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Summary 

Soil is a complex material capable of storing and releasing large amounts of carbon, making 

it an integral part of the global carbon cycle. As soil is included in national inventory 

assessments where countries quantify their emissions, it is important that estimates of the 

soil carbon flux are as accurate as possible. Measuring the flux of carbon from every surface 

on the planet is unrealistic, therefore modelling emissions is the next best method of 

emissions assessment. Among modelling approaches, process-based modelling allows for 

the highest specificity of input data. Process-based models split soil carbon into pools with 

different decay rates influenced by environmental (biotic and abiotic) factors and 

management.  

The Estimation of Carbon in Organic Soils – Sequestration and Emissions (ECOSSE) model 

has previously been recommended as the optimum process-based model for simulating 

greenhouse gas (GHG) emissions from Irish soils. Results from the site-specific evaluation 

of the ECOSSE model for an Irish arable site showed a temporal offset between 

measurements and model outputs which could not be explained by model parameters, 

motivating further in-depth analysis of the model. This subsequent analysis indicated that 

the rate modifiers, which control the release of carbon from different pools in the soil, were 

functioning as intended, but highlighted issues with the model simulation of soil water. The 

modelled soil dried out fully when in reality it was above field capacity, attributable to 

erroneous simulation of evaporation on this well-drained sandy soil.  

In parallel, a spatial process-based model (GlobalECOSSE) was employed to derive national 

emissions estimates for multiple GHGs and CO2 equivalents for designated agricultural land 

uses on the island of Ireland. The justification for using the spatial process-based model was 

to provide an assessment of a model that had fewer input requirements and operated on a 

monthly timescale to simulate areal emissions. Results showed soil carbon emissions are 

enhanced during warmer months and lessened during colder ones, and showed cropland 

and grassland to be CO2 sources on an annual timeframe. The importance of examining 

emissions holistically is emphasised as some Irish grasslands are GHG sinks when other 

GHGs such as methane and nitrous oxide are included, and all croplands are GHG sources.  

To assess the susceptibility of Irish soils to unusual or extreme weather events, statistical 

sampling of past weather events was employed to generate inputs for GlobalECOSSE. The 

response of Irish soils to extreme weather events shows warmer temperatures enhance 

respiration, while drought conditions restrict it. Warm and wet conditions enhance 

respiration most as respiration increases with temperature and is not limited by moisture 
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availability in this scenario. Including all GHGs produces similar patterns with most Irish 

soils being C sinks under normal climate and hydrological conditions, and more areas 

becoming sources during hot, very hot and hot & wet conditions (derived from extremes in 

the observed record). These results are presented in the context of the uncertainties in 

observations (large ranges across datasets and methods of partitioning fluxes) and in 

modelling (different models giving different magnitudes and even directions of change). 

More observations, experiments and modelling studies across land-use and climate types 

are needed before confident projections can be given. Observational networks should be 

placed strategically to determine responses from common soil and land-use types, and 

moisture regimes. Current action should focus on maintaining the carbon already in soils by 

avoiding disturbance, and promoting sensible sequestration practices such as cover-

cropping, minimum/no tillage and incorporation of straw/manure. 
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 Introduction  

 The Global Carbon Cycle 

A key component of life on earth is Carbon (C), the element all known living things are based 

on. The presence of carbon in our atmosphere as Carbon Dioxide (CO2) traps and reradiates 

heat emitted from the Earth’s surface; without this natural ‘greenhouse’ effect, the Earth 

would be approximately 33°C colder and unable to support complex life (National 

Geographic, 2019). Our modern industrial society is built around the use of fossil fuels 

deposited in the earth during the Carboniferous and Permian geological eras over millions 

of years, and the burning of these hydrocarbons is resulting in an increase in the 

atmospheric concentration of greenhouse gases (Paul, 2016). It is argued that the 

anthropogenic increase of greenhouse gases in the atmosphere began around 15,000-

12,000 years ago when land-use change and forestry increased the atmospheric 

concentration of CO2 from below 200 to ~270 ppmv (Sage, 1995). This allowed for the 

successful establishment of agriculture as previous concentrations may have been too low 

for modern crops to thrive, indicating that this increase stimulated the transition from an 

economic system based on foraging toward a food-producing, agrarian civilisation (ibid). 

There have been advantages to increasing concentrations of CO2, but these are now 

significantly outweighed by the negative impacts of climate change. 

Figure 1.1 (Le Quéré et al., 2018) outlines the global CO2 budget for the decade 2007-2016 

along with uncertainties for each pool, showing the atmospheric growth of CO2 in the past 

decade has been ~4.7 ± 0.1 Pg C yr-1 and that the land and oceans are helping to absorb 3.0 

± 0.8 Pg C and 2.4 ± 0.5 Pg C yr-1 respectively. The uncertainties associated with these figures 

reflect the imperfect understanding we still have of our atmosphere and the sources of C 

emissions.  
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Figure 1.1: The Global CO2 budget outlining the perturbation of the global carbon cycle from anthropogenic 
activities for the years 2007-2016, values are in Pg C yr-1, reprinted from Le Quéré et al. (2018). 1 Pg C is 
equivalent to 1 Gt C.  

