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Abstract

Estimating the average generation of a collection of cells is helpful in under-
standing complex cellular differentiation processes, identifying carcinogenic
cellular activities, and quantifying the ageing of the immune system. Differ-
ent techniques based on both direct observations and indirect inference have
been proposed, with benefits and limitations varying in the two categories.

In this thesis we enhance the mathematical results underpinning one of these
inference methods, firstly proposed by Weber et al. in 2016 [116] and based
on a DNA coded randomised algorithm. Assuming some sort of structure in
the growth of a cell population, with the use of Branching Processes and Re-
newal Theory, we establish improved convergence properties of the proposed
estimator to the average generation. Expanding and homeostatic populations
are studied, allowing the method to be used for more complex patterns of
population dynamics that includes the succession of these two phases. Fur-
thermore, we establish the possibility of using the same method in a two-type
branching process, obtaining a possible criterion to distinguish among some
differentiation models in hemapotoiesis. A quality study of the model allows
also us to establish values of the parameters which improve the performance of
the estimator. Computer simulations, with parametrisations coming from the
immunology field, are along the results with both a validation and exploratory
purpose.
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CHAPTER 1
Introduction

1.1 Motivation
Every day our body produces millions of cells in order to extend, repair, and
renew all its tissues. In order to do that and produce the wide variety of cells
we need, processes of cellular division, differentiation and death are continu-
ously in place. Fig. 1.1 describes a generic process of this type. Here, with the
use of a tree structure, the relationships between a cell and its descendants
are highlighted, showing not only the divisions occurred, but also the deaths
and the changes of cell type. In mathematics, this is not the typical way to
represent a family history, where usually the ancestor is at the top of the tree
and the descendants at the bottom, but Fig. 1.1 provides also a temporal con-
text that gives us more an idea of movement, thanks to a horizontal time-line.
The situation illustrated by Fig. 1.1 occurs throughout our bodies, and now
we will give three specific examples that help contextualise the motivation for
the mathematical work undertaken in this thesis.

Let’s think of the processes that allow the creation of a tissue starting from
tissue-specific stem cells. The latter are cells that have two special features:
following a differentiation process, they are able to generate all the different
cells a tissue is made of; they have the ability to indefinitely give birth to cells
of their own type (i.e. they are said to be self-renewing). In particular, let’s
focus on the hematopoiesis, the process by which 1011 − 1012 blood cells are
formed each day in a typical human [19]. Compared to other tissues, the stem
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time 0 t 

Figure 1.1: Cell population growth. Under appropriate stimulation, a cell
undergoes a process of division that leads to the birth of 2 new cells. The
plot in the figure describes the growth of a population that starts with one
cell at time 0 and, after consecutive divisions, is made up of 5 cells at time
t. In this time frame, cells can be also subject to death (crossed circles) or
differentiation, i.e. change of type (change of colour).

cells of the blood system are easier to locate, collect, and study using in vitro
cultures, and this makes them popular among both experimental and theo-
retical researchers [87]. Red blood cells, neutrophils, lymphocytes, and all the
other cells that constitute the blood are ultimately products of Hemapotietic
Stem Cells (HSC) as a result of a differentiation process. For many years this
differentiation process has been seen as the directed tree in Fig. 1.2, where
every movement in it was corresponding to a major degree of differentiation,
i.e. to a more restricted lineage potential. From that viewpoint, myeloid (ery-
throcytes, neutrophils, etc.) and lymphoid (T cell, B cells, etc.) lineages are
separated early on at the stage in which are produced the Common Myeloid
and the Common Lymphoid Progenitors (CMP and CLP). Recent work has
challenged this model, questioning in particular the uniqueness of the path
that brings to each cell type [87] or the fact that the CMP-CLP split is the
first step of commitment [88, 52]. Understanding the differentiation stages in
which biological cues can determine the fate of the differentiation process is
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Figure 1.2: Classical hematopoietic tree. The prevailing hematopoietic
model of the last 3 decades can be drawn with various level of details [94, 37].
Here, for illustration, we detail only few layers. Hematopoietic Stem Cells
(HSCs) are self-renewing and capable of generating all the types of blood
cells. After division, they can either give birth to HSCs or Multipotent Pro-
genitors (MPPs), cells that retain HSCs potential but are unable to self-renew.
So, they can only differentiate in either a Common Myeloid or Common Lym-
phoid Progenitors (CMPs and CLPs). At this stage we have the separation
between the myeloid and the lymphoid branches of the lineage. In particular,
Myeloid cells (M), such as erythrocytes and neutrophils, come from CMPs,
while Lymphoid cells (L), such as T and B cells, come from CLPs. According
to this model, Dendritic Cells (DCs) are the only blood cells that derive from
both CMP and CLP.

still a matter of research.

Another example of a process characterised by division and differentiation
is an adaptive immune response to an infection. Adaptive immunity is the
part of the immune system that provides a tailored response to infections. It
does so by integrating information from direct observation of the pathogen,
from signals coming from other cells that have recognised the presence of
the pathogen, and from previous exposures to the same threats. The two
most important components of this group are B and T cells, both parts of
the lymphocytic population. The adaptive immune system starts to operate
when the organism recognises an antigen, the general term used to describe
any substance that can trigger an adaptive immune response (Fig 1.3). Each
B and T cell constitutively presents on its surface a specific antigen receptor,
as a result of a random process that makes it unlikely for two members of
the population to have the same receptors. At this stage these cells are called
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1.1. Motivation

naïve for the fact that they have not been exposed to any antigen yet. Once
an antigen is encountered for the first time, we have the so called primary
response, where B and T cells that bind to the antigen receive signals to
activate a clonal expansion. In this way, from a pool of few specific fighters (5-
500 cells [61]) it is possible to construct an army against the antigen. Because
of this specific antigenic process, usually it takes 1-2 days before the clonal
expansion starts, during which time a series of checks and balances takes place
in order to be sure of the presence of an infection [84, Chapter 11]. Different is
the situation if the body has already seen the antigen before, where in this case
we will talk about secondary response. After the end of a primary response,
some B and T lymphocytes, kin of the ones that fought the antigen during the
first encounter, are kept alive allowing a reaction to a second antigen exposure
very fast, most of the time without any symptoms. These cells, called memory
cells, are more sensitive to stimulation than naïve cells, having less stringent
requirements for activation, and this reduces the time required for them to
start a new clonal expansion. A description of the clonal expansion B and
T cells are subject to can be seen in Fig. 1.4. Memory cells are able to live
even for all our life, and are distinguished from the cells that actively fight the
infection called effector cells, which are killed once the threat is disappeared.
Both types are produced for the first time during the primary response from
the naïve ones, but the correct order is not still clear [16, 64]. Stimulate the
production of antigen-specific memory cells with small and controlled amount
of antigen is the idea behind any sort of vaccinations.

Studying processes of division, differentiation, and death is not only important
to understand the daily processes that determine the correct functioning of our
body, but also to have insights on possible criticalities that can put us in dan-
ger. This is the case for example for the process that brings to the formation
of a cancer. During its life, a cell can be subject to DNA damage. There can
be an error during the replication of the DNA (e.g. mismatched bases), some
gene alterations caused by environmental agents (UV light, alkylating agents,
etc.), or even a spontaneous DNA damage [76]. These are not rare events and
the reason why we normally don’t have consequences is that cells have also
mechanisms that allows them to repair these errors. However, the majority
of cancer cells arise from the accumulations of mutations in the normal DNA
sequence, that cannot be repaired by the cell, and cause an increase of the
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Figure 1.3: Clonal selection. Illustration that explains the process that
brings an antigen to trigger the expansion of pathogen-specific B cells. Red
dots represent antigens expressed on the surface of the blue cell on the left.
The green cells are B cells, each of which has its own B Cell Receptor (BCR).
The cell whose BCR is complementary to the antigen and so forms a good
bond, is activated and starts dividing, creating a clonal army that can fight
the infection [84].

replicative capability of the cell. So, Fig. 1.1 can also describe the process
that gives birth to a cancer cell and lead to the formation of a tumour. Even
if all the cancer populations have in common the faster growth rate compared
to healthy ones, not all the cancer are characterised by an increase in the
frequency of division. Indeed, it has been seen that some of them obtain the
same result by only escaping from death. New drugs, as Venetoclax, target
proteins central for the survival of the these cells [96].

So, divisions, differentiations and deaths are presents in a lot of regulatory
processes inside our body. In generality, let’s consider a growing cell popula-
tion. For each descendant, let’s call generation the number of divisions that
led to that cell. The members of the initial population will be defined to have
generation 0. Fig. 1.5 describes the generation counting for the descendants of
a cell in a time frame t. In a cell population, generation dependent behaviour
has been implicated in the risk of cancer and its evolution [33, 77, 110], as well
as being a determiner in the complex differentiation dynamics of proliferating
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Figure 1.4: Non-data description of T cell reaction during immune
response. The plot in the figure is adapted from [62]. Before antigen first
exposure, the population of naïve T cells specific to the pathogen is around 5-
500 units. Once they encounter the pathogen, we have to wait 1-2 days before
they start the clonal expansion [84, Chapter 11]. During the expansion phase,
the number of T cell specific to the pathogen grows exponentially (sometimes
over 10,000 times the original number [102]) allowing them to fight and extin-
guish the pathogen population (7-12 days post infection). After the resolution
of the infection, it starts a contraction phase, in which around 90-95% of the
T-cells produced die out [102]. The T cell population comes out from the
infection enlarged (100-1000 as many as prior to infection) and enriched from
a pool of memory cells, that are able to respond with greater effectiveness
in case of re-infection. In fact, in case of a second encounter with the same
pathogen, the secondary response will be faster thanks to the fact that there
are more T cell specific to the pathogen, and that the memory cell are quicker
in respond upon antigen detection. The secondary response will go through
the same steps (activation, expansion, contraction, and memory phase) but
will be faster than the primary one.
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Figure 1.5: Generation counting in a cell population. The growth of
the cell population described in Fig. 1.1 is reobserved. This time, every cell is
also equipped with the information concerning its generation (white number
inside every circle).

cell systems [47, 108, 112, 46, 26, 118, 24, 74].

If we dispose of information concerning the sizes of starting and final popu-
lations, and assuming that cells with same generation divide simultaneously,
giving always birth to 2 cells (i.e. with no death), we can estimate the gen-
eration of the cells without problems (Fig. 1.6(a)). In all the other cases,
the number of members of the population is not enough to infer information
concerning the generation of it, not even their average generation (Fig. 1.6(b)).

In the next section we will describe some of the experimental techniques that
have been developed to accomplish this task.

1.2 Techniques for the estimation of the
average generation

A range of experimental techniques have been developed that allow evaluation
or estimation of the generations of cells. Due to the possibility to have a
greater control on the variables of the experiment, most of these techniques
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Figure 1.6: Population size doesn’t typically determine the average
generation. (a) When a population of cells grows synchronously and is not
subject to death, it is possible to find the generation g of the living cells using
only the size of the population at a single time. In fact, if the population was
originated by n cells, the size of the living population would have to be 2gn
(orange box, n = 1, time t, size = 2, g = 2). (b) In presence of asynchronism
or death, knowledge the number of cells alive at a single time does not uniquely
determine the average number of divisions that lead to to the living cells (i.e.
the depth of the family tree).

have been developed for in vitro studies, i.e. for situations where cells are let
grow in a controlled environment, such as a culture dish. However, recreating
in a laboratory the exact same conditions in which a cell population normally
grows is not possible, because of the myriad of interactions a cell can be
influenced by. So, the in vivo setting, i.e. the scenario where a cell population
is studied inside the organism it belongs, remains the biggest challenge and
the preferable case for the researchers. Adapting in vitro techniques to in vivo
experiments is not always possible, because we are not always able to obtain
the required information outside a culture dish. Even when this is possible, the
measurements are usually subject to greater noise in the in vivo experiments,
making the method useless.

Technological progresses bring to the development of new techniques to ob-
serve cells in vivo, but methods based on inference rather than on direct
observations are the most informative at the moment. With the use of limited
amount of information and probabilistic techniques, these techniques can infer
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Figure 1.7: Average generation. (a) With the progenitor being defined to
be in generation 0, the total generation of the process at any time is the sum
of the generations, i.e. the number of edges back to the root of the tree, of
living cells (orange box, G(t) = 3 + 3 + 2 = 8). If Z(t) is the size of the
population at time t, the average generation is the total generation divided
by the number of living cells, G(t)/Z(t) = 8/3 = 2.67. (b) The randomised
algorithm proposed in [116] for inferringG(t)/Z(t) is based on having a neutral
label in the initial cell that is independently lost with probability p during
each cell’s lifetime (indicated by a black cloud) and is not regained by further
offspring once lost. If the proportion of label-positive cells can be measured
and the probability of label loss, p, is small, then the following relationship
holds G(t)/Z(t) ≈ −1/p log(Z+(t)/Z(t)) in two approximate senses more fully
explained in [116].

the generation of a cell. If on the one hand the results so obtained are not
deterministic, on the other hand they provide answers in situations where the
other methods give a poor description. This is the case, for example, when
we work with big populations or when we follow the growth of a population
for long times.

In the following, we will give a short description of the most used methods,
dividing them in two classes: techniques based on direct observations and on
inference methods.
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1.2. Techniques for the estimation of the average generation

1.2.1 Direct observations based techniques
Time lapse microscopy

One of the oldest and most popular way to track entire lineages of cells is the
use of a time lapse microscopy [89, 106, 107, 44, 36, 35, 95]. This technology
consists of a microscope that is also able to record images of the field of view
at discrete times for a fixed time [29]. The photos thus obtained, are then
played consecutively at a faster rate than the one at which they have been
captured, creating a movie in which the time grows faster than normal. In
this way, if a cell population is let grow in a culture dish, we are able to follow
its growth and recreate entire cellular lineages.

The first time-lapse films of cultural cells were made in France back in 1907,
but only in 1914 the first purpose-built microcinematographic apparatuses
become commercially available in Europe [68]. Since then, technological im-
provements in the photography field and in the techniques to highlight the
cell components, have allowed an enhancement of the quality of the images
and so of the utility of the instrument.

This technique provides the best performances for in vitro studies, where
most of the factors that obstruct the view can be eliminated or controlled.
However, it is also used for in vivo experiments where the region of interest
is easily accessible and not in deep [70, 13]. We need special microscopy for
these experiments, time-frames are typically limited and we cannot track cells
that leave the immediate, unconstrained region being observed.

Another significant limitation of time-lapse microscopy is the fact that cells
cannot accurately be followed for a long time. After a while, it becomes
impossible to establish the relationship between cells across frames, both be-
cause cells become numerous in the field of view and because they move in the
medium and start to gather in tridimensional structures [29]. This forces us to
study small size population, and even in this case the time lapse observation
provide useful information only up to 10 generations.

Fluorescent dye dilution

Another popular methodology to estimate the generation of a cell popula-
tion is the fluorescent dye dilution. It consists of staining initial cells with a
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fluorescent dye such that with each division cells inherit approximately half
of the molecules from their parent and thus fluoresce with half their inten-
sity [73, 71, 43, 90]. A cell’s generation can thus be inferred from its luminous
intensity via a technology called flow cytometry. Fig. 1.8 gives an illustration
of how this technique works.

This method was first introduced in 1994 [73], and since then it has been
the most used one for analysing in vitro and in vivo division of lymphocytes
and other hematopoietic cells [72]. In general, this high throughput approach
is suitable for adherent cells that cannot be tracked optically, and can be
used for in vivo adoptive transfer experiments, where cells are transplanted
from one animal into another. In most applications division tracking dyes
are used to determine the distribution of a population across generations, but
recent developments have created an experiment design where the offspring of
individual clones can be identified via colour multiplexes of distinct division
diluting dyes [75, 49]. Genetically modified mice also exist that enable an
inducible equivalent of a division diluting dye in vivo without the need for
adoptive transfer of ex-vivo stained cells, e.g. [32].

Although these methods allow us to work with cell population of any size, it
gives us the possibility to follow them only for 7-8 generations. Indeed, after
that the fluorescent signal-to-noise ratio is too low for a cell’s generation to
be reliably determined.

1.2.2 Inference based techniques
In the previous section, we have seen that there are situations, where it is not
possible find the generation of a cell through direct observation. This happens
for example when we are interested in following the cell population for more
than 10 divisions, or when we are not able to find the required information
from the in vivo experiment. A solution in these situations is given by methods
that rely on inference rather than on direct determination. Let’s describe two
of the most known techniques.

Telomere length

In all eukaryotic cells, at the end of each chromosome, we find special nu-
cleotide sequences that prevent chromosome end-to-end fusions and enable it
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Figure 1.8: Average generation estimation through fluorescent dye di-
lution. The plot describes the growth of a population where cells have been
incubated with a fluorescent dye, such as CarboxyFluorescein Succinimidyl
Ester (CFSE). Each time a cell divides, the amount of CFSE present inside
it is perfectly divided between the two daughters, causing them to fluoresce
with half of the intensity. The generations of the cells can then be analysed
by flow cytometry, which will provide us with an histogram with the CFSE
fluorescence. Through this histogram it is possible to know the size of the
populations at each generation. This assay is able to detect up to 7-8 cell di-
visions, after which CFSE fluorescence can no longer be measured [81]. While
this first dye is fluorescent green, more recent dyes are available in a range of
colours.

to be efficiently replicated without loss of important genetic material [3, pg.
263]. These regions are called telomeres.

In most somatic cells, i.e. the cells that form the body of the an organism,
telomeres lose 50 to 100 base pair (bp) at every cell division [50] due to incom-
plete end-replication [83]. When the critical length is reached, they lose the
capacity to divide, and cells either die by apoptosis or enter senescence [45],
i.e. a status of permanent cell cycle arrest.

Telomere length is usually reconstructed thanks to the telomerase, an enzyme
that adds to the telomere new nucleotide sequences repeats. Despite the
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existence of a mechanism to repair the part of telomere lost, it seems that
this is not enough to keep constant its length [99]. So, the telomere length
provides indirect information about the replicative history of a cell that can
be used to estimate the generation of the cell.

Studies that make use of measurement of average telomere length in order to
estimate replicative tree depth in vivo are [41, 4, 113, 117, 99, 46].

Somatic mutations

During its lifetime, a cell can collect a series of changes in the DNA sequences
that may or may not have an impact in the phenotype or the functioning of the
cell. When a cell divides, these mutations, together with the ones that rise
from errors during DNA duplication, are transmitted to the daughter cells,
which in turn will start to collect its own. So, from the sequencing of the
genome of a cell, in theory should be possible to infer its ancestry.

As examining the whole genome of a population of cells is not currently fea-
sible, one can focus on studying the mutations in particular regions of the
DNA. To make sure that these regions are informative, it is better to choose
areas of DNA characterised by a higher mutation rate. Microsatellites, also
called Short Tandem Repeats (STRs), are some of these regions and are con-
stituted by the repetition of short (1-6 base pairs) DNA motifs. A mutation
in microsatellites causes the deletion or addition of 1-2 repeats of the DNA
motif in the sequences and so the length of it can be used to establish the
degree of relationship existing among individuals. The high level of polymor-
phism makes microsatellites useful for different applications. Very famous is
the use for forensic identification, where since November 1997 microsatellites
have been used by the FBI to link criminals with the scene of crime.

Examples of work that use the number of mutations in microsatellite regions
to establish the generation of the cells are [104, 111, 105, 114, 91, 17].

1.3 Branching processes as mathematical
models of population dynamics

In Section 1.2, we have briefly described some of the most popular experimen-
tal techniques to study the average generation of a cell population, highlight-

13



1.3. Branching processes as mathematical models of population dynamics

ing pros and cons in both in vitro and in vivo settings. In this section we
introduce the most commonly used class of mathematical models that allows
the description of the growth of a population of replicating objects via a tree
structure that develops in time: the branching processes. Our intent is to
give an introduction of the mathematical framework we work in starting from
Section 1.4, where we recapitulate and explain a recently proposed inference
method that is the motivation for the work in this thesis. More information
on the processes that we briefly describe in this section can be found in books
such as [42, 78, 10, 55, 63]. For an historical reconstruction of the differ-
ent mathematical models used for characterising population dynamics, and in
particular on the evolution of branching processes, we also refer to [58, 11].

The first branching process model, which started the whole theory, is called
Galton-Watson branching process. Named after Francis Galton (1822-1911)
and Henry William Watson (1827-1903), British polyhistor and mathemati-
cian respectively, this process was introduced in a paper in 1875 to study the
probability of extinction of family names, a cause of concern among aristocrats
of the Victorian age [115]. In the simplest form of a Galton-Watson process
every member of the population, independently of each other, is substituted
by a random number of offspring, according to a common probability distri-
bution, N , at integer lifetimes that correspond to generations. That is, this
process is synchronous, with all members of the same generation counted as
being alive at the same time. We denote by Zn the number of individuals in
the n-th generation and we assume Z0 = 1. Due to the independence assump-
tion, if we can deduce properties of the system with Z0 = 1, the ones with Z0

generic will automatically follow. An example of growth population modelled
with a Galton-Watson branching process can be seen in Fig. 1.9(a).

Given the number of offspring of an individual does not depend on its gen-
eration or others members of the population, the Galton-Watson branching
process is characterised by the fact that its status at each generation depends
on the past only through the number of members of the previous generation.
This property will later be called Markov property (e.g. [93, Chapter 2]). This
recursive structure enables computation of important quantities of the model,
such as the Probability Generating Function (PGF) and the moments of Zn,
in an iterative way. This was noticed by Galton and Watson, who also dis-
covered that the probability of extinction of the family was a fixed point of

14



1.3. Branching processes as mathematical models of population dynamics

generation 
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(a) Galton-Watson
time t 0 
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Figure 1.9: Galton-Watson and Bellman-Harris branching trees. In
the figure we provide a tree representation example of the growth of a popula-
tion according to two models of branching processes. (a) When a population
grows according to a Galton-Watson branching process, the cell inter-division
times are disregarded and a study of the population among generations is
conducted. Members of the same generation are coloured with the same tint.
In the example showed, we have that {Z0, Z1, Z2, Z3, . . .} = {1, 2, 4, 6, . . .},
where Zn is the number of individuals in generation n. (b) When the lifetimes
of the individuals are taken into account, and the dynamic of the population
is modelled using a Bellman-Harris branching process, the family described
in plot (a) can be represented in function of time. If we use the same colour
system of the precedent panel to mark individuals in the same generation and
assume that the lengths of the horizontal solid arrows are the lifetimes of the
individuals, one of the possible situations is the one in the plot. In the exam-
ple considered, if with Z(t) we denote the size of the population at time t, we
have Z(t) = 5. In view of the foregoing, the plot in (a) can also be regarded
as the result of a Bellman-Harris branching growth with constant lifetimes. In
this way the divisions of the members of the population occur simultaneously
and at any time the individuals are always in the same generation.
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1.3. Branching processes as mathematical models of population dynamics

the PGF of the offspring number distribution N , i.e. P (limn→∞ Zn = 0) is
solution of the equation s = E(sN). Unfortunately, they didn’t account for
multiple solutions, and so incorrectly concluded that extinction was a certain
fate. Subsequent work showed that the mean number offspring, i.e. E(N),
determines the behaviour of the population at large generations: if E(N) > 1
extinction or infinite growth are the only two possible events almost surely,
both with strict positive probability, whereas if E(N) = 1 or E(N) < 1 the
extinction of the population happens with probability one. In all three cases,
called respectively supercritical, critical, and subcritical cases, we have that
E(Zn) = E(N)n, where E(N) is the expected number of offspring after a cell
division.

To reasonably model many phenomena, including those of cell division, it is
necessary to move away from the synchronism that characterises the divi-
sions of a Galton-Watson branching process. The American mathematicians
Richard Ernest Bellman (1920-1984) and Theodore Edward Harris (1919-
2004) were the first one to consider a continuous time structure inside the
simple reproductive branching process [12], introducing a model that now is
known by their names. Unlike the Galton-Watson model, in a basic Bellman-
Harris process the individuals have random continuous valued lifetimes, inde-
pendently of each other, but following a common probability distribution L, at
the end of which they are substituted with their offspring. Thus, the size of the
population can be studied at a given time t ≥ 0 and denoted with Z(t). The
Markov property that characterises the Galton-Watson branching process is
not generally retained in this generalisation necessitating a distinct approach
for analysis. In their ground-breaking work, Bellman and Harris realised that
techniques coming from Renewal Theory, an independent branch of probabil-
ity that models the occurrence of events with random i.i.d. inter-arrival times,
form the core of any analysis.

The asynchronism in the divisions brings also surprising important phenomeno-
logical consequences: the expected size of the population, E(Z(t)), is greater
than the expected size of a population with deterministic lifetimes of length
E(L), i.e. E(Z(t)) ≥ E(N)bt/E(L)c, with the equality only if Var(L) = 0. For
the same reasons, the doubling time of a population with P (N = 2) = 1 is
smaller than the expected cell lifetime, E(L) (e.g. [39, pg. 159]). But, similarly
to the Galton-Watson branching process, the value of E(N) still determines
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1.3. Branching processes as mathematical models of population dynamics

if the process is supercritical (E(N) > 1), critical (E(N) = 1), and subcritical
(E(N) < 1).

Even if the theory of branching process started in the social demographic
context, its results had impact also outside that field. At the beginning of the
20th century branching processes were applied to genetics and biology more
generally, with Ronald A. Fisher (1890-1962) and John B. S. Haldane (1892-
1964) as major representatives. During World War II and the beginning of
the nuclear age a huge drive in the developing of the theory arrived. At the
same time Theodore E. Harris (1919-2005) and Boris A. Sevastyanov (1923-
2013), American and Russian mathematicians respectively, were funded by
military agencies of their respective countries to conduct research on branching
processes trying to understand nuclear fission. In this period, formulas for the
probability of extinction of a population played a role in the calculation of
the critical mass of fissionable material needed for a sustained chain reaction.
Indeed, even the proliferation of free neutrons in a nuclear fission reaction can
be modelled using a branching process.

In this thesis, our focus is on the relationship in a closed population, i.e. one
where immigration and emigration do not occur, between the population size
and the sum of the generations of all living cells. As a result, we employ the
original Bellman-Harris branching process framework where cells only give
rise to offspring at the end of their lives, and the key quantities recorded
are population number and, for our study, total generation. We sometimes
start by describing the problem in a Galton-Watson setting in order to give
intuition for the nature of the results we prove afterwards. For the applications
we have in mind, the Bellman-Harris setting suffices. Furthermore, given the
non-extinction of the population is the most interesting case for us, and given
this is a fate made possible only in the supercritical case, i.e. E(N) > 1, in
the following chapters we work within this framework.

