set to its maximum allowed value of 1000 rpm
[13]. A more detailed comparison of HB and RK2 results is carried out in the range of settings
represented with thick purple dots in Fig. 6.27

Similarly to the results of the spherical HPA, differences between RK2 and HB results are
smaller than for the flap-type WEC, as can be seen in Fig. 6.28. Measuring the relative error in
solution trajectories and in absorbed power, as shown in Fig. 6.28, the RK2 results seem to tend
towards the HB results, when the integration time step tends to zero. However, as in the case of
the spherical HPA, a close look at the middle graph of Fig. 6.28 suggests that some small residual
error may remain between the HB and RK2 trajectories, even with further reduction in ∆t. Such
a residual error was found to be due to small inaccuracies in the HB solution, which disappear as
fc is increased. However, such inaccuracies are small enough to be acceptable, and thus do not
justify increasing fc.

The computational performance of the HB and RK2 solution methods is investigated in Fig.
6.30. As far as the HB technique is concerned, the computation cost is between 2 and 3 times
larger than for the spherical HPA, due to the additional degree of freedom (the average number of
Newton iterations is similar to that observed for the spherical HPA). Both the neighbour-based and
sensitivity-based initialisation strategies bring a significant improvement (approximately 30%) in
the HB computational performance, for large kpto values. The computational gain, with respect to
RK2 simulation, although more modest than for the flap-type WEC and spherical HPA, remains
significant, between 4 times faster (for a coarse 0.05 RK2 time step) and 700 times faster (for a
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Figure 6.28: Absorbed power from simulation results, using the HB method and RK2 integration
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Figure 6.29: Computation time (top graph) and accuracy (middle and bottom graph) of RK2
simulations with different time steps, for the ISWEC device, in a 100-s wave input generated
from a JONSWAP spectrum with Hm0 = 1m, Tp = 7s and γ = 2. Results are averaged over the
range of kpto values shown in Fig. 6.28.

refined 0.002s time step).

6.5 Ex-post validation of the HB settings

The results presented in Section 6.4 clearly confirm the numerical accuracy of the HB technique,
and its appealing computational speed, compared to RK2 integration. In particular, even in reso-
nant conditions, the cut-off frequency fc allows the HB solution to be at least as accurate as a RK2
method with a refined time step of the order of 0.002s - for which RK2 is particularly slow. There-
fore, the fc values initially chosen (0.5Hz for the flap-type WEC and the array of four cylindrical
HPAs; 0.8Hz for the spherical HPA and the ISWEC model) can be maintained.

Concerning the signal duration T , which governs the spectrum discretisation, it must be en-
sured that, in resonant conditions, the choice initially made in Section 6.3 remains pertinent, i.e.
still produces accurate power estimates. Therefore, for each device, with the optimal PTO param-
eters (k∗pto,b

∗
pto), HB simulations are run in 20 different HDA-generated wave inputs, over a range

of T settings. The results, in terms of average power absorption, are plotted in Fig. 6.31 where,
similarly to Figs. 6.7 to 6.10, power is normalised by the value obtained for the largest T .

Fig. 6.31 indicates that, for the flap-type WEC, the spherical HPA and the array of four cylin-
drical HPAs, the average power falls within 1% of the reference value at T = 100s, hence con-
firming the choice initially made for T . Concerning the ISWEC device, it is found that T = 100s
is slightly too short for accurate power estimates. Therefore, for the ISWEC device, the signal
duration is increased to T = 150s.
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Figure 6.30: Computation time per second of the simulated signal (top graph) using the HB method
with three different initialisation methods, and RK2 integration with different time steps (from
the largest to the smallest marker size: ∆t =0.05s, 0.02s, 0.01s, 0.005s, 0.002s), for the ISWEC
device, in a 100-s wave input generated from a JONSWAP spectrum with Hm0 = 1m, Tp = 7s and
γ = 2. The bottom graph shows the number of HB iterations for the three different initialisation
strategies.
All computation times are obtained from a Matlab implementation, run on a 3.50 GHz, 8-core Intel R©

processor.
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(a) Flap-type WEC (b) Spherical HPA

(c) Array of four cylindrical HPAs (d) ISWEC device

Figure 6.31: Effect of the simulation duration onto WEC power assessment for the four WEC case
studies

6.6 Should HDA or HRA be used to generate the incident wave sig-
nals?

Previously in this chapter, only the HDA wave generation approach was used to simulate the
incoming Gaussian wave elevation. In this section, based on the four WEC models identified, the
validity of such an approach is discussed. It has been seen in Chapter 3 that, amongst harmonic
superposition methods, only HRA allows for a realistic representation of the target Gaussian wave
statistics; with HRA, every generated time-series has a variance which differs from its long-term
statistical average, as observed by sampling real sea waves over short time windows. In contrast,
the HDA time series all have the same variance and, more generally, statistics which present an
unrealistically small variability across different generated time-series. However, as discussed in
Chapter 3, using HDA for wave input generation can yield accurate statistics, such as, for example,
mean power absorption or maximum amplitude, using fewer simulations than HRA, provided that
HDA results are unbiased with respect to HRA results. Therefore, if the aim of the simulations
is to quickly obtain accurate estimates of some particular statistics, HDA can be advantageous.
Nevertheless, with a non-linear WEC model, it is difficult to know a priori if HDA results are
unbiased.

In this section, a short study is carried out to examine the relative benefits of HRA and HDA.
To that end, for each WEC in its design sea state, using the HB settings determined in Section
6.3 and with the optimal choice of control parameters (k∗pto,b

∗
pto), 1000 HB simulations are run7,

using both HRA and HDA to generate each T−length wave signal independently, where T is set
to 100s, except for the ISWEC device, for which T = 150s. The average estimated power P̄, and
the standard deviation σP of the power estimate, are both calculated from the 1000 samples. σP

quantifies how much the power, estimated from a given randomly-generated wave input of length
T , fluctuates around its average.

7Given the high efficiency of the method, the 1000 simulations do not take more than three minutes for the array of
4 HPAs, which is the most unfavourable case
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Table 6.2: Variability of power estimates using HDA and HDA, for the four WEC systems, using
the HB settings determined in Section 6.3. From top to bottom: average power P̄, standard devi-
ation of P̄, and number of realisations necessary to ensure that the 95% confidence interval has a
half-width smaller than 5% (resp. 2.5%) of P̄.

Flap Sphere Array ISWEC
P̄ [W] HRA 5.51×105 1.14×104 5.88×105 5.14×103

HDA 5.55×105 1.15×104 5.94×105 5.19×103

σP [W] HRA 2.35×105 3.33×103 2.90×105 1.65×103

HDA 1.14×104 4.95×102 8.61×103 3.90×102

N±5% HRA 280 130 370 150
HDA < 10 < 10 < 10 < 10

N±2.5% HRA 1120 520 1500 630
HDA < 10 12 < 10 35

For each WEC model, Table 6.2 compares P̄ and σP obtained with HDA and HRA. It is seen
that, in the four case studies, using HDA does not introduce any significant bias in the power
estimate P̄. However, the standard deviation σP of the estimate is between 4 times larger (in the
case of the ISWEC device) and 30 times larger (in the case of the array) using HRA, compared to
using HDA to generate the time series.