Ice cores for the past 800,000 years show atmospheric CO2 levels have remained within a 

relatively constrained domain (between 170 and 280 ppm), with temperature and CO2 

levels fluctuating in tandem (Parrenin et al., 2013). By 2017, the average atmospheric 

concentration of CO2 was 405.0 ± 0.1 ppm, 2.2 ppm higher than the previous year, and the 

highest atmospheric concentration ever recorded (Blunden et al., 2018). The concentration 

of CO2 in our atmosphere gives a radiative forcing (greenhouse effect) of 1.82 ± 0.19 W m-2 

(Myhre et al., 2013). With CO2 now over 100 ppm higher than pre-industrial times and 

increasing at a rate of at least 10 and up to 100 times faster than at any point in the past 

420,000 years, human interference in the global carbon cycle has likely driven the earth 

system outside the glacial-interglacial domains it has experienced for millennia (Falkowski 

et al., 2000). During these interglacial periods the atmosphere becomes a medium of 

exchange of CO2 between terrestrial ecosystems and the oceans. Anthropogenic emissions 

of greenhouse gases have interfered with the natural global carbon cycle, causing impacts 

related to heat stress and sea-level rise, and have the potential for triggering irreversible 

planetary feedbacks which may severely disrupt global temperature and weather patterns 

(Steffen et al., 2018). 
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Though estimates vary, the latest research suggests there is approximately 1500 Pg C of 

organic carbon stored in uppermost meter of terrestrial soils (Scharlemann et al., 2014; 

Oertel et al., 2016). This makes soil the largest terrestrial carbon pool, roughly equivalent 

to the atmospheric (816 Pg C) and terrestrial phytomass (469.6 Pg C) pools combined 

(Scharlemann et al., 2014). Soils release carbon to the atmosphere via respiration, the 

process of soil respiration is complex and dynamic, but can be distilled as follows: larger 

soil organisms such as earthworms or mites break down soil organic matter (SOM) into 

small pieces by moving through the soil and feeding on/digesting the SOM itself, while soil 

fungi perform similar operations as their hyphae can penetrate smaller gaps in the soil, 

these decomposition processes are assisted by abiotic factors such as freezing and thawing 

of water, exposing new areas for bacteria and microbes to break down, thus releasing CO2 

(Xu and Shang, 2016). It is estimated that annual soil CO2 emissions are around 10 times 

that of current fossil fuel emissions (Bond-Lamberty and Thomson, 2014).  Since soils store 

twice as much C as the atmosphere, understanding the feedback from soils to the 

atmosphere is crucial (Scharlemann et al., 2014; Heimann and Reichstein, 2008). Soils can 

sequester and store greenhouse gases like CO2, CH4 and N2O for long periods of time, for 

example C in soil can have a residence time of ~1200 years, making soils a significant sink 

for C and other elements (Post et al., 1982). Using a conservative estimate of 300 mg CO2eq 

m-2 h-1 Oertel et al. (2016) estimate global annual net soil emissions of over 350 Pg CO2eq 

when all GHGs are included.   

All of Earth’s biomes store large quantities of C in both biomass and soil, this C is vulnerable 

to being released, and is particularly susceptible to anthropogenic perturbations from land-

use change, agriculture, urban growth, industrial and infrastructure development (Lal et al., 

2012). Before the industrial revolution in the 1700s, it is estimated that nearly half of the 

terrestrial biosphere could be considered ‘wild’, absent of human settlement or land-use, 

with the remainder (45%) in a semi-natural state with minor agricultural and settlement 

components (Ellis et al., 2010). By the year 2000 the majority of the biosphere comprised 

agricultural and settled anthropogenic biomes (settlements, croplands, rangelands and 

plantations), with 20% semi-natural, and 25% considered ‘wild’ (ibid). These human 

influences on Earth’s natural systems have had a profound effect on the global carbon cycle, 

and the complexity of these systems makes it difficult to understand and project their 

dynamics and future states, nevertheless, considerable progress in this regard has been 

made.   
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 Understanding the Carbon Cycle 

Scientific attempts to understand the global carbon cycle and its influence on our climate 

first came to prominence in a paper by Fourier (1824), who discussed the phenomenon of 

Earth’s temperature being higher than it ought to be from the solar radiation budget alone. 