Since their introduction, however, branching processes have been subject to
extensive mathematical study, and naturally arise in diverse applications from
the life-sciences to queuing theory and beyond. Those studies have resulted in
substantial generalisations of the framework that include, for example, popula-
tions with exogenous immigrants, populations where individuals can give rise
to offspring during their lives, multi-type populations that consist of individu-

17
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als of more than one type, each with distinct proliferation and differentiation
parameterisations. Other important mathematical developments include the
treatment of branching random walks and generalisations that allow the study
of general functionals of the population [10, 55, 7, 56, 57, 39, 8]. In Chapter 3,
some of the results proved for a Bellman-Harris branching process in Chapter 2
are extended to a one-directional two-type Bellman-Harris branching process,
but we won’t explore more general models than that.

1.4 A DNA coded randomised algorithm
The method that we are going to describe will motivate the study in this thesis.
In this section we introduce it and describe benefits that make this technique
a promising way to estimate the average generation of a cell population. The
mathematical results that are at the base of this method will be improved and
generalised throughout the thesis, strengthening the quality of the expected
inference results.

In [116], Weber, Perié, and Duffy proposed a new design for in vivo inference
of average generation that relies on a DNA coded randomised algorithm. For
illustration, consider a single initial cell at time t = 0. As in Fig. 1.7(a), let
Z(t) be the number of offspring alive at time t and G(t) be the sum of the
generations of all living cells at that time. The proposal to infer G(t)/Z(t)
was to equip the initial cell with a neutral label, i.e. one whose presence or
absence has no ramifications for population dynamics, such that during each
cell’s lifetime, immediately prior to cell division, with a small probability p the
label is irrevocably and heritably lost (Fig. 1.10). Thus either all the offspring
of a label-positive cell have the label, which occurs with probability 1− p, or
all do not, which occurs with probability p. With Z+(t) denoting the number
of label positive cells at time t, as in Fig. 1.7(b), the suggested estimator is

G(t)
Z(t) ≈ −

1
p

log
(
Z+(t)
Z(t)

)
. (1.1)

This surprising formula is desirable for a number of reasons: 1) it allows for cell
death; 2) it does not require knowledge of cell cycle times; and 3) for inference
it requires only a proportional measurement rather than absolute numbers.
Moreover, to infer the relative developmental depth of two populations whose
ancestors are equipped with such neutral label, one does not need to know p,
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1-p 

p 

1 

Figure 1.10: Label functioning. Weber, Perié, and Duffy described in [116] a
method to estimate the average generation of a growing cell population based
on the presence, in the initial pool of cells, of a neutral label that follows the
dynamic showed in the figure. (Left side) Every cell that has the label (circles
with yellow plus), given it divides, will give or not the label to the offspring
with probability 1 − p and p, respectively. (Right side) Cells that are not
equipped with the label (circles with red minus) will always generate offspring
without labels.

the probability of label loss per cell lifetime, if it is the same for both. A DNA
coded randomised algorithm, based on the existing FUCCI cell cycle reporter
[100], to realise the design is proposed in [116].

Two distinct derivations of the approximation (1.1) are provided in [116]. One,
based on properties of cumulant generating functions, establishes that for a
fixed time t and an arbitrary lineage relationship between the cells constituting
Z(t), the expected number of label-positive cells, E(Z+(t)), over all possible
delabellings recovers the correct value as the probability of label loss goes to
0:

G(t)
Z(t) = lim

p→0
−1
p

log
(
E(Z+(t))
Z(t)

)
.

For a single realisation of the delabelling process, as would occur experimen-
tally, however, this provides no assurance. To establish a result that does so,
some structure is needed on the family tree. Consequently, a complementary
result is also established in [116] within the context of the standard model
of an asynchronously developing tree, the Bellman-Harris branching process.
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That is, a growing tree model where cells have i.i.d. lifetimes and independent
i.i.d. numbers of offspring numbers at the end of their lives [42, 63]. Despite
the fact that Bellman-Harris branching processes do not perfectly describe the
biological processes, mainly for the lack of independence among real cells, they
provide a conceptually simple but powerful tool that allows quantitative pre-
dictions, beyond metaphorical representations. With Z(t) being the number
of cells alive at time t in a super-critical Bellman-Harris branching process,
for each p ∈ (0, 1) such that the label-positive sub-tree with Z+(t) cells living
at time t is super-critical, it is established in [116] that there exists a constant
π(p) such that

lim
t→∞
− 1
pt

log
(
Z+(t)
Z(t)

)
= π(p), almost surely if lim inf

t→∞
Z+(t) > 0 (1.2)

and
lim
t→∞

E(G(t))
tE(Z(t)) = lim

p→0
π(p). (1.3)

The right hand side of equation (1.3), together with (1.2), says that as long
as the label-positive sub-tree continues to exist, ultimately the estimate of
average generation converges on each single path of the process. The left
hand side, however, is not entirely satisfactory. It is an average quantity over
realisations of the branching process and it forms the ratio of expectations,
E(G(t))/E(Z(t)), rather than the expectation of the ratio E(G(t)/Z(t)).

1.5 Contributions of this thesis and overview
of results

The aim of this thesis is to provide additional mathematical support to the
method that allows the estimation of the average generation of a cell popula-
tion, proposed in [116] and briefly described in Section 1.4. The contributions
of this thesis are mainly in three directions.

Enhancement of the mathematical results in [116] in the context of
an expanding cell population. As in Weber, Perié, and Duffy [116] we
model the growth of the population using a Bellman-Harris branching pro-
cess [42, 63]. This allows us to see the population as a process developing in
time, but also introduce some structure that is useful for predicting the ex-
pected behaviour of the moments of the total generation G(t). With the help
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of techniques from Renewal Theory [93], it is also possible to study its limit
behaviour and growth rate. Under super-critical conditions, where large times
assure big populations (if they survive), each population behaves similarly to
its average path, leading us to conclude strong almost sure results. According
to [116], the proportion of label positive cells of a population allows us to
predict only the quantity E(G(t))/E(Z(t)), i.e. a sort of average behaviour of
the average generation, but the only proof that this can work with the actual
average generation assumes no relations of any type among the cells in the col-
lection. Our results allow us to say that this is true under the Bellman-Harris
branching process assumptions, where we can estimate the average genera-
tion of a cell population using only one realisation of the delabelling process.
Assuming a population behaves as a super-critical Bellman-Harris branching
process, consequences of this result are clear from an experimental point of
view: for every population experiment, (1.1) allows us to estimate the real
average generation of the considered population, not only an expected be-
haviour. We conduct this analysis in Chapter 2. More reassurances on the
robustness of the estimation method proposed in [116] come from the analysis
we make in Chapter 4. There, considering the special case of Bellman-Harris
branching process known in the literature as Pure Birth process (cells divide
into two offspring and have exponentially distributed lifetimes) we study how
the variance of the average generation behaves in time. Studies on the gen-
eration of a random selected living cell [101] and the fact that E(G(t)/Z(t))
grows linearly in time [116], would suggest that Var(G(t)/Z(t)) grows to infin-
ity too. We prove that this supposition is incorrect and that Var(G(t)/Z(t))
converges to the constant 7 independently from the rate of division. This re-
sult is a consequence of the fact that Z(t) and G(t) are two processes strongly
correlated at the level of sample paths.

Enlargement of the range of applicability of the random delabelling
average generation estimator. In [116], limit theorems are only proved
for an expanding single type Bellman-Harris branching process. Despite the
interest associated with this case, even if a cell population is not subject to
differentiation, we know that in normal conditions even cancer doesn’t grow
indefinitely [2]. For example in Fig. 1.4 we can see how during an infection,
the T cell immune response is a combination of expansion, contraction and
homeostasis. We extend the strong results found for the expansion phase of
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a population to the latter of these cases, using a renewal process to model
the population dynamics. This motivates the use of estimator (1.1) also for
a homeostatic population, highlighting its potential in contexts outside the
mere expansion and opening to more complex dynamics that interlace differ-
ent growing phases in a particular time frame. However, as we have seen at the
beginning of this introductory chapter, differentiation is something embedded
in cellular development. For this reason a method that allows the estimation
of the average generation of a population only when it doesn’t change type
could be extremely restrictive. We also overcome this problem, proving that
the method still works for a two-type population. Fundamental will be in
this context the result found by Jagers for two-type Bellman-Harris branching
processes [53]. All together, these generalisations have an important impact
from an experimental confidence point of view: even if a cell population is
changing growth behaviour or is subject to differentiation during the experi-
ment, the proportion of the label positive cell will still provide an estimate of
its average generation, proving the robustness and flexibility of the method.
This result opens the method to a wide range of applications, that until now
were not formally supported. These generalisations can be found in Chapter 3
(two-type) and Chapter 6 (homeostasis).

Finding the best parameterisation. The results described until now, in-
cluding the ones in [116], are dependent on the probability of label loss p being
“close” to 0. However, a careful examination of the optimal p is warranted.
When we work with finite times, as biologists do when they question the cell
populations, the parameterisation plays an important role. For example, when
the p is too small, there is the risk that no cell loses the label in the time frame
considered, implicating the impossibility of an estimation of the average gen-
eration. But, if we try to use a “large” parameter p to avoid this scenario, we
take the risk to completely lose the label from the population or, when this
is not happening, that the estimator does not describe the quantity wanted.
Our third major contribution concerns this point: using 3 different models of
increasing complexity to describe the growth of a cell population, included the
Bellman-Harris branching process, we try to understand if the requirement of
working with a p small is always necessary. When this is the case, we give a
suggestion on how the parameter p should scale with the size of the population
in order to maximise the performance of the estimator and have the probabil-
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ity of not getting any estimate below a certain threshold. This study, that we
conduct in Chapter 5, resorts to the use of several approximations, which find
justification in the two following working environments: we either increase the
size of the initial sample, unchanging the behaviour of the average generation,
or we let develop the population for large time frames so that, if it survives, it
increases its size along with the average generation. Both frameworks allow to
smoothen the behaviour of the population by increasing the number of cells in
it and make the approximations reasonable. Despite that the two settings are
non-commensurable and we choose one or the other depending of the model.

Throughout the thesis we provide simulations that illustrate the mathemati-
cal results found. For concreteness, we use as example a model of population
dynamics of B cells during an adaptive immune response. B cells exhibit a
nice and clear change of conduct before, during, and after an infection is found
(Fig. 1.4). The parameterisation that we use is obtained from [44], where B
cells are activated by CpG DNA and studied via time lapse microscopy. We
don’t consider intra-family correlation and heterogeneity in lifetime distribu-
tion among generations as made in [44], but we take from that the class of
lifetime distribution (lognormal) of B cells and a parameterisation of that.
In our study we also sometimes provide examples for lifetimes that indepen-
dently follow an exponential distribution, one of the assumptions commonly
made in the field for mathematical convenience even though no experimentally
measured cell system has been reported that is consistent with this hypothesis.
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CHAPTER 2
Average generation of a

super-critical Bellman-Harris
process

2.1 Introduction

In Section 1.4, we have described a technique for the estimation of the average
generation of a cell population based on a DNA coded randomised algorithm,
recently proposed by Weber, Perié, and Duffy in [116]. In this chapter we want
to improve the mathematical results used to justify that method, increasing
in this way its potentialities. Before doing that, we describe and formalise the
problem, using the same notation introduced in Chapter 1.

The object of our study is a cell population where each cell, after a random
lifetime L, gives birth to a random number, N , of offspring upon death. The
lifetimes and the number of offspring of each cell are assumed to be indepen-
dent of each other and also i.i.d. with the rest of the cells in the population.
Under these assumptions the dynamics of the population size is described by
a Bellman-Harris branching process [42, 63, 10]. Within this chapter, we sup-
pose that the process is super-critical, i.e. the expected number of offspring
after each division h := E(N) is greater than 1, a condition that shows the
attitude of the population to expand increasing its size. For each descendant,
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we define generation as the number of divisions that led to that cell, assigning
generation 0 to cells which constitute the initial population. We denote with
G(t) the sum of the generations of the living cells at time t, such that G(0) = 0
represents the initial setting (Fig. 1.5). In order for the estimator of the aver-
age generation in Section 1.4 to work, each cell in the initial population has to
be equipped with a neutral label, i.e. a label that does not alter the dynamic
of the cell. This label, independently from the lifetime of the cell, can be
lost right before the division of the cell with a probability p, otherwise, it is
inherited by its offspring and same rules will apply to them. Let’s denote with
Z(t) and Z+(t) the size of the entire and of the label-positive populations at
time t, respectively.

According to [116], for each p ∈ (0, 1) such that the label-positive sub-tree
with Z+(t) cells living at time t is a super-critical Bellman-Harris branching
process, we have almost surely that

lim
t→∞
− 1
pt

log
(
Z+(t)
Z(t)

)
= π(p), if lim inf

t→∞
Z+(t) > 0 (2.1)

and
lim
t→∞

E(G(t))
tE(Z(t)) = π̄ = lim

p→0
π(p), (2.2)

for a constant π̄ > 0. As highlighted in Section 1.4, these results say that
a function of the proportion of label positive cells and a quantity somewhat
similar to the average generation of the population converge to the same quan-
tity. Furthermore, (2.1) is a strong result because it says that it is true for
every single realisation of the delabelling process, a desired property from an
experimental point of view. Instead, what is not completely satisfying is the
Left-Hand Side (LHS) of (2.2), where in lieu of E(G(t))/E(Z(t)), we would
like to have at least the expected average generation E(G(t)/Z(t)).

In the present chapter we rectify this shortcoming by proving a substantially
stronger result: that for a Bellman-Harris branching process the average gen-
eration divided by time converges almost surely to π̄ > 0, i.e.

lim
t→∞

G(t)
tZ(t) = π̄ = lim

p→0
π(p), if lim inf

t→∞
Z(t) > 0. (2.3)

The result in (2.3) greatly strengthens the only previous result we are aware
of, that proved in [101] where convergence in probability of average generation
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is established for processes in which there is no death. Given the ubiquity of
Bellman-Harris processes, it is likely to be of interest for other reasons, but
for our purposes it is most significant in providing extra support for merits of
the proposed average generation inference methodology.

In order to establish this fact we prove a collection of surprising results for
the paired processes (Z(t), G(t)) of a super-critical Bellman-Harris process.
In particular, with L being a lifetime distribution, h > 1 being the average
number of offspring of a cell at the end of its life and α being the Malthusian
parameter, i.e. the solution to

hE(e−αL) = 1, (2.4)

then

lim
t→∞

(
e−αtZ(t), t−1e−αtG(t)

)
= (c1Z, c2Z), (2.5)

where Z is a random variable and c1, c2 are constants. Namely, even though
the total generation advances at a different rate to the population size, the
random element of the prefactor is the same for both, and properties of the
ratio G(t)/Z(t) follow.

To establish those results we use a combination of both old and novel ar-
guments, essentially following the methodology described by Harris [42], but
relying on a peculiar renewal theorem, inspired by results of Asmussen [6], for
what is known as defective probability measures, which are measures whose
total mass is smaller than 1 [93, Chapter 3]. The Malthusian parameter can
be thought of as determining an exponential tilt that identifies a measure with
density h exp(−αt)dP (L ≤ t). That is a probability measure as it integrates
to 1 thanks to equation (2.4). Defective probability measures, however, natu-
rally arise in the study of the higher moments of branching processes as one
encounters renewal equations with more extreme exponential tilts, exp(−kαt)
for k > 1, resulting in measures that integrate to less than 1. The new results
allow us to obtain an integral formulation for the probability generating func-
tions of the prefactors described above. To clinch the result, we essentially
insert the guess that the randomness in the prefactors of the two processes is
the same.
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2.2 Motivation for the mathematical result
A time-dependent model of a family tree is necessary to investigate the tem-
poral dyamics of average generation. Analysis is trivial in the simplest such
stochastic model, the Galton-Watson branching process [115, 42, 63]. It as-
sumes that all cells of a given generation share a common lifetime at the end
of which they produce i.i.d. numbers of offspring for the next generation. If tn
is the time of birth of the nth generation, then the total generation is simply
G(tn) = nZ(tn). Consequently, the well known result for the limit behaviour
of Z(tn) as n becomes large in the super-critical case [42, Chapter 1] also
describes the prefactor on front of the distribution of G(tn),

lim
n→∞

Z(tn)
hn

= Z =⇒ lim
n→∞

G(tn)
nhn

= Z (2.6)

where h > 1 is the average number of offspring, Z is a non-negative ran-
dom variable such that E(Z) = 1, and the equalities in (2.6) are meant in
distribution.

On relaxing the constraint that all lifetimes are equal, however, there seems
to be little a priori reason why the analogous quantity to Z in (2.6), which
is Z in (2.5), should be shared by both Z(t) and G(t). Moving away from
synchronicity, if the lifetimes of cells are i.i.d. positive and non-lattice random
variables, the development forms a Bellman-Harris branching process [42, 63].
In that setting, cells are spread across generations and the ratio G(t)/Z(t) is
no longer deterministic. As E(G(t))/(tE(Z(t))) converges to a constant [116],
it is reasonable to suspect that the average generation will still grow linearly
in time. That possibility is also suggested by Fig. 2.1, where, for indepen-
dent simulations of a super-critical Bellman-Harris process with Malthusian
parameter α defined in (2.4), Z(t)e−αt and G(t)e−αt are plotted, illustrating
the factor t in the ratio between them.

Collating observations across multiple simulations, however, Fig. 2.2 suggests
something analogous to (2.6) is taking place. Fig. 2.2(a) plots the empirical
cumulative distribution function of the renormalised total cell numbers and
total generation at a large time, suggesting equality in distribution. Fig. 2.2(b)
displays a scatter plot of the per-simulation prefactors of those quantities for
large t. There is a strong positive correlation in these values, hinting at their
relatedness. Finally Fig. 2.2(c) shows sample paths of the difference between
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the renormalised total cell numbers less renormalised total generation, which
appears to be converging to zero. This further suggests convergence in prob-
ability of the sample-path average generation of a Bellman-Harris process,
conditional on survival. Thus, even though G(t)/Z(t) is no longer determin-
istic, the randomness in G(t)/Z(t) does not reside in the linear term, but
in something smaller, which is one result that is formally established in this
chapter.

2.3 Total generation convergence in a
super-critical B-H branching process

2.3.1 Assumptions, notation and previous results
The following notation and assumptions are in force throughout Section 2.3.
We work within a Bellman-Harris branching processes with strictly positive
non-lattice lifetime random variable L and non-negative offspring random vari-
able N . We define h := E(N) and v := E(N(N−1)), and assume that both are
finite. We work within the super-critical case, h > 1, so that the population
has a positive probability of escaping extinction [42].

We will make use of the Malthusian parameter α defined in (2.4). As h > 1,
α > 0 exists and is unique. For h > 1, it is established in Proposition 1 of
[116] that the Malthusian parameter α is a real analytic function of h. For our
purposes, we don’t need to consider α as a function of h, but we will some-
times use the notation α′ to indicate the value dα(x)/dx|x=h. To study the
limit behaviour of scaled versions of the process (Z(t), G(t)) we use standard
notions of convergence in distribution (D), in mean square (L2), and almost
surely (a.s.) [97, 30]. Convolution between functions will be denoted by the
operator ∗. Occasionally in the text we will refer to the underlying measurable
space or the probability space, which we denote respectively as (Ω,B(Ω)) and
(Ω,B(Ω),P), with B(Ω) Borel σ-algebra of Ω. Example constructions of such
spaces can be found in [42, Chapter VI.2].

A brief summary of known results concerning Z(t) and G(t) will follow. Ac-
cording to [42, 54], under the above assumptions, the limit behaviour of Z(t)
satisfies

Z(t)
eαt

a.s.,L2
−−−−→ cZ, (2.7)
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Figure 2.1: Growth rates of population size, Z(t), and total gen-
eration, G(t) of a super-critical Bellman-Harris process. Each plots
present 20 Monte Carlo simulations of a Bellman-Harris branching process
starting at t = 0 with a single cell, where paths are conditioned to have living
cells at the final time-point of the simulation. Lifetimes are lognormal with
mean 9.3 hours and standard deviation 2.54, which coincide with those mea-
sured for murine B cells stimulated in vitro with CpG DNA [44]. At the end
of each cell’s life it gives rise to no cells with probability 1/5 and two with
probability 4/5. (a) With Z(t) being the population size at time t and α > 0
being the Malthusian parameter defined in equation (2.4), this figure plots
the evolution of Z(t)/eαt, which is known to converge almost surely and in
mean square to a random variable A, e.g. [42]. (b) With G(t) denoting the
total generation of the process (see Fig. 1.7) at time t, for the same paths this
plot shows G(t)/eαt, which grows linearly over time with a random slope B.
Results in Section 2.3.4 establish that A and B are almost surely the same,
up to a multiplicative constant, on a path-by-path basis. Thus the average
generation process, G(t)/Z(t), grows linearly in time, but with the same slope
for every path. This can be seen empirically in panel (c) where 20 instances of
this process are plotted (solid lines with markers), as well as E(G(t))/E(Z(t))
(solid black line).
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Figure 2.2: Comparison between simulations of Z(t)/eαt and G(t)/teαt.
These show results from 100 Monte Carlo simulations of a Bellman-Harris
process with paramaterization as in Fig. 2.1. (a) At t = 4 days, empirical
cumulative distribution function (eCDF) of Z(t)/(c1e

αt) and G(t)/(c2te
αt) are

shown, where c1 and c2 are constants that normalise the limit behaviour of
means of the two processes and are computed numerically. The eCDFs of the
prefactor on the population size and the slope of the total generation process
are similar suggesting that they follow the same distribution. (b) Also at
t = 4 days, the scatter plot of Z(t)/(c1e

αt) versus G(t)/(c2te
αt) for the same

path suggests a stronger result, that there is equality almost surely. This
impression is further informed by plot (c) where a boxplot of the distribution
of Z(t)/(c1e

αt) − G(t)/(c2te
αt) is shown after each day for 4 days. Here it

seems the difference between the two random variables is shrinking to 0, feeling
confirmed by plot (d) where 20 paths describing the same quantity are shown.
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where Z is a non-negative random variable such that E(Z) = 1, and

c = lim
t→∞

E(Z(t))
eαt

=
∫∞

0 P(L > t)e−αtdt
h
∫∞

0 ue−αudP(L ≤ u) = h− 1
h2α

∫∞
0 ue−αudP(L ≤ u) .

For the expected value of G(t), the following is proven in Theorem 2 of [116]

lim
t→∞

E(G(t))
teαt

= hα′c, where α′ = 1
h2 ∫+∞

0 ue−αudP(L ≤ u)
. (2.8)

There, we find also information concerning the asymptotic covariance of G(t)
and Z(t) and the ratio of their expectations,

lim
t→∞

E(G(t)Z(t))
te2αt = c2hα′k and lim

t→∞

E(G(t))
tE(Z(t)) = hα′,

where
k = v

∫∞
0 e−2αudP(L ≤ u)

1− h
∫∞

0 e−2αudP(L ≤ u) (2.9)

and v = E(N(N − 1)). The scaling of means in equations (2.7) and (2.8)
suggests the definition of normalised versions of the processes Z(t) and G(t),

Zt := Z(t)
ceαt

and Gt := G(t)
chα′teαt

, (2.10)

whose use will simplify notation in the proofs.

In order to establish the main result, equation (2.3), stated in Corollary 2.3.12
of Section 2.3.5, we study the limit behaviour of the process {Gt}. We do
that in two steps: first, in Section 2.3.3 we consider {Gt} as an L2 process
and determine its mean square limit; then, in Section 2.3.5 we reinforce that
result by proving that the convergence is also valid with probability 1 under a
condition on the speed of L2 convergence. In Section 2.3.3, we make extensive
use of a particular version of Key Renewal Theorem for defective measures
that we establish in Section 2.3.2. Once we prove in Section 2.3.4 that Gt and
Zt share the same random prefactor on front of their dominant term for large
t, we are finally able to characterise the limit behaviour of G(t)/(tZ(t)).

2.3.2 A new Renewal Theorem for Defective Measures
In order to prove (2.8) in [116], a version of the Renewal Theorem due to As-
mussen, Theorem 6.2(b) of [6], is used in a fundamental way. In this section
we generalise that theorem to make it applicable for defective measures, i.e.
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2.3. Total generation convergence in a super-critical B-H branching process

measures with total mass less than one. Before going to the main result of the
section, Theorem 2.3.3, we first state a non-standard version of the classical
Dominated Convergence Theorem (DCT), which can be applied to a collec-
tion of sequences of functions {(ft,τ )t∈R≥0 : τ ∈ R≥0}, each one converging
pointwise, when t→∞, to a same function f , uniformly for τ ≥ 0. This can
be proved essentially repeating the same steps of the classical DCT, including
the use of Fatou’s lemma, but this time the hypothesis of the uniformity in
τ allows a stronger conclusion. This proposition is followed by a lemma that
depends on it.

Proposition 2.3.1 (Non-standard DCT). Let (R,B(R), µ) be a measure space,
and for every τ ≥ 0 let (ft,τ )t≥0 be a sequence of functions in L1(µ) that
converges pointwise to f uniformly for τ ∈ [0,∞), i.e. given ε > 0 and
u ∈ R there exists a tε,u > 0 s.t. for every t ≥ tε,u and τ ≥ 0 we have
|ft,τ (u)− f(u)| < ε. Assume there is g ∈ L1(µ) s.t. |ft,τ (u)| ≤ g(u) for every
t, τ , and u. Then, f ∈ L1(µ) and

lim
t→∞

∫
R

ft,τ (u)dµ(u) =
∫
R

f(u)dµ(u) uniformly for τ ≥ 0,

i.e. given ε > 0 there exists a t∗ε > 0 s.t. for every t ≥ t∗ε and τ ≥ 0 we have
|
∫
R
ft,τ (u)− f(u)dµ(u)| < ε.

We are now going to use this version of the DCT to study the limit behaviour
of convolutions between functions and probability measures. We are interested
in these particular structures because we will show that the moments of G(t)
can be written in that form.