The larger variance of the power estimates using HRA implies that more simulations are nec-
essary, to achieve power assessment with a required level of certainty. To quantify such an effect,
the number of simulations, necessary to ensure that the 95% confidence interval of the power es-
timate is within a 5% (resp. 2.5%) margin of the estimated average, is calculated. Indeed, for
a number of simulations Nsim large enough (typically > 10), the distribution of P̄Nsim , obtained
from Nsim simulations, approaches a normal distribution (from the Central Limit Theorem, see
Chapter 2 and references therein), with mean P̄ (the actual average power) and standard deviation

σP√
Nsim

. The 95% confidence interval for any Nsim can be calculated as [P̄± z∗ σP√
Nsim

], where z∗ is the
(100− 95)/2 = 2.5% critical value for the standard normal distribution. Hence, it is possible to
find N5% (resp. N2.5%) such that the 95% confidence interval falls within 5% (resp. 2.5%) of the
estimated average. N5% and N2.5% are indicated in Table 6.2. Note that, for small values of Nsim,
the normality assumption for the distribution of P̄ does not hold; therefore if [P̄± z∗ σP√

Nsim
] with

Nsim = 10 is smaller than 5% (resp. 2.5%) of P̄, Table 6.2 simply indicates that N5% (resp. N2.5%)
is < 10.

The difference between HDA and HRA is significant, and most particularly for the array case;
while less than ten 100-s simulations are necessary with HDA, to have a 95% confidence interval
within ±2.5% of the estimated value, 1500 simulations would be necessary with HRA. From
Table 6.2, and as far as power calculations are concerned, HDA can be safely employed, in order
to avoid resorting to a large number of simulations. If statistical quantities other than power
absorption were of interest, a similar investigation should be carried out to ensure that HDA results
are unbiased with respect to HRA results.

Finally, it should be emphasised that the considerations, presented above in this section, are
not entirely specific to the HB simulation method; the question of the length and number of sim-
ulations, combined with the choice of time-series generation method, is also crucial when using
any other numerical simulation technique.

6.7 Summary

Four WEC models, involving a variety of non-linear modelling terms, number and nature of de-
grees of freedom, and typical dynamics, have been introduced in Section 6.2, in order to assess
the practical value and highlight the challenges of the HB simulation method.
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An efficient use of the HB method necessitates sensible settings for the two parameters, fc and
T , of the technique. While fc primarily governs the accuracy of the non-linear solution trajectory,
obtained in a given incident wave signal, T dictates the spectrum discretisation, and thus the sta-
tistical accuracy of the methodology outlined in Section 5.7, whereby long runs are replaced with
a number of shorter ones with duration T . T and fc must be chosen so as to ensure a satisfactory
solution accuracy and statistical accuracy, typically in terms of power estimates, while limiting,
as much as possible, the HB computation cost, as exemplified in Section 6.3. Relatively short
simulations, of the order of 100s, are found to yield accurate power estimates for all four case
studies.

The proposed approach for tuning the HB settings ( fc and T ) is relatively simple, and based on
some a priori assumptions about the tuning of some parameters. This is not unreasonable because,
at the stage of employing IDE models for optimisation or power assessment, the fundamental
design of the WEC and typical operating conditions should be, at least approximately, understood.
A possible drawback is that, when the HB method is used to further investigate the WEC design
and control parameters, the settings initially chosen may not be appropriate for the new WEC
dynamics, as modified for example through an optimisation procedure. However, as shown in
Section 6.5, it is not difficult to carry out a quick ex-post validation of the HB settings initially
chosen. As a general rule, as with any numerical method, a sensible route is to check the sensitivity
of the results to the simulation settings. Using the HB method, such a step requires relatively little
computational effort, given the method efficiency.

Unsurprisingly, WECs with faster dynamics, and in sea states with more high-frequency con-
tent, necessitate a higher cut-off frequency fc; in such cases, fc = 0.8Hz seems to be a sensible
choice. For sea states with slower waves, and WECs with slower dynamics, fc = 0.5Hz is suffi-
cient to provide simulation results more accurate than RK2 numerical integration with a refined
time step of 0.002s. In contrast, concerning T , from the range of WEC models employed here, and
for the two different sea states considered, there does not seem to be any intuitive choice; for ex-
ample, since the spherical HPA and the ISWEC device operate in a sea state with faster waves than
the flap-type WEC and the array of 4 HPAs, it could have been expected that they would require
a shorter simulation time T to produce accurate power estimates. Such a hypothesis is clearly not
supported by empirical evidence since, to obtain accurate power estimates under reactive control,
the ISWEC requires a longer simulation time than the other WEC systems. Overall, simulation
lengths between 100 and 200s are probably an appropriate compromise, while shorter simulation
lengths may produce significantly biased power estimates.

Section 6.4 validates both the accuracy of the HB method, and its significant practical value in
terms of computational speed, in comparison to a RK2 time-domain numerical integration scheme.
Depending on the RK2 time step, the HB method reduces the computation time per second of the
simulated signal, by one to three orders of magnitude, while preserving a better solution accuracy
than RK2 simulations with a time step of 0.002s. Throughout Section 6.4, it can also be seen that
an appropriate choice of a HB starting guess can reduce the number of HB iterations, and hence the
computation time. In particular, using the results of a previously-solved HB equation, with closely-
related parameters, a satisfactory starting guess can be found (using either the ‘neighbour-based’
or ‘sensitivity-based’ initialisation approaches), which is generally advantageous, with respect
to a linear initialisation. However, the latter approach has the merit that it does not depend on
previously-solved HB problems, so that entirely dissimilar and unrelated HB problems can be
solved one after the other. In contrast, the sensitivity-based, or neighbour-based, initialisation
approaches assume that the solution of consecutive HB problems are close to each other which
implies, in particular, that consecutive HB simulations are run using the same set of random phases
(if HDA is employed) or amplitudes (if HRA is employed).

The array case study illustrates the possible dangers of using a state-space approximation for
the radiation memory terms; while, with respect to the full convolution calculation, the computa-
tional gains are approximately one order of magnitude (which is consistent with the findings of
[96]), the errors introduced by the model approximation seem to be larger when the WECs are
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Figure 6.32: Possible numerical behaviours of the HB and RK2 simulation methods, for different
scenarios concerning the mathematical properties of the WEC model

brought to resonant conditions under reactive control.
Although the bulk of the results presented in Section 6.4 supports the efficiency and accuracy

claims of the HB simulation approach, the inability of the HB root-finding algorithm to find a
solution, observed in several PTO configurations for the spherical HPA, and to a lesser extent for
the ISWEC device, highlights convergence issues which are specific to the HB method. More
specifically, a system represented by Eq. (4.90) is a non-autonomous, non-linear system. For such
a system, the existence of a periodic, steady-state physical solution, for the WEC dynamics in
a periodic wave input signal, can be analysed in terms of the existence (or otherwise) of stable,
periodic orbits [97]. Fig. 6.32 schematically identifies possible configurations, in terms of the
mathematical properties of the system represented by Eq. (4.90), for a given periodic wave input8.
For each of those scenarios, it is shown that the HB method may have several types of behaviour,
which are detailed in the following.

First, it must be emphasised that the HB method is known (see [149]) to sometimes converge
to solutions, which are indeed an exact solution to the discretised residual equation (5.57), but are
not close to any mathematical solution of the exact residual equation of Eq. (4.90); such solutions
may occur in the PS version of the HB method, but not when the Galerkin version is employed
(at least if the integrals in Eq. (5.53), to obtain the frequency-domain representation of the non-
linear terms, are accurately computed). Such spurious solutions (as termed in Fig. 6.32) may

8With a linear system, instead of a non-linear one, the stability properties of the system would not depend on the
specific input considered [97]
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exist, whether or not the exact residual equation admits a mathematical solution. Furthermore,
unlike mathematically-correct solutions of the residual equation, of which the Fourier coefficients
quickly vanish for higher-order expansions (as detailed in Section 5.5), spurious solutions usually
show large variations when modifying the frequency discretisation [149], and may even disappear
when fc is modified, or when the HB algorithm starts from a different initial guess. Therefore, in
case there should be any doubt regarding the validity of HB results, it is not difficult to diagnose
the spuriousness of the solution. Throughout the course of this PhD, only one example was en-
countered, when carrying out the work presented in [153], for a monochromatic wave input. The
spurious solution disappeared with a small change in fc.