Fourier’s analysis ruled out geothermal effects and allowed for the consideration of the 

possibility that heat was being prevented from escaping the atmosphere. The experimental 

evidence to support this was proffered by John Tyndall (Tyndall, 1861) who investigated 

the radiative properties of gases in Earth’s atmosphere, and measured the infrared 

absorption of greenhouse gases, proving their capabilities to absorb and reradiate heat 

energy. The introduction of the idea of the climate’s sensitivity to CO2 came from Svante 

Arrhenius, who investigated the extent to which changes in CO2 concentrations can affect 

global temperatures (Arrhenius, 1896). Callendar (1938) was the first to demonstrate the 

increase of the Earth’s land temperature and suggested a link between the increasing 

temperatures and the artificial production of CO2 from the combustion of fossil fuels, which 

became known as the ‘Callendar effect’ (Hawkins and Jones, 2013). These ideas were 

advanced further by Plass (1956) who investigated the sensitivity of the climate to 

increasing concentrations of greenhouse gases and estimated a temperature increase of 

3.6°C if the concentration of CO2 in the atmosphere were to double. Plass (1956) also linked 

the warming observed in the previous century to the increasing concentration of 

atmospheric greenhouse gases released from industrial processes and associated human 

activities and warned of more warming to come for several centuries.  

The theoretical basis for modelling the global carbon cycle stems from these seminal 

research papers, as technology developed it became possible to implement the theory into 

practice, assessing the significance of humanity’s alterations to the global carbon cycle by 

projecting likely future changes in the climate system due to altered atmospheric 

concentrations of key GHGs. Early models projected values for climate sensitivity (response 

of the climate system to a doubling of CO2) of 2.9°C (Manabe and Wetherald, 1975), 

remarkably this is in the same range as modern-day estimates (Sherwood et al., 2014). 

Though these relatively basic models did not incorporate the complexities of the ocean-

atmosphere feedbacks, they were very much at the cutting edge for their time, and the 

outputs from the inaugural Coupled Model Intercomparison Project (CMIP) were used in 

the first IPCC report (Houghton et al., 1990).  

Models have advanced and now incorporate the entire earth system and its feedbacks into 

their calculations, including dynamic land, ocean and atmospheric components (Flato, 

2011). The inclusion of more complexity into models can have a significant effect on 
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projections as exemplified by Mitchell et al. (1995) who included sulphate aerosols in their 

climate model runs and improved the agreement between model outputs and observed 

temperature changes. Earth System Models (ESMs), which include biogeochemical cycling, 

are complex and their structures are distinct from one other, leading to uncertainties in 

outputs but also providing a range of possibilities when no ‘perfect’ model is available 

(Alexander and Easterbrook, 2015). The CMIP, now in its 6th phase incorporating 21 

Endorsed Model Intercomparison Projects (MIPs), aims to investigate the Earth’s response 

to altered radiative forcings, the origins and consequences of model biases, and assessing 

future climate change among internal climate variability, predictability and uncertainties in 

scenarios (Eyring et al., 2015). One of the major sources of uncertainty in projecting future 

global temperature in relation to CMIP5 is the poor understanding of the terrestrial carbon 

cycle, as land carbon sinks are uncertain across all four representative concentration 

pathway (RCP) scenarios giving a large intermodel spread (Friedlingstein et al., 2013). To 

improve climate model projections, we must enhance our understanding and modelling of 

the processes which influence land-carbon fluxes; processes which include vegetation, soil 

carbon storage and turnover time. Most land-carbon components of climate models 

overestimate photosynthesis and leaf area index, likely due to the exclusion of ozone in 

parameterisation, while many underestimate primary production in the oceans, and show 

significant regional variation in their assessments (Anav et al., 2013). Uncertainties around 

soil carbon-climate feedbacks are present at micro and macro scales due to a lack of 

observations on the responses of the soil system to external change and ever-changing 

knowledge about soil C formation and stabilization (Bradford et al., 2016). As our 

understanding of the complex soil system is improving, it is vital that models incorporate 

this new knowledge and are fully evaluated and assessed to identify issues and improve 

model-knowledge integration and better understand the responses of the land-carbon cycle 

to future changes (ibid). As human action is now recognised as the major factor influencing 

the direction and magnitude of future emissions (IPCC, 2018), the incorporation of human 

decision making and adaptation into climate models will be a more pressing issue in the 

future. The integration of earth system models with future human action will be complex 

and costly, meaning careful assessment of the benefits and drawbacks of incorporating this 

complexity should be considered, with the overall aim of each individual study in mind 

(Calvin and Bond-Lamberty, 2018).  
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 Legal History  

Based on the mounting evidence provided by the scientific community regarding the impact 

of anthropogenic greenhouse gas emissions, regulatory frameworks began to be developed 

to control emissions.  

 IPCC, UNFCCC & COP 

Amid growing concern around the impact human beings were having on the planet, and 

based on the scientific developments outlined in Section 1.1, the Intergovernmental Panel 

on Climate Change (IPCC) was formed in 1988 under the patronage of the United Nations 

Environment Program (UNEP) and the World Meteorological Organization (WMO). The 

IPCC was assigned the task of assessing the influence of anthropogenic greenhouse gas 

emissions on climate change, how it affects societies, and forming potential response 

strategies to future climate change (Devès et al., 2017). Two years after the publication of 

the first IPCC assessment report in 1990, the United Nations Framework Convention on 

Climate Change (UNFCCC) treaty was adopted and subsequently ratified in 1994 (UNFCCC, 

2018a). Signatories of the treaty (United Nations, 1992) acknowledge that climate change 

is a problem, developed countries are most responsible, carbon sinks are present on land 

and in oceans, that immediate global action and cooperation is needed and all states 

(particularly developed nations) should enact environmental legislation using the most up-

to-date science and policy to give developing and low-lying nations the best chance to adapt.  