Lemma 2.3.2 (Convolution with a finite measure doesn’t change convergence
rates). Consider f = f(t, τ) : R≥0 × R≥0 → R locally bounded in t and s.t.,
for every τ ≥ 0, f(t, τ)/[tp(t+ τ)q]→ c1 when t→∞, with c1 <∞, p, q ≥ 0,
and let µ be a finite measure on (R≥0,B(R≥0)). Then, for every τ ≥ 0

lim
t→∞

1
tp(t+ τ)q

∫ t

0
f(t− u, τ)µ(du) = c1µ([0,∞)). (2.11)

Furthermore, if |f(t, τ)| ≤ f1(t)f2(t + τ), with fi(s) : R≥0 → R≥0 positive
locally bounded functions for i ∈ {1, 2}, f1(s)/sp → a1, f2(s)/sq → a2, and
f(t, τ)/[tp(t+τ)q] −−−→

t→∞
c1 uniformly for τ ≥ 0 with a1, a2, c1 <∞ and p, q ≥ 0,

then (2.11) is true uniformly for τ ∈ [0,∞).
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Proof: We only prove the second part of the lemma, as the first part follows
from the same rationale with the use of the classical Dominated Convergence
Theorem instead of Proposition 2.3.1.

For the following, we extend the functions f , f1, and f2 to R × R≥0, R, and
R, respectively, by defining f(t, τ) = f1(t) = f2(t) = 0 when t < 0. If we
can establish that (|f(t− u, τ)|/[tp(t+ τ)q])1[0,t)(u) is bounded by a constant
M , for every u ∈ R, τ ≥ 0, and t sufficiently large, we can apply the DCT
in Proposition 2.3.1 and conclude that equation (2.11) holds uniformly for
τ ∈ [0,∞).

Given ε > 0, from the hypotheses made, we know that there exists uε > 0 s.t.
for every u ≥ uε we have f1(u)/up ≤ a1 + ε and f2(u)/uq ≤ a2 + ε. Without
loss of generality we can suppose t ≥ tε,u := max{uε, 1}. So, for every u ∈ R,
we have

0 ≤ gt(u) := f1(u)
tp

1[0,t)(u) = f1(u)
tp

1[0,uε)(u) + f1(u)
tp

1[uε,t)(u)

≤ f1(u)1[0,uε)(u) + f1(u)
up

1[uε,∞)(u)

≤ sup
[0,uε)

f1(u) + a1 + ε = M1 <∞, (2.12)

where in the last equality we have used the fact that f1 is a locally bounded
function. From (2.12), we have that gt(u) is dominated byM1 for every u ∈ R
and t ≥ tε,u. So, the same will be true for gt(−u), and for its translation
gt(t− u). Similar reasoning applies to f2, obtaining

f1(t− u)
tp

1[0,t)(u) ≤M1,
f2(t− u)

tq
1[0,t)(u) ≤M2,

for every u ∈ R and t ≥ tε,u. Remembering that by hypothesis |f(t, τ)| ≤
f1(t)f2(t+ τ), for every u ∈ R, t ≥ tε,u, and τ ≥ 0 we have

|f(t− u, τ)|
tp(t+ τ)q 1[0,t)(u) ≤ f1(t− u)

tp
1[0,t)(u)f2(t+ τ − u)

(t+ τ)q 1[0,t+τ)(u)

≤M1M2 =: M

That concludes the proof.

Armed with that Lemma, we can now prove the main result of this section.
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Theorem 2.3.3 (A defective measure version of Theorem 6.2(b) [6]). Con-
sider the integral equation

K(t, τ) = f(t, τ) +
∫ t

0
K(t− u, τ)ρ(du), (2.13)

where K, f : R≥0 × R≥0 → R, and ρ is a positive defective measure on
(R≥0,B(R≥0)), i.e. ρ([0,∞)) < 1. If f(t, τ) is locally bounded in t and s.t.
f(t, τ)/[tp(t + τ)q] → c1 when t → ∞, with c1 < ∞, p, q ≥ 0, then for every
τ ≥ 0

lim
t→∞

K(t, τ)
tp(t+ τ)q = c1

1− ρ([0,∞)) . (2.14)

Furthermore, if f is s. t. |f(t, τ)| ≤ f1(t)f2(t + τ), with fi(s) : R≥0 → R≥0

locally bounded functions, i ∈ {1, 2}, s.t. f1(s)/sp → a1, f2(s)/sq → a2,
and f(t, τ)/[tp(t + τ)q] −−−→

t→∞
c1 uniformly for τ ≥ 0 with a1, a2, c1 < ∞ and

p, q ≥ 0, then (2.14) is true uniformly for τ ≥ 0.

Proof: From [93, Theorem 3.5.1], the only solution of (2.13) that is bounded
on every finite interval of t has the form

K(t, τ) = (U ∗ f)τ (t) =
∫ t

0
f(t− u, τ)U(du), (2.15)

where we have U([0, t)) = ∑∞
n=0 ρ

∗n([0, t)), ρ∗n([0, t)) = (ρ ∗ ρ∗(n−1))([0, t)),
and ρ∗0([0, t)) = 1[0,∞)(t). Using Lemma 2.3.2 and the fact that U([0,∞)) =
1/(1− ρ([0,∞))) [93, Section 3.11], we obtain (2.14).

Thanks to the linearity of integration, we have the following mild generalisa-
tion.

Corollary 2.3.4. If in Theorem 2.3.3 we substitute the condition |f(t, τ)| ≤
f1(t)f2(t + τ) with |f(t, τ)| ≤ ∑n

i=1 f2i−1(t)f2i(t + τ), where fi are locally
bounded functions s.t. f2i−1(t)/tp → a2i−1, f2i(t)/tq → a2i, a2i−1, a2i < ∞
for every 1 ≤ i ≤ n, then the conclusions of Theorem 2.3.3 hold.

2.3.3 Mean square convergence
Equation (2.8) states that E(Gt) → 1, with Gt defined in (2.10). A natural
question that this result raises is whether there exists a non-negative random
variable G, s.t. E(G) = 1, to which Gt converges in mean. Studying the
behaviour of the second moment of Gt, in Theorem 2.3.9, the main result of the
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section, we will prove something stronger than that: the convergence is true
also in L2. To achieve that we will need a version, stated in Proposition 2.3.5,
of one of the results presented in [116] concerning the Probability Generating
Function (PGF) of (G(t), Z(t)), that better fits our purpose. We use it in
Lemmas 2.3.6 and 2.3.7 where a study of the covariance between G(t) and
Z(t), and of the relation between different terms of the total generation process
is made. This will lead us to Corollary 2.3.8, which allows us to finally prove
Theorem 2.3.9.

Proposition 2.3.5 (A reformulation of Theorem 2 of [116]). For s1, s2, r1,

r2, t, τ ∈ R≥0, define F (s1, s2, r1, r2, t, τ) := E(sG(t)
1 s

G(t+τ)
2 r

Z(t)
1 r

Z(t+τ)
2 ). Then,

we have

F (s1, s2, r1, r2, t, τ) = r1r2P(L > t+ τ)

+ r1

∫ t+τ

t
ρN

(
E
(
s
G(t+τ−u)
2 (s2r2)Z(t+τ−u)

))
dP(L ≤ u)

+
∫ t

0
ρN

(
F (s1, s2, s1r1, s2r2, t− u, τ)

)
dP(L ≤ u), (2.16)

where ρN(s) = E(sN), the probability generating function of the offspring
number, N .

Using Proposition 2.3.5, we analyse the limiting behaviour of the covariance
between Z(t) and G(t).

Lemma 2.3.6 (Limit behaviour of the covariance of Gt and Zt). Using the
previous notation, we have

lim
t→∞

E(GtZt+τ ) = k = lim
t→∞

E(Gt+τZt) uniformly in τ ≥ 0, (2.17)

where k is defined in (2.9).

Proof: We prove only the first of the equalities in (2.17) as the other can be
obtained in a similar way.

Consider the integral equation (2.16) and take the derivative first for s1, sec-
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ondly for r2, and then evaluate it at (1, 1, 1, 1, t, τ). We obtain that

E(G(t)Z(t+ τ)) =v
∫ t

0
E(G(t− u))E(Z(t+ τ − u))dP(L ≤ u)

+ v
∫ t

0
E(Z(t− u))E(Z(t+ τ − u))dP(L ≤ u)

+ h
∫ t

0
E(Z(t− u)Z(t+ τ − u))dP(L ≤ u)

+ h
∫ t

0
E(G(t− u)Z(t+ τ − u))dP(L ≤ u), (2.18)

where we recall that h = E(N) and v = E(N(N −1)). Multiplying both sides
of this equation by e−αte−α(t+τ) and denoting

K(t, τ) := E(G(t)Z(t+ τ))
eαteα(t+τ) ,

dP(L ≤ u) := he−2αudP(L ≤ u), dP′(L ≤ u) := ve−2αudP(L ≤ u),

f(t, τ) :=
∫ t

0

E(G(t− u))
eα(t−u)

E(Z(t+ τ − u))
eα(t+τ−u) dP′(L ≤ u)

+
∫ t

0

E(Z(t− u))
eα(t−u)

E(Z(t+ τ − u))
eα(t+τ−u) dP′(L ≤ u)

+
∫ t

0

E(Z(t− u)Z(t+ τ − u))
eα(t−u)eα(t+τ−u) dP(L ≤ u) (2.19)

we have that

K(t, τ) = f(t, τ) +
∫ t

0
K(t− u, τ)dP(L ≤ u). (2.20)

Observe that P is a defective measure. In fact,∫ +∞

0
dP(L ≤ u) = h

∫ +∞

0
e−2αudP(L ≤ u) < h

∫ +∞

0
e−αudP(L ≤ u) (2.4)= 1.

(2.21)
As E(GtZt+τ ) = E(G(t)Z(t + τ))/[hα′c2teαteα(t+τ)], in order to conclude the
proof, we would like to apply Theorem 2.3.3 at (2.20) with p = 1 and q = 0.
So, we need to prove that the hypotheses on f(t, τ) are verified.

Note that f(t, τ) is the sum of three integrals, where each integrand, divided
by t, converges to a constant (which is 0 for the last two integrands) when
t→∞, uniformly for τ ≥ 0 (see (2.7), (2.8), and [42, pg. 145]). Furthermore,
each of these integrands is dominated by the product of two locally bounded
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functions (the moments of Z(t) and G(t) are locally bounded solutions of
integral equations of the type in equation (2.20), see [42, pg. 142] and [116,
Theorem 2]), one depending on t and another one depending on t + τ (for
the last integrand, use the Cauchy-Schwarz inequality to see it). As these
dominant functions satisfy the hypotheses of Lemma 2.3.2 with p = 1 and
q = 0 (see (2.8) and (2.7)), we can conclude that

lim
t→∞

f(t, τ)
t

= hα′c2
∫ ∞

0
dP′(L ≤ u) = hα′c2v

∫ ∞
0

e−2αudP(L ≤ u).

Moreover, if we consider the first of the integrals in (2.19) and apply the
Cauchy-Schwarz inequality, we obtain∫ t

0

E(G(t− u))
eα(t−u)

E(Z(t+ τ − u))
eα(t+τ−u) dP′(L ≤ u)

≤

∫ t

0

∣∣∣∣∣E(G(t− u))
eα(t−u)

∣∣∣∣∣
2

dP′(L ≤ u)
1/2∫ t+τ

0

∣∣∣∣∣E(Z(t+ τ − u))
eα(t+τ−u)

∣∣∣∣∣
2

dP′(L ≤ u)
1/2

=: f1(t)f2(t+τ), (2.22)

with f1(t) and f2(t) satisfying the hypotheses of Theorem 2.3.3. As the same
reasoning holds for the other integrals in (2.19) (for the last integral we use
Cauchy-Schwarz inequality twice), thanks to Theorem 2.3.3, with p = 1 and
q = 0, and Corollary 2.3.4 we obtain

lim
t→∞

K(t, τ)
t

= hα′c2v
∫∞
0 e−2αudP(L ≤ u)

1− h
∫∞

0 e−2αudP(L ≤ u) uniformly for τ ≥ 0.

Recalling the definition of k, Gt, and Zt+τ at (2.9) and (2.10), we have com-
pleted the proof of the first inequality in (2.17).

We now study the covariance between the total generation process at two
distinct times, for which we will need to use Lemma 2.3.6.

Lemma 2.3.7 (Limit behaviour of the covariance of Gt and Gt+τ ). Using the
previous notation, we have

lim
t→∞

E(Gt+τGt) = k uniformly for τ ≥ 0,

where k is defined in (2.9).

Proof: The proof is similar to that in Lemma 2.3.6, so some details are
omitted.
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If we take the derivative of equation (2.16) first for s1, secondly for s2, and
then evaluate it at (1, 1, 1, 1, t, τ), we obtain

E(G(t+τ)G(t)) = v
∫ t

0
E(G(t+ τ − u))E(G(t− u))dP(L ≤ u)

+ v
∫ t

0

[
E(Z(t+ τ − u))E(Z(t− u)) + E(G(t+ τ − u))E(Z(t− u))

+ E(Z(t+ τ − u))E(G(t− u))
]
dP(L ≤ u)

+ h
∫ t

0

[
E
(
G(t+ τ − u)Z(t− u)

)
+ E

(
Z(t+ τ − u)G(t− u)

)
+ E

(
Z(t+ τ − u)Z(t− u)

)]
dP(L ≤ u)

+ h
∫ t

0
E(G(t+ τ − u)G(t− u))dP(L ≤ u). (2.23)

Multiplying both sides of this equation by e−αte−α(t+τ) and denoting

K(t, τ) := E(G(t+ τ)G(t))
eαteα(t+τ) ,

dP(L ≤ u) := he−2αudP(L ≤ u), dP′(L ≤ u) := ve−2αudP(L ≤ u),

f(t, τ) :=
∫ t

0

E(G(t+ τ − u))
eα(t+τ−u)

E(G(t− u))
eα(t−u) dP′(L ≤ u)

+
∫ t

0

[E(Z(t+ τ − u))
eα(t+τ−u)

E(Z(t− u))
eα(t−u) + E(G(t+ τ − u))

eα(t+τ−u)
E(Z(t− u))
eα(t−u)

+ E(Z(t+ τ − u))
eα(t+τ−u)

E(G(t− u))
eα(t−u)

]
dP′(L ≤ u)

+
∫ t

0

[E(G(t+ τ − u)Z(t− u)
)

eα(t+τ−u)eα(t−u) +
E
(
Z(t+ τ − u)G(t− u)

)
eα(t+τ−u)eα(t−u)

+
E
(
Z(t+ τ − u)Z(t− u)

)
eα(t+τ−u)eα(t−u)

]
dP(L ≤ u), (2.24)

we have that

K(t, τ) = f(t, τ) +
∫ t

0
K(t− u, τ)dP(L ≤ u). (2.25)

As already observed in (2.21), P is a defective measure. In order to conclude
the proof, we would like to apply Theorem 2.3.3 to (2.25), and so we need to
prove that the hypotheses on f(t, τ) are verified. This will be easier by proving
a weaker version of Lemma 2.3.7 which states that limt→∞ E(G(t)2)/[t2e2αt] =

38



2.3. Total generation convergence in a super-critical B-H branching process

(hα′c)2k. This result, that we now prove, is obtained applying the first part
of Theorem 2.3.3 to (2.25), when τ = 0.

For τ = 0, we have that K(t, 0) = E(G(t)2)/e2αt and

f(t, 0) =
∫ t

0

(
E(G(t− u))2

e2α(t−u) + E(Z(t− u))2

e2α(t−u)

)
dP′(L ≤ u)

+ 2
∫ t

0

E(G(t− u))
eα(t−u)

E(Z(t− u))
eα(t−u) dP′(L ≤ u)

+
∫ t

0

2
E
(
G(t− u)Z(t− u)

)
e2α(t−u) + E(Z(t− u)2)

e2α(t−u)

 dP(L ≤ u). (2.26)

Notice that all five terms inside the integrals in (2.26) are locally bounded
in t (the moments and the covariance of Z(t) and G(t) are locally bounded
solutions of integral equations of the type (2.25), see [116, Theorem 2]) and,
divided by t2, the integrands converge to constants, being 0 for all but the
first term in the first integrand (see (2.8)). So, we can use Lemma 2.3.2 with
p = 2 and q = 0, obtaining

lim
t→∞

f(t, 0)
t2

= (hα′c)2
∫ ∞

0
dP′(L ≤ u) = (hα′c)2v

∫ ∞
0

e−2αudP(L ≤ u). (2.27)

As f(t, 0) is locally bounded in t (it is a finite sum of convolutions of lo-
cally bounded functions), equation (2.27) allows us to apply Theorem 2.3.3
obtaining

lim
t→∞

K(t, 0)
t2

= lim
t→∞

E(G(t)2)
t2e2αt = (hα′c)2v

∫∞
0 e−2αudP(L ≤ u)

1− h
∫∞

0 e−2αudP(L ≤ u)
= (hα′c)2k. (2.28)

Let’s go back to the proof of Lemma 2.3.7 and see that f(t, τ) satisfies the
hypotheses of Theorem 2.3.3. In (2.24), each of the seven integrands, when
divided by t(t + τ), converges to a constant when t → ∞, uniformly for
τ ≥ 0 (see (2.8),(2.7),(2.17), and [42, pg. 145]). Furthermore, each of these
integrands is dominated by the product of two locally bounded functions, one
depending on t and another one depending on t+ τ (use the Cauchy-Schwarz
inequality for the last three integrands to see it). As these functions satisfy
the hypotheses of Lemma 2.3.2 (see (2.8),(2.7), and (2.28)), we can conclude
that, uniformly for τ ≥ 0,

lim
t→∞

f(t, τ)
t(t+ τ) = (hα′c)2

∫ ∞
0

dP′(L ≤ u) = (hα′c)2v
∫ ∞

0
e−2αudP(L ≤ u).
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Moreover, using the Cauchy-Schwarz inequality (for the last three integrals
we have to use it twice), each of the integrals in (2.24) are dominated by the
product of two functions, one depending on t and the other one on t+τ , which
satisfy the hypotheses of Theorem 2.3.3. So, Corollary 2.3.4 implies

lim
t→∞

K(t, τ)
t(t+ τ) = (hα′c)2v

∫∞
0 e−2αudP(L ≤ u)

1− h
∫∞

0 e−2αudP(L ≤ u) uniformly for τ ≥ 0.

The definitions of k and Gt at (2.9) and (2.10), respectively, allow to conclude
the proof.

An immediate consequence of this lemma is the following.

Corollary 2.3.8 (Gt is a Cauchy sequence in L2.). Using the previous notation,
we have

lim
t→∞

E((Gt+τ − Gt)2)→ 0 uniformly for τ ≥ 0.

Proof: From Lemma 2.3.7 and (2.28), uniformly for τ ≥ 0, we have that

lim
t→∞

E((Gt+τ − Gt)2) = lim
t→∞

[
E(G2

t+τ ) + E(G2
t )− 2E(Gt+τGt)

]
= k + k − 2k = 0.

We have just proved that Gt is a Cauchy sequence in L2, i.e. for every ε > 0
there exists a tε > 0 s.t. for every t > tε and τ ≥ 0 we have E((Gt+τ −
Gt)2) < ε. Thanks to the completeness of the L2 space, we can now easily
prove Theorem 2.3.9.

Theorem 2.3.9 (Mean square convergence of G(t)). There exists a non-
negative random variable G ∈ L2 such that

lim
t→∞

E((Gt − G)2) = 0,

with E(G) = 1 and Var(G) = k − 1 = [(v + h)
∫∞

0 e−2αudP(L ≤ u) − 1]/[1 −
h
∫∞

0 e−2αudP(L ≤ u)] > 0.

Proof: The existence of a such G follows from Corollary 2.3.8, the fact
that the L2 space is complete, and that Gt satisfies the Cauchy criterion for
convergence in L2. Using (2.8) and the fact that L2 ⊂ L1, we know that
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E(G) = limt→∞ E(Gt) = 1, so it remains only to compute the variance. From
the L2 convergence we have that E(G2) = limt→∞ E(G2

t ). Then,

Var(G) = E(G2)− E(G)2 = lim
t→∞

E(G2
t )− 1 (2.28)= k − 1

(2.9)= (v + h)
∫∞
0 e−2αudP(L ≤ u)− 1

1− h
∫∞

0 e−2αudP(L ≤ u) . (2.29)

The positivity of (2.29) follows from the same argument used by Harris in [42,
pg. 146]. Indeed, there he proved that the process Zt converges a.s. to a
random variable Z with the same mean and variance as G.

Theorem 2.3.9 gives us the mean square convergence of Gt, which implies also
the convergence in probability and in mean. In Section 2.3.5 we will see that
the convergence is also true with probability one.

2.3.4 Functional equation for the MGF of (G,Z)
A surprising consequence of Theorem 2.3.9 and [42, Theorem 19.1] is that
the processes G and Z share the same mean and variance. In this section,
using the Moment Generating Function (MGF) of the pair (G,Z), we prove
that these two variables are actually almost surely equal. That is, on a path-
by-path basis, the prefactor for the normalised population size and for the
normalised total generation is the same with probability one.

Theorem 2.3.10 (Z(t) and G(t) have same randomness in their dominant
terms). Given

G(t)
chα′teαt

= Gt L
2
→ G and Z(t)

ceαt
= Zt a.s.→ Z

we have that
G = Z a.s.

Proof: The proof is divided in two parts: first, we prove that G and Z are
equally distributed, then that they coincide with probability one.

Theorem 2.3.9, together with (2.7), imply that (Gt,Zt) D−→ (G,Z) in distribu-
tion. So, we can characterise the distribution of the pair (G,Z) studying the
MGF of (Gt,Zt) when t→∞.

Proposition 2.3.5 gives us an equation solved by the Probability Generating
Function (PGF) of the vector (G(t), G(t+ τ), Z(t), Z(t+ τ)). Evaluating this
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equation in (s1, 1, r1, 1, t, 0), we obtain the following expression solved by the
PGF F (s1, r1, t) := E(sG(t)

1 r
Z(t)
1 ) of (G(t), Z(t))

F (s1, r1, t) = r1P(L > t) +
∫ t

0
ρN

(
F (s1, s1r1, t− u)

)
dP(L ≤ u). (2.30)

Replacing s1 with exp(−s/[hcα′teαt]) and r1 with exp(−r/[ceαt]), for s, r ≥ 0,
we obtain an expression solved by the MGF φ(s, r, t) of (Gt,Zt):

φ(s, r, t) = E
(
e−

sG(t)
hcα′teαt e−

rZ(t)
ceαt

)
= e−

r
ceαt P(L > t) +

∫ t

0
ρN

(
E
(
e−

(t−u)se−αu
t

Gt−ue−
(s+hrα′t)e−αu

hα′t Zt−u
))
dP(L ≤ u)

= e−
r

ceαt P(L > t) +
∫ t

0
ρN

(
φ
((t− u)

t
se−αu,

(s+ hrα′t)
hα′t

e−αu, t− u
))
dP(L ≤ u).

Taking the limit for t→∞ of φ(s, r, t), we obtain that the function φ(s, r) :=
E(exp(−sG) exp(−rZ)) solves the integral equation

φ(s, r) =
∫ ∞

0
ρN

(
φ
(
se−αu, re−αu

))
dP(L ≤ u) s, r ≥ 0. (2.31)

This means that if we consider r = 0, the function ψ(s) := E[exp(−sG)], that
represents the MGF of G, solves the integral equation

ψ(s) =
∫ ∞

0
ρN

(
ψ
(
se−αu

))
dP(L ≤ u), s ≥ 0 (2.32)

with ψ(0) = 1 and ψ′(0) = −1. The uniqueness of the solution of this prob-
lem [69, pg. 122] and the fact that the MGF of the variable Z solves (2.32)
too [42, pg. 146], give us that the MGFs of Z and G coincide for s ≥ 0. Using
a result proved by Mukherjea et al. [80, Theorem 2], we can conclude that Z
has the same distribution as G.

Now, if we consider r = s in (2.31), we can see that the function E[exp(−s(G+
Z))], that represents the MGF of G + Z, solves (2.32) but with the initial
conditions ψ(0) = 1 and ψ′(0) = −2. Another solution of (2.32) with the
same initial conditions is given by 2Z. Also in this case, the uniqueness of the
solution and [80, Theorem 2] allows us to conclude that 2Z D= Z + G.

These last two results give us that Z a.s.= G. In fact, given both Z and G are
in L2, we have

2Z D= Z + G =⇒ 4Var(Z) = Var(Z) + Var(G) + 2Cov(Z,G)

=⇒ Var(Z) = Cov(Z,G) =⇒ CorrZ,G := Cov(Z,G)√
Var(Z)

√
Var(G)

= 1,
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where in the last inequality we have used the definition of Pearson’s correlation
coefficient. The correlation coefficient equal to 1 implies that G = aZ + b a.s.,
for a ≥ 0, b ∈ R [18, Theorem 4.5.7]. Since Z and G are in L2 and Z D= G,
we have that Var(aZ + b) = Var(Z) and E(aZ + b) = E(Z), from which we
obtain a2 = 1, so a = 1, and b = 0. This conclude the proof.

Thus, from Theorem 2.3.10, Z can be used in lieu of G from here on.

Example 2.3.1 (Pure birth process). When the lifetimes of cells are expo-
nential distributed, i.e. L D∼Exp(λ), and the number of offspring for each cell
is N = 2 a.s., the branching process obtained is called a pure birth process [93,
pg. 370]. In this case, we can fully characterise Z by finding an expression
for its MGF. In fact, the PGF of Z(t), FZ(s, t) := E(sZ(t)), solves the differ-
ential equation F ′Z(s, t) = λ[FZ(s, t)2 − FZ(s, t)] [42, pg. 106], and knowing
that for exponential lifetimes, the Malthusian parameter, α(h), is given by
α(h) = λ(h− 1), we find the closed-form expression

FZ(s, t) = s

s− (s− 1)eλt . (2.33)

We can now use the expression in (2.33) to characterise Z as

φZ(s) := E(e−sZ) = lim
t→∞

FZ(e−s/eλt , t) = 1
1 + s

, (2.34)

which is the Laplace transform of an Exp(1) distribution (e.g. see [38, Example
7.45]), and where we have used the fact that E(Z(t))/eλt = 1. So, for a pure
birth process, Z and G are exponential random variables with parameter 1
that, according to Theorem 2.3.10, are equal almost everywhere. We can also
see that in Fig. 2.3, where in the first panel a comparison between Zt, Gt, and
a random variable exponentially distributed with parameter 1, for t = 9, is
shown. Given the empirical Cumulative Distribution Functions (eCDFs) of Zt
and Gt represent two approximations of the CDF of Z for large t, Fig. 2.3(a)
suggests that a convergence in distribution of Zt and Gt to Z is taking place.
This is more evident in Fig. 2.3(b) where, using the concept of distance coming
from the uniform norm, d(f, g) := ||f − g||∞ (e.g. see [97, pg. 150]), the
distance between the eCDF of Zt and Gt, and the CDF of Z are described for
different values of t.
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Figure 2.3: Comparison between the distributions of Zt, Gt, and
Exp(1). The figure uses 100 Monte Carlo simulations of a pure birth pro-
cess, starting with one cell at time t = 0. (a) The first panel shows the
empirical Cumulative Distribution Function (eCDF) of Zt (red line), Gt (blue
line), and the CDF of an exponential distribution with parameter 1 (green
line) for t = 9. (b) Using the notion of distance coming from the uniform
norm, d(f, g) := ||f − g||∞ (e.g. see [97, pg. 150]), the plot shows how close
the eCDFs of Zt and Gt (resp. FZt and FZt) are to the CDF of Exp(1) (FExp(1))
for different value of t.
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2.3.5 Almost sure convergence of G(t)
We have gathered the results needed to establish one of the significant results
of the thesis: the almost sure convergence of a normalised version of the process
{G(t)}. In order to prove that, we will assume something concerning the speed
of convergence of Gt to Z as L2 functions. This assumption is equivalent to
the one made by Harris in [42, Chapter VI, Theorem 21.1] concerning the size
of the population, which - for the population size - was later established by
Jagers [54] to be unnecessary.