Having addressed the pathological case of spurious solutions, it is possible to focus on the
HB method behaviour for the vast majority of situations. To that end, the existence and nature
of mathematical solutions to the residual equation should be first discussed. It may happen that
the system of Eq. (4.90) (the exact residual equation) does not admit any periodic orbit, for the
chosen periodic wave input (Scenario A in Fig. 6.32). This may be the case, in particular, when
dissipative modelling terms, such as radiation damping, PTO damping and viscous forces, are too
small. In such a scenario, the HB method generally does not converge to any solution (Case A.1);
this has been illustrated with the spherical HPA example with the effect that, for some large PTO
reactive terms, and low PTO damping, the HB method did not converge to any solution within the
allowed numbed of iterations. Running a time-domain numerical simulation with the same wave
input, e.g. using RK2, it is typically observed that the system trajectory diverges exponentially, as
seen in Fig. 6.20.

Another interesting scenario may occur, where Eq. (4.90) does have an exact, periodic mathe-
matical solution, which is not a physical solution, in the sense that the corresponding trajectory is
unstable, labelled as Scenario B in Fig. 6.32. In such a case, the HB algorithm may either fail to
find this mathematical solution (case B.1) (because of an initial guess outside the basin of attrac-
tion of the solution), but it may also converge to the solution (case B.3); the existence of unstable,
and yet mathematically correct HB solutions [135], is well known in non-linear vibration analysis
[149]. Such a solution may be approximated and visualised using the HB method, but it could
never be observed using a RK2 simulation scheme (because any infinitesimal deviation from the
trajectory would make the system diverge from it), and even less so in any physical experiment.
Case B.3 is illustrated in Fig. 6.33 for the array of 4 cylindrical HPAs. Setting kpto to a negative
value, with magnitude larger than the hydrostatic stiffness sh, the total stiffness of each device is
negative, which would not yield any physically realistic solution. Yet, the HB algorithm converges
to a solution, plotted in Fig. 6.33, which is found to be robust to changes in the HB settings ( fc

in particular). In contrast, the trajectory obtained from the RK2 simulation diverges rapidly away
from the origin. Non-physical solutions may be identified using, for example, Floquet stability
analysis, which can be embedded within a HB framework [135].

When the WEC mathematical model is physically consistent (which is not the case in the
above example with a negative total stiffness term), intuitively it is expected that the system of Eq.
(4.90) admits a periodic orbit, and that this orbit is stable (Scenario C), in the sense that, in a time-
domain numerical simulation or in a physical experiment, the system will gradually converge to
the periodic solution as the transient response fades out. In Scenario C, the convergence of the HB
algorithm, regardless of the starting guess, can unfortunately not be guaranteed. An example was
provided by the ISWEC device model in Section 6.4, for which, for a given choice of kpto,bpto val-
ues, the HB method failed to converge when initialised using the ‘neighbour-based’ approach, but
did find the solution when initialised using the linearised model, or the sensitivity-based approach.

Finally, the system of Eq. (4.90) may have several periodic solutions, comprising any com-
bination of stable and unstable orbits. In such a case, while traditional time-domain simulations
cannot detect the existence of those mutliple solutions, the HB method can be combined with con-
tinuation techniques [151] in order to track bifurcations (i.e. values in the model parameters, for
which several possible solutions begin to emerge) [135]. For the sake of simplicity, such a case is
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Figure 6.33: Example of unstable solution obtained using the HB method, for the array of four
cylindrical HPAs, with kpto = −8× 105 and bpto = 1.6× 105, in a wave input generated from a
JONSWAP spectrum with Hm0 = 2m, Tp = 12s and γ = 3.3

not detailed in Fig. 6.32.
In practice, it is difficult to know, in advance, whether or not the system considered in Eq.

(4.90) has stable mathematical solutions. Convergence of the HB algorithm (A.2, B.2, B.3, C.2,
C.3) does not necessarily mean that an actual physical solution has been found. In order to dis-
criminate between exact mathematical solutions and spurious solutions, a possibility is to vary
slightly the HB settings and to check if a similar solution is still found. In order to ascertain if the
calculated solution is physically meaningful, stability analysis could be carried out. Conversely,
there can be several possible causes for the HB method not to converge (A.1, B.1, C.1). In cases
B.1 and C.1, a better choice of initial condition can be used, or a continuation technique [151]
may be employed. Perhaps more pragmatically, since problematic cases seem to only represent
a small fraction of the scenarios encountered in practice, running a RK2 simulation, only in the
problematic wave inputs, could provide useful insight, as to whether the actual situation is A.1,
B.1 or C.1.

In summary, ‘common sense’ recommendations should apply to the HB method, just as well
as to other simulation techniques; when simulations are carried out to explore a broad range of
configurations (such as design parameters, different sea states, or tunable control parameters),
the presence of outliers, or abrupt changes in the simulation results between two neighbouring
configurations, should always catch the researcher’s or engineer’s attention, and trigger further
investigation. Conversely, continuity of the results across the range of configurations explored,
and robustness of the results to changes in the HB settings ( fc, T , choice of initialisation method)
should provide confidence in the mathematical and physical relevance of the simulation results.
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Chapter 7
Parametric optimisation of a wave energy
converter using the harmonic balance
method

7.1 Introduction

Chapter 6 provides a validation of the HB method, for the numerical simulation of non-linear
WEC models, in the sense that HB provides steady-state solutions with superior accuracy, with
respect to standard RK2 methods with a usual 0.01s time-step, while being typically between one
and two orders of magnitude faster. The general methodology associated with the use of the HB
method, and which consists of simulating many, relatively short, simulations, as opposed to one,
long simulation, has been shown to provide reliable power estimates. Therefore, it can already
be stated that the HB method is a valuable addition to the range of techniques, available for the
numerical simulation of non-linear WEC models.

However, the author feels that this thesis would not be complete, without at least one example
demonstrating how the proposed HB technique can be advantageously employed, for a practical
task requiring a large number of simulations. Hence, in this short chapter, a methodology is
outlined, for the parametric optimisation of wave energy device models, using the HB method. As
a case study, the PTO parameters of the ISWEC device, presented in Section 6.2.4, are optimised
over a wide range of sea states representative of the ISWEC design location, off the island of
Pantelleria [13]. The ISWEC has three PTO parameters, namely the regulated gyroscope rotational
speed ϕ̇pto, a damping coefficient bpto, and a stiffness coefficient kpto. The benefits of employing
the HB approach are discussed.