The major development over the course of the IPCC reports is the abundance of evidence 

showing that human activities are the primary cause of the warming observed on Earth 

(Jones, 2013). The IPCC reports provide the evidence base for discussions at Conferences of 

the Parties to the UNFCCC (COP) meetings (Ourbak and Tubiana, 2017); the COP is the 

‘supreme decision making body of the UNFCCC’ (UNFCCC, 2018b, pp. 1) where decisions on 

compliance and enforcement of UNFCCC guidelines are made. There have been annual COP 

meetings since 1995 in Berlin, the latest COP 24 occurred during December 2018 in 

Katowice, Poland.  

 Kyoto Protocol 

The Kyoto Protocol, adopted in Japan in 1997, is an extension of the UNFCCC and was signed 

by 37 industrialised nations and the European Union, which legally committed these parties 

to reducing emissions to an average of 94.8% of their 1990 emissions by the years 2008-

2012 (Aichele and Felbermayr, 2013). Under the protocol, a number of countries could 

increase their emissions, while others (including the EU, USA, and Canada) agreed to cut 

their emissions of the six main greenhouse gases (carbon dioxide (CO2), methane (CH4), 
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nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur 

hexafluoride (SF6)) (UNFCCC, 2018c). Article 25 of the Kyoto Protocol specified that the 

treaty entered into force 90 days after the date 55 parties to the convention who account 

for at least 55% of total CO2 emissions had deposited their instruments of ratification. At 

the end of the first commitment period in 2012, COP18 in Doha proposed the ‘Doha 

Amendment’ which established the 2nd commitment period to the Kyoto Protocol, to 

commence in January 2013 and end in December 2020, the amendment obliges the EU 

member states and Iceland to limit GHG emissions from 2013-2020 to 80% of 1990 

emissions (European Commission, 2013). As of 30 October 2018, 120 parties to the UNFCCC 

have deposited their instrument of acceptance, though 144 instruments of acceptance are 

required for the amendment to be entered into force (UNFCCC, 2018d).  

The Kyoto Protocol has been deemed a failure by some due to the small emissions reduction 

targets, which were not achieved, and the subjection of the world to an ineffective model for 

solving climate change, potentially setting us back decades (Rosen, 2015). Others have 

argued that the treaty itself became the goal, rather than the requirements contained within 

it, as the original intent of significantly reducing GHG emissions was sacrificed for the sake 

of reaching a deal that many countries would sign (Kutney, 2014). The US indicated that it 

would not ratify the treaty in 2001, Canada withdrew from the Kyoto Protocol in 2012 

(UNFCCC, 2018c), while the EU overachieved its initial target of an 8% reduction by 

reducing emissions by 18%, on track to meet the 2020 target of 20% (European 

Commission, 2013). It is worth noting that some countries within the EU did not meet their 

targets as part of the burden sharing agreement. Emissions increased for most countries 

over the period, meaning the objectives of the treaty were not realised (Aichele and 

Felbermayr, 2013). It is difficult to assess the success of the Kyoto Protocol as countries did 

not meet their targets, but they may have reduced their emissions by more than they would 

have had the agreement never been signed, perhaps making the treaty somewhat of a 

success (Grunewald and Martinez-Zarzoso, 2016).  

 Paris Agreement 

In anticipation of the second commitment period of the Kyoto Protocol ending in 2020, the 

21st COP meeting in 2015 adopted the Paris Agreement. This agreement commits 

signatories to reducing emissions through Nationally Determined Contributions (NDCs), 

with the aim of keeping global temperature rise in the 21st century ‘well below’ a guardrail 

of 2°C above pre-industrial levels, and to ‘pursue efforts’ to keep the temperature increase 

below 1.5°C, while enabling countries to deal with the current impacts of climate change 

(Ourbak and Tubiana, 2017). Governments agreed that global emissions should peak as 
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soon as possible and undertake rapid reductions after the peak, though the combined NDCs 

of all nations are not enough to keep global warming below 2°C. Considering this, 

governments agreed to come together every five years to set more ambitious targets, to 

report on their progress to achieving their targets, and to track progress towards the long-

term goal of emissions reduction through a robust transparency and accountability system 

(European Commission, 2018a). The European Union was the first to submit its NDC which 

commits the EU to emissions reductions of 20% by 2020, 40% by 2030, and 80-95% by 

2050, with the intention of turning Europe into an energy efficient low-carbon economy 

which sustains jobs and strengthens Europe’s competitiveness (European Commission, 

2018b). It is still technically possible for global warming to be limited to 1.5°C, though this 

is profoundly challenging and depends strongly on immediate collective global action 

(Peters, 2018), making it highly unlikely to occur. 