Theorem 2.3.11 (Almost sure convergence of G(t)). If
∫∞

0 E((Gt−Z)2)dt <
∞, we have that

G(t)
hα′cteαt

= Gt a.s−−−→
t→∞

Z.

Proof: We start with the additional hypothesis p0 = P(N = 0) = 0 in order to
have G(t) as a finite, non-decreasing step function of t. Using Fubini’s theorem
on

∫∞
0 E((Gt−Z)2)dt <∞, we obtain that P(

∫∞
0 (Gt−Z)2dt <∞) = 1. Since

G(t) is non-decreasing in t, we have

Gt+τ = G(t+ τ)
hcα′(t+ τ)eα(t+τ) ≥

t

(t+ τ)eατ
G(t)

hcα′teαt
= t

(t+ τ)eατ Gt, (2.35)

where the inequalities are true for every realisation of the random variables.

Let’s suppose that Gt a.s.−−−→
t→∞

Z not true . If (Ω,B(Ω),P) is the probabil-
ity space where Gt and Zt are defined, then there exists a set A ⊆ {ω ∈
Ω| limt→∞ Gt(ω) 6= Z(ω)} that is measurable and such that P(A) > 0. Since
Z > 0 a.s. [42, Remark 1, Section 20], we can also suppose that Z(ω) > 0 for
every ω ∈ A.

For every ω ∈ A we have that at least one of the possibilities lim supt→∞ Gt(ω) >
Z(ω) and lim inft→∞ Gt(ω) < Z(ω) is true. We will see that in both cases we
will have

∫∞
0 (Gt(ω)−Z(ω))2dt = +∞, leading to the contradiction E(

∫∞
0 (Gt−

Z)2dt) = +∞.

Let us start fixing ω ∈ A and assuming lim supt→∞ Gt(ω) > Z(ω). This
implies that there exist a δ > 0 and a sequence (ti)i∈N, with limi→∞ ti = ∞,
such that Gti(ω) > (1 + δ)Z(ω), i ∈ N. If we consider 0 < ε < δ, without loss
of generality we can choose this sequence such that

ti+1 − ti >
(δ − ε)ti

1 + ε+ αti(1 + δ) := bi.
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Note that δ, ε, and ti depend on ω and that (bi)i∈N and (ti)i∈N are monotonically
increasing.

Using (2.35) and the relation e−ατ ≥ 1− ατ , we obtain for every i ∈ N

Gti+τ (ω)
(2.35)
≥ ti

(ti + τ)eατ Gti(ω) > ti
ti + τ

(1− ατ)(1 + δ)Z(ω), τ ∈ (0,∞)

≥ (1 + ε)Z(ω) τ ∈ (0, bi)

≥ (1 + ε)Z(ω) τ ∈ (0, b1),
(2.36)

where we have used the fact that the function ti(ti + τ)−1(1 − ατ)(1 + δ) is
decreasing in τ , that for τ = bi it is equal to (1 + ε), and that (bi)i∈N is an
increasing sequence.

Hence, using (2.36), we have for every i that∫ ti+1

ti
(Gt(ω)−Z(ω))2dt ≥

∫ ti+b1

ti
(Gt(ω)−Z(ω))2dt

=
∫ b1

0
(Gti+τ (ω)−Z(ω))2dτ ≥ (εZ(ω))2b1 > 0.

This allows us to say that
∫∞

0 (Gt(ω)−Z(ω))2dt = +∞.

The same conclusion can be obtained assuming lim inft→∞ Gt(ω) < Z(ω).
Indeed, for the definition of lim inf we have that there exist δ ∈ (0, 1) and a
sequence (ti)i∈N, with ti > 1 and limi→∞ ti =∞, such that Gti < (1−δ)Z. We
can also pretend that ti+1 − ti > a > 0, where a is chosen in order to satisfy
the following inequalities for i big enough

0 < Gti−τ
(2.35)
≤ ti

ti − τ
eατGti < (1− δ) ti

ti − τ
eατZ τ ∈ (0, t1)

≤ (1− ε)Z τ ∈ (0, a),

where ε is a constant s.t. 0 < ε < δ. The existence of such a is a consequence
of the fact that ψ(t, τ) := (1 − δ)eατ t/(t − τ), as long as τ < t, is increasing
in τ and decreasing in t. Indeed, this implies that there exists a > 0 s.t. for
τ ∈ [0, a], (1 − δ) = ψ(1, 0) ≤ ψ(1, τ) ≤ (1 − ε), from which we can conclude
that for τ ∈ [0, a] and t ≥ 1, we have (1− δ) = ψ(t, 0) ≤ ψ(t, τ) ≤ (1− ε) .
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Then, we have ∫ ti

ti−1
(Z(ω)− Gt(ω))2dt ≥

∫ ti

ti−a
(Z(ω)− Gt(ω))2dt

≥
∫ a

0
(Z(ω)− Gti−τ (ω))2dτ ≥ (εZ(ω))2a.

As before, this implies that
∫∞

0 (Gt(ω)−Z(ω))2dt = +∞.

So, for every ω ∈ A we have
∫∞

0 (Gt(ω) − Z(ω))2dt = +∞ and, because
P(A) > 0, we have E(

∫∞
0 (Gt −Z)2dt) = +∞. This contradicts the hypothesis

of the theorem and so we have proved that limt→∞ Gt = Z with probability 1
under the condition p0 = 0.

When p0 6= 0, we can observe that G(t) = GB(t) − GD(t), where GB(t) and
GD(t) are the sum of the generation of the cells born and dead before or at
time t, respectively. Also for these processes we can find integral equations
for the probability generating function similar to the one found for G(t) and
repeat all the previous steps. Thanks to the monotonicity of GB(t) and GD(t),
this time we don’t need the assumption p0 = 0, obtaining the almost sure
convergence of GB(t)/n1te

αt and GD(t)/n2te
αt to the random variables ZB

and ZD respectively, where n1, n2 are positive constants. This allows us to
conclude that Gt converges to ZB −ZD.

Having established the almost sure result for the limiting behaviour of the
total generation process G(t), we are in a position to make the final deduction
of the section that leads to equation (2.3). Thanks to equation (2.7), The-
orem 2.3.11, and the Continuous Mapping Theorem (e.g. [103, pg. 24]), we
have the following corollary.

Corollary 2.3.12 (Almost sure average generation inference). If E(N2) <∞,
lim inft→∞ Z+(t) > 0, and

∫∞
0 E((Gt−Z)2)dt <∞, we have almost surely that

lim
t→∞

G(t)
tZ(t) = hα′, lim

t→∞
− 1
pt

log
(
Z+(t)
Z(t)

)
= α(h)− α(h(1− p))

p
, (2.37)

and
lim
p→0

α(h)− α(h(1− p))
p

= hα′, (2.38)

where the second limit in (2.37) and (2.38) are established in [116, Theorem
1].
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Thus the average estimation scheme, firstly proposed in [116], is almost surely
correct on a path-by-path basis for a Bellman-Harris branching process. The
principle behind this result is that for almost all paths, G(t)/Z(t) = hα′t +
o(t) for large t. That is, the randomness in the average generation is not
contained in the linear factor but in something asymptotically smaller (see
Fig. 2.1(c)). On the other hand, so long as the Z+ population persists,
−1/t log(Z+(t)/Z(t)) ≈ α(h(1−p))−α(h) for large t. However, as the Malthus
parameter is real analytic [116, Proposition 1], α(h(1− p)) coincides with its
Taylor expansion around p = 0, α(h(1− p)) = α(h)− hα′(h)pt+O(p2). Thus
we have that −1/(pt) log(Z+(t)/Z(t)) ≈ hα′(h), the same constant as appears
for the time-rescaled average generation.

Example 2.3.1 (Continued). Continuing the example in the Markovian set-
ting started in the previous section, we can see that the quantity hα′ that
appears in equation (2.37) and (2.38) is given by 2λ, with λ parameter of the
exponential lifetime distribution.

Corollary 2.3.12 is the core result of the chapter and provides stronger math-
ematical support for using the proportion of label positive cell to estimate the
average generation of a population for a single realisation of a growing tree.
From what we have seen, the results of this chapter involves only homoge-
neous populations, i.e. where each cell divides independently from the others
but according to the same probability laws. In the next chapter we extend
Theorem 2.3.11 and Corollary 2.3.12 to a two-type setting, where cells belong-
ing to the same type share the same division laws. This extends the range
of application of the method to heterogeneous populations that can rise for
example as result of a differentiation process or as a consequence of a genetic
mutation.

48



CHAPTER 3
Average generation in a

two-type Branching Process

3.1 Introduction
In Chapter 2, we studied a growing cell population in which cells are sub-
ject to division and death, modelling it with a super-critical Bellman-Harris
branching process. That allows us to obtain insights on the limit behaviour of
the sum of the generations of the living cell at time t, G(t) (Theorem 2.3.11).
Joining this result with what is already known about the size of the population
[42, 54], Z(t), and the proportion of label-positive cells [116], Z+(t)/Z(t), we
obtained an enhancement of the mathematical results underpinning the DNA
coded randomised algorithm for the estimation of the average generation in-
troduced in [116] (Corollary 2.3.12).

In addition to division and death, cells often undergo changes in cell-type.
For example, many tissues of the human body are formed through progressive
stages of proliferation and change in cell-type, called cellular differentiation,
from stem cells [66, 1], while cancer cells arise as mutants with aberrant DNA
from healthy cells [76, 48]. Changes in cell-type are often accompanied by
changes in population kinetics, e.g. [2], and to better understand these differ-
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entiation processes, it is desirable to obtain information on the average gen-
eration of each population as they are often reported as being division-linked
[47, 25, 26, 86].

As a basic model of changes in cell type, in the present chapter we extend the
results in Chapter 2 to a two-type Bellman-Harris branching process subject to
one-way differentiation, a model first considered by Jagers in [53] where cells of
one type can give rise to another but not vice-versa. These results significantly
extend the remit and utility of the inference of average generation by random
delabelling. In particular, if the initial cell is equipped with a neutral label
that is heritably lost with a fixed probability per division, we prove that the
average generation of each cell-type can be inferred from knowledge of that
probability and the proportion of label positive cells.

Before presenting those results, in the next section we explain the model we
are going to use to describe the growth of the two-type cell population in more
detail. The notation and the assumptions we employ throughout this chapter
are consistent with those used, for the single-type case, in Chapter 2 and with
those employed in [53], where sample path results for the population size were
first established in this two-type setting.

3.2 Model and notation
As in Fig. 1.5, consider a cell population whose members are one of two
types, type-1 and type-2. Each cell lives a random type-dependent lifetime Li,
i ∈ {1, 2}, after which it dies or divides generating Ni offspring. We assume Li
and Ni are independent for each cell, and amongst all cells. Furthermore, we
suppose that type-1 cells can generate cells of both types, i.e. N1 takes values
in N2 and P (N1 = (k, j)) is the probability that k type-1 and j type-2 cells are
generated from a type-1 cell after division. We also denote with ρ1(x1, x2) :=∑
k,j∈N P (N1 = (k, j))xk1x

j
2 the Probability Generating Function (PGF) of N1.

Differently, we assume that the offspring of type-2 cells are exclusively type-
2 cells, so that N2 takes value in N and has PGF ρ2. We denote by hi :=
(∂/∂xi)ρ1(1, 1) the average number offspring of type-i generated from a type-
1 cell and, with µ := (d/dx)ρ2(1), the average number of offspring obtained
from a type-2 cell.

What we have just described is the typical setting of a two-type cell population
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in which each sub-population behaves according to a Bellman-Harris branching
process with immigration from type-1 to type-2. Given part of the offspring
of a type-1 cell is changing type, the growth rate of the type-1 population is a
function of h1 and, as in the single-type case studied in Chapter 2, we suppose
that h1 and µ are greater than 1 so that both populations are super-critical.

To each cell we assign a generation, the integer that records how many di-
visions led to that cell (Fig. 1.5). We define cells at time zero as being in
generation zero. Furthermore, we suppose the cells in the initial population
are equipped with a neutral label (i.e. one that does not influence population
dynamics) that, independently for each cell, is heritably lost immediately prior
to a cell’s division with probability p. For i ∈ {1, 2}, we denote by Zi(t) the
total number of type-i cells in the population at time t, by Gi(t) the total gen-
eration of type-i cells at time t, and by Z+

i (t) the size of type-i label-positive
at time t. To describe the growth rates of these processes, we need the concept
of Malthusian parameter that we have already introduced in Section 2.1. In
particular, we define α1 and α2 as the solutions of the equations

h1E
(
e−α1L1t

)
= 1 and µE

(
e−α2L2t

)
= 1. (3.1)

The existence and the uniqueness of the solutions of these equations are guar-
anteed by the hypotheses h1 > 1 and µ > 1, which also lead to α1, α2 > 0.
As said in Section 2.3.1 and proved in [116], α1 and α2 can be seen as ana-
lytic functions of h1 and µ, respectively. This allows us to define their first
derivatives at the points h1 and µ, using the expressions

α′1 = 1
h2

1
∫+∞

0 te−α1tdP(L1 ≤ u)
and α′2 = 1

µ2 ∫+∞
0 te−α2tdP(L2 ≤ u)

.

In the next section, we will see that whether α1 is greater or smaller than α2

has a significant impact on the behaviour of the type-2 population, influencing
the growth rate of both Z2(t) andG2(t). Fortunately, this doesn’t influence the
estimator’s ability to infer, at large time and for small delabelling probability,
the average generation of the type-2 population with the use of the proportion
of label-positive cells of the same type.

3.3 Results
According to the model described in Section 3.2, the population dynamics of
type-1 cells are unaffected by type-2 cells. In fact, treating differentiation as
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death, the type-1 population behaves as a single type process. If the starting
population only has type-2 cells, the system is again in the single type setting,
given no changes from type-2 to type-1 cells are allowed. Thus the interesting
setup is when the system is initiated with cells of type-1 and queries are of
the population size and average generation of type-2 cells.

Let Pi and Ei denote the probability and the expectation conditional on the
total population starting with a single cell of type i ∈ {1, 2}. The growth
of the type-2 population size given one initial type-1 cell, Z2(t) under P1, is
studied in [53]. Those results can be immediately applied to study Z+

2 (t),
given the first cell is type-1 and label-positive. Analogous results for G2(t)
can be obtained by repeating the steps made in the single-type case, starting
from the generalisation of Proposition 2.3.5 to the two-type problem.

Proposition 3.3.1. Let us denote with F1(s1, s2, s3, s4, r1, r2, r3, r4, t, τ) :=
E1(sG1(t)

1 s
G2(t)
2 s

G1(t+τ)
3 s

G2(t+τ)
4 r

Z1(t)
1 r

Z2(t)
2 r

Z1(t+τ)
3 r

Z2(t+τ)
4 ) and with the function

F2(s2, s4, r2, r4, t, τ) := E2(sG2(t)
2 s

G2(t+τ)
4 r

Z2(t)
2 r

Z2(t+τ)
4 ) for si, ri, t, τ ∈ R≥0,

with i = 1, . . . , 4. Under this notation, we have that

F1(s1, s2, s3, s4, r1, r2, r3, r4, t, τ) = r1r3P(L1 > t+ τ)

+ r1

∫ t+τ

t
ρN1 (F1(1, 1, s3, s4, 1, 1, s3r3, s4r4, t− u, τ), F2(1, s4, 1, s4r4, t− u, τ))

dP(L1 < u)

+
∫ t

0
ρN1 (F1(s1, . . . , s4, s1r1, . . . , s4r4, t− u, τ), F2(s2, s4, s2r2, s4r4, t− u, τ))

dP(L1 < u),

where ρN1(s) := E(sN1), and that F2 = F is given by (2.16).

Proof: The recursive equation for F1 can be found using arguments similar to
the ones used in [116, Theorem 2] to find an integral expression for the PGF
of (G(t), Z(t)) in the single-type case. The idea behind it is to use the Law
of Total Probability (e.g. [65, Theorem 8.6]), with the partition of the sample
space given by {{L2 > t + τ}, {t < L2 ≤ t + τ}, {L2 ≤ t}}, to decompose F1

as a sum of 3 terms. Furthermore, F2 coincides exactly with the function F
defined in Proposition 2.3.5.

Using Proposition 3.3.1, Lemma 2.3.2 and Theorem 2.3.3 we can establish the
growth rates of E1(G2(t)), E1(G2(t)Z2(t)), E1(G2(t)2), E1(Z2(t)Z2(t + τ)),
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3.3. Results

E1(G2(t)Z2(t+τ)), E1(G2(t+τ)Z2(t)), and E1(G2(t)G2(t+τ)). In particular,
we obtain that

Lemma 3.3.2. Under the assumptions made, when t→∞, we have that the
quantities

E1(Z2(t))
eαt

,
E1(G2(t))

teαt
,

E1(Z2(t)Z2(t+ τ))
e2αt ,

E1(G2(t)Z2(t+ τ))
teαteα(t+τ) ,

E1(Z2(t)G2(t+ τ))
(t+ τ)eαteα(t+τ) ,

E1(G2(t)G2(t+ τ))
(t+ τ)2e2α(t+τ)

converge to constants different from 0 for τ ∈ [0,∞), where α := max(α1, α2).
Moreover, for the quantities above that depend on τ , it is also true that the
convergence is uniform for τ ∈ [0,∞).

Proof: The proof essentially follows the same line of reasoning of Lem-
mas 2.3.6 and 2.3.7 and so is not repeated.

From this lemma, starting with one label-positive type-1 cell, the in-expectation
result relating the average generation to the proportion of labelled cells follows
immediately:

lim
t→∞

E1(G2(t))
tE1(Z2(t)) = − lim

p→0
lim
t→∞

1
pt

log
(
E1(Z+

2 (t))
E1(Z2(t))

)
.

This equation says that a quantity somewhat similar to the expected aver-
age generation of the type-2 population can be determined from averages of
the delabelling proportion, where the averages are taken over the multi-type
Bellman-Harris construction, and all delabellings. These results do not pro-
vide per sample-path guarantees, which would be desirable. To obtain those
convergence results, one notes that a combination of [42, Theorems 19.1 and
21.1], Theorem 2.3.9, and Theorem 2.3.11 gives that

lim
t→∞

Zi(t)
cieαit

L2,a.s.= Zi and lim
t→∞

Gi(t)
diteαit

L2,a.s.= Zi under Pi, (3.2)

where

c1 = h1 − 1
h2

1α1
∫∞

0 te−α1tdP(L1 ≤ t) , c2 = µ− 1
µ2α2

∫∞
0 te−α2tdP(L2 ≤ t) ,

d1 = c1h1α
′
1, d2 = c2µα

′
2, and where for the almost sure results concerning

{Gi(t)} in (3.2), we have assumed that
∫∞

0 E[(Gi(t)/(diteαit) − Zi)2]dt < ∞.
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On top of that, Lemma 3.3.2 enables us to conclude the mean square limit of
G2(t) and the almost sure one under P1, using reasonings similar to the ones
used in Theorem 2.3.11. Moreover, from [116], if lim inft→∞ Z+

i (t) > 0, under
Pi we have that almost surely

πi(p) := lim
t→∞
− 1
pt

log
(
Z+
i (t)
Zi(t)

)
=

(α1(h1)− α1(h1(1− p)))/p if i = 1

(α2(µ)− α2(µ(1− p)))/p if i = 2
,

and

lim
p→0

πi(p) =

h1α
′
1 if i = 1

µα′2 if i = 2
,

where we have assumed that the first cell is label positive.

We present two sets of results depending on whether α1 > α2 or vice versa.
If α1 < α2, which would model, for example, the emergence of fast dividing
cancer cells from a population of slowly dividing healthy cells [82, 5], the
growth rate of the type-2 cells is greater than the type-1 cells and their average
generation is determined by the derivative of the latter Malthus parameter.

Proposition 3.3.3 (α1 < α2). If (∂/(∂xi∂xj))ρ1(1, 1), for 1 ≤ i ≤ j ≤ 2,
and (∂/(∂x)2)ρ2(1) are finite, we have that

lim
t→∞

Z2(t)
c1,2eα2t

L2,a.s.= W , and lim
t→∞

G2(t)
d1,2teα2t

L2
= W under P1, (3.3)

where
c1,2 = h2c2

∫∞
0 e−α2tdP(L1 ≤ t)

1− h1
∫∞

0 e−α2tdP(L1 ≤ t) , d1,2 = c1,2µα
′
2, (3.4)

and W is a non-negative random variable such that we have P1(W = 0) =
P1(limt→∞ Z1(t) = 0, limt→∞ Z2(t) = 0) and E1(W) = 1.

If
∫∞

0 E1[(G2(t)/(d1,2te
α2t) − W)2]dt < ∞, the second limit in (3.3) is also

true almost surely. Assuming the initial cell is of type-1, i.e. Z+
1 (0) = 1 and

Z2(0) = G1(0) = G2(0) = 0, E(N2) <∞, and lim inft→∞ Z+
2 (t) > 0, we have

almost surely that

lim
t→∞

G2(t)
tZ2(t) = µα′2, lim

t→∞
− 1
pt

log
(
Z+

2 (t)
Z2(t)

)
= α2(µ)− α2(µ(1− p))

p
, (3.5)

and
lim
p→0

α2(µ)− α2(µ(1− p))
p

= µα′2.
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Proof: The first affirmation is a consequence of [54], Lemma 3.3.2 through
an adaptation of Theorem 2.3.9. The second part of the statement can be
proved adapting Theorems 2.3.10 and 2.3.11 to the two-type Bellman-Harris
branching process.

If α2 < α1, as might occur with the production of terminally differentiated
cells from multipotent ones [20, pg. 700] (e.g. the hematopoiesis process
described in Section 1.1), the growth rate of the type-1 cells is greater than
the type-2 cells and their average generation is determined by the derivative
of the former Malthus parameter. That is, in this setting, so long as the type-
1 population continues to exist, the average generation of the type-2 cells is
dominated by immigrants from the type-1 population.

Proposition 3.3.4 (α2 < α1). If (∂/(∂xi∂xj))ρ1(1, 1), for 1 ≤ i ≤ j ≤ 2,
and (∂/(∂x)2)ρ2(1) are finite, we have that

lim
t→∞

Z2(t)
c2,1eα1t

L2,a.s.= Z2 and lim
t→∞

G2(t)
d2,1teα1t

L2
= Z2 under P1, (3.6)

where

c2,1 = h2(1−
∫∞

0 e−α1tdP(L2 ≤ t))
h2

2α1(1− µ
∫∞

0 e−α1tdP(L2 ≤ t)) , d2,1 = c2,1h1α
′
1, (3.7)

and Z2 random variable defined in (3.2) with P1(Z2 = 0) = P1(limt→∞ Z1(t) =
0) and E1(Z2) = 1.

If
∫∞

0 E1[(G2(t)/(d2,1te
α2t) − Z2)2]dt < ∞, the second limit in (3.6) is also

true almost surely. Assuming the initial cell is of type-1, i.e. Z+
1 (0) = 1 and

Z2(0) = G1(0) = G2(0) = 0, E(N2) <∞, and lim inft→∞ Z+
1 (t) > 0, we have

almost surely that

lim
t→∞

G2(t)
tZ2(t) = h1α

′
1, lim

t→∞
− 1
pt

log
(
Z+

2 (t)
Z2(t)

)
= α1(h1)− α1(h1(1− p))

p
,

(3.8)
and

lim
p→0

α1(h1)− α1(h1(1− p))
p

= h1α
′
1.

Proof: The proof follows the same lines of Proposition 3.3.3 and so is omitted.
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Example 3.3.1 (Exponential lifetimes). As made in Examples 2.3.1, we com-
pute the constants that appear in Proposition 3.3.3 and Proposition 3.3.4 when
the lifetimes of the cells are exponential distributed. Assume L1

D∼Exp(λ1) and
L2

D∼Exp(λ2). Given that for exponential lifetimes we have α1(h1) = λ1(h1−1)
and α2(µ) = λ2(µ− 1), we obtain that α′1 = λ1 and α′2 = λ2. So, the quantity
µα′2 and h1α

′
1 that appear in (3.5) and (3.8) respectively, are given by µλ2

and h1λ1. Using the fact that in the case considered c1 = 1 = c2, we have also
that

c1,2 = h2λ1

λ2(µ− 1)− λ1(h1 − 1) , c2,1 = 1
h2[λ1(h1 − 1)− λ2(µ− 1)] ,

d1,2 = c1,2µλ2, and d2,1 = c2,1h1λ1.

We conclude the chapter by presenting some simulated results that illustrate
the features of these two-type results, both for average generation and for its
inference. Fig. 3.1 provides average normalised paths of the processes Zi(t) and
Gi(t). In Fig. 3.1(a)-(b), α1 < α2, but despite the fact the type-2 population
is the fastest growing on average, it is the slowest one to converge. This occurs
due to the random delay in the production of any type-2 cells. Note also that
the total population of both type-1 and type-2 cells behave as a single-type
branching process with N = 2 and log-normal lifetime distribution. Hence,
the growth rates of Z(t) = Z1(t) + Z2(t) and G(t) = G1(t) + G2(t) are the
same as if the type-2 population was started with one type-2 cell.