Chapter organisation

• Section 7.2 introduces the basis of a parametric optimisation methodology, employing the
HB framework;

• Section 7.3 presents the chosen numerical case study, which consists of tuning the ISWEC
PTO parameters;

• In Section 7.4, the outcomes and salient points of this chapter are summarised and discussed.
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7.2 Parametric optimisation using the harmonic balance method

7.2.1 Parametric optimisation problem for IDE WEC models within the HB frame-
work

In this chapter, parametric WEC models in the form of Eq. (5.91) are considered. The WEC
model depends on Nα parameters, and is assumed to be continuously differentiable with respect to
each parameter. The aim, in parametric optimisation, is to minimise a given cost function, noted
f , which depends on the system variables x, and possibly on α:

min
x,α

f (x,α)

s.t. r{x,α, t}= 0
(7.1)

where
r{x,α, t} := L{x,α}−n{x, t,α}− e(t,α) = 0 (7.2)

and, typically, f is specified in integral form:

f (x,α) :=
T∫

t=0

g(x(t), ẋ(t),α, t) dt (7.3)

The residual equation (7.2) expresses the fact that the dynamical equation (5.91) must be
satisfied at every instant. Assume, as in Chapters 5 and 6, that all inputs to the residual equation
are periodic with period T , and that one wishes to minimise g (in Eq. (7.3)) over a period of the
system steady-state trajectory. It is quite natural to reformulate the minimisation problem into a
HB framework, assuming that all dynamical quantities in x are specified in terms of their Fourier
expansion, following Eq. (5.25). Using Eq. (5.25), the cost function is reformulated as a function
of x̂ and α:

f (x̂,α) :=
T∫

t=0

g(Φ(t)x̂,Φ(t)Ωx̂,α, t) dt (7.4)

where Ω and Φ(t) are defined in Eqs. (5.28) and (5.24), respectively. Furthermore, the residual
equation (7.2) is replaced with the HB equation. Considering the PS version of the HB method,
Problem (7.1) is rewritten as follows:

min
x̂,α

f (x̂,α)

s.t. rPS(x̂,α) = 0RDNt

(7.5)

where
rPS(x̂,α) = ΦNt L(α)x̂−nNt (x̂,α)−ΦNt ê(α) (7.6)

In the following, it is assumed that, for the range of parameters α considered, the system of Eq.
(5.91), and hence the HB equation (7.6), have only one steady-state solution. Denote x̂(α) as the
presumably unique solution of the residual equation rPS(x̂,α) = 0, for a choice of parameters α.
Problem (7.1) can thus be recast as a minimisation problem, where the only variables to optimise
are the components of α:

min
α

f (x̂(α),α) (7.7)

7.2.2 Gradient-based optimisation within the HB framework

If the number of parameters Nα is relatively small, typically one or two, an exhaustive search
approach1 may be employed to determine, approximately, a minimum for Problem (7.7), as was

1i.e. evaluating every possible PTO setting, using some discretisation of the parametric space
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carried out throughout Chapter 6. However, such an approach may become intractable as Nα

grows, and when the number of optimisation problems is large. For example, assuming Nα = 3
(as will be the case in the example presented in this chapter), and assuming that each parametric
dimension is discretised into 10 values, an exhaustive search approach would necessitate 103 =
1000 cost function evaluations. Therefore, numerical optimisation algorithms, more powerful
than the exhaustive search approach, should be used, with the aim of reducing the number of cost
function evaluations.

In the present case, the cost function is assumed to be continuous and differentiable with re-
spect to the optimisation variables. Hence, both gradient-based and gradient-free algorithms may
be used. The relative benefits of gradient-free and gradient-based optimisation algorithms are
discussed, and empirically investigated in [158]. Gradient-based techniques, because they use
the gradient information to determine an appropriate search direction, generally converge using
fewer iterations (and hence fewer cost function evaluations) than gradient-free optimisation. Fur-
thermore, from the first-order optimality condition [146], the cost function gradient provides a
clear stopping criterion, since a gradient sufficiently close to zero indicates that a local optimum
has been found. However, gradient-based optimisation has the drawbacks that it is usually less
straightforwardly implemented than gradient-free algorithms (for which the cost function eval-
uation is merely a black-box), and that there is no guarantee that the optimum found is global
(while, in principle, gradient-free optimisation schemes should converge to a global optimum). In
fact, methods combining a genetic algorithm (which is a global optimisation method), with a local
search routine (such as gradient-based methods), are known as memetic algorithms and, for cer-
tain categories of problems, can produce solutions with better quality than genetic algorithms, at a
significantly smaller computational cost [159], compared to simple genetic algorithms. In the re-
mainder of this chapter, gradient-based WEC optimisation, taking advantage of the HB formalism,
is investigated.

There exists a variety of gradient-based optimisation algorithms, see [146]. All of them share
the same basic principle, whereby, at each iteration k of the algorithm:

1. The cost function at the current iterate, f (α(k)), is computed;

2. A search direction d(k) is computed, using information from the cost function gradient;

3. A step length l(k) is determined so that f (α(k)+ l(k)d(k))< f (α(k));

4. The next iterate is calculated as α(k+1) = α(k)+ l(k)d(k).

Gradient-based techniques mainly differ in the way to choose the search direction.
In the following, it is shown that, using the HB method and the sensitivity equation, the cost

function and its derivative can be efficiently evaluated (which is at the core of any gradient-based
optimisation algorithm). The cost function is evaluated by running the HB method; with the
current parameters α(k), the HB solution x̂(k) = x̂(α(k)) is calculated as in Chapters 5 and 6, as well
as the cost function f (x̂(k),α(k)). The cost function derivative can then be obtained as follows:

d f
dα

=
∂ f
∂α

+
∂ f
∂x̂

∂x̂
∂α

(7.8)

Every term of Eq. (7.8) can be calculated; ∂ f
∂α

and ∂ f
∂x̂ depend on the specific cost function

considered, and ∂x̂
∂α

can be obtained, by solving the sensitivity equation (5.102) which, in the HB
framework, takes the form of a simple linear system. Therefore, at each evaluation of the cost
function, within a gradient-based optimisation algorithm, two steps are carried out:

• The cost function f is evaluated by solving the HB equation rPS(x̂,α(k)) = 0;

• The cost function derivative d f
dα

is calculated, by solving the sensitivity equation (5.102) and
using Eq. (7.8).
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In the example dealt with in this chapter, Nα is small, which makes the solution of the sen-
sitivity equation (5.102) relatively fast. Note, however, that in other applications, the number of
parameters in α may be large, so that solving the sensitivity equation for each component of α

may become costly (in fact, more costly than solving the dynamical equation itself) [160]. In such
cases, a slightly different approach is usually employed, namely the so-called adjoint method.
Transposed into a HB formalism, the basic idea of the approach [160] consists of rewriting the
second term in Eq. (7.8), as follows:

∂ f
∂x̂

∂x̂
∂α

= λ
TBs (7.9)

where λT is the solution of the following linear system, called the adjoint problem:

LT
s λ =

∂ f
∂x̂

T

(7.10)

and Bs and Ls are defined as in Section 5.6.2. Therefore, Nα linear problems, solved to calculate
∂x̂
∂α

explicitly, are replaced with only one linear problem, that of Eq. (7.10).

7.3 Optimisation of the ISWEC PTO settings

This section provides a numerical case study, for gradient-based optimisation of non-linear WECs
within the proposed HB framework. The WEC model considered is the ISWEC device, already
described in Section 6.2.4.