 Monitoring, Reporting and Verification 

There are now 197 parties (196 states and 1 regional economic integration organisation) to 

the UNFCCC (UNFCCC, 2018a). All parties to the UNFCCC and the Kyoto Protocol are 

required to report their emissions annually in the form of emissions inventories, and 

regularly report on climate change policies and measures and progress towards their 

targets (European Commission, 2018c). Inventories attempt to account for all sources and 

sinks of GHGs, and serve as a tool to track the magnitude and distribution of emissions over 

time (Campbell and Paustian, 2015). Monitoring of GHG emissions is not a standard process 

across countries or emissions sources, while some sources of emissions can be directly 

measured (e.g. gas meters to measure gas concentration) it is more common for estimates 

of emissions to be made using accounting based procedures, with emissions derived from 

indicators such as fuel consumption based on energy bills (Bellassen et al., 2015).  

 The IPCC Good Practice Guidelines 

To help countries calculate their national emissions, the IPCC provides a comprehensive and 

detailed set of guidance and rules for estimating emissions from all sectors of the economy 

and the biosphere at three levels of detail (IPCC, 2006). Tier 1 methods rely on default 

emission factors and associated activity data to calculate emissions for a sector or sub-

sector, while Tier 3 methods are the most detailed, incorporating country-specific data 

where available. Tier 2 methods are an intermediary between the two. The most important 

categories in terms of national emissions and emissions trends for a country are known as 

‘key categories’; the IPCC encourages the use of tier 2 and tier 3 methods for key categories. 

When properly implemented, all tiers are intended to provide unbiased estimates of 

emissions, with accuracy and precision improving when moving from tier 1 to tier 3. The 
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IPCC (2006) use decision trees to help guide the selection of the correct tier to use based on 

the national circumstances (available data etc.). Each sector and sub-sector will have 

different data requirements for each tier, an example from the IPCC (2006) is presented 

below (Figure 1.2) outlining the method behind choosing the appropriate tier for CO2 

emissions from cropland. The tree shows the process of decision making depending on the 

importance of the category – i.e. if the category is considered a ‘key category’ (a significant 

source of emissions for that country) then it is necessary to obtain data for a tier-2 or tier-3 

approach. If reliable data are present or can be collected, and there is a national inventory 

system allowing for crop management activities to be accounted for, a tier 3 approach can 

be adopted, if this system is not present an intermediary tier 2 approach is recommended.  

 

Figure 1.2: Example decision tree for selecting the appropriate tier for estimating C stock changes in mineral soils 
under cropland (IPCC, 2006). CM: Carbon Management 

To derive the ‘best’ estimate of the emissions from a sector, a country must follow the 

decision tree to the best of their knowledge, ensuring they choose the most appropriate tier 

of analysis.  Ideally all emissions would be calculated using a tier-3 methodology using as 
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much real or observed data as possible for each country, unfortunately the lack of observed 

data may make a tier-3 methodology impossible or unwise, as results from this method may 

introduce errors which give erroneous emissions estimates.  

Typically, the estimation of emissions is performed using the simple equation (IPCC, 2006): 

Emissions = AD * EF 

where activity data (AD) (e.g. fuel consumption, number of cattle etc.) is multiplied by an 

associated emission factor (EF) (e.g. CO2 emission for fuel type, tonnes of CO2 equivalent per 

animal per year). Both activity data and emission factors are not static and change over time, 

requiring monitoring and updating, though emission factors typically vary less than activity 

data. Bellassen et al. (2015) explain that this monitoring data is then aggregated, recorded 

and communicated to the relevant authority at individual, company, regional or national 

scales. Verification of emissions is then undertaken to detect errors resulting from mistakes 

or fraudulent reporting, typically conducted by an external party who ensures guidelines 

were followed (ibid). Members of the EU are required by law (European Parliament, 2013) 

to report emissions of greenhouse gases from all sectors: energy, industrial processes, land-

use, land-use change and forestry (LULUCF), waste, agriculture etc.; to include projections, 

policies and measures to reduce GHG emissions; national climate change adaptation 

measures, low-carbon strategies, and financial and technical support for developing 

countries (European Commission, 2018c). The emission factors used to calculate sectoral 

emissions come from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

(IPCC, 2006) 

 EU Emissions   

The EU publishes annual GHG inventories reflecting the emissions from two years 

previously (i.e. the 2018 inventory covers emissions from 2016), allowing countries time to 

calculate their emissions, and for them to be collated together. The latest report shows how 

the EU is reducing emissions, with the United Kingdom having the largest reductions in 

absolute terms (largely due to lower consumption of solid fuels in the power sector) and 

Poland having the largest increase (mainly due to the road transport sector) (European 

Environment Agency, 2018a). The EU is on target to meeting its legal obligations under 

phase 2 of the Kyoto Protocol, though some countries have achieved more than others 

regarding emissions reduction.  