In Fig. 3.1(c)-(d), α1 > α2. Here, the second population is dominated by
differentiation from the first cell type, with both populations have the growth
rate of the type-1 population. The behaviour of Z(t) and G(t) for the entire
population is the sum of the corresponding processes for the two types.

Turning to the relatedness in random prefactors, Fig. 3.2(b) is consistent with
the deduction that there is equality almost surely between the rescaled limit
of the population size and total generation of the second type. Fig. 3.2(c)
shows the prefactor for type-1 and type-2 population sizes. Consistent with
results in [53], red dots are suggestive that when α2 < α1 both normalised
processes converge to the same random variable. For α1 < α2, however, this is
not the case for the blue dots and the random variables appear uncorrelated.
Fig. 3.2(d) is analogous to Fig. 3.2(c) but for the total generation process, with
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(d) normalised total generations (α2 < α1)

Figure 3.1: Average growth rates of population sizes and total gen-
erations of each type starting with a single type-1 cell and using
the scalings in Propositions 3.3.3 and 3.3.4. Cells have lognormal life-
time with mean 9.3 hours and standard deviation 2.54 [44]. Type-1 cells
give rise to type-1 cells with probability 5/6 and to type-2 cells with prob-
ability 1/6. Means are computed averaging the results of 1000 Monte Carlo
simulations of populations growing for four days. (a)-(b) These illustrations
are in the case α1 < α2 as both types of cells always have two offspring.
(c)-(d) These are in the setting α2 < α1, obtained by setting N1 = 2 and
P(N2 = 0) = 2/5 = 1−P(N2 = 2).
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Figure 3.2: Relationships in per-path randomness. Plots were created
using the same 1000 Monte Carlo simulations used to generate Fig. 3.1. Blue
points correspond to α1 < α2, while red ones to α2 < α1. (a) Scatter plot of
normalised versions of Z1(t) and G1(t) is displayed at t = 4 days. Pearson
correlation coefficient for both blue and red points is 0.99. Similar situation
in (b), where normalised versions of Z2(t) and G2(t) are plotted at time t = 4.
Even in this case, the Pearson correlation coefficient for both blue and red
points is 0.99. (c) We now compare the randomness in the limit behaviour
of the size of the two populations, i.e. we display the normalised versions of
Z1(t) and Z2(t) at t = 4 days in a scatterplot. Pearson correlation coefficient
for blue and red points is −0.19 and 0.94, respectively. (d) In a similar way,
a scatter plot of normalised versions of G1(t) and G2(t) is displayed at t = 4
days. Pearson correlation coefficient for blue and red points is −0.09 and 0.94,
respectively.

58



3.3. Results

0 1 2 3 4 5

t (days)

0

5

10

15

20

25

30
G2(t)/Z2(t)

−1/p log(Z+
2 (t)/Z2(t))

µα′2t

(a) α1 < α2, Z1(0) = 1

0 1 2 3 4 5

t (days)

0

5

10

15

20

25

30
G2(t)/Z2(t)

−1/p log(Z+
2 (t)/Z2(t))

µα′2t

(b) α1 < α2, Z1(0) = 100
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(c) α2 < α1, Z1(0) = 1
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(d) α2 < α1, Z1(0) = 100

Figure 3.3: Sample-path estimation of average generation. For each
sub-panel, ten Monte Carlo simulations of a two-type population are pre-
sented. These employ the same parameterisation in Fig. 3.1, with the excep-
tion of the initial population size in the two right hand side panels. Each
initial cell is equipped with a neutral label that doesn’t alter population dy-
namics, and which is lost irrevocably to all subsequent offspring with probabil-
ity p = 10−2 per cell division. The red line indicates the theoretical prediction
of the mean average generation. Blue lines indicate the development of the
per-path average generation, while the green lines are the estimates from the
delabelling formula (1.1). (a-b) Plots are in the setting α1 < α2 case, but
start with one and 100 type-1 cells at t = 0, respectively. (c-d) Equivalent of
(a-b) but with α2 < α1.

the same deduction as for the population size holding where when α1 > α2,
the randomness is common to both types and otherwise it is not.

Part of the significance of Propositions 3.3.3 and 3.3.4 is that they provide
an instrument by which one can infer the average generation of each of the
populations in a two-type Bellman-Harris branching process, generalising the
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results in [116, Proposition 2]. In the presence of cells equipped with a neutral
label that is heritably lost with a fixed probability at each division, the average
generation and a function of the proportion of label-positive cells of each type
share the same dominant term. The mathematical results say that the slope
of the average generation and the slope of the estimator are the same when the
probabilistic regularity of a large population takes hold. Figs 3.3(a) and 3.3(c)
illustrate this relationship for the type-2 population via the use of some Monte
Carlo simulations in the presence of a single initial label positive cell of type-
1. In this setting the large population regularity only takes hold at later
times. Starting with more than one initially labelled cell, illustrated with
100 in Figs 3.3(b) and 3.3(d), results in the desired asymptotic equivalence
occurring at a much earlier time. For true cellular systems, the cell numbers
are likely to be greater than that. For example, if the two-type branching
process is describing the production of effector T-cells from naïve ones during
an adaptive immune response in a mouse, we have that the initial population
of pathogen-specific naïve T-cells is around 100-1000. This can be 1000 times
bigger in a secondary adaptive immune response [62] (see Fig. 1.4).
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CHAPTER 4
A closer look at the variance of

the average generation of
individual trees

4.1 Introduction
In Chapter 2 we have shown that modelling a growing cell population as a
super-critical Bellman-Harris branching process allows us to establish how the
average generation of the populations behaves over time. In particular, if Z(t)
and G(t) denote the size and the total generation of the population at instant
t respectively, thanks to the almost sure result contained in Corollary 2.3.12,
we have that for large t

G(t)
Z(t) ≈ α′(h)ht+ o(t) (4.1)

where h is the average number offspring generated after division by each cell,
and α(h), defined in (2.4), represents the exponential growth rate of the size
of the population.

According to [116, Theorem 1] and Corollary 2.3.12, we also have that the first
term in (4.1) can be estimated using the DNA randomised algorithm proposed
in [116] and described in Section 1.4, that is

lim
p→0

lim
t→∞
− 1
pt

log
(
Z+(t)
Z(t)

)
= α′(h)h,
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where Z+(t) denotes the number of label-positive cells alive at time t, and
where p is the probability of label loss for each cell just before its division
occurs.

Having information on the o(t) function that appears in (4.1) is important to
better understand the estimates provided by estimator (1.1). Studying this
term is not easy under the general hypothesis of a Bellman-Harris branching
process and for this reason in this chapter we assume a specific scenario,
simplifying the model by making restrictions to specific lifetime and offspring
number distributions. In particular, let’s assume that the lifetime of the cell,
L, is exponentially distributed, i.e. L D∼ Exp(λ), and that the per cell number
of offspring, N , is s.t. P (N = 2) = 1. This model, which is a special case of
Bellman-Harris branching process, is referred in the literature as Pure Birth
process (e.g. [93, pg. 370]).

Pure Birth processes, apart from population dynamics, appear as a funda-
mental model of study in a large number of applications from data-structures
in computer science to likelihood methods in phylogenetics to the study of
random walkers on random graphs.

Thanks to the assumption made for the lifetime distribution, the process
Z(t) becomes a continuous-time Markov Chain on the discrete state space
N (see [42, Chapter 5] and [65, Section 17.3]). The same is not true for the
process G(t), whose value at time t is not enough to determine the distribu-
tion of the process at instant t+ τ , the time of the following division. We can
retrieve this Markovian property for the generation of the cells by considering
the vector of the composition of the living cells, i.e. ~g(t) := (g0(t), g1(t), . . .)
where gi(t), i ∈ N, denotes the number of cells in generation i alive at time
t. Indeed, assuming that the composition vector is at state ~x := (x1, x2, . . .)
at time t, i.e. ~g(t) = ~x, we have Z(t) = ∑

i∈N xi, and the exponential lifetime
assumption tells us that the next change of state will happen after an expo-
nential time with parameter λ∑i∈N xi, the minimum of ∑i∈N xi cell lifetimes
exponentially distributed with parameter λ. Furthermore, once a division oc-
curs, the composition vector can only step from state ~x to one of the states
~x + 2~ei+1 − ~ei for some i ∈ N, where we denote with ~ei the vector with a 1
in position i and 0 otherwise. Joining these results, we obtain that ~g(t) is a
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continuous-time Markov chain with rate transition matrix given by

q~x,~y =


λxi if ~x 6= ~y and ~y = ~x+ 2~ei+1 − ~ei for some i ∈ N,

0 if ~x 6= ~y but ~y 6= ~x+ 2~ei+1 − ~ei for all i ∈ N,

−∑~y,~y 6=~x q~x,~y if ~x = ~y.

Even though we are not exactly going to study the vector ~g(t) in Section 4.2,
our approach strongly uses its Markovian property. Thanks to that, the study
of the quantity G(t)/Z(t) becomes easier when we condition on the number
of divisions occurred in the timeframe [0, t]. In particular, in the next section
we prove that, for a pure birth process, the quantity o(t) in (4.1) is a random
quantity that does not depend on t. We show that in the main result of the
chapter, that we state in the following proposition and of which we can have
a visualisation in Fig. 4.1, obtained by Monte Carlo simulation.

Proposition 4.1.1. For a pure birth process, we have that

lim
t→∞

Var
(
G(t)
Z(t)

)
= 7.

This result is potentially surprising because, according to [101], if we ran-
domly select a living cell in the population at time t, its average generation
is asymptotically normally distributed with a mean and a variance that grow
linearly in time, which might lead one to expect the same of Var (G(t)/Z(t)).
Furthermore, it is known that the two processes {Z(t)} and {G(t)} have dif-
ferent growth rates, eλt and teλt, respectively, [54, 116] from which one might
expect that the variability of the average generation scales as t2 and so be
diverging to infinity. Both of these hypotheses are incorrect as Z(t) and G(t)
are strongly correlated at the level of sample paths, according to our findings
in Chapter 2. Also note that the result in Proposition 4.1.1 does not depend
on λ, the rate at which a cell divides into two new cells; λ only influences the
speed of convergence in the result.

In the next section, in order to evaluate Var (G(t)/Z(t)), we condition the
average generation G(t)/Z(t) on the number of living cells at time t, Z(t). By
the Law of Total Variance (e.g. [14, Theorem 9.5.4])

Var
(
G(t)
Z(t)

)
= E

(
Var

(
G(t)
Z(t)

∣∣∣∣Z(t)
))

+ Var
(
E

(
G(t)
Z(t)

∣∣∣∣Z(t)
))

(4.2)
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Figure 4.1: Convergence of variance of the average generation of a cell
population in a pure birth process. From 104 Monte Carlo simulations of
a pure birth process with λ = 1, the red line in the plot denotes the variance
of the average generation of the population at time t, i.e. Var (G(t)/Z(t)),
whereas the blue shaded region indicates a 95% confidence interval based on
bootstrap percentiles [28, Chapter 13].

and, in order to study the variance of the average generation of the population
at time t, we study the quantities E (G(t)/Z(t)|Z(t)) and Var (G(t)/Z(t)|Z(t))
in Theorems 4.2.2 and 4.2.3, respectively. Proposition 4.1.1 then follows.

4.2 Results
Before proceeding with the analysis of the two terms on the RHS of (4.2), we
prove a lemma that will simplify the proofs of Theorems 4.2.2 and 4.2.3. For
that, we introduce a new process, {S(t)}, denoting the sum of the squares of
the generations of the living cells at time t, which appears when the second
moment of G(t)/Z(t) is studied. In the following we also consider the discrete-
time process associated with {G(t)} and {S(t)}, {Gk} and {Sk} accounting
for the sum and the sum of the squares of the generations of the living cells,
respectively, when the number of cells alive is k.

Lemma 4.2.1. We have that

• E
(
G(t)
Z(t)

∣∣∣∣Z(t) = k

)
= E (Gk)

k
= 2

k∑
i=2

1
i
, (4.3)
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• E (Sk)
k

= 4
k−1∑
i=2

E (Gi)
i(i+ 1) + E (Gk)

k
, (4.4)

• E
(
G(t)2

Z(t)2

∣∣∣∣Z(t) = k

)
= E (G2

k)
k2

= k + 1
k

(
k−1∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

k−1∑
i=1

1
(i+ 1)(i+ 2) + 4

k−1∑
i=1

E (Gi)
i(i+ 2)

)
.

(4.5)

Proof: Throughout this proof, we condition on Z(t) = k and denote by
Γ1,Γ2, . . . ,Γk the generation of the k cells present at time t, which are not
independent. From the definitions, we have Gk := ∑k

i=1 Γi and Sk := ∑k
i=1 Γ2

i .
The idea of the proof is to recover the formulas given above by finding recur-
rence equations for E (Gk) ,E (Sk), and E (G2

k).

For j ∈ {1, 2, . . . , k}, denote by Ij a random variable that takes value 1 if
the j-th cell is the first one, among the k existing, to divide in two new cells,
and 0 otherwise. We have that for fixed j ∈ {1, 2, . . . , k}, Ij is independent
of {Γ1, . . . ,Γk} and, due to the memoryless property of the exponential dis-
tribution, P (Ij = 1) = 1/k for all j ∈ {1, 2, . . . , k}, with k the number of
cells in the population. Furthermore, the Ij are not independent of each other
because only one of them can assume value 1, i.e. ∑k

j=1 Ij = 1, implying that
I2
j = Ij and IjI` = 0 if j 6= `. With that in mind, we establish the following
relations

Gk+1 = Gk +
k∑
j=1

IjΓj + 2, Sk+1 = Sk +
k∑
j=1

Ij
(
2(Γj + 1)2 − Γ2

j

)
, (4.6)

G2
k+1 = G2

k +
 k∑
j=1

IjΓj

2

+ 4 + 4Gk + 4
k∑
j=1

IjΓj + 2Gk

k∑
j=1

IjΓj

= G2
k +

k∑
j=1

IjΓ2
j + 4 + 4Gk + 4

k∑
j=1

IjΓj + 2Gk

k∑
j=1

IjΓj. (4.7)

From the first equation in (4.6) we obtain

E (Gk+1) = E (Gk) +
k∑
j=1
E (IjΓj) + 2 = E (Gk) +

k∑
j=1
E (Ij)E (Γj) + 2

= E (Gk) + 1
k
E

 k∑
j=1

Γj

+ 2 = E (Gk) + 1
k
E (Gk) + 2 = k + 1

k
E (Gk) + 2,
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where we have used that Ij and Γj are independent. This gives the following
recurrence relation

E (Gk+1)
k + 1 = E (Gk)

k
+ 2
k + 1 ,

that, solved with initial condition E (G1) = 0, results in (4.3).

Similarly, using the second equation in (4.6), we have that

E (Sk+1) = E (Sk) +
k∑
j=1
E (Ij)E

(
2(Γj + 1)2 − Γ2

j

)

= E (Sk) + 1
k

k∑
j=1
E

(
Γ2
j + 4Γj + 2

)
= E (Sk) + 1

k
E (Sk) + 4

k
E (Gk) + 2 = k + 1

k
E (Sk) + 4

k
E (Gk) + 2,

from which we get the recurrence equation

E (Sk+1)
k + 1 = E (Sk)

k
+ 4
k(k + 1)E (Gk) + 2

k + 1 .

Solving the above equation for E (S1) = E (G1) = 0, we obtain the relation
in (4.4).

Using (4.7) and the two results just found, i.e. the formulas in (4.3) and (4.4),
we can now find an expression for E (G2

k).

E

(
G2
k+1

)
=E

(
G2
k

)
+ 1
k

k∑
j=1
E

(
Γ2
j

)
+ 4 + 4E (Gk) + 4

k

k∑
j=1
E (Γj)

+ 2E
Gk

( k∑
j=1

IjΓj
)

=E
(
G2
k

)
+ 1
k
E (Sk) + 4 +

(
4 + 4

k

)
E (Gk) + 2

k
E

Gk

k∑
j=1

Γj


=E

(
G2
k

)
+ E (Sk)

k
+ 4 + 4(k + 1)

k
E (Gk) + 2

k
E

(
G2
k

)
=k + 2

k
E

(
G2
k

)
+ E (Sk)

k
+ 4 + 4(k + 1)

k
E (Gk) .

The equation above can be rewritten as the recurrence equation

E

(
G2
k+1

)
(k + 1)(k + 2) = E (G2

k)
k(k + 1) + E (Sk)

k(k + 1)(k + 2) + 4
(k + 1)(k + 2) + 4E (Gk)

k(k + 2) ,

that, when solved with initial condition E (G1) = E (G2
1) = E (S1) = 0,

gives (4.5).
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We now use Lemma 4.2.1 to study the limit behaviour of the first term in the
RHS of (4.2).

Theorem 4.2.2. For a pure birth process, we have that

lim
t→∞

E

(
Var

(
G(t)
Z(t)

∣∣∣∣Z(t)
))

= 7− 2
3π

2.

Proof: Given that limt→∞ Z(t) = ∞ a.s. [42, Chapter 5], for every fixed
k ∈ N we have that limt→∞ P (Z(t) = k) = 0. This implies that

lim
t→∞

E

(
Var

(
G(t)
Z(t)

∣∣∣∣Z(t)
))

= lim
t→∞

∞∑
k=1

Var
(
Gk

k

∣∣∣∣Z(t) = k
)
P (Z(t) = k)

= lim
k→∞

Var
(
Gk

k

)
.

Using Lemma 4.2.1, we can now compute this variance:

Var
(
Gk

k

)
= E (G2

k)
k2 − E (Gk)2

k2

= k + 1
k

[
k−1∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

k−1∑
i=1

1
(i+ 1)(i+ 2) + 4

k−1∑
i=1

E (Gi)
i(i+ 2)

]
− E (Gk)2

k2

= k + 1
k

[
k−1∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

k−1∑
i=1

1
(i+ 1)(i+ 2) + 4

k∑
i=1

E (Gi)
i2

+ 4
k−1∑
i=1

(
E (Gi)
i(i+ 2) −

E (Gi)
i2

)
− 4E (Gk)

k2

]
− E (Gk)2

k2

= k + 1
k

[
k−1∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

k−1∑
i=1

1
(i+ 1)(i+ 2) + 4

k∑
i=2

1
i2

+ E (Gk)2

k2

− 8
k−1∑
i=1

E (Gi)
i2(i+ 2) − 4E (Gk)

k2

]
− E (Gk)2

k2

= k + 1
k

[
k−1∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

k−1∑
i=1

1
(i+ 1)(i+ 2) + 4

k∑
i=2

1
i2

− 8
k−1∑
i=1

E (Gi)
i2(i+ 2) − 4E (Gk)

k2

]
+ E (Gk)2

k3 ,

where in the third equality we have added and subtracted the quantity

4
k∑
i=1

E (Gi)
i2

=8
k∑
i=2

1
i

i∑
j=2

1
j

= 8
k∑
i=2

1
i2

+ 8
k∑
i=2

i−1∑
j=2

1
ij

=8
k∑
i=2

1
i2

+ 4
( k∑

i=2

1
i

)2

−
k∑
i=2

1
i2

 = 4
k∑
i=2

1
i2

+ E (Gk)2

k2 .
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Taking the limit as k →∞, we have that

lim
k→∞

Var
(
Gk

k

)
=
∞∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 4

∞∑
i=1

1
(i+ 1)(i+ 2)

+ 4
∞∑
i=2

1
i2
− 8

∞∑
i=1

E (Gi)
i2(i+ 2)

=
∞∑
i=1

E (Si)
i(i+ 1)(i+ 2) + 2 + 4

(
π2

6 − 1
)
− 8

∞∑
i=1

E (Gi)
i2(i+ 2) . (4.8)

Using Lemma 4.2.1, the first term in the RHS of (4.8) becomes

∞∑
i=1

1
(i+ 1)(i+ 2)

(
4
i−1∑
k=2

1
k + 1

E (Gk)
k

+ E (Gi)
i

)

= 8
∞∑
i=1

1
(i+ 1)(i+ 2)

i−1∑
k=2

1
k + 1

k∑
j=2

1
j

+ 2
∞∑
i=1

1
(i+ 1)(i+ 2)

i∑
k=2

1
k
. (4.9)

The first term in the RHS of (4.9) is given by
∞∑
j=2

8
j

∞∑
k=j

1
k + 1

∞∑
i=k+1

1
(i+ 1)(i+ 2) =

∞∑
j=2

8
j

∞∑
k=j

1
k + 1

1
k + 2 = 8

∞∑
j=2

1
j

1
j + 1 = 4,

whereas the second one is given by

2
∞∑
k=2

1
k

∞∑
i=k

1
(i+ 1)(i+ 2) = 2

∞∑
k=2

1
k

1
k + 1 = 1.

So, the first sum in the RHS of (4.8) is equal to 4 + 1 = 5. For the last sum
in the RHS of (4.8), we have

−8
∞∑
i=1

1
i(i+ 2)

E (Gi)
i

= −16
∞∑
i=1

1
i(i+ 2)

i∑
j=2

1
j

= −16
∞∑
j=2

1
j

∞∑
i=j

1
i(i+ 2)

= −16
∞∑
j=2

1
j

1 + 2j
2j(j + 1) = −4

3(π2 − 3).

Joining all these results, we obtain

lim
k→∞

Var
(
Gk

k

)
= 5 + 2 + 4

(
π2

6 − 1
)
− 4

3(π2 − 3) = 7− 2
3π

2.

Lemma 4.2.1 allows us to also understand the behaviour of the conditional
variance of the expected average generation of the population given its size.
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Theorem 4.2.3. For a pure birth process, we have that

lim
t→∞

Var
(
E

(
G(t)
Z(t) |Z(t)

))
= 2

3π
2.

Proof: From Lemma 4.2.1 we know that

Var
(
E

(
G(t)
Z(t) |Z(t)

))
= Var

2
Z(t)∑
i=2

1
i

 = 4Var
Z(t)∑
i=1

1
i


= 4

E

Z(t)∑
i=1

1
i

2
−

E
Z(t)∑
i=1

1
i

2
 , (4.10)

where, in the second equality, we have used the fact that the variance of a
process doesn’t change when a constant is added. Given Z(t) is a pure birth
process, its distribution is given by (e.g. [93, pg. 430])

P (Z(t) = k) = e−λt(1− e−λt)k−1, k = 1, 2, . . .

where 1/λ is the expected time before a cell divides into two new leaves, which
allows us to evaluate the second term in (4.10) exactly:

E

Z(t)∑
i=1

1
i

 =
∞∑
k=1
P(Z(t) = k)

k∑
i=1

1
i

= e−λt

1− e−λt
∞∑
k=1

(1− e−λt)k
k∑
i=1

1
i

= e−λt

1− e−λt
∞∑
i=1

1
i

∞∑
k=i

(1− e−λt)k = 1
(1− e−λt)

∞∑
i=1

1
i
(1− e−λt)i.

Let f(t) := ∑∞
i=1(1− e−λt)i/i. Then

f ′(t) = λe−λt
∞∑
i=1

1
i
i(1− e−λt)i−1 = λe−λt

∞∑
i=1

(1− e−λt)i−1 = λ,

and, given f(0) = 0, we have that f(t) = λt. This implies that

E

Z(t)∑
i=1

1
i

 = λt

(1− e−λt) = λt+ o(1),

and the second term in the brackets on the RHS of (4.10) is therefore equal
to (λ2t2)/(1− e−λt)2.

Consider the first term on the RHS of (4.10).

E


Z(t)∑
i=1

1
i

2
 = e−λt

1− e−λt
∞∑
i=1

(
i∑

k=1

1
k

)2

(1− e−λt)i

= e−λt

1− e−λt

 ∞∑
i=1

i∑
k=1

1
k2 (1− e−λt)i + 2

∞∑
i=1

i∑
k=1

k−1∑
j=1

1
k

1
j

(1− e−λt)i
 . (4.11)
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The first term in the brackets on the RHS of (4.11) is given by

∞∑
i=1

i∑
k=1

1
k2 (1− e−λt)i =

∞∑
k=1

∞∑
i=k

1
k2 (1− e−λt)i = eλt

∞∑
k=1

1
k2 (1− e−λt)k.

For the second term, we have that

2
∞∑
i=1

i∑
k=1

k−1∑
j=1

1
k

1
j

(1−e−λt)i = 2
∞∑
k=1

k−1∑
j=1

∞∑
k=i

1
k

1
j

(1−e−λt)i = 2eλt
∞∑
k=1

k−1∑
j=1

1
k

1
j

(1−e−λt)k.

Denoting with g(t) := 2∑∞k=1
∑k−1
j=1(1−e−λt)k/(kj) and noticing that g(0) = 0

and

g′(t) = 2λe−λt
1− e−λt

∞∑
k=1

k−1∑
j=1

1
j

(1− e−λt)k = 2λe−λt
1− e−λt

∞∑
j=1

∞∑
k=j+1

1
j

(1− e−λt)k

= 2λ
1− e−λt

∞∑
j=1

1
j

(1− e−λt)j+1 = 2λf(t) = 2λ2t,

we obtain that g2(t) = λ2t2, and the second term on the RHS of (4.11) is thus
(λ2t2)/(1− e−λt).

So, joining all the results, we have that

lim
t→∞

Var
(
E

(
G(t)
Z(t) |Z(t)

))

= lim
t→∞

4
( ∞∑
k=1

(1− e−λt)k−1

k2 + λ2t2

1− e−λt −
λ2t2

(1− e−λt)2

)
= 4

∞∑
k=1

1
k2 = 2

3π
2

Proposition 4.1.1 follows from equation (4.2) using the results in Theorems
4.2.2 and 4.2.3.

4.3 Simulations under the Bellman-Harris
framework

In Section 4.2 we have proved that, for a pure birth process, the variance of the
average generation converges to a constant. Even if the same arguments used
cannot be extended to a Bellman-Harris branching process, in this section we
provide some evidence that it is still true that

G(t)
Z(t) ≈ α′(h)ht+ A, (4.12)
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where A is a random variable with finite variance. We do that making use
of Bellman-Harris branching process simulations, whose parameterisation has
been chosen according to [44], as discussed in Section 1.5. In particular, we
have considered cell lifetimes following a lognormal distribution with mean 9.3
hours and standard deviation 2.54, and an offspring number distribution, N ,
such that P (N = 2) = 4/5 = 1− P (N = 0).