7.3.1 The ISWEC optimisation problem

Power-maximising control of the ISWEC device has been the subject of several studies, such
as [13, 161, 162]. In particular, proportional-derivative control [161], linear-quadratic regulator
[162] and stochastic optimal control [161] have been investigated. In the case of the ISWEC
device, proportional-derivative control consists of implementing a control law of the form τpto =
−kptoε−bptoε̇ (as in Chapter 6), in order to maximise power absorption. kpto and bpto are typically
tuned on a sea state-by-sea state basis, based on an optimisation algorithm [161]. Note that,
with a proportional-derivative control law, position and velocity constraints cannot be taken into
account in an exact manner [9]; instead, such constraints can only be satisfied in a statistical sense,
whereby the control parameters may be tuned to maximise power absorption, while ensuring that
the probability of exceeding the constraints is below a chosen threshold. In addition to kpto and
bpto, the ISWEC device has a third tunable parameter, ϕ̇pto, which can further enhance the ISWEC
power absorption, or help in satisfying operational constraints. Throughout the rest of this chapter,
proportional-derivative control will be considered, whereby three parameters (Nα = 3) are tuned,
namely the PTO stiffness coefficient kpto, the PTO damping coefficient bpto, and the regulated
gyroscope rotational speed ϕ̇pto. Thus, α is defined as follows:

α =

kpto

bpto

ϕ̇pto

 (7.11)

In spite of the simplicity of the proportional-derivative control law, optimising as few as three
PTO parameters (kpto, bpto, ϕ̇pto) is not a simple task, especially if the WEC model has non-
linearities, as emphasised in [13]. Because of the significant non-linearities in the ISWEC dy-
namical model, commonly employed linear frequency-domain calculations may not be used for
cost function evaluation. Instead, in [13], the Matlab Simulink2 simulation platform is used for

2https://uk.mathworks.com/products/simulink.html
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time-domain numerical integration of the ISWEC dynamical model. With such an implemen-
tation, each cost function evaluation reportedly takes at least 20 minutes [13]. This, combined
with a three-dimensional parametric space, makes the PTO tuning extremely challenging [13]. In
fact, as discussed in Section 7.2, if every possible PTO setting were to be evaluated, using an
exhaustive search approach, and assuming that each parameter dimension is discretised into 10
values, 103 = 1000 cost function evaluations would be required to optimise the PTO parameters
in a given sea state, which, given the computational performance of the Simulink model reported
in [13], would take almost two weeks!

There are two paths towards reducing the computational cost of the ISWEC PTO parameter
optimisation: 1) improve the computational speed of each cost function evaluation, and/or 2) use
an optimisation algorithm, more powerful than an exhaustive search approach, as discussed in
Section 7.2, which should essentially reduce the number of cost function evaluations.

Improving the speed of each cost function evaluation could certainly be achieved, by employ-
ing a time-domain integration procedure, more efficient than those embedded within the Simulink
platform documented in [13]. Regarding the number and lengths of simulations to obtain an accu-
rate cost function evaluation, from Table 6.2, acceptable power estimates can be obtained from 10
simulations with length T = 150s, with waves generated using HDA. Assume that a simple RK2
numerical integration scheme, as implemented in Chapters 5 and 6, is used for each cost function
evaluation. Using the results of Fig. 6.30, which show the computation time per second of sim-
ulated signal, it can be easily calculated that each cost function evaluation would take between
approximately 1s (if a coarse integration step of 0.05s is chosen) and 10s (if a more accurate time
step of 0.01s is chosen), to which some time should be added to allow for the transient response to
fade out3. This is already a significant improvement, with respect to the results reported in [13].

Furthermore, as discussed in Section 7.2, using a gradient-based algorithm to carry out the
optimisation is an interesting option. Calculating the cost function gradient using time domain
integration would be possible, at the cost of one additional RK2 simulation, if the adjoint method
is employed (see [158]), or three additional RK2 simulations, if the sensitivity equation (5.96)
is explicitly solved for each component of α, which is of dimension Nα = 3. Thus, if the cost
function gradient is evaluated using time-domain simulations, at each iteration of a gradient-based
algorithm, the computation time for evaluating the cost function gradient would be equal to, or
three times larger than, that of evaluating the cost function itself.

However, the HB framework, proposed in Section 7.2 for evaluating the cost function and
its derivatives, even more efficiently addresses all the challenges pointed out in the preceding
discussion, by providing:

• A computationally-efficient method for cost function evaluation, including non-linearities,
approximately 10 times faster, and more accurately than RK2 integration;

• A computationally-efficient framework for calculating the cost function gradient.

7.3.2 Problem specifications and numerical set-up

In the remainder of this chapter, the proposed HB framework is employed to determine, in each
sea state of the scatter table at the ISWEC design location, off Pantelleria island, the PTO settings
which maximise power absorption by the PTO system. Thus, the objective function to minimize
is f :=−P, where P is calculated as in Eq. (6.42):

f (x̂,α) =−bptox̂T Qptox̂ (7.12)

The partial derivatives of f with respect to α and x̂ are given by:{
∂ f
∂α

=
(

0 −x̂T Qptox̂ 0
)

∂ f
∂x̂ =−bptox̂T

[
Qpto +QT

pto
] (7.13)

3Of course, those orders of magnitude are obtained for the specific processor, employed to produce all the other
numerical results of this thesis - see Chapter 6.
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The range of (Hm0 ,Tp) conditions for the scatter table is determined from the data found in
[162]. Each sea state of the scatter table is modelled using a JONSWAP spectrum with entries
(Hm0 ,Tp) corresponding to the scatter table, and γ = 2. In order to restrict the search region for the
optimisation algorithm, kpto and bpto are allowed to take values between upper and lower bounds,
which are first arbitrarily chosen, and ϕ̇pto takes values between 0 and 1000 rpms (the upper bound
is inspired by [161]). The main rationale for limiting the values, which kpto and bpto can take, is
to avoid those situations, detailed in Section 6.7, where no solution exists (in which case the cost
function is not even defined), and which are more likely to occur for small damping values, and
large reactive coefficients. Therefore, the bounds are [10− 500] kN m s for bpto, and [10− 500]
kN m for kpto.

The HB settings are those determined throughout Chapter 6: T is set to 150s, and fc is 0.8Hz.
Based on Table 6.2, the optimisation is carried out based on 10 different sets of random phases for
HDA wave generation. For each sea state of the scatter table, the optimal parameters b∗pto,k

∗
pto, ϕ̇

∗
pto

are averaged over the 10 sets of random sea state realisations. Another, and more rigorous, ap-
proach would optimise bpto,kpto, ϕ̇pto for all 10 realisations simultaneously, by considering as a
cost function f̄ , which is the cost function f averaged over the 10 sets of random phases. How-
ever, running ten optimisations independently is a more careful approach since, if HB convergence
issues are encountered in any of the ten realisations, such numerical issues do not contaminate the
cost function, or gradient evaluation, for the other realisations. In addition, it was found that, in
practice, the optimal PTO parameters showed little sensitivity to the specific set of random phases
considered.

In the Matlab4 non-linear optimisation function fmincon, various gradient-based algorithms
are implemented, of which the working principles, and implementation details, may be found on
the Matlab help web page5. For the sake of brevity, the various possible algorithms are not detailed
here; however, a short preliminary investigation was carried out to determine the most suitable
option. Assuming that the successive HB problems, which will be solved within the optimisation
algorithm, are relatively close to each other, the computational performance of the HB method
can be enhanced by storing the HB solution x̂(k) at each cost function evaluation k, and by using
x̂(k) as a starting guess for the next cost function evaluation (as detailed in Section 6.4), at iterate
α(k+1). Therefore, it can be better to choose an optimisation strategy, which does not introduce
large ‘jumps’ between successive iterates α(k), α(k+1).