From 2015-2016, Ireland saw the fourth-largest increase in absolute emissions across the 

EU, behind Poland, Finland and Germany. Depending on the economic prosperity of the 

country along with other factors which can affect emissions (harsh weather etc.), countries 
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frequently change from increasing to decreasing emissions, for example Irish emissions are 

estimated to have decreased by 1% from 2016-2017 after their increase in the previous 

year (European Environment Agency, 2018b). Nevertheless, Ireland is poised to miss its 

2020 targets, meaning achievement of targets in 2030 and 2050 is increasingly difficult as 

there is more ground to make up.  

 Agriculture and Land-Use 

A growing global population and increasing urbanisation has led to changes in the world’s 

forests, farmlands, waterways and air. The provision of food, fibre, water and shelter to 

meet global demand is responsible for ~35% of anthropogenic CO2 emissions since pre-

industrial times (Foley et al., 2005), a figure which may be an underestimate as processes 

including tree harvesting and cultivation shifts increase the percentage (Arneth et al., 2017). 

The global population is anticipated to reach almost 10bn by 2050, creating an increased 

demand for agricultural products, leading to the expansion of cropland and grassland areas 

resulting in increased energy, water and fertilizer consumption (Tilman et al., 2011). Such 

changes in land-use to date are estimated to have resulted in the emission of 145 ± 16 Pg C 

over the period 1850-2015 (Houghton and Nassikas, 2017). Land-use changes are currently 

responsible for ~10% of annual emissions, though this was relatively larger in the past 

when emissions from other sources like fossil fuels were lower (ibid).  

Agricultural GHG emissions are increasing annually by 1%, while reductions are difficult to 

achieve amid growing food demand (Lamb et al., 2016). The nature of agricultural GHG 

emissions is complex, for example the conversion of grassland to cropland to produce 

biofuel was initially thought to reduce GHG emissions by 20% due to lower fossil fuel 

consumption, but analysis showed the impact of the land-use change would cause GHG 

emissions to double over 30 years (Searchinger et al., 2008).  

Land management is strongly linked to GHG emissions from soils, though responses differ 

across climates and land-use types, sensible management practices serve to enhance soil 

carbon storage (Ogle et al., 2005). Methods of enhancing soil carbon include the addition of 

nutrients using fertilizer or by growing certain crops, crop rotation using cover crops, 

reducing stocking rates, switching to no-till, and optimising the quantity and timing of 

fertilizer applications (Paustian et al., 2016). Unmanaged grassland and forest soils typically 

hold more carbon than their managed counterparts, and can lose significant amounts when 

converted to other uses. Avoiding conversion of land and restoring marginal or degraded 

lands is important to avoid C losses and enhance C sequestration (ibid). The potential for 

soils to become a significant carbon sink to help mitigate against climate change is 

highlighted by Smith (2016) who argues that a sequestration potential of 0.7 Pg CO2eq 
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(CO2eq = total effect of all GHGs normalised to CO2) yr-1 is possible, though sink saturation 

and reversibility are highlighted as limitations. Storing more carbon in soils is seen as a win-

win-win strategy for farmers and economies, as it enhances food security, improves the 

environment and mitigates against global warming (Stout et al., 2016). The complex nature 

of soil and how it is related to greenhouse gases will be discussed further throughout the 

thesis.  

 The Importance of Soil 

The importance of including soil emissions in GHG inventories was recognised by the first 

iteration of the intergovernmental panel on climate change (IPCC) (Houghton et al., 1990). 

The reporting of greenhouse gas emissions from soils is typically based on the IPCC 

Guidelines for National Greenhouse Gas Inventories (2006) which allow for estimation of 

emissions and form the base for mitigation and adaptation practices. While remotely sensed 

(satellite) data e.g. Sentinel 5 (ESA, 2018) have been assessed, they do not provide accurate 

enough data to validate these estimations, and data from ground-based experiments and 

modelling are significantly biased towards northern hemisphere temperate regions where 

the availability of funding and resources is higher (Oertel et al., 2016). The ground-based 

estimation of greenhouse gas fluxes brings uncertainties with it, while observed data from 

chamber and micrometeorological methods can be reliable and highly precise, upscaling 

these results introduces significant uncertainties as soils are so complex and 

heterogeneous in their characteristics, depth and distribution.  

Soils contain over twice the carbon stored in the atmosphere (Figure 1.1) and are vital for 

carbon cycling, food production, water quality and nutrient retention (Jackson et al., 2017). 

Soils release an estimated 350 Pg CO2eq to the atmosphere, ten times that of fossil fuel 

burning and the cement industry combined (Oertel et al., 2016). It is important we 

understand the processes driving emissions from soils to get a complete picture of our 

national and global carbon emissions.  