Fig. 4.2(a) shows us the trend of the average generation, G(t)/Z(t), for 20
cell population simulations that start with one initial cell and grow according
to a Bellman-Harris processes. According to (4.1), for large times, the blue
paths grow linearly in time, with common slope α′(h)h. So, ultimately, all
the paths are parallel to each other with a variability in the y-intercept that
reflects the time necessary for each population to enter in the “linear regime”.
The variability in such time is a consequence of the strong impact that a
division can have in the average generation when only few cells are present in
the population and it can be reduced by increasing the number of initial cells.
We can see that in Fig. 4.2(c), where the same plot for a pool of 100 initial
cells is considered.

In order to obtain more information on the term O(t) in (4.1), in Fig. 4.2(b)
we plot the behaviour over time of the quantity G(t)/Z(t) − α′(h)ht (red
paths) for different populations that are made up of just one cell at time
0. From Fig. 4.2(b), it seems that no dependency on time is present in
G(t)/Z(t)−α′(h)ht, suggesting that even for a Bellman-Harris branching pro-
cess Var (G(t)/Z(t)) converges to a constant and (4.12) holds in these more
general circumstances than a pure birth process. Establishing those more
general conditions is left for future work beyond this thesis, but it is sugges-
tive that the variability in the average generation from tree to tree might be
smaller than one would naively assume.
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Figure 4.2: Average generation growth trend. Each plot presents 20
Monte Carlo simulations of a Bellman-Harris branching process starting at
t = 0 with a single cell, where paths are conditioned to have living cells at
the final time-point of the simulation. The parametrisation used is the same
employed in Fig. 2.1, i.e. lifetimes are lognormal with mean 9.3 hours and
standard deviation 2.54, whereas the offspring number distribution, N , is such
that P (N = 2) = 4/5 and P (N = 0) = 1/5. (a) With Z(t) and G(t) being
the size and the total generation of the population at time t, this figure plots
the evolution of G(t)/Z(t). (b) With α > 0 being the Malthusian parameter
defined in equation (2.4), for the same paths this plot shows G(t)/Z(t) −
α′(h)ht, which is O(t), according to Corollary 2.3.12. (c)-(d) Corresponding
plots to (a)-(b), with 100 initial cells, i.e. Z(0) = 100.
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CHAPTER 5
Parameter choice for the

average generation estimator

5.1 Introduction
The study of the average generation of a population, which we have conducted
in previous chapters, was motivated by the DNA coded randomised algorithm
that Weber et al. proposed in [116] to infer the average generation of a cell
population using the proportion of label-positive cells at a particular time. In
particular, if Z+(t) and Z(t) denote the size of the label-positive and entire
population, respectively, at time t, as long as Z+(t) > 0, for a small probability
of label loss p, the proposed estimator was

G(t)
Z(t) ≈ −

1
p

log
(
Z+(t)
Z(t)

)
. (5.1)

In previous chapters we focused on the Left-Hand Side (LHS) of that equation,
which was the quantity to be estimated. Here, we consider the Right-Hand
Side (RHS) of (5.1), contributing to the analysis of the estimator itself. In
particular, we wish to understand what impact the choice of the parameter p
has on the quality of the estimate and establish how small the parameter has
to be in order to obtain the “best” results (in a sense that we clarify later).

As discussed in Chapter 2, Weber et al. provide two different arguments for
justifying the estimator in [116]: a weaker result that doesn’t assume any
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5.1. Introduction

structure in the cell population; and a stronger one under the super-critical
Bellman-Harris branching process hypotheses. From both of them we obtain
the same suggestion, namely we need a small p for the estimator to approxi-
mate the average generation. The idea behind the second of these arguments,
for example, is that so long as the label-positive population persists, we have
that for large t

−1
t

log
(
Z+(t)
Z(t)

)
≈ α(h(1− p))− α(h),

where α(·) is the Malthus parameter (see (2.4) for definition) and h the ex-
pected number of offspring of a cell. However, as the Malthus parameter is real
analytic [116, Proposition 1], α(h(1− p)) coincides with its Taylor expansion
around p = 0, giving

α(h(1− p)) = α(h)− hα′(h)pt+O(p2).

Thus, for large t, small p, and Z+(t) > 0 we have that

− 1
pt

log
(
Z+(t)
Z(t)

)
≈ hα′(h),

which is the same constant that appears for the time-rescaled average gener-
ation, G(t)/(tZ(t)), found in Corollary 2.3.12.

For any finite time, however, p cannot be made arbitrarily small without
detriment to the accuracy of the estimate. For fixed time, if p is too small, in
all likelihood Z+(t) = Z(t) and the estimate is 0. In some way, the Weber et al.
suggestion is based on the assumption that, even for a very small probability
of label loss p, the ratio Z+(t)/Z(t) is different from 1. In their results, this
condition is verified because they either let t go to infinity before dropping p
to 0, so that for a large population it is unlikely to have all the cells label-
positive, or consider the quantity E (Z+(t)) /Z(t) instead of Z+(t)/Z(t). This
last scenario requires that several independent labels can be inserted in each
cell, so that for a given family tree, several independent instances of Z+(t)
are available (one per label) and an estimate of the value E (Z+(t)) can be
obtained. Thus the core question remains: for a finite system, how should p
be chosen?

We first note that the estimator is defined only when label-positive cells are
present in the population, which places a distinct requirement as the choice
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5.1. Introduction

of the parameter p influences the probability of not getting an estimate at all.
Once the population has lost the label, the proportion of the label positive
cells cannot be translated to information on the number of divisions that have
occurred, given it will remain null despite new divisions taking place. However,
even for large values of p, the probability of not getting an estimate, i.e.
the probability of extinction of the label-positive population, is significantly
reduced if the initial number of label positive cells is more than one, which
would typically be the case in the adoptive transfer experiments that were the
initial motivation for the estimator. Typical initial populations for an adoptive
transfer lymphocyte experiment, n0, are of the order of 102−106 [16, 74]. Thus,
if we ask, for example, for a probability of not getting an estimate below 10−2,
so that no more than one in one hundred experiments provides no estimate,
we have that

P
(
Z+(t) = 0|Z+(0) = n0

)
= P

(
Z+(t) = 0|Z+(0) = 1

)n0
< 10−2,

so long as family trees develop independently, from which we obtain that

P
(
Z+(t) = 0|Z+(0) = 1

)
< 10−

2
n0 .

Thus, in our analysis we will disregard this concern and, on identifying an
optimal value for p, merely check to ensure that the probability of no estimate
is small.

Even if we have seen that the choice of p hardly causes the impossibility of
getting an estimate in biological applications, the quality of the estimate can
depend upon this choice. Hence, establishing how small p should be in order
to obtain a good estimate is an interesting and non-obvious question we try
to address in this chapter. Furthermore, by considering different models of
population growth other than the Bellman-Harris branching process, we try
to understand if these considerations are valid in all generality or if there are
situations where the estimator would work even outside the conditions where
both the LHS and RHS of(5.1) have been established to have meaning. Both
scenarios will indeed be found, but we will see that the models that better
capture and describe the complexity of the relationships among cells require
a small p, and in each case our analysis will provide a suggested order of
magnitude.
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5.1. Introduction

One oddity of the analysis conducted in [116], that is unimportant in the
context studied there where p → 0, is that in effect two different estimators
are proposed, which differ from each other by just a prefactor: −1/ log(1− p)
instead of −1/p. They are essentially equivalent when p is close to 0, as
log(1 − p) = −p + O(p2) by Taylor’s theorem, but when the optimal choice
of p is not they can provide qualitatively different estimates. In this chapter
we shall see that, at least as far as mathematical analysis is concerned, one
or other of them may be preferable, depending on the particular population
model under study.

This chapter of the thesis, unlike the others, makes use of approximations
rather than rigorous proofs. This necessity arises, for example, when we face
the problem of computing moments of the estimator, which is a non-linear
function of a ratio between two correlated random variables, or when we as-
sume “large” t or “large” number of cells in order to average the behaviour
of the population, mitigating in this way the effect of the outliers. We try to
be clear on that in the text by stating as Propositions only results that are
formally proved, and confining approximate considerations to be outside of
that environment.

As mentioned, we use some assumptions in order to smooth the behaviour
of the population and be able to describe the size of the population through
its expected behaviour. In particular, based on the selected model, we con-
sider one of the following two types of working framework for conducting our
analysis:

F.1 We increase the size of the population keeping unchanged the expected
average generation process. We can do that, for example, by increasing
the initial size of the population but considering the population always
at the same time t.

F.2 We increase the size of the population by letting the population develop
for a longer time t, changing inevitably the average generation distribu-
tion with t.

The results coming from the two different approaches are both useful, because
they describe interesting experimental settings, but not directly commensu-
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5.1. Introduction

rable.

The function we use to quantify the performance of the estimator for a given
value of probability loss, p, is the Mean Square Error (MSE). This is defined
as

MSE(θ̂) = E

(
(θ̂ − θ)2

)
=
(
E

(
θ̂
)
− θ

)2
+ Var

(
θ̂
)
, (5.2)

where we have denoted with θ the non-random quantity that we want to
estimate and with θ̂ the estimator. From (5.2) we can see that the MSE is
a function that associates to the estimator a nonnegative number that is the
sum of two penalisation terms: the square of the bias, which is the expected
difference between the estimate and the parameter object of study, and the
variance of the estimator. The bigger is the value of the MSE, the worse the
estimator is considered to be. Given in our case the estimator depends on
the probability of label loss, the study of the minima (if any) of the MSE
as function of p gives us a criteria to select the “best” values for p. As said
before, the values resulting from this analysis will have no problem in keeping
the probability of non getting an estimate, i.e. probability of extinction of the
label-positive population, below a certain threshold, due to the large size of
the initial label-positive population that are usually considered in biological
experiments.

Given the estimator we consider is a non-linear function of the ratio between
two dependent random variables, computing the mean and the variance re-
quires the use of some approximations. In particular, using the fact that
the function log(x/y) = log(x) − log(y), and that for values of x and y in
a neighbourhood of µx > 0 and µy > 0 respectively, the following Taylor
approximation holds

log(x) = log(µx) + (x− µx)
µx

− (x− µx)2

2µ2
x

+O((x− µx)3),

log2(x) = log2(µx) + 2 log(µx)
(x− µx)
µx

+ (1− log(µx))
(x− µx)2

µ2
x

+O((x− µx)3),
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log(x) log(y) = log(µx) log(µy) + log(µy)
(x− µx)
µx

+ log(µx)
(y − µy)
µy

− 1
2

(
log(µy)

(x− µx)2

µ2
x

− 2(x− µx)(y − µy)
µxµy

+ log(µx)
(y − µy)2

µ2
y

)

+O((x− µx)3) +O((y − µy)3).

These approximations are still valid when computed on positive random vari-
ables X and Y , around the points µx = E (X) and µy = E (Y ), respec-
tively. Using the fact that E (log(X/Y )) = E (log(X))−E (log(Y )) and that
Var (log(X/Y )) = E

(
log2(X)− 2 log(X) log(Y ) + log2(Y )

)
− (E (log(X)) −

E (log(X)))2, we obtain the following approximations

E

(
log

(
X

Y

))
≈ log

(
E (X)
E (Y )

)
, (5.3)

Var
(

log
(
X

Y

))
≈ Var (X)
E (X)2 − 2 Cov(X, Y )

E (X)E (Y ) + Var (Y )
E (Y )2 (5.4)

The above approximations, that have an error O(Var (X) + Cov(X, Y ) +
Var (Y )), assume that the distribution of X and Y are concentrated around
their mean values.

5.1.1 Models and regimes considered
We start by considering a very simple model which is based on the assump-
tion that the label loss process has occurred independently for all the cells of
the collection we want to determine the average generation of. Even if the
independence assumption is unrealistic for the majority of the biological ap-
plications, it gives light to an easier mathematical model that is an interesting
starting point to understand the role of p in the quality of the estimates. A
straightforward consequence of this assumption is that the number of label-
positive cells in the population is Binomial distributed. We study this model
in Section 5.2. Our analysis led us to formulate two types of suggestions for
the choice of p: if the population under study is homogeneous, i.e. the cells
are in the same unknown generation g and we can have a rough idea of it, a
value of p ≈ 1 − e−1.6/g is the one we should aim for; otherwise, we should
consider a probability of label loss that scales with the size of the population
we are studying, namely p ≈ (1/n)1/3.

We then insert some dependence among the label loss processes of the cells
of the population using a model that preserves the homogeneity in the gen-
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5.2. Cells with independent label loss processes

erations of all living cells: the Galton-Watson model. Here, similar to the
i.i.d homogeneous case treated in Section 5.2.1, we find that the estimator
can determine in an accurate way the average generation of the population
even for values of p that are not small. Indeed, we find that the Mean Square
Error MSE(p) of the estimator reaches its minimum inside the interval (0, 1)
and this minimum does not depende on the size of the initial population. In
the particular case in which two offspring are produced after each division, we
numerically find that this value is p ≈ 0.38. Analysing the probability of ex-
tinction of the label-positive population, we are able to assert that the initial
population has to made up of at least 9 cells in order to have a probability of
not getting an estimate below 10−2. We do that in Section 5.3.

We conclude by studying the same problem under the Bellman-Harris branch-
ing process framework. Due to the complexity of this model, we can only bring
the mathematical analysis up to a point, and draw conclusions using evidence
coming from simulations. Even in this case, it seems that the heterogeneity in
the generation of the cells forces the “optimal” p to drop to 0 when the initial
population, n0, increases. This idea is also supported by the fact that, in this
case, we need recourse to approximations that needs large t to be true (see
F.2 in the previous section). Despite that, there exists a special case in which
the MSE of the estimator is minimised by a value of p that does not decrease
with n0: the Birth-Death branching process. In this case, characterised by
Exponential lifetime distributions, we are able to move the analysis further
and see, for example, that if two offspring are generated after each division
and there are at least 9 cells in the initial population, the value p = 0.3775
minimises the MSE and keeps at the same time the probability of not getting
an estimate below 10−2. This behaviour is probably a consequence of the
Markovian character that the exponential lifetime distribution confers to the
process.

5.2 Cells with independent label loss
processes

Consider a population in which all the ancestors were equipped with a neutral
label, heritably lost, with a small probability p, just before division, and as-
sume that they were in generation 0 at the time of first consideration. Assume
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5.2. Cells with independent label loss processes

that all the living cells have the label loss process independent of each other
and that the population we are studying is made up of n cells. Denote with
Z+
n the number of them that still have the label. The generation of each cell

is an independent random quantity that is drawn from a distribution on the
natural numbers whose associated random variable is Γ. In order to be able to
refer to these assumptions, that will stay in force until the end of the section,
we summarise them in the following

Assumption 5.2.1. The living cells have the label loss process independent
of each other and their generations are drawn, in an independent way, from
a common distribution on the natural numbers associated with the random
variable Γ.

Given the only suggestion we have on the value of p is to consider it small,
and given the size of the population, n, affects the possibility to see cells with
no label for small probability of label loss, it is reasonable to think that the
choice of the optimal p might depend upon n. In order to investigate that, we
consider the probability of label loss as being dependent on the sample size,
pn. Our aim is to provide a suggestion for a good selection of the parameter
pn.

According to Assumption 5.2.1, a cell is label-positive if its ancestors didn’t
lose the label in the Γ divisions that led to it. This means that a cell is equipped
with the neutral label with probability (1 − pn)Γ, independently of the other
members of the sample. For i ∈ {1, 2, . . . , n}, let Xn,i be the random variable
that assumes value 1 if the i-th cell of the sample is equipped with the label and
0 otherwise. From what we have said, we have that Xn,i

D∼Ber((1−pn)Γi), with
Γi D∼ Γ generation of the cell i. Given P (Xn,i = 1) = E (P (Xn,i = 1|Γi)) =
E

(
(1− pn)Γi

)
, we have also that Xn,i

D∼Ber
(
E

(
(1− pn)Γi

))
, and so that the

number of positive cells in the sample of size n, Z+
n := ∑n

i=1Xn,i, is a random
walk on N≥0 that follows the binomial distribution Bin

(
n,E

(
(1− pn)Γ

))
.

It is useful to note that E
(
(1− pn)Γ

)
= E

(
elog(1−pn)Γ

)
= MΓ(log(1 − pn)),

with MΓ(·) Moment Generating Function (MGF) of the random variable Γ,
as within the interval where the MGF is finite, it is real analytic (e.g. [23]).
Given Γ is a positive random variable, we have that MΓ(s) < ∞ for s < 0.
When it is also finite in a neighbourhood of 0, we can substitute it with its
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Taylor approximation, that is

MΓ(s) = E

(
esΓ
)

= E (Γ) +E
(
Γ2
)
s+O(s2),

where we recall that E (Γ) is the quantity we want to estimate. Asking for
MΓ(s) = E

(
esΓ
)
<∞ in a neighbourhood of 0 is equivalent to the Probability

Generating Function (PGF) E
(
sΓ
)
< ∞ in a neighbourhood of 1. This

motivates the following assumption that will be sometimes used within the
section.

Assumption 5.2.2. The random variable Γ is such that its PGF is finite
in a neighbourhood of 1, i.e. E

(
sΓ
)
< ∞ for s ∈ (1 − δ, 1 + δ) and δ > 0.

Equivalently, Γ has a MGF finite in a neighbourhood of 0, i.e. E
(
esΓ
)
< ∞

for s ∈ (−δ, δ) and δ > 0.

The distributions that are excluded from Assumption 5.2.2 are essentially
the ones that have a tail that doesn’t decrease fast enough to compensate the
behaviour of the exponential function in the integrand of E

(
esΓ
)
for any s > 0.

These distributions are known in the literature as heavy-tailed distributions
(e.g. [31, pg. 2]) and an example is the lognormal distribution.

When we allow for a probability of label loss that is tailored to the size of
the population we are studying we have to deal with sequences {pn}. A first
observation on the behaviour of the estimator for different types of convergent
sequences {pn} comes from the following proposition.

Proposition 5.2.1. For each n > 0 and pn ∈ (0, 1), construct independently
a cell population of size n and probability of label loss pn as described in As-
sumption 5.2.1. The probability of not getting an estimate is given by

P
(
Z+
n = 0

)
=
(
1−E

(
(1− pn)Γ

))n
. (5.5)

If pn ∈ (0, 1) is s.t. pn → p̄ ∈ (0, 1), we have

lim
n→∞

1
log(1− pn) log

(
Z+
n

n

)
a.s.=

log
(
E

(
(1− p̄)Γ

))
log(1− p̄) . (5.6)

If pn → 0, under Assumption 5.2.2, the limit in (5.6) is equal to E (Γ).
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Proof: The result that appears in (5.5) is a direct consequence of the fact
that Z+

n
D∼Bin

(
n,E

(
(1− pn)Γ

))
.

In order for the limit in the LHS of (5.6) to make sense, we need that Z+
n > 0

for all but finitely many n. Using (5.5), we have that
∞∑
n=1

P
(
Z+
n = 0

)
=
∞∑
n=1

(
1−E

(
(1− p̄)Γ

)
+ o(1)

)n
<∞,

where we have used the fact that limn→∞E
(
(1− pn)Γ

)
= E

(
(1− p̄)Γ

)
< 1.

So, for the Borel-Cantelli lemma, we can conclude that Z+
n > 0 for all but

finitely many n.

Applying the Strong Law of Large Number (SLLN) for triangular arrays to
{Xn,i} (e.g. [109, 92]), we have that

lim
n→∞

1
n

n∑
i=1

Xn,i −E
(
(1− pn)Γ

)
a.s.= 0. (5.7)

Using (5.7) and the Continuous Mapping Theorem (e.g. [103, pg. 24]), we
have that

lim
n→∞

log
(∑n

i=1Xn,i

n

)
a.s.= lim

n→∞
log

(
E

(
(1− pn)Γ

)
+ o(1)

)
a.s.= lim

n→∞

(
log

(
E

(
(1− pn)Γ

))
+ log

(
o(1)

E ((1− pn)Γ)

))
(5.8)

a.s.= log
(
E

(
(1− p̄)Γ

))
,

which gives us

lim
n→∞

1
log(1− pn) log

(
Z+
n

n

)
a.s.=

log
(
E

(
(1− p̄)Γ

))
log(1− p̄) . (5.9)

In a similar way, when pn → 0 and given we have assumed that E
(
sΓ
)
< ∞

around s = 1, using (5.8) and the fact that limn→∞ log
(
E

(
(1− pn)Γ

))
/ log(1−

pn) = E (Γ), we have that the limit in (5.9) is almost surely equal to E (Γ).

The proposition just proved says that if we want to recover the value E (Γ)
from the proportion of label-positive cells in the population, we should drop
to 0 the value of pn when the size of the population n increases. Other choices
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of the sequence {pn} such as pn ∈ (0, 1) constant for every n, or pn converging
to a different value other than 0, will lead the estimator to converge almost
surely towards a different quantity.

One exception is the homogeneous setting, where all the cells in the population
share the same generation, i.e. Γ = g > 0. In that case, even a single choice
of the probability of label loss p̄ for every size of the population leads to the
correct estimate of the average generation of the population, g. Which p̄ is
the best option is not clear from Proposition 5.2.1, and this is why, before
studying the general case in Section 5.2.2, we analyse this unusual behaviour
in the next section.

5.2.1 Homogeneous case
Within this section we further restrict the assumptions of the model consid-
ering the following set of assumptions

Assumption 5.2.3. The living cells have the label loss process independent
of each other and share the same generation, g. This is equivalent to assuming
that Assumption 5.2.1 is in force with Γ = g.

Despite the fact that there is no real system for which Assumptions 5.2.3
is true, we investigate this case because it is the first model scenario where
the deduction differs from the Bellman-Harris branching model, as it is not
necessary for pn to go to 0. Under this assumption, we have that the label-
positive population is given by Z+

n
D∼Bin(n, (1− pn)g).

As said in the introduction of the chapter, our criterion to establish the best
value of pn for a given size of the population, n, is the to minimise the Mean
Square Error (MSE). This means that we want to minimise the quantity
in (5.2) for pn ∈ (0, 1), with θ̂ = log(Z+

n /n)/ log(1 − pn) and θ = g. De-
spite the fact that in this simple case the label positive population, Z+

n , is
a binomial random variable, there appear to be no easy expressions for the
mean and variance of the estimator. So, we find an approximation of them
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using (5.3) and (5.4), obtaining that

E

(
1

log(1− pn) log
(
Z+
n

n

))
≈ g, (5.10)

Var
(

1
log(1− pn) log

(
Z+
n

n

))
≈ 1− (1− pn)g

n(1− pn)g log2(1− pn)
. (5.11)

These approximations are good as long as Z+
n is concentreted around its mean,

i.e. as long as Var (Z+
n ) = npn(1 − pn) is small. This will be the case for the

value of p we will find.

Given the expected estimator value is approximated by the average generation
of the population, g, the study of the MSE of the estimator reduces to study
the variance in (5.11). Computing the derivative of the expression in (5.11),
we find that the value of pn that minimises the variance of the estimator solves
the equation

g log(1− pn) + 2[1− (1− pn)g]
n(1− pn) log(1− pn)3 = 0.

We can see that the location of the point of minimum of the MSE does not
depend on the size of the population, n. The solution of the above equation,
for p = pn, can be expressed using the principal branch of the Lambert-W
functionW (x), a quantity that appears frequently in the solutions of a variety
of mathematical problems and is defined as the solution of the functional
equation W (x)eW (x) = x (e.g. [21, 85]). In this way, for every given n, the
value of pn that minimises the MSE, is given by

p∗(g) := 1− e
−W (−2/e2)−2

g ≈ 1− e−
1.6
g , (5.12)

where the value of W (−2/e2) has been computed numerically.

Thus, as long as Var (Z+
n ) is small and we can use the approximations for

the mean and the variance found in (5.10) and (5.11), by defining pn for
every n as in (5.12), i.e. pn = p∗(g), we minimise the Mean Square Error
of the estimator. Given the quantity g is what we want to estimate, it is
not possible to determine the value of (5.12) in advance, but if we have some
information on the cycle of the cell and we can have a rough idea of g, we can
use it to determine the probability of label loss for the experiment.

Assuming pn = p∗(g), we can check how large the population has to be in order
to keep the probability of not getting an estimate below 10−2. Using (5.5), we
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5.2. Cells with independent label loss processes

have that

P
(
Z+
n = 0

)
=
(

1−
(

1−
(
1− e

−1.6
g

)g))n
=
(
1− e−1.6

)n
≤ 10−2,

from which we obtain
n ≥ log(10−2)

log(1− e−1.6) ≈ 20.

So, if the population is made up of at least 20 cells, by defining pn = 1 −
e−1.6/g we minimise the MSE of the estimator and keep at the same time the
probability of not getting an estimate below 10−2.

We can also notice that when g grows, the value of p∗(g) drops to 0 (see
Fig. 5.1(a)). Given the principal branch of the Lambert-W function is analytic
(e.g. [15]), if we make a change of variable y = 1/g in (5.12) and make a Taylor
expansion of p∗(y) around y = 0, we can determine the speed at which this
decay happens

p∗(g) = W (−2/e2) + 2
g

+O(1/g2) ≈ 1.6
g

+O(1/g2).

Given the approximation that we have used for the mean makes the estimator
appear approximately unbiased, one can wonder if an additional term in the
Taylor expansion of the mean of the estimator in (5.10) would provide different
results. If we do so, we obtain that (5.10) becomes

E

(
1

log(1− pn) log
(
Z+
n

n

))
≈ g − 1− (1− pn)g

2n log(1− pn)(1− pn)g ,

and that the approximation for the Mean Square Error is given by

MSEn(pn) ≈
(

1− (1− pn)g
2n log(1− pn)(1− pn)g

)2

+ 1− (1− pn)g

n(1− pn)g log2(1− pn)
. (5.13)

Given for any n ∈ N limp→0MSEn(p) =∞ = limp→1MSEn(p), the continu-
ity of the function tells us that the expression in (5.13) admits at least a global
minimum in (0, 1). While we were unable to find a closed form solution to this
equation, it is readily computable numerically. In Fig. 5.1(b) we can see the
behaviour of theMSEn(pn) for different values of n, when the average genera-
tion g is assumed to be 7. There, with a black dashed line, we have highlighted
the value of p∗(7) ≈ 0.2036. Independently of the size of the population, n,
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Figure 5.1: Behaviour of MSEn(pn) and MMSEn for different values
of n. (a) The plot shows the trend of p∗(g) = 1 − exp((−W (−2/e2) − 2)/g)
in function of the average generation g, where W (·) is the linear branch of
Lambert-W function (e.g. [21, 85]). The function plotted, introduced in (5.12),
describes the behaviour of the probability of label loss pn that, for a given n,
minimises the approximation of the variance of the estimator in (5.11). This
quantity is also called Minimum Mean Square Error (MMSE). (b) For the
average generation g = 7 and values of n in {100, 500, 1000}, the approxima-
tions of the MSE in (5.13) is plotted in function of p. Coloured solid curves
correspond to different values of n, whereas the black dashed line describes
the function p = p∗(7), where p∗(7) is the point that minimises the approxima-
tion of variance of the estimator in (5.11). (c) The panel shows a comparison
between the numerically computed minimum of the MSE in (5.13) (blue line)
and the function y = p∗(7) (green line), when the size of the population n
grows.
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we can see that the minimum previously found in (5.12) represents a good ap-
proximation of the minimum of the quantity in (5.13). This is made more clear
in Fig. 5.1(c) where the the value of p∗(7) is compared with the real minimum
of the MSE in (5.13), computed with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) minimisation algorithm, for different values of n.