Overall, the trust-region optimisation algorithm was found to perform the best, amongst the
Matlab fmincon options. The fundamental idea of trust-region methods [163] is that the cost
function, f , is locally approximated by a quadratic function, q, which is assumed to accurately
reflect the behaviour of f in some neighbourhood (the ‘trust region’) of the current iterate α(k).
The quadratic approximation q is calculated using the cost function and its gradient, evaluated at
α(k), hence the interest in computing the gradient of f explicitly. q is minimised within the trust
region to find the next iterate α(k+1). If it is found that f (α(k+1))> f (α(k)), then q is not an accurate
approximation of f in the neighbourhood of α(k+1); then, the trust region size is decreased, until
the solution α(k+1), which minimizes q over the trust region, also ensures that the actual cost
function decreases, i.e. f (α(k+1)) < f (α(k)). Therefore, the trust-region algorithm will typically
progress in a ‘careful’ way, whereby the size of each step is limited by the trust-region size. This
is illustrated in Fig. 7.1, in the simplified case where ϕ̇pto is set to its maximum allowed value,
and only kpto and bpto are optimised; as seen in Fig. 7.1a, after one iteration with a relatively large
step, the following iterates progress towards the optimum in a more careful way. Such a pattern
is favourable to the HB method, since the HB solution x̂(k) for the iterate α(k) can be successfully
used as a starting guess, to solve the HB equation for the next iterate α(k+1). For the sake of
comparison, Fig. 7.1b shows how the optimisation proceeds from the same starting point, when a
different algorithm (namely, sequential quadratic programming) is employed; the pattern followed

193



(a) Trust-region (b) SQP

Figure 7.1: Examples of iteration patterns for the trust-region and sequential quadratic program-
ming (SQP) algorithms, implemented within the Matlab fmincon function. JONSWAP sea state
with Hm0 = 1m, Tp = 7s and γ = 2. The optimum is indicated by a thick purple dot.

by the consecutive iterates is not as favourable to the HB method as the trust-region algorithm.
Incidentally, Fig. 7.1 also illustrates the benefit of using gradient-based optimisation, com-

pared to an exhaustive search approach. For both algorithms, the (same) optimum is reached in
approximately 10 iterations. Typically, 2 or 3 cost function evaluations are necessary at each it-
eration (to estimate second-order derivatives), which results in approximately 30 cost function
evaluations in total. In comparison, the ‘exhaustive search’ surface of Fig. 7.1 has been obtained
using 676 cost function evaluations, and even with a significantly coarser 10× 10 discretisation,
100 evaluations would have been necessary. Finally, it has been verified that, although the trust-
region algorithm demonstrates the best computational performance, the optimisation results were
consistent when employing a different optimisation algorithm, which Fig. 7.1 also illustrates.

7.3.3 Numerical results

Fig. 7.2 shows the optimisation results, for all sea states of the scatter table, in terms of optimal
power P∗, and optimal PTO settings (α∗ = (k∗pto,b

∗
pto, ϕ̇

∗
pto)

T ). An optimal α∗ was successfully
found for each sea state. As can be appreciated in Fig. 7.2, the optimal control settings and
power absorption evolve relatively continuously from one sea state to a neighbouring one, which
is consistent with the fact that the ISWEC model is continuous (and, in fact, linear) in the PTO
parameters. As expected, more energetic sea states (larger Hm0) allow for more power absorption.
For a given Hm0 , the maximum power absorption is achieved when Tp is close to the device natural
resonance period of 4.6s (see Section 6.2.4). It is verified that the optimal choice of kpto and
bpto is not influenced by the chosen lower and upper bounds. In contrast, the optimal settings
for ϕ̇pto reach the maximum allowed value of 1000 rpm, for Tp larger than the ISWEC resonant
period. It can also be seen that the optimal bpto value tends to increase, and the optimal kpto value
tends to decrease, as the sea state becomes more energetic. This can be interpreted by the fact
that, for larger amplitude motion, the viscous dissipative terms play a more important role, and
therefore it is better for the controller to somewhat mitigate the ISWEC resonance. Finally, it is
worth mentioning that the starting guess for α, in all sea states, has been set to the same values of
k(0)pto = 100kN.m, b(0)pto = 300kN.m, and ϕ̇

(0)
pto = 500rpm. This provides confidence in the fact that

4See https:mathworks.com
5https://uk.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
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Figure 7.2: Optimisation results - non-linear ISWEC model

the results obtained, in a given sea state, are not influenced by those obtained in a neighbouring
sea state.

In addition to the direct results of the optimisation procedure, it is interesting to examine
whether or not the ISWEC dynamics, under optimal control settings, are physically realistic. This
is done by calculating, based on the ten sets of random phases, the maximum amplitude reached
by several physical variables, as plotted in Fig. 7.3. For example, it would be unrealistic to see ε

(the precession angle of the gyroscope frame) take values larger than 180◦, because the dynamical
model of Eq. (6.34) is not compatible with overturning of the gyroscope frame. Fortunately,
the maximum ε does not exceed 130◦. Similarly, the maximum pitch angle is of the order of
25◦, which can still be deemed compatible with linear hydrodynamic theory [161]. Interestingly,
the maxima, for the different variables shown in Fig. 7.3, are found to be compatible with the
operational constraints, defined in [161] within the scope of an optimal control set-up for the
ISWEC device.

For the sake of comparison, Fig. 7.4 shows the optimisation results, obtained from the lin-
earised ISWEC model. While, for low sea states, both the linear and non-linear models give
similar optimisation results, in terms of optimal control parameters and optimal power, this is not
the case when Hm0 becomes larger. In particular, the linearised model optimisation yields power
absorption values up to 5 times larger than those, obtained from the non-linear model. Further-
more, it can be seen that, unlike those from the non-linear ISWEC model, the optimal PTO values
are identical for all Hm0 values, for a fixed Tp. This is because the ISWEC dynamical model is
both linear in its physical variables ry and ε, and linear in the three optimisation variables.

Fig. 7.5 shows the maximum amplitudes reached by the different physical variables already
examined in the non-linear case in Fig. 7.3. The maximum values for the pitch angle, the preces-
sion angle and the torque, are all one order of magnitude larger, compared to those obtained from
the optimally-tuned non-linear system. Concerning the pitch and precession angles, such values
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Figure 7.3: Maximum amplitude values under optimal control settings - non-linear ISWEC model
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Figure 7.4: Optimisation results - linearised ISWEC model
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Figure 7.5: Maximum amplitude values under optimal control settings - linearised ISWEC model

are completely incompatible with the range of validity of the linearised ISWEC model.
Comparing Figs. 7.2 (resp. 7.3) on the one hand, with Figs. 7.4 (resp. 7.5) on the other

hand, clearly provides further evidence, supporting the inclusion of non-linear WEC modelling,
at the control design stage, as was already evoked throughout Chapter 4, following works such as
[11, 113]. The proposed HB framework for gradient-based optimisation is capable of addressing
this challenge, by efficiently handling non-linear IDE WEC models, as detailed further in the
following.

Table 7.1 provides detailed information, concerning the computational performance of the
proposed optimisation framework6. The total time necessary to obtain the optimal PTO settings
in all 103 sea states of the scatter table was approximately 1 hour and 40 minutes, which corre-
sponds to 1 minute per sea state. Of those 60s of computation time per sea state, on average, 24s
were spent running the HB algorithm (which corresponds to the simulation, i.e. the cost function
evaluation), 19s were spent solving the sensitivity equation (which corresponds to the evaluation
of the cost function derivative), while the rest (approx. 16 seconds) can be accounted for by the
management of the optimisation algorithm, including the update of the matrix L(α) involved in
the HB equation (5.53), when the parameter vector α is modified. On average, 130 cost function
evaluations (and gradient estimations) per sea state were necessary, corresponding to 30 iterations
of the trust-regions algorithm.

The average number of HB iterations per HB problem (i.e. per cost function evaluation) was
low, at 2.16. This can be attributed to the fact that, within the gradient-based algorithm, most HB
problems which are solved are very close to each other. Indeed, at each new iterate α(k) of the
trust-region algorithm, the cost function is evaluated on average four times (as indicated in Table
7.1), to evaluate second-order derivatives through finite differences, using neighbouring values
of α sufficiently close to α(k). Therefore, those parameter values, grouped in a neighbourhood of
each iterate α(k), are extremely close to each other, which makes the neighbour-based initialisation

6All computation times are obtained from a Matlab implementation, run on a 3.50 GHz, 8-core Intel R© processor.
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Table 7.1: Computational performance of the gradient-based optimisation methodology. Results
for RK2-based cost-function evaluations are extrapolated, based on the results shown in Fig. 6.30,
assuming that the cost function derivative can be obtained using only one additional RK2 simula-
tion. c.f.e: cost function evaluation.