The importance of soil cannot be understated, most of the world’s food supply comes from 

the soil, and five of the 17 sustainable development goals (UNDP, 2016) make explicit 

reference to the role of soil. Soils provide a range of ecosystem services including (Creamer 

& O’Sullivan, 2018): 

1. Primary Production – the ability of soil to produce plant biomass, forming the basis 

of human life in the provision of food, animal feed fibre and fuel.  

2. Water Purification and Regulation - providing clean water for both human and 

animal consumption, and for aquatic ecosystems. As water percolates through soil 
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layers potentially harmful substances (metals, phosphates) can be adsorbed or 

transformed, effectively purifying the water. The ability of soils to store water can 

also prevent flooding and drought as they moderate the release of water into rivers.  

3. Carbon storage and sequestration – after the oceans, soils are the largest store of 

carbon on Earth, as plants photosynthesise and transfer carbon from the 

atmosphere to the soil for long periods of time as soil organic matter, reducing (or 

slowing the accumulation) of CO2 in the atmosphere. Carbon stored in soils is 

influenced by the soil temperature and water content, which affect microbial 

activity and the decomposition of soil organic matter. Increasing soil C content not 

only benefits the climate by reducing atmospheric CO2, it improves nutrient storage, 

water holding capacity, aggregation, and adsorption and retention of organic and 

inorganic pollutants (Kibblewhite et al., 2008).  

4. Habitat for intrinsic and functional biodiversity – soils are incredibly complex 

amalgamations of organisms, so much so that it is estimated that only 1% of soil 

microorganisms have been identified (Orgiazzi et al., 2016). The organisms within 

soils aid in their delivery of primary production, water purification and carbon 

storage.  

5. Medium for the cycling and provision of nutrients – soils store minerals and 

nutrients such as phosphate or lime, they can receive nutrients from agricultural 

waste products like slurry or manure, and can act as a store and cycling agent for 

chemical fertilizers.  

The physical properties of a soil can strongly influence both its function in an ecosystem and 

the management practices which will affect it, with the type of vegetation, the movement of 

water, and the nutrients available to biomass all determined by the properties of the soil 

itself (Brady and Weil, 2016). Soils and soil organic matter (SOM) are the foundation of life 

on earth, the amount of SOM (humic and non-humic substances) in a certain location and 

time depends on biotic (plant inputs and soil food web), abiotic (climate, mineralogy, slope, 

aspect, frequency of fire) and anthropogenic (fire, N deposition, climate change, land use, 

land management) factors (Jackson et al., 2017). Crucially, SOM is typically comprised of 

~50% organic carbon (Lanigan and Hackett, 2017), though this varies with soil type (Jain 

et al., 1997) and depth (Westman et al., 2006), this large proportion of carbon emphasises 

the importance of soil as a significant store in the global biogeochemical cycle.  

 Soil Texture 

Often the first (and most important) characteristic of a soil to be determined in a soil survey 

is soil texture, effectively a description of the size of soil particles (when large mineral 
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particles dominate it is a sandy soil, when mineral colloids dominate it is a clayey soil), while 

soil structure defines the manner these particles are aggregated, which in turn determines 

the pores and channels in the soil (Brady and Weil, 2016). Soil texture influences nearly all 

soil processes either directly or indirectly (Vos et al., 2016), and can be considered a 

relatively permanent property of a soil as it is not readily subject to change. Soil texture is 

typically represented by percentages of sand, silt and clay and can be determined using 

Figure 1.3, where it is recommended to first identify the % clay in a soil, then % sand, and 

the % silt can then be calculated as the remainder as the sum must equal 100% (Brady and 

Weil, 2016). For example, a soil comprised of 10% clay, 60% sand and 30% silt would fit 

into the ‘sandy loam’ category. Assessment of soil texture is officially undertaken in 

laboratories using particle size analysis, but is more commonly carried out in the field by 

sense of touch, by testing the plasticity, shininess, amount of visible sand and by squeezing 

the soil between the fingers, a method which turns out to be almost as accurate as 

laboratory studies (Vos et al., 2016). Though texture can be seen as one of the most basic 

aspects of a soil, it is even possible to get an idea of soil health from the study of soil texture 

(Mikhailova et al., 2018).  

The large particle sizes of sandy soils means they tend to be porous and allow for the 

transfer of water, while clay soils are more at risk of compaction and have more pore space, 

meaning they are more prone to saturation and run-off (Brady and Weil, 2016). Soil texture 

affects the accumulation of organic carbon, as fine textured soils (high silt and clay content) 

have a higher water retention capacity (Saxton and Rawls, 2006), which means productivity 

and subsequent plant (organic carbon) inputs to soil are also high (Colazo and Buschiazzo, 

2015).  
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Figure 1.3: Soil textural classes pyramid, from Brady and Weil (2016) 

 Soil Structure 

Soil structure can be defined as the “the size, shape and arrangement of solids and voids, 

continuity of pores and voids, their capacity to retain and transmit fluids and organic and 

inorganic substances, and ability to support vigorous root growth and development” (Lal, 