In the next section we see how the situation changes when we admit some
heterogeneity in the generation of the cells.

5.2.2 Heterogeneous case
Recall the assumptions made in Assumptions 5.2.1 and 5.2.2. We have seen
that a consequence of these assumptions is that Z+

n
D∼Bin

(
n,E

(
(1− pn)Γ

))
,

where n is the size of the population.

As in the homogeneous case, we can use the Taylor approximations in (5.3)
and (5.4) to obtain an approximation of the mean and variance of the estimator

E

(
1

log(1− pn) log
(
Z+
n

n

))
≈

log
(
E

(
(1− pn)Γ

))
log(1− pn) , (5.14)

Var
(

1
log(1− pn) log

(
Z+
n

n

))
≈ 1
n

1−E
(
(1− pn)Γ

)
E ((1− pn)Γ) log(1− pn)2 . (5.15)

Given we are interested in the value of pn that minimises the MSE of the
estimator, we should find the minimum of

MSEn(pn) ≈
 log

(
E

(
(1− pn)Γ

))
log(1− pn) −E (Γ)

2

+ 1
n

1−E
(
(1− pn)Γ

)
E ((1− pn)Γ) log(1− pn)2 .

(5.16)

A comparison between the approximation found above and the MSE computed
using Monte Carlo simulations is made in Fig. 5.2(a), for a generation Poisson
distributed, Γ D∼Poi(5), and a population size of n = 100. Despite only few
terms being considered in the Taylor expansion of the mean and variance
in (5.14) and (5.15), we can see that the expression in (5.16) provides a good
estimate of the MSE.

Due to the continuity of the function in (5.16) on the interval (0, 1) and the
fact that limp→0MSEn(p) =∞ = limp→1MSEn(p), the existence of a global
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Figure 5.2: MSEn(pn) and MMSEn in the i.i.d. heterogeneous case.
(a) For a generation Poisson distributed, Γ D∼Poi(5), and n = 100, the panel
shows a comparison between the behaviour of the approximation of the MSE
described in (5.16) (cyan line) and the MSE obtained using 1000 Monte Carlo
simulation for each probability of label loss p considered (red line). (b) As-
suming a generation Geometric distributed, Γ D∼Geo(1/5), the plot shows the
trend of the Minimum Mean Square Error, obtained through a numerical
minimisation of (5.16), multiplied by a factor n1/3. It seems that the curve is
converging to a constant when n goes to ∞ and this support the thesis that
the MMSEn decreases as n−1/3 when n increases.

minimum in that interval is assured. An explicit expression for this point was
not forthcoming, and so, in order to find its location, we have to resort to
some further approximations.

We have seen in Proposition 5.2.1 that using a value of pn that drops to
0 when the size of the population n increases is what we want. Thus, we
try to establish the position of the point of minimum of the MSE of the
estimator recurring to the Laurent approximations of the quantities in the
RHS of (5.14) and (5.15) around p = 0. These quantities are analytic thanks
to the assumption E

(
sΓ
)
<∞ in a neighbourhood of 1. Using that

log
(
E

(
(1− pn)Γ

))
log(1− pn) = E (Γ)− 1

2 (Var (Γ)−E (Γ)) pn +O(pn2),

1
n

1−E
(
(1− pn)Γ

)
E ((1− pn)Γ) log(1− pn)2 = E (Γ)

npn
+ 1
n
O(1),
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we obtain the following approximation for n large and pn around 0

MSEn(pn) ≈ E (Γ)
npn

+ a0

n
+ a1

n
pn +

(
a2

n
+ 1

4 (Var (Γ)−E (Γ))2
)
pn

2 + 1
n
O(pn3)

≈ E (Γ)
npn

+ 1
4 (Var (Γ)−E (Γ))2 pn

2, (5.17)

for some constants a0, a1, a2 ∈ R. The last step of the above approximation
is consequence of the fact that pn ∈ (0, 1) and that n is assumed to be large.

Computing the derivative in pn of the quantity in (5.17), we obtain that for
a given n, the value of p that minimises the approximation of the MSE of the
estimator in equation (5.17), is given by

p∗n =
(

4E (Γ)
(Var (Γ)−E (Γ))2

1
n

) 1
3

∼
( 1
n

) 1
3
. (5.18)

In Fig. 5.2(b), through the use of Monte Carlo simulations, we have computed
the Minimum Mean Square Error (MMSE), i.e. the value of pn that minimises
the MSE, in function of n, and we have plotted its behaviour when multiplied
by a factor of n1/3. To do that, we have assumed that the generations are
drawn from a Geometric distribution with mean 5, i.e. Γ D∼Geo(1/5). Given
the cyan line seems to be converging to a constant, the plot corroborates the
thesis that, given a population size n, the value of pn the minimises the MSE
of the estimator decreases as n−1/3 in this model.

Defining pn = (1/n)1/3 and using (5.5), we can compute the minimum size of
the population for which the value of pn gives a probability of not getting an
estimate below 10−2. In particular, we have

P
(
Z+
n = 0

)
=
(
1−E

(
(1− pn)Γ

))n
≈ (E (Γ) pn)n ≈

( 1
n

)−n3
≤ 10−2,

from which we obtain
n ≥ eW (6 log(2)+log(5)) ≈ 7,

with W (x) the Lambert-W function. So, when the population has more than
7 cells, the value of pn = (1/n)1/3 minimises the MSE and keep at the same
time the probability of not getting an estimate below 10−2. For this reason,
given a cell sample with size n, a value of pn such as (5.18) is our suggestion
to maximise the quality of the estimate of the average generation.
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5.3. Galton-Watson branching process

5.3 Galton-Watson branching process
After having considered in Section 5.2 a population where the cells had inde-
pendent label loss processes, in this section we introduce some cell dependen-
cies by considering the most simple form of branching process: the Galton-
Watson process (see Section 1.3 and [42, 9] for more details).

Consider a cell population that behaves according to a Galton-Watson branch-
ing process with number offspring distribution N . This means that each cell
of the population, independently of the others, generates a random number of
offspring distributed as an independent copy of N . Given all the cells in the
population always divide simultaneously, a Galton-Watson branching process
is generally studied across generations, without focusing on the time at which
these divisions occur. In the following, we summarise the assumptions that
will stay in force within this section.

Assumption 5.3.1. The initial population is made up of n0 cells, each of
which is equipped with a heritable neutral label that either is lost before
division with probability p, or is transmitted to the offspring with probability
1 − p. We denote with Zn0(k) and Z+

n0(k) respectively the sizes of the whole
and the label-positive population in generation k generated from n0 ancestors.
When n0 = 1, we simplify the notation in Z(k) and Z+(k). We assume that
p ∈ (0, 1 − 1/h), where h := E (N), so that these last two processes are
supercritical, i.e. the expected number of label-positive cells obtained after a
label-positive cell division, h(1− p), is greater than 1.

There are phenomenological differences between branching processes lattice
distributed, i.e. where the lifetime distributions are such that every possible
value is of the form a + bn for a, b 6= 0 fixed and n the varies in the integers,
and the ones that are not. The Galton-Watson model is an example of the
first type, given the lifetimes of the cells are equal and constant. This is
why it would not be surprising if the results for the estimator differed for a
Galton-Watson than for a Bellman-Harris branching process. Furthermore,
notice that there is no cell cycle model where lifetimes are constant, and so
the results we find in this section are just for mathematical interest, or perhaps
for other applications.
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5.3. Galton-Watson branching process

Due to these phenomenological differences, all the results proved by Weber
et al. in [116] in the context of a Bellman-Harris branching process are not
directly applicable here. Indeed, one of the assumptions used there is that the
cells lifetimes are non-lattice distributed. However, it is not hard to recover
a result equivalent to [116, Theorem 1], reported in this Thesis in the second
equation of (2.37) and (2.38). This time, however, the homogeneity in the
generation of the living cells allows us to drop the requirement of having a small
p, as long as the estimator uses the prefactor 1/ log(1−p) instead of −1/p. We
show this result in the following proposition, along to a similar result where
the regularity in the population is obtained by increasing the initial size of
the population instead of increasing the timeframe after which the population
is studied (a longer timeframe means a higher number of divisions and so a
higher generation k). Both results are a direct application of the Strong Law
of Large Number (SLLN), the Continuous Mapping Theorem, and well known
results on Galton-Watson branching processes.

Proposition 5.3.1. Under Assumption 5.3.1 and as long as lim infk Z+
n0(k) >

0, we have that

lim
k→∞

1
k log(1− p) log

(
Z+
n0(k)

Zn0(k)

)
a.s.= 1.

Furthermore, for any p ∈ (0, 1) and k ≥ 0, we have that

lim
n0→∞

1
log(1− p) log

(
Z+
n0(k)

Zn0(k)

)
a.s.= k,

where the almost sure limit refers to the probability space on which i.i.d. copies
of Z(k), namely Z(i)(k) for i = 1, 2, . . ., are constructed s. t. Zn0(k) =∑n0
i=1 Z(i)(k)for each n0 ∈ N.

Proof: It is a well known result that in a Galton-Watson branching process
E

(
Z+
n0(k)

)
= n0(h(1 − p))k and E (Zn0(k)) = n0h

k (e.g. [42, 10]). Further-
more, under the super-critical assumption, the normalised processes Zn0(k) :=
Zn0(k)/(n0h

k) and Z+
n0(k) := Z+

n0(k)/(n0(h(1 − p))k) converge almost surely
to the nonnegative random variable Z and Z+, respectively. As long as the
positive-label population does not become extinct, using the Continuous Map-
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ping Theorem it follows that

lim
k→∞

1
k log(1− p) log

(
Z+
n0(k)

Zn0(k)

)
= lim

k→∞

1
k log(1− p) log

(
(1− p)k

Z+
n0(k)
Zn0(k)

)

= 1 + lim
k→∞

1
k log(1− p) log

(
Z+

Z

)
= 1.

This concludes the proof of the first statement of the proposition.

To prove the second part, notice that Zn0(k) = ∑n0
i=1 Z(i)(k) and Z+

n0(k) =∑n0
i=1 Z

+
(i)(k) where Z(i)(k) and Z+

(i)(k) are i.i.d. copies of Z(k) and Z+(k),
respectively. Denote with Z+(k) and Z(k) the normalised processes Z+

n0(k)
and Zn0(k) when n0 = 1, and assume that Z+

(i)(k) and Z(i)(k), for 0 ≤ i ≤
n0 are i.i.d. copies of Z+(k) and Z(k). Given for construction E (Z+(k))
and E (Z(k)) are equal to 1, using the SLLN and the Continuous Mapping
Theorem, we have that

lim
n0→∞

1
log(1− p) log

(
Z+
n0(k)

Zn0(k)

)

= lim
n0→∞

1
log(1− p) log

(1− p)k
∑n0
i=1 Z

+
(i)(k)

n0(h(1− p))k
n0h

k∑n0
i=1 Z(i)(k)


= k + lim

n0→∞

1
log(1− p) log

 1
n0

∑n0
i=1Z+

(i)(k)
1
n0

∑n0
i=1Z(i)(k)


= k + 1

log(1− p) log
(
E (Z+(k))
E (Z(k))

)
= k.

The above theorem tells us that every time the label-positive population sur-
vives, regardless of the value of p we have chosen, the estimator is asymptotic
to the average generation k of the population, when the number of divisions in-
creases. Furthermore, according to the second statement of Proposition 5.3.1,
even if the cell population is studied for a short timeframe that allows the
birth of only few generations, the estimator converges to the value k when n0

increases. This last setting, where k is fixed but n0 varies, is the setting we fo-
cus on in the following. Given the probability of extinction decreases when n0

increases, it seems reasonable to think the value of p that allows the estimator
to give the best performance depends on the size of the initial population, n0.
So, in the following, we denote the probability of label loss with pn0 .
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To perform a qualitative analysis of the estimator, even in this section, we
use the notion of Mean Square Error (MSE). To compute the MSE of the
estimator, we need to compute its mean and variance. As in Section 5.2, we
approximates these values using the Taylor expansion in (5.3) and (5.4). But,
before doing that, we need to introduce a lemma that allows to describe the
behaviour of the Covariance between Z+(k) and Z(k).

Proposition 5.3.2. If E (N2) < ∞ and under Assumption 5.3.1, we have
that

E

(
Z+(k)Z(k)

)
= hk−1(1− p)k

(
v(1− hk)

1− h + h

)
,

where h = E (N) and v = E (N(N − 1)).

Proof: By conditioning on the first generation, we obtain

Z(k) =
Z(1)∑
`=1

Z(`)(k − 1), and Z+(k) =
Z+(1)∑
`=1

Z+
(`)(k − 1),

where the (Z(`)(k−1), Z+
(`)(k−1)) are independent copies of (Z(k−1), Z+(k−

1)). If we denote with fk(s, r) := E

(
sZ

+(k)rZ(k)
)
and with gk(r) := E

(
rZ(k)

)
,

we obtain the following recurrence relation

fk(s, r) =
∑
i,j

P
(
Z+(1) = i, Z(1) = j

)
E

(
i∏

`=1
s
Z+

(`)(k−1)
rZ(`)(k−1)

)
E

 j∏
`=i+1

rZ(`)(k−1)


=
∑
i,j

P
(
Z+(1) = i, Z(1) = j

)
fk−1(s, r)igk−1(r)j−i.

Computing the derivative of the above equation firstly for s, secondly for
r, and evaluating then the expression found in (s, r) = (1, 1), after some
arrangements we find

E

(
Z+(k)Z(k)

)
= E

(
Z+(k − 1)

)
E (Z(k − 1))

(
E

(
Z+(1)Z(1)

)
−E

(
Z+(1)

))
+E

(
Z+(1)

)
E

(
Z+(k − 1)Z(k − 1)

)
.

Using that E (Z+(k)) = (h(1− p))k and E (Z(k)) = hk (e.g. [42, 10]), we can
solve the above recurrence equation and conclude the proof.

Using that E (Z(k)) = hk, Var (Z(k)) = hk(hk − 1)(v + h − h2)/(h(h − 1))
(e.g. [42, pg. 6]), the respective formulas for Z+(k), and Proposition 5.3.2
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we can proceed to approximate the mean and variance of the estimator.
From (5.3) and (5.4), it follows that

E

(
1

log(1− p) log
(
Z+
n0(k)

Zn0(k)

))
≈ k

Var
(

1
log(1− p) log

(
Z+
n0(k)

Zn0(k)

))
≈ 1
n0 log(1− p)2

− (v + h− h2)(hk − 1)
hk+1(h− 1)

+ (1− p)(v + h− (1− p)h2)((h(1− p))k − 1)
(h(1− p))k+1(h(1− p)− 1)

.
(5.19)

From the approximations above, we obtain that the MSE coincides with the
variance of the estimator expressed above. Given that this approximation is
a continuous map in p that converges to ∞ when p approaches 0 or 1, we
have that a global minimum inside the interval is guaranteed. Despite the
simplicity of the expression in (5.19), it seems hard to get an explicit formula
for the minimum point. However, for a given initial population size n0 and
number offspring distribution N , it is possible to numerically determine the
location of one of such minimum.

We explore the simple case N = 2 a.s.. Given h = E (N) = 2 the range of val-
ues for p that allows to remain under the supercritical assumptions is (0, 1/2).
Fig. 5.3 shows a comparison between the approximation of the variance that
we have found in (5.19) (cyan lines) and the MSE of the estimator computed
using 1000 Monte Carlo simulations for each configuration (red lines). We can
see that even for one starting cell (Fig. 5.3(a)), n0 = 1, the two lines seem to
have the same trend. When we increase the size of the initial population, the
fit improves (Fig. 5.3(b)). The point p∗ = 0.3775, computed using numerical
methods, represents the point of minimum of the function of p in (5.19) in
the particular case N = 2. This doesn’t depend on the value of the starting
population n0.

In this particular scenario considered in Fig. 5.3, we can check how large the
initial population has to be in order for us to have a probability of not getting
an estimate below 10−2 when the probability of label loss is p∗ = 0.3775.
Under Assumption 5.3.1, the probability of extinction of the label-positive
population is defined as the solution in (0, 1) of the equation s = E

(
sN

+
)
, with

N+ number of label-positive offspring distribution. Given we are considering
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Figure 5.3: MSEn(pn) in Galton-Watson branching process. The
panels show a comparison between the approximation of the MSE given by
the quantity in the RHS of (5.19) (cyan lines) and the MSE computed using
1000 Monte Carlo simulations for each configuration (red lines). In both
panels is assumed N = 2 . The black dashed lines show the minimum of the
MSE approximation in (5.19), computed through numerically methods. The
value of this point is p∗ = 0.3775. In plot (a) we have considered a starting
population of n0 = 1, whereas in (b) n0 = 100.

the case N = 2, we have that

P
(
Z+
n0(k) = 0

)
≤ P

(
lim
k→∞

W+
n0(k) = 0

)
=
(

p

1− p

)n0

≤ 10−2.

from which we obtain that

n0 ≥
log(10−2)
log

(
p

1−p

) = log(10−2)
log

(
0.3775

0.3775−1

) ≈ 9 (5.20)

So, it suffices that the growth of the population starts with at least 9 cells in
order for p = 0.3775 to be the point that minimises the MSE ensuring also a
probability of not getting an estimate below 10−2.

In general, for other distributions of the number of offspring N , the same
method of finding numerical solutions for the minimum of (5.19) and checking
the probability of extinction that it determines can be used. Anyway, from
what we have seen in Fig. 5.3, it seems that picking up a large value of p, i.e.
something in the interval (r, 1−1/h) for some r ∈ (0, 1−1/h), can be a better
choice than selecting a small p.
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5.4 Bellman-Harris branching process
In this final section of the chapter, we continue the qualitative study of the es-
timator in the RHS of (5.1) in order to understand how to select p to minimise
the Mean Square Error, but this time under the more general framework of a
Bellman-Harris branching process. Compared to the previous section, where
a Galton-Watson model was assumed, here we allow for asynchronism in the
lifetimes of the cells, which in turn causes heterogeneity in the generation of
the cells of the population. We will see that the introduction of this het-
erogeneity makes the results of the analysis qualitatively similar to the ones
found in Section 5.2.2, where the cells were supposed i.i.d. but with random
generations. In the following, the assumptions we make within this section.

Assumption 5.4.1. The growth of the population under study starts from
n0 cells, each of one equipped with a neutral and heritable label that at each
division can be either lost, with probability p, or passed to the offspring, with
probability 1−p. The lifetime and the number of offspring of a cell are denoted
with L and N , respectively, and it is assumed that L is non-lattice distributed
and E (N2) < ∞. Zn0(t) and Z+

n0(t) denote the size of the entire and label-
positive populations generated from n0 ancestors at time t (when n0 = 1
we simplify the notation to Z(t) and Z+(t)). Denote h := E (N) and v :=
E (N(N − 1)) and suppose that h(1− p) > 1, i.e. the mean number of label-
positive offspring generated after a label-positive cell division is greater than
1. This puts the two branching process Zn0(t) and Z+

n0(t) in the supercritical
regime and gives them a positive probability of non-extinction.

Given we want to study the MSE of the estimator, we start by finding ap-
proximations for its mean and variance. Using equations (5.3) and (5.4), we
obtain that

E

(
1

log(1− pn0) log
(
Z+
n0(t)

Zn0(t)

))
≈ 1

log(1− pn0) log
(
E(Z+(t))
E(Z(t))

)
, (5.21)

Var
(

1
log(1− pn0) log

(
Z+
n0(t)

Zn0(t)

))
≈ 1
n0 log(1− pn0)2

(Var (Z+(t))
E (Z+(t))2

− 2 Cov(Z+(t), Z(t))
E (Z(t))E (Z+(t)) + Var (Z(t))

E (Z(t))2

)
.

(5.22)
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The first two moments of the processes Z+(t) and Z(t) that appear in the
RHS of (5.21) and (5.22) are quantities well studied in the literature [42, 9].
There are not explicit expressions for them in general, but approximations for
large t are available. What we need to investigate is instead the behaviour
of the covariance of Z(t) and Z+(t) for large t, which we do in the following
Lemma 5.4.1.

Lemma 5.4.1. Under Assumption 5.4.1, we have

lim
t→∞

E (Z(t)Z+(t))
eα(h)teα(h(1−p))t = (1− p)ccpv

∫∞
0 e−α(h)ue−α(h(1−p))udP(L ≤ u)

1− h(1− p)
∫∞

0 e−α(h)ue−α(h(1−p))udP(L ≤ u) , (5.23)

where
c = lim

t→∞

E (Z(t))
eα(h)t and cp = lim

t→∞

E (Z+(t))
eα(h(1−p))t (5.24)

are positive constants defined in (2.7).

Proof: As in Lemma 2.3.6, in order to prove (5.23), we can find an integral
equation solved by E (Z(t)Z+(t)) and conclude using one of the versions of
the Renewal Theorem.

An integral equation solved by the Probability Generating Function (PGF)
F (s, r) = E

(
sZ(t)rZ

+(t)
)
of (Z(t), Z+(t)) is given by

F (s, r, t) =srP(L > t) + p
∫ t

0
ρ(E

(
sZ(t−u)

)
)dP(L ≤ u)

+ (1− p)
∫ t

0
ρ(F (s, r, t− u))dP(L ≤ u) (5.25)

where ρ(s) = E

(
sN
)
is the PGF of the offspring number after a cell division.

Computing the derivative of (5.25) first for s, secondly for r, and evaluating
it at (1, 1, t), we obtain

E

(
Z(t)Z+(t)

)
=P(L > t) + (1− p)v

∫ t

0
E (Z(t− u))E

(
Z+(t− u)

)
dP(L ≤ u)

+ h(1− p)
∫ t

0
E

(
Z(t− u)Z+(t− u)

)
dP(L ≤ u). (5.26)

Dividing this expression by eα(h)teα(h(1−p))t, and denoting with

K(t) =E (Z(t)Z+(t))
eα(h)teα(h(1−p))t ,

dP(L ≤ u) =h(1− p)e−α(h)ue−α(h(1−p))udP(L ≤ u),

f(t) :=P(L > t)e−α(h)te−α(h(1−p))t

+ (1− p)v
h(1− p)

∫ t

0

E(Z(t− u))
eα(t−u)

E(Z+(t− u))
eα(h(1−p))(t−u) dP(L ≤ u), (5.27)
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we have
K(t) = f(t) +

∫ t

0
K(t− u)dP(L ≤ u). (5.28)

We can notice that P is a defective measure, in fact

h(1−p)
∫ ∞

0
e−α(h)ue−α(h(1−p))udP(L ≤ u) < h(1−p)

∫ ∞
0

e−α(h(1−p))udP(L ≤ u) = 1.

We conclude the proof applying Theorem 2.3.3 to (5.28).

Now that we have information on the limit behaviour of E (Z+(t)Z(t)), we
can rewrite the approximations in (5.21) and (5.22).

Using that E (Z(t)) ≈ ceα(h)t and E (Z+(t)) ≈ cpe
α(h(1−p))t for large t, with

c, cp > 0 constants defined in (2.7), we have that

E

(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
≈ − 1

pn0

log
(
E(Z+(t))
E(Z(t))

)

≈ − log(cp/c)
pn0

+ [α(h)− α(h(1− p))]t
pn0

(5.29)

Let’s now observe that

Var (Z+(t))
E (Z+(t))2 − 2 Cov(Z+(t), Z(t))

E (Z(t))E (Z+(t)) + Var (Z(t))
E (Z(t))2

= E(Z+(t)2)
E(Z+(t))2 − 2 E(Z+(t)Z1(t))

E(Z+(t))E(Z(t)) + E(Z(t)2)
E(Z(t))2 .

Using the information we know about the behaviour of the first two moments
of Z+(t) and Z(t) [42, Chapter VI, Sections 16 and 18] and of their covariance
(Lemma 5.4.1), we have that for large t

E(Z+(t)2)
E(Z+(t))2 ≈

v(1− pn0)
∫∞

0 e−2α(h(1−pn0 ))udP(L ≤ u)
1− h(1− pn0)

∫∞
0 e−2α(h(1−pn0 ))udP(L ≤ u)

(5.30)

E(Z+(t)Z(t))
E(Z+(t))E(Z(t)) ≈

v(1− pn0)
∫∞

0 e−α((1−pn0 )h)ue−α(h)udP(L ≤ u)
1− h(1− pn0)

∫∞
0 e−α((1−pn0 )h)ue−α(h)udP(L ≤ u)

(5.31)
E(Z(t)2)
E(Z(t))2 ≈

v
∫∞

0 e−2α(h)udP(L ≤ u)
1− h

∫∞
0 e−2α(h)udP(L ≤ u) =: k. (5.32)

where we remember that h := E (N) and v := E (N(N − 1)).

The quantities in (5.29),(5.30),(5.31), and (5.32) are not easy to compute in
general. One of the few cases where this is possible and at the same time
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5.4. Bellman-Harris branching process

interesting is the exponential lifetime case. Even if it is well known that
the exponential distribution does not describe properly the behaviour of the
cell-division cycle, this assumption is largely employed because of the easier
mathematical framework that this condition creates.

Before dealing with the general case, where we need to use further approxi-
mations, in the next section we continue the study of the problem under the
more restricted conditions of a Birth-Death branching process. This model is
essentially a generalisation of the Pure-birth process that we have considered
in Chapter 4, where L is exponential distributed and the only two outcomes
for the cells after division are either 2 or 0 offspring.

5.4.1 Birth-Death branching process
Within this section we consider an idealised model that is commonly used
in biology and other fields for mathematical convenience, but does not well
model what in the experiments has been observed. The assumptions we make
are summarised in the following.