HB RK2 (estimated)
Total optimisation time 1h 40min. 7h 30min - 75h
Comp. time per sea state 59s 260-2600s

incl. sim. comp. time 24s 130-1300s
incl. sens. eq. comp. time 19s 130-1300s

Av. nb. of iterations per sea state 30 30
Av. nb. of c.f.e. per sea state 130 130
Av. nb. of HB iterations per c.f.e. 2.16 —
Av. comp. time per c.f.e. 0.18s 1-10s

method particularly useful, to solve each HB equation in fewer iterations. Finally, the time spent
solving the sensitivity equation is surprisingly significant, compared to the time spent on the HB
solution itself. This can be explained by the fact that, as already mentioned, the HB solution
only requires, on average, two iterations, i.e. two matrix inversions, while the sensitivity equation
requires one matrix inversion. In other words, the computational cost of solving the sensitivity
equation only seems significant because that of solving the HB equation itself is particularly low.
Furthermore, the cost function gradient could perhaps be calculated more efficiently through the
adjoint approach (see Section 7.2), leading to further computational savings.

It is interesting to hypothetically assess the performance of the proposed gradient-based op-
timisation method, where RK2 simulations are used instead of HB simulations. As discussed in
Section 7.3.1, each cost function evaluation could be carried out using RK2 simulations, allowing
some additional computation time for letting the transient response fade out. In addition, the cost
function gradient could be evaluated, by running at least one more RK2 simulation to solve the
adjoint equation7. Based on the results shown in Fig. 6.30, it can be estimated that each cost
function evaluation would take, at least, 1s (if a 0.05s RK2 time step were used). Similarly, each
cost function gradient calculation would take the same time of 1s. Thus, assuming that, in all sea
states, the RK2-based trust-region optimisation algorithm would produce the very same iterations
as the HB-based trust-region algorithm, it can be estimated that the optimisation would take be-
tween approximately 7h30, if a coarse 0.05s RK2 time step were used, and 75h, if a more refined
0.01s RK2 time step were employed.

7.4 Summary

In this chapter, the problem of parametric WEC optimisation has been formulated in a HB frame-
work, assuming that the WEC model is described by an IDE, and that all terms of the model are
continuously differentiable in the parameters. It has been emphasised that gradient-based opti-
misation techniques are particularly suitable for such optimisation problems, since they generally
require fewer cost function evaluations, compared to their gradient-free competitors.

The proposed numerical example, whereby the ISWEC PTO parameters are optimised over
a wide range of sea states, confirms the computational efficiency of the HB-based optimisation
framework. It takes, on average, one minute to carry out the 3-variable optimisation in a given
sea state. In fact, such computational performance suggests that the PTO tuning could be carried
out in real time, on a sea state-by-sea state basis, using wave spectrum forecasts available in real-
time, as opposed to the present approach which essentially constructs a look-up table assuming a

7It should be ascertained, in particular, that the inaccuracy of RK2 methods, relatively to HB, does not affect the
accuracy of the cost function gradient calculation.
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Figure 7.6: Average computation time for parametric optimisation in a given sea state, using an
exhaustive search approach vs a gradient-based optimisation algorithm (such as the trust-region
algorithm), and using RK2 vs HB to calculate the cost function and its derivative.
For RK2, the smaller computation time indicated is for ∆tRK = 0.05s, and the larger computation time is for
∆tRK = 0.01s. Concerning the exhaustive search approach, 10 discrete values are assumed for each of the
three parameter dimensions.

JONSWAP spectral shape.
There does not seem to be any fundamental obstacle to the use of RK2 simulations, to replace

the HB-based cost function and gradient evaluation, within the optimisation algorithm. In fact,
the proposed gradient-based optimisation approach is relatively independent from the method em-
ployed, for cost function evaluation. Regardless of whether RK2 or HB is used, the results of this
case study suggest that the number of cost function evaluations per sea state drops from at least
1000, if an exhaustive search approach is used, to approximately 130, using gradient-based optimi-
sation. Fig. 7.6 provides estimates for the computational time, which would be necessary to solve
the same optimisation problem as in this chapter, using either an exhaustive search approach or
gradient-based optimisation, combined with either RK2 or HB integration techniques, to evaluate
the cost function and its derivative. Combining the HB approach with a gradient-based optimi-
sation algorithm is, unsurprisingly, the most efficient option, with computational gains between
1 and 2 orders of magnitude with respect to a simple exhaustive search approach combined with
RK2 simulations. Furthermore, it should be recalled that the exhaustive search approach can only
provide sub-optimal results, since the PTO parameters are chosen amongst a discrete set of possi-
ble values - as opposed to gradient-based algorithms, which explore a continuum of optimisation
variables.

In Fig. 7.6, further computational gains could be expected from the gradient-based/HB ap-
proach, by using the adjoint approach for the evaluation of the cost function gradient. In addition,
the time indicated for the exhaustive search/HB approach does not include the time necessary to
update the system parameters and execute the loop (which, from the results presented in Table
7.1, can represent more than 30% of the time, dedicated to cost function and gradient evaluation).
Finally, concerning RK2 results, the computation time indicated does not include the necessity for
transient response expiry. Therefore, the relative differences between the four variants of Fig. 7.1
would likely be amplified, if those additional contributions could be accurately quantified.
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Chapter 8
Conclusion

For the development of wave energy technologies, several applications require extensive numerical
simulation, such as parametric optimisation, power assessment, and structural design. Such tasks
must rely on a well-understood statistical characterisation of ocean waves, which represent the
forcing input to the WEC system, and must employ computationally efficient simulation methods,
through which the WEC output, most often power production or absorption, but also possibly
other statistics of interest, can be quickly evaluated.

Wave input modelling and simulation

The Gaussian wave model, characterised by its wave spectrum, has been identified as the fun-
damental framework to analyse, and numerically simulate, the external forcing input to WEC
systems, as emphasised in Chapter 2. Concerning the numerical simulation of such forcing inputs,
it must be recalled that the usual representation of a specific wave time-series realisation, employ-
ing the superposition of a finite number of sinusoids, does not mean that the sea state is actually
composed of a finite number of sinusoidal waves. In fact, the Gaussian sea state representation
relies on the combination of infinitely many, infinitesimal, contributions.

Throughout Chapter 3, it is highlighted that wave simulation methods, relying on the superpo-
sition of non-harmonic sinusoids, present more drawbacks than benefits, with respect to harmonic
superposition methods. Amongst the two variants of harmonic superposition methods, Chapter
3 insists on the fact that the HDA method (the approach most commonly employed in the wave
energy community) is not statistically consistent, in the sense that HDA-generated signals do not
follow a Gaussian law, and do not represent the short-term variability, observed in actual ocean
waves. On the contrary, perfectly realistic wave statistics can be obtained, using a properly tuned
HRA superposition method. Yet, paradoxically, it is the HDA method which has been employed
in the vast majority of the numerical examples, presented throughout the rest of the thesis. This
is because it can be ensured that, for the applications considered, the simulation output of inter-
est, namely the average absorbed power, is calculated with no bias using the HDA method, while
requiring a significantly smaller number of numerical simulations than if the HRA method was
employed. Therefore, it may well be the case that, for some applications such as power esti-
mation, the HDA method has more practical value than the theoretically-correct HRA method.
However, one should never loose sight of the implications of using the HDA method and, for each
specific output evaluated, numerical verifications, such as that presented in Section 6.6, should be
systematically considered, either at a preliminary stage or ex-post, to determine whether the HDA
method results in unbiased estimates, with respect to the HRA method. In other words, choos-
ing the HDA method, over the HRA method, should be the result of a conscious and informed
decision.
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The harmonic balance method for the numerical simulation of non-linear WEC
models

To improve the computational efficiency of WEC numerical simulations, two routes may be iden-
tified:

• Structure the WEC physical model to obtain a mathematical form amenable to the most
efficient numerical solution methods. Typical examples include linearisation techniques
(which allow the WEC response to be calculated in the frequency domain), and state-space
approximations for the linear radiation memory term (which allow the WEC response to be
calculated in the time domain, without evaluating a convolution integral at each time step).
The drawback of these approaches is the loss of fidelity incurred, respectively, by ignoring
non-linearity and by the finite-order approximation of the memory term.

