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Abstract

Place recognition in a visual SLAM system helps build and maintain a map from multiple traversals
of the same environment while closing loops to correct drift accumulated over time. Despite the marked
success in visual place recognition research over the past decade, it remains a challenging problem in the
context of variations caused due to different times of the day, weather, lighting and seasons. In this paper,
we address this problem by progressively training convolutional neural networks in a siamese fashion to
generate embeddings that encode semantic and visual features for sequence-aligned image pairs taken at
different timescales and viewpoints. We present early results of the approach using Freiburg visual place
recognition benchmark dataset consisting of aligned outdoor image sequences taken over extended time
periods that include the variations mentioned above.
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1 Introduction

Figure 1: Images of the same place
taken at different times, demonstrat-
ing the challenge of place recogni-
tion in the context of extreme changes
in visual appearance. Image Credits:
[Graver, 2013]

Estimating the pose of a robot and building a map of its en-
vironment at the same time, aka. Simultaneous Localization
and Mapping (SLAM), is a central build building block of in-
telligent mobile robots. Place recognition is an important mod-
ule in SLAM systems in that it plays a significant role in
building more accurate maps by correcting the estimated trajec-
tory of the robot when it revisits previously mapped regions.
Although the traditional approaches [Sivic and Zisserman, 2003],
[Cummins and Newman, 2011], [Gálvez-López and Tardós, 2012] us-
ing Bag of Visual Words (BoW) approach permitted a reliance on vi-
sual place recognition within SLAM systems, they lacked the repeata-
bility and robustness required to a deal with the challenging variability
that occurs in natural scenes caused due to different times of the day,
weather, lighting and seasons (see Figure 1).

With the advent of Convolutional Neural Networks (CNN) and
their compelling results over traditional methods in tasks such as se-
mantic segmentation and feature learning, more recently researchers
have sought to improve robustness by incorporating semantic, ge-
ometric, and topological information from the scene using CNNs.
Segmap [Dubé et al., 2018] uses CNNs to eliminate moving objects
using semantics and to generate compact embeddings for 3D objects. LoST [Garg et al., 2018] uses conv5
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layer of modified dense semantic segmentation neural network RefineNet [Lin et al., 2017] to generate em-
beddings. Embeddings are generated for each keyframe during the traversal, and each time an embedding is
stored, it is compared to existing embeddings and the embeddings distances are computed. Images that have an
embedding less than a defined threshold are further eliminated by matching maximally activated regions in the
image to find the final loop closing candidate.

Validity of embeddings generated using pre-trained CNNs has a significant dependency on the training data.
For example, RefineNet was pre-trained on CityScapes dataset. Cityscapes contains images from different cities
and does not contain sequences that were shot at different times of the day, weather and scene types. Hence the
network does not work as intended on images shot in conditions it has not previously seen. Retraining these
networks with such images would be hard as it is a tedious and expensive task to obtain ground truth dense
semantic segmentation labels.

In this paper, we present a deep learning based approach that aims to achieve this by leveraging the semantic
and photometric information in an image within a single framework for place recognition. In particular, we train
a deep convolutional neural network in a siamese configuration with a contrastive loss to map input images to an
embedding space that aims to minimise the distance between embeddings of the same place, whilst maximise
the distances between embeddings of different places. In this approach, we generate embeddings directly from
images where the semantic and visual information are implicitly encoded by the network without the presence
of ground truth labels. By training the network in a siamese fashion, we can remove the direct dependency on
semantic labels or feature descriptions and instead train over pairs of images of the same place taken at different
times. We provide the first results of the application of the approach to a publicly available place recognition
benchmark dataset.

2 Methodology

We train our convolutional neural network in a siamese fashion to generate compact image embeddings, where
the network implicitly encodes semantic and visual features. We force the network to output similar embeddings
for images of the same place and embeddings that are farther apart in the embedding space for images that are
not of the same place.

2.1 Loss Function

In a siamese type network, the network consumes two images (referred to as Ileft and Iright from here) at once
as input along with the ground truth label. The network uses two branches to get two embeddings (for Ileft and
Iright) but as weights are shared for left and right branches they do not take up twice the amount of space. We
use Contrastive Loss [Hadsell et al., 2006] to achieve this behaviour which introduces two parameters to tune;
margin m and threshold γ. These parameters can be adjusted empirically from the results of initial training.
The contrastive loss is given by,

J (Ileft, Iright, y) = yd 2 + (1− y)max(m −d 2,0) (1)

where,

J = the loss function
Ileft, Iright = image pair, one row of training data

y = ground truth boolean, true if Ileft and Iright are images of the same location, false otherwise
d = the distance between the embeddings computed for Ileft and Iright

m =margin

During inference, match prediction ŷ (if Ileft and Iright are images of the same location) is computed as True
when d ≤ γ and False otherwise. The matching threshold γ is initially set to half the margin during the training
phase and then the Receiver Operating Characteristic (ROC) curve is be used to fine tune the threshold γ for
inference by choosing the right trade-off between precision and recall.