Assumption 5.4.2. The cell lifetimes are i.i.d. and distributed according
to an exponential random variable with mean λ, i.e. L D∼Exp(λ). Concerning
the numbers of offspring N , we assume that just two realisations are possible:
0 and 2. If h := E (N), we assume h(1 − p) > 1, i.e. the mean number of
label-positive offspring generated after a label-positive cell division is greater
than 1. This condition guarantees the supercrital regime in both processes
Zn0(t) and Z+

n0(t).

A consequence on the assumption made on N is that v = h, with h := E (N)
and v := E (N(N − 1)). From the definition of Malthus parameter in (2.4),
we have that α(h) = λ(h − 1). Furthermore, the constants c and cp defined
through the equations (5.24) and (2.7), are both equal to 1. This implies that
the first term in (5.29) is null, and in particular

E

(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
≈ [λ(h− 1)− λ(h(1− pn0)− 1)]t

pn0

= λht (5.33)

Furthermore, the integrals that appear in (5.30), (5.31), and (5.32) can be
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easily computed when L D∼Exp(λ), giving us

E(Z+(t)2)
E(Z+(t))2 ≈

h(1− p)
h(1− p)− 1 ,

E(Z+(t)Z(t))
E(Z+(t))E(Z(t)) ≈

h(1− p)
h− 1 ,

E(Z(t)2)
E(Z(t))2 ≈

h

h− 1
(5.34)

This leads to

Var
(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
≈ 1
n0pn0

h[(2h− 1)− 2hpn0 ]
(h− 1)[(h− 1)− hpn0 ] . (5.35)

Using (5.33) and (5.35) we can approximate the MSE of the estimator with

MSEn0(pn0) =
(
E

(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
− α′(h)ht

)2

+ Var
(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
≈ 1
n0pn0

h[(2h− 1)− 2hpn0 ]
(h− 1)[(h− 1)− hpn0 ]

(5.36)

Computing the derivative in pn0 of the expression above, we obtain

∂

∂pn0

(
1

n0pn0

h[(2h− 1)− 2hpn0 ]
(h− 1)[(h− 1)− hpn0 ]

)

= −h(2h2pn0
2 + 2h(h+ 1)pn0 + 2h2 − 3h+ 1)

n0(h− 1)pn0
2(h− 1− hpn0)2 ,

which is negative for pn0 ∈ (0, 1 − 1/h). This means that when the lifetimes
of the cells are exponentially distributed, condition on Z+

n0(t) being positive,
a value of pn0 around 1 − 1/h should be the best choice to minimise the
MSE of the estimator. Given for any n0 the probability of extinction of the
label-positive population increases with pn0 , also this time our suggestion is
to balance the two effects choosing the highest probability of label loss that
still allow P

(
Z+
n0(t) = 0

)
to be under a certain limit, namely 10−2. Given the

probability of extinction for a supercritical Bellman-Harris branching process,
Z+(t), is given by the solution s ∈ (0, 1) of the equation s = E

(
sN

+
)
, with

N+ offspring number distribution of label-positive cells obtained from a label-
positive mother, in a Birth-Death branching process we have

P
(
Z+
n0(t) = 0

)
≤ P

(
lim
t→∞

Z+(t) = 0
)n0

=
(

2− h(1− pn0)
h(1− pn0)

)n0

.

So, if we want that the probability of not getting an estimate is below 10−2,
we have to consider the following constraint

pn0 ≤ 1− 2
h(10−2/n0 + 1) .
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Figure 5.4: MSEn(pn) in a Birth-Death process. The plot describes the
behaviour of the empirical MSE of the estimator, obtained using 1000 Monte
Carlo simulations, in function of the probability of label loss p. We have
assumed an exponential lifetime distribution with mean 9.3 (see [44] for the
choice of the mean) and an expected number of offspring h = 8/5, i.e. at each
division can be generated 0 offspring with a probability of 1/5. The two curves
correspond to different sizes of the initial population, namely n0 = 20 (red line)
and n0 = 50 (blue line). Solid lines correspond to range of p that allows a
probability of not getting an estimate below 10−2, whereas dashed lines the
opposite. The black dashed line represents the value pmax = 1 − 1/h = 3/8,
maximum value of p that guarantees the supercriticality of the processes Z+(t)
and Z(t) (see Assumption 5.4.2).

Note that the set of solutions of the inequality above can also be empty for
small n0. For example, if n0 = 1, for any choice of pn0 , the probability of
extinction cannot go below (2− h)/h.

In Fig. 5.4.1 we can see that decreasing monotone trend of the MSE of the
estimator, computed using Monte Carlo simulations for h = 8/5. Two different
sizes of initial population have been considered, n0 = 20 (red line) and n0 = 50
(blue line), and the points pn0 = 1− 2/(h(10−2/n0 + 1)) have been highlighted
(green markers). We can see that the choice pn0 = 1 − 2/(h(10−2/n0 + 1)),
when this quantity is positive, seems to be a good option.

5.4.2 General lifetimes
After having explored the Birth-Death branching process subcase, we deal
with the general one. In order to do that we assume that the minimum of
the MSE of the estimator, when n0 grows, drops to 0. This allows us to
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5.4. Bellman-Harris branching process

approximate the position of the point of minimum by finding the one of the
second-order Taylor expansion of the MSE.

Using the definition of cp in (2.7), we can compute the Taylor expansion of
the first term in the RHS of (5.29), obtaining

log
(
cp
c

)
= b1pn0 + b2pn0

2 +O(pn0
3)

for some constants b1, b2 ∈ R. Notice that they can also be 0, as in the
Exponential lifetime case.

Given α(x) is analytic around x = h > 1 [116, Proposition 1], there exists a
n̄ > 0 s.t. for n0 > n̄ we have

α(h(1− pn0)) = α(h)− α′(h)hpn0 + α′′(h)
2 (hpn0)2 +O((hpn0)3).

So, we have that

− 1
pn0

log
(
E(Z+(t))
E(Z(t))

)
≈ b1 + α′(h)ht+

(
b2 + α′′(h)

2 h2t

)
pn0 +O(pn0

2).

(5.37)

Given the fact that numerators and denominators in the RHS of the previous
equations are analytic functions of pn0 around 0, and divisions among analytic
functions are still analytic (as long as the denominator is different from 0) [98,
pg. 197-198], the two fractions in the right-hand side of (5.30) and (5.31), are
analytic functions in pn0 too.

So, for pn0 in a neighbourhood of 0, we can approximate them with their
first-order Taylor approximation, obtaining

E(Z+
1 (t)2)

E(Z+
1 (t))2 ≈k + pn0

v
∫∞

0 (2α′(h)hu− 1)e−2α(h)udP(L ≤ u)
[1− h

∫∞
0 (2α′(h)hu− 1)e−2α(h)udP(L ≤ u)]2 ,

E(Z+
1 (t)Z1(t))

E(Z+
1 (t))E(Z1(t)) ≈k + pn0

v
∫∞

0 (α′(h)hu− 1)e−2α(h)udP(L ≤ u)
[1− h

∫∞
0 (α′(h)hu− 1)e−2α(h)udP(L ≤ u)]2 .

Using these results, equation (5.38) can be rewritten as

Var
(
− 1
pn0

log
(
Z+
n0(t)

Zn0(t)

))
≈ k2

n0pn0

+ 1
n0
O(1), (5.38)

102



5.4. Bellman-Harris branching process

where

k2 := v
∫∞

0 (2α′(h)hu− 1)e−2α(h)udP(L ≤ u)
[1− h

∫∞
0 (2α′(h)hu− 1)e−2α(h)udP(L ≤ u)]2

− 2v
∫∞

0 (α′(h)hu− 1)e−2α(h)udP(L ≤ u)
[1− h

∫∞
0 (α′(h)hu− 1)e−2α(h)udP(L ≤ u)]2 .

So, we have that

MSEn0(pn0) ≈ k2

n0pn0

+ b2
1 + 2b1

(
b2 + α′′(h)

2 h2t

)
pn0

(
b2 + α′′(h)

2 h2t

)2

pn0
2

(5.39)

We are not able to analytically obtain information on the minimum of the
above expression, given the expressions for the constants k2, b1, b2, and the
function α′′(h) are not easy to handle. What we can do is to numerically study
a particular case and draw conclusions from that.

In Fig. 5.4.2, we can see the behaviour of the MSE in a Bellman-Harris branch-
ing process with offspring distributionN s.t. P (N = 0) = 1/5 = 1−P (N = 2),
and lifetimes lognormal distributed with mean 9.3 and std 2.54 (see [44] for
the parameterisation). Three sizes for the initial population are considered,
n0 = 20 (blue line), n0 = 50 (green line), and n0 = 70 (red line), and for
each parameterisation 1000 Monte Carlo simulations have been used to de-
scribe the MSE. We can see how the minimum points of these curves (yellow
markers) seem to depend on n0 and decrease when n0 increases. The rate of
this decay is not clear, but it is likely that it depends on the first non null
term that appears in the polynomial approximation of the MSE in (5.39). In
fact, in the special case of a Birth-Death process, we have for example that
α(h) = λ(1 − h) and so α′′(h) = 0. If we compare (5.39) with (5.36), we
can see that, for large n0, all the terms O(1) that appear in (5.39) can be
disregarded, explaining the decreasing behaviour of the MSE. However, in the
case that the terms O(1) that appear in (5.39) cannot be ignored, we think
that the value of p that minimises the MSE drops to 0 when n0 increases.
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Figure 5.5: MSEn(pn) in a Bellman-Harris branching process. The
panel describes the empirical behaviour of the MSE of a Bellman-Harris
branching process with lognormal distributed lifetimes (with mean 9.3 and
std 2.54) and number of offspring distribution N s.t. P (N = 0) = 1/5 =
1 − P (N = 2), for different sizes of the initial population, n0. For each pa-
rameterisation 1000 Monte Carlo simulations have been used, simulating the
growth of cell populations for a time frame of t = 36 hours. Blue, green, and
red lines correspond to the initial populations n0 = 20, n0 = 50, and n0 = 70,
respectively. The yellow markers denote the points with the lowest value for
the MSE. The black dashed line denotes the value pmax = 3/8, maximum
value of p that can be considered in order for the processes Z+(t) and Z(t) to
remain in the supercritical regime (see Assumption 5.4.2).
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CHAPTER 6
Average generation in a

Renewal Process

6.1 Introduction
In the previous chapters of this thesis, we have provided additional mathemat-
ical support for the methodology proposed by Weber et al. in [116] to estimate
the average generation of a growing cell population (Chapter 2), but we have
also focused on aspects left behind from the original analysis, such as the gen-
eralisation to a multi-type setting (Chapter 3) and a qualitative analysis of
the estimator as a function of the parameters of the model (Chapter 5). Using
a simplification of the model, we have also seen that the average generation
is a quantity well behaved over time, given its variance is not exploding but
converging to a constant (Chapter 4).

In all these situations, even if the models considered sometimes differed from
each other, we have always assumed an expanding cell population, that we
have obtained considering for each cell an average number offspring per divi-
sion greater than 1. There are biological systems that to a first approximation
can be described by a model that contemplates only a growing phase, such
as cancer growth dynamics [51, 40, 27], but many others have more com-
plex population dynamics that are the result of the interchange of expansion,
homeostatic, and contraction phases.

In this chapter we want to see what happens when environment boundaries,
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lack of stimulatory signals or nutrients force the population to stop its growth,
staying in an homeostatic stage, i.e. keeping the size approximately constant.
We are interested in knowing whether the formulas in (2.37) and (2.38) are
appropriate in this case, and if so how robust they are.

The main reason a cell population maintains its size constant is to preserve the
correct functioning of the body [34] in absence of critical situations that alter
the normal equilibrium. This is the case for example after an adaptive immune
response, when a constant population of memory B and T cells enables an
organism to keep ready its defences against further exposure to the same threat
(see Fig. 1.4). Similarly, even if this is still subject to debate, somatic stem
cells seem to keep their number constant in the human body using asymmetric
cell divisions, i.e. producing one cell of the same type (self-renewal) and
another one with a smaller potency, with exceptions when the stem-cells pool
is first established during development and when they are regenerated after
injuries [60, 79]. Failure in homoeostatic regulation can cause unregulated
division of cells and is symptomatic of major health problems, such as cancer
or autoimmune diseases [22].

In Chapter 2, we have used a super-critical Bellman-Harris branching process
to mathematically describe the growth of an expanding cell population. Al-
lowing the expected offspring after each division to be equal to one, we might
think that a critical Bellman-Harris branching processes can do the same job
as an homeostatic population. This is not the appropriate model to describe
such dynamics, however, due to the fact that a nondegenerate Bellman-Harris
branching process, even a critical one, can only have two possible fates: infinite
growth or extinction [42]. As keeping the size of the population approximately
constant is one of the key features we want to represent, we will use a model
that, despite its simplicity, allows us to conclude strong results concerning
the average generation. In particular, we will see the population as a sum of
renewal processes, one for each member of the starting population.

The main result of the chapter, Theorem 6.2.1, constitutes the equivalent
of Corollary 2.3.12 for the homeostatic case. This time the strong path by
path relationship between the average generation of the population and the
proportion of label-positive cells is a consequence of Renewal Theory [93] and
sub-critical Bellman-Harris branching processes [42], necessary to describe the

106



6.2. The renewal model

delabelling of the population.

6.2 The renewal model
We now describe the model we use throughout this chapter, adopting notation
that is coherent with that introduced in the previous chapters, in particular
Chapter 2.

Suppose we have an initial population of n0 cells, where every cell, indepen-
dently of each other, after a random lifetime L is substituted by a newborn
cell, so that the size of the population is kept constant. Let L be strictly pos-
itive and non-lattice distributed. A proportion γ of the starting population
is equipped with a neutral label, i.e. one that doesn’t change the population
dynamics, which is passed on to the newborns after each substitution with
probability 1 − p. We allow for γ 6= 1 because we can think of the initial
collection of cells as the final population obtained after an expansion phase,
in which some of the cells have already lost their labels. Even if a higher
proportion of initial label-positive cells improves the quality of the average
generation estimates, the value of γ does not affect the asymptotic result that
we find in Theorem 6.2.1, as long as γ 6= 0. According to the assumptions, we
have that the label survives in the lineage of each of the starting cells equipped
with it for a time L+ = ∑Y

i=0 L
(i), where {L(i)}i≥0 are i.i.d. copies of L and

Y
D∼Geo(p), i.e. Y has the same distribution of a geometric random variable

with parameter p.

Our desire is to understand if the proportion of label-positive cells in the pop-
ulation at a particular time t can be used to estimate the average generation
of the entire population at the same instant, as we have seen in Chapters 2
and 3 for a single and two-type supercritical Bellman-Harris branching process
population, respectively. To do so, we need to study the behaviour of Z+

n0(t),
the number of label-positive cells at time t, where the initial size of the popula-
tion is n0 and Z+

n0(0) = bγn0c. The population dynamics of the label-positive
population can be described by a sub-critical Bellman-Harris branching pro-
cess with starting population bγn0c, offspring distribution N D∼ Ber(1-p), and
lifetime L. As the expected number of label-positive cells obtained as a con-
sequence of a label-positive cell division is h+

p := 1− p < 1, from the theory of
sub-critical branching processes [42] we already know that limt→∞ Z

+
n0(t) = 0
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Figure 6.1: The plot illustrates the behaviour of the integrand of the Laplace
transform E(e−sL), for different values of s and different distributions of L.
(a) If L D∼Exp(1), e−sxfexp(x) is an exponential function, where fexp(x) is the
density function of L (notice the logarithmic scale for the y-axis). The plot
suggests that the quantity E(e−sL) is finite only for s ∈ (−1,∞] (we can easily
check that doing the computations). (b) When L is lognormal distributed with
log(L) D∼ N (0, 1), we obtain that for all negative s, the quantity e−sxflog(x),
where flog(x) is the density function of L, is either increasing or decreasing
slower than an exponential. This has as consequence that E(e−sL) is not finite
for all negative s.

almost surely (a.s.). In order to describe the decrease rate of Z+
n0(t), we use the

concept of Malthusian parameter already introduced in (2.4), i.e. we define
α+ = α(h+

p ) as the solution of

h+
p E(e−α+L) = 1, (6.1)

where h+
p = 1 − p. The first difference we can notice with respect to the

expanding case treated in Chapter 2, where h+
p > 1, is that now this solution

does not necessarily exist. In particular, its existence depends on the tail of
the cell’s lifetime distribution L. Indeed, h+

p < 1 forces a potential solution α+

of (6.1) to be negative, but E(e−sL), for s < 0, may be not even finite when
the tail of L is not decreasing fast enough to compensate for the exponential
in the integral (see Figure 6.1). We are in this situation for example when
L follows a lognormal distribution, whose Laplace transform E(e−sL) is not
finite, and so not defined, for every negative s.

What we need to assume in order to assure the existence and uniqueness of
the solution α+ to (6.1) is that the Laplace transform of the lifetime E(e−sL)
is finite for s in a neighbourhood of zero, i.e.
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6.2. The renewal model

Assumption 6.2.1. The lifetime L is such that E(e−sL) < ∞ for s ∈
[smin,∞), with smin < 0.

As we will consider values of p arbitrarily small and h+
p = 1−p converges from

below to one for p tending to zero, under Assumption 6.2.1, we can always
suppose, for a p small enough, that 1 = E(e−0L) < 1/h+

p < E(e−sminL). Given
E(e−sL) is real analytic on the interior of the domain on which it is finite, i.e.
for s > smin, and it is decreasing in s, we can apply the real analytic version
of the Implicit Function Theorem (e.g. Theorem 2.5.3 [67]) concluding that
the solution α(h+

p ) to equation (6.1) exists. The kind of behaviour that we
are requiring from L is also referred in the literature as being not heavy-tailed
distributed [31, pg. 2].

Sometimes within this chapter we will need to reference the solution of (6.1)
with a quantity h > h+

p instead of h+
p . When this will be the case, this solution

will be denoted α(h), i.e. we will see the Malthusian parameter as a function
of h. The argument in the previous paragraph allows us to say that if h > h+

p ,
then α(h) exists. Furthermore, as we have already said in Chapter 2, the
function α(h) is also real analytic [116, Proposition 1] and such that

α′(h) = 1
h2 ∫+∞

0 ue−αudP(L ≤ u)
. (6.2)

As in the previous chapters, we call the generation of a cell the number of
divisions that led to that cell, where 0 is assumed to be the generation of the
initial member of the population. Denoting with Gn0(t) the total generation
process given n0 starting cells, i.e. the sum of the generations of all the cells
alive at time t, the initial set up is given by Gn0(0) = 0.

Using a combination of results on renewal and Bellman-Harris processes, we
obtain the following theorem, analogous for the homeostatic case to Corol-
lary 2.3.12.

Theorem 6.2.1. Under Assumption 6.2.1, we have

lim
t→∞

Gn0(t)
tn0

a.s.= 1
E(L) , lim

t→∞
lim
n0→∞

− 1
pt

log
(
Z+
n0(t)
n0

)
a.s.= −

α(h+
p )
p

, (6.3)

and
lim
p→0
−
α(h+

p )
p

= 1
E(L) .
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6.2. The renewal model

Proof: We start by proving the second equality in (6.3). The proportion of
label-positive cells at time t is given by

Z+
n0(t)
n0

a.s.= 1
n0

bγn0c∑
i=1

1{L+
i >t}

a.s.= bγn0c
n0

1
bγn0c

bγn0c∑
i=1

Xi (6.4)

where L+
i and Xi are i.i.d. copies of L+ and Ber(P(L+ > t)), respectively.

Using the Strong Law of Large Numbers (SLLN) (e.g. [30, pg. 259]) in (6.4),
we obtain that for every t ≥ 0

lim
n0→∞

Z+
n0(t)
n0

a.s.= γP(L+ > t).

From [10, Theorem 1, pg. 162] or [59] we know that

lim
t→∞

e−α(h+
p )t
P(L+ > t) = c, (6.5)

where α(h+
p ) is defined in (6.1) and c ∈ (0, 1), from which follows that

limt→∞ log(P(L > t))/t = α(h+
p ). So, using the Continuous Mapping The-

orem (e.g. [103, pg. 24]), we can conclude that

lim
t→∞

lim
n0→∞

− 1
pt

log
(
Z+
n0(t)
n0

)
a.s.= −

α(h+
p )
p

.

Remembering that h+
p = 1− p and α(1) = 0, we have

lim
p→0
−
α(h+

p )
p

= lim
p→0

α(1)− α(1− p)
p

=α′(1) (6.2)= 1
E(L) . (6.6)

Let’s now take a look to the first equality in (6.3). If Ri(t) denotes the renewal
process that counts the number of descendants generated by the ancestor i,
we have for every n0 ∈ N

lim
t→∞

Gn0(t)
tn0

a.s.= lim
t→∞

1
n0

n0∑
i=1

Ri(t)
t

a.s.= n0

n0E(L) = 1
E(L) , (6.7)

where we have used that limt→∞Ri(t)/t = 1/E(L) a.s. [93, Theorem 3.3.2,
pg.189]. Equation (6.7) is still valid even if we consider a very large n0 before
taking the limit t→∞. In fact, for the SLLN

lim
t→∞

lim
n0→∞

Gn0(t)
tn0

= lim
t→∞

1
t

lim
n0→∞

∑n0
i=1Ri(t)
n0

= lim
t→∞

E(R1(t))
t

a.s.= 1
E(L) , (6.8)

where we have used that limt→∞E(R1(t))/t = 1/E(L) [93, Theorem 3.3.3,
pg.191].
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Figure 6.2: Difference between average generation and estimator
divided by t. The plots in the figure are obtained using 100 Monte Carlo
simulations describing the evolution of a homeostatic cell population. The
dynamic of each cell in the initial population is described by a renewal process
with lifetime following a lognormal distribution with mean 9.3 hours and std
2.54. Each member of the initial pool of cells is equipped with a neutral
label, γ = 1, that is lost after division with probability p = 0.01. (a) For
different sizes of the initial population, the difference between Gn0(t)/(tn0)
and −1/(pt) log

(
Z+
n0(t)/n0

)
is studied. Simulated data after each day for 4

days are showed using a set of boxplots. (b) 20 paths describing the same
difference are showed for a time range of four days. In the plot, the starting
population of each population is made up of 1000 cells.

Combining (6.6) and (6.7), we obtain (6.3).

A graphical representation of the results in Theorem 6.2.1 can be found in
Fig. 6.2, where an homeostatic cell dynamic, with lognormal lifetimes with
mean 9.3 hours and standard deviation 2.54 (see [44] for the choice of the
parameters), has been recreated with the use of computer simulations. In
the first of these plots, Fig. 6.2(a), the difference between the average genera-
tion and the estimator, both divided by time, is displayed using a boxplot at
the end of each day for 4 days, for different sizes of the starting population.
The contraction of the boxplots to a single point, both in time and in the
number of initial cells, suggests almost sure convergence of Gn0(t)/(tn0) and
−1/(pt) log

(
Z+
n0(t)/n0

)
, for n0 and t larges, to the same quantity. The same

can be concluded from Fig. 6.2(b), where the path-by-path behaviour of the
estimation’s error over time is displayed for n0 = 1000. The fact that each of
the 20 paths showed looks to be converging to 0 when time advance supports
the idea that the error over time converges to 0 with probability 1.
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6.2. The renewal model

It is worth noticing that (6.3) is still true even if the lifetimes of the first k
generations of cells, k ∈ N, follow k different distributions from the cells that
follow. For example, let us suppose that we are in the situation where an
expansion phase is followed by an homeostatic phase due to the occurrence of
an event at time t∗ that changes the statistics of the population dynamics. Let
us denote by L(i) the common lifetime distribution of the cells in generation
i. Conditioned on {t ≥ t∗}, the residual lifetime L(0) of the cells alive at time
t∗, that we consider in generation 0, is different from the others, exception
made if L follows an exponential distribution. An useful generalisation of
Theorem 6.2.1 that suits these kind of applications is the following:

Corollary 6.2.2. Let L(i), i ∈ N, be independent each other and s.t. the
first k are not necessarily equally distributed to the other L(i), i ≥ k + 1,
which follow a common distribution L. If all the L(i), 0 ≤ i ≤ k, satisfy the
hypothesis made in Assumption 6.2.1 for L, then equation (6.3) is still valid.

Proof: All the results proved in Theorem 6.2.1 are still valid in this new case.
The only result we are going to check is the one in (6.5) for k = 1, as the
extension to any finite value of k is an easy adaptation.

Let’s denote L∗ = ∑Y
i=0 L

(i) the new label lifetime, where {L(i)}i≥1 are i.i.d.
copies of L, independent from L(0), the lifetime of members of the initial pop-
ulation. From the fact that L(0) satisfies Assumption 6.2.1 and in particular
from E(e−α+L(0)) < ∞, with α+ < 0 defined in (6.1), using integration by
parts, we have

lim
t→∞

e−α
+t
P(L(0) > t) =

∫ ∞
0

e−α
+udP(L(0) > u)−

∫ ∞
0

α+e−α
+u
P(L(0) > u)du

+ lim
t→0

e−α
+t
P(L(0) > t) = c0 <∞.

Using the memorylessness of the geometric distribution and the fact that,
given Y > 0, L̃+ := ∑Y

i=1 L
(i) D∼ L+, with L+ as in Theorem 6.2.1, we have
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that

lim
t→∞

e−α
+t
P(L∗ > t) = lim

t→∞
e−α

+t
P(L∗ > t|Y = 0)P (Y = 0)+

+ lim
t→∞

e−α
+t
P(L∗ > t|Y > 0)P (Y > 0)

= lim
t→∞

e−α
+t
P(L(0) > t)p+ lim

t→∞
e−α

+t
P(L̃+ > t− L(0))(1− p)

=c0p+ lim
t→∞

(1− p)
∫ ∞

0
e−α

+(t−u)
P(L̃+ > t− u)e−α+udP(L(0) ≤ u)

=c0p+ (1− p)
∫ ∞

0
ce−α

+udP(L(0) ≤ u)

=c0p+ c(1− p)E(e−α+L(0)) <∞,

where we swapped the symbols of limit and integral and used c defined in (6.5).

The importance of Theorem 6.2.1 is that it enlarges the range of applicability
of the random delabelling average generation estimator to a population dy-
namic that is different from expansion: homeostasis. Given cell populations
are normally able to switch between expansion, homeostasis, and contraction
in a response to environmental signals they receive, this study provides a fur-
ther important piece toward the applicability of this method in more complex
population dynamics. Indeed, Corollary 6.2.2 shows the robustness of the
method for different initial lifetimes, opening to a description in which the
homeostasis is just a secondary phase of the overall population dynamic.
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