• Extend the range of numerical simulation methods, considered by wave energy researchers
and engineers. This is the route followed in this thesis, by proposing the harmonic balance
method for the simulation of some non-linear WEC model types, for which time-domain
integration routines were previously considered to be the only viable simulation techniques.

With wave inputs, simulated using a harmonic superposition method (HDA or HRA), the
forcing terms of WEC dynamical models are periodic. The HB method constitutes a pertinent
mathematical technique to calculate the steady-state response of such systems. In this thesis, the
HB implementation is detailed for those WEC models which take the form of non-linear integro-
differential equations (IDEs). As discussed throughout Chapter 4, non-linear IDEs can represent
a variety of non-linear WEC models which combine two challenging components: a linear convo-
lution term, and forces which are non-linear in the system variables.

The benefits of the HB approach, in terms of numerical accuracy, can be anticipated from the
mathematical foundations of the method, and from the nature of the non-linearities present in a
specific WEC model, as discussed throughout Chapter 5. In contrast, the practical value of the
HB framework, which is determined by the performance trade-off which the method allows (be-
tween numerical accuracy and computation time) can only be determined by means of numerical
experiments, including a comparison with a more standard method. The approach retained, and
thoroughly developed in Chapter 6 of this thesis, consists of comparing the results and compu-
tational performance of the HB method with a second-order Runge-Kutta (RK2) method, using
various time-steps. The choice of a RK2 method is based on two factors. Firstly, the method
is governed by only one parameter, i.e. the time step length, and it is guaranteed that the RK2
results tend to the exact mathematical solution, as the RK2 time step tends to zero. Secondly, the
method employs a constant time step, which makes it straightforward to numerically calculate the
full convolution product, corresponding to the linear memory terms in the WEC model IDEs.

The results, shown in Chapter 6 of this thesis, suggest that the HB method can reduce the
computation time (per second of simulated signal) by one to three orders of magnitude, compared
to those RK2 schemes where the radiation terms are calculated from the full convolution product.
Furthermore, the fact that the RK2 solutions converge to the HB solutions, as the RK2 time-step
tends to zero, provides strong evidence to support the accuracy of the HB method, particularly
when it comes to calculating the radiation memory terms.

RK2, however, is by no means a universal solution for time-domain numerical integration in
general. Other constant time-step routines, such as the fourth-order Runge-Kutta method, are more
accurate than the RK2 approach for a given time step length, but also require more function evalu-
ations at each time step. Alternatively, numerical schemes with adaptive time-steps may provide a
more favourable trade-off than RK2 methods, between computation time and accuracy. However,
in such numerical schemes, the calculation of the full convolution integral is problematic, because
simulation results are not stored at equally-spaced sampling instants. Therefore, such methods
are more suitable for cases where the convolution product is avoided, i.e. when the memory term
is approximated by means of a state-space representation. Yet, in Chapter 6, the example of the
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four cylindrical HPAs illustrates the possible dangers associated with state-space approximations.
Although the inaccuracies, introduced by the approximation, may seem negligible in some oper-
ational conditions, especially away from resonance, the results of Chapter 6 also suggest that in
resonant conditions, the inaccuracies may be exaggerated, and result in significant errors, for ex-
ample in power estimates. In fact, the inaccuracies, introduced by the state-space approximation,
are one order of magnitude larger than those, resulting from the numerical integration scheme.

The benefits of the HB method are not limited to the accuracy and computational efficiency
achieved. The approach also provides an interesting framework to explore the sensitivity of the
steady-state solution of a WEC model, as some WEC parameters vary. Since the solutions are
stored as a set of Fourier coefficients, their manipulation is easier than that of time-domain inte-
gration routines, which must be specified at each time-step (which, in the case of adaptive time-
step routines, may become particularly impractical). Using the HB method, the similarity between
the solutions of neighbouring problems (i.e. problems where the parameter values are close to
each other) can be exploited, to further reduce the computation time. Furthermore, the sensitiv-
ity equation can be solved easily and efficiently, and used within the scope of WEC parametric
optimisation.

In this thesis, all the WECs considered have models which lend themselves reasonably well to
the HB method, since their non-linear terms are continuous, with continuous first-order derivatives
(but discontinuous second-order derivatives, because of the quadratic drag term). The smoothness
of the non-linearities is a major determining factor in the HB performance, in terms of computation
time and accuracy. Non-smooth non-linearities, such as discontinuous forces and motion which
may occur due to Coulomb damping, negatively affect the HB performance, because they require
the addition of many more harmonics to achieve a satisfactory accuracy, and because the residual
derivatives are not well-defined. Such cases have been briefly investigated by the author [152].
In [152], the discontinuities (characterised by a step function) can be approximated by means of
smooth functions, but when the approximation becomes more accurate, the HB computational cost
becomes comparable to, if not larger than, that of TD integration. Conversely, infinitely-smooth
non-linearities (i.e. non-linearities of which the derivatives of any order exist and are continuous),
such as polynomial functions, enhance the performance of the HB method. In summary, it is not
true to say that the HB method, as shown in this thesis, would work equally well for any type of
WEC model non-linearities.

Overall, the comparison with RK2 results, presented in this thesis, cannot be considered to
provide a complete overview of how the HB competes with time-domain integration in general.
However, the method is doubtlessly an interesting addition to the range of simulation techniques,
usually considered for the numerical simulation of non-linear WEC models.
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[11] M. Penalba, A. Mérigaud, J.-C. Gilloteaux, and J. Ringwood, “Nonlinear froude-krylov
force modelling for two heaving wave energy point absorbers,” in Proceedings of the 11th
European Wave and Tidal Energy Conference (EWTEC 2015), Nantes, France, 2015.

[12] S. A. Sirigu, G. Vissio, G. Bracco, E. Giorcelli, B. Passione, M. Raffero, and G. Mattiazzo,
“ISWEC design tool,” Int. J. Mar. Energy, vol. 15, pp. 201–213, 2016.

[13] G. Vissio, G. Bracco, E. Giorcelli, G. Mattiazzo, D. Valério, and P. Beirão, “ISWEC control
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pp. 103–126, 2008.

[159] C. Grosan and A. Abraham, “Hybrid evolutionary algorithms: methodologies, architec-
tures, and reviews,” in Hybrid Evolutionary Algorithms, pp. 1–17, Springer, 2007.

[160] G. Allaire, “A review of adjoint methods for sensitivity analysis, uncertainty quantification
and optimization in numerical codes,” Ingénieurs de l’Automobile, vol. 836, pp. 33–36,
2015.

[161] M. Raffero, M. Martini, B. Passione, G. Mattiazzo, E. Giorcelli, and G. Bracco, “Stochastic
control of inertial sea wave energy converter,” The Scientific World Journal, vol. 2015, 2015.

212
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