2.2 Network Architecture
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Figure 2: Network Architecture

We use a siamese configuration with different backbones:
VGG-16 [Deng et al., 2009], ResNetv2 [He et al., 2016]
and Inceptionv3 [Szegedy et al., 2016], all pre-trained on
Imagenet [Deng et al., 2009]. To get embeddings of same
size, we include the final dense layers for VGG-16, and
use global average pooled outputs from topless1 models
for ResNetv2 and Inceptionv3.

2.3 Data Augmentation

Deep neural networks require large amounts of training data for better generalization. Due to the low number
of training examples, we augmented our data with a series of random transformations (randomized for each
image, every epoch) where the images were cropped, rotated, translated and zoomed. It should be noted that
when performing these transformations we do not fill the empty pixels which may be filled using constant, same,
reflect or wrap modes [Chollet et al., 2015], as this might lead to synthesizing images that may not imitate what
we would encounter in the real world. Instead, we zoom the image and perform an aspect-ratio-preserving
centre-crop to achieve a similar result.

3 Experiments

We use sequence-aligned images from the Freiburg visual place recognition dataset [Naseer et al., 2014], which
contains 674 image pairs. For each matching pair of images in the dataset, we generated a non-matching pair
picking a reference image at random2. We obtained a total of 1348 image pairs, exactly half of which are
matching pairs, while the rest are non-matching. We sliced the data twice with different regions as test data.
Split 1: Here the first one-third (450 image pairs) is used as test data for evaluation and the remaining two-
thirds of the data (898 image pairs) is used for training. Split 2: Here the last one-third is used as test data
and the first two-thirds is used as training data. In both cases, the last 33% of the training data (300 of 898
image pairs) was used as validation data to monitor and improve the performance of the network. All images
were centre-cropped preserving aspect ratio to 224×224×3 for VGG (fixed resolution due to dense layers) and
270×480×30 for ResNet and Inception. Each network was trained with a margin m of 1.0. We used a value
of 0.5 for γ, the separation threshold for matches and non-matches. Experimental results are shown in Table 1.

Backbone VGG-16 ResNet v2 Inception v3

Split 1

AuC 0.9533 0.9681 0.9198
AP 0.9534 0.9607 0.9354

Split 2

AuC 0.6533 0.9668 0.5281
AP 0.5768 0.9743 0.5814

Table 1: Experiment results showing Area under
Curve (AuC) in the ROC graph and Average Pre-
cision (AP) for each model in siamese settings.

It should be noted that in each of the experiments
above, the dataset is limited in scale and so the results
only provide an indicative measure of each model’s po-
tential performance. We further noticed that two models
do not perform well in Split 2, due to repeated frames
i.e. the models tend to overfit due to lack of variability
in a limited data setting. As such, in order to comprehen-
sively evaluate the proposed approach a considerably larger
dataset is required. For example, here both the training
and test samples, although separated, are drawn from the
same database. In order to truly evaluate a system’s real-
world performance, it is important to utilise both a large
image dataset and to incorporate images from different data
sources. This is the focus of our current work.

1with the final fully connected and classification layer removed
2random but not within the previous or proceeding 20 frames of the actual reference image



4 Conclusion

We have presented an approach to robust place recognition for challenging conditions, invariant to viewpoints,
changes caused by seasons and different times of the day. To do this, we use convolutional neural networks in
a siamese fashion to learn an image embedding space. Results were presented where we evaluated the trained
models on images from the Freiburg visual place recognition dataset demonstrating promising performance.

We are currently carrying out further training on different and more extensive datasets with sequences
aligned, both with and without the help of local feature descriptors. Our aim here is to ensure that the model
will benefit from using local image features, but also, operate on images with challenging conditions where
local feature descriptors would struggle to find matches. A comparison with state of the art over image pairs
chosen from a variety of datasets is necessary to give a closer measure of the true performance of our model
and helps to estimate the real world performance. Further, evaluation needs to be performed by integrating the
place recognition system within a SLAM pipeline, to better understand its performance in a complete system.
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