1991 pp. 69). The structure of a soil is determined by the spatial arrangement of particles 

into complex aggregations, pores and channels. The particles can be considered to be the 

building blocks of soil, which are held together by microbial glues, roots and fungal hyphae 

which help stabilise the soil structure, where sand, silt, clay and organic particles becoming 

aggregated together to form structural units known as peds or aggregates (Brady and Weil, 

2016). Strong soil structure is essential for agriculture as it can affect the ability of a plant 

to absorb water and nutrients (Pardo et al., 2000) and allows for oxygen and water 

infiltration, and improvement of water storage (Franzluebbers, 2002). The structure of a 

soil can indicate the functions it is able to provide (Rabot et al., 2018), functions which are 

vulnerable to management practices that can damage soil structure. Factors such as 
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manuring, composting, fertilizer application, crop rotation and crop management can all 

positively or negatively affect soil structure, depending how they are implemented (Bronick 

and Lal, 2005). Soils subjected to tillage rather than no-till practices are found to have 

poorer pore connectivity (Pires et al., 2017), and soils which do not incorporate plant 

residues via mulching have poorer structure (Martens, 2000). The aggregation of a soil into 

its structure is mediated by Soil Organic Carbon (SOC), soil biota, ionic bridging, clay and 

carbonates, with the SOC acting as a binding agent and nucleus for aggregate formation 

(Bronick and Lal, 2005). Carbon and other elements related to greenhouse gases will be 

discussed in-depth in Chapter 2.  

 Irish Soils 

Irish soils are relatively young, around 15,000 years old, with most soils forming after the 

retreat of the last ice age, for context, tropical soils in Africa and South America were formed 

millions of years ago. The soils of Ireland are classified into eleven ‘Great Groups’ based on 

their formation, climate and management (Figure 1.4).  

 

Figure 1.4: Soil Great Groups described across a landscape position (Source: Creamer et al. (2016)) 

Of the 6.9 million ha of land in Ireland, around 4.5 million ha (65%) is used for agriculture. 

Of this agricultural land, 81% is grassland (silage, hay and pasture), 11% is used for rough 

grazing (0.48 million ha), and 8% used for crops, fruit and horticulture (0.38 million ha), 

while 11% of the total land area is used for forestry (737,904 ha), typically well-drained 

soils are more suitable for intensive agriculture such as pasture and tillage while 

waterlogged soils more suited to rough grazing (Creamer & O’Sullivan, 2018).  
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 Soil Carbon Quantity and Fluxes in Ireland 

Estimates of SOC stock in the Republic of Ireland (ROI) vary across studies due to differing 

methods of calculation and calculations over different depths. Tomlinson (2005) estimated 

1999 Tg C for the entire soil profile, Kiely et al. (2009) estimate 1062 Tg C to 50cm, while 

Eaton et al. (2008) estimate 1469 Tg C to 1m for mineral soils, including peatland soils 

increases this estimate to 2401 Tg C, with 0.55 million ha of arable land making up 65.4 Tg 

of this total (4.45%) while grassland accounts for 41% of the SOC store and makes up over 

50% of total land area (Eaton et al., 2008). Eddy covariance (Jaksic et al., 2006) and chamber 

techniques (Byrne et al., 2005) suggest that Irish grasslands are moderate CO2 sinks of -2.52 

kg C m2 yr-1; this is in contrast with the emissions estimates for grasslands under LULUCF 

which calculate Ireland’s grassland emissions in 2016 to be 6889.15 kt CO2eq, though much 

of this is likely due to drainage of organic soils, emissions from ‘grassland remaining 

grassland’ are assumed to be zero. This assumption is based on previous analyses which 

indicate Irish grasslands are moderate C sinks (Khalil et al., 2013; Peichl et al., 2011), though 

uncertainties for the ‘grassland remaining grassland’ category are reported as 100%, 

indicating that this is far from a certainty (Duffy et al., 2018).  

Measurements of Net Ecosystem Exchange (NEE) fluxes on Irish temperate grasslands 

found that they are small carbon sinks which are relatively insensitive to variation in 

precipitation as soil moisture never reached wilting point over two years due to the surface 

water gley soil (Jaksic et al., 2006). The potential increase in moisture as a result of climate 

change however, could lead to grasslands requiring extensive instead of intensive 

management, using more land to produce the same amount of food, which could reduce 

their sequestration potential (Lawton et al., 2006). Similarly, an intensively managed 

grassland site in Ireland is found to be a C sink of under 1 kg C m2 yr-1, but the choice of 

management regime is the primary control factor on C, water and energy exchanges (Peichl 

et al., 2012). A study examining ploughing of Irish grassland has shown reductions in GPP 

and therefore enhanced C loss (rather than enhanced soil respiration) immediately after 

ploughing (Willems et al., 2011). Attempting to identify the drivers of sequestration is not a 

simple task, as correlation analysis of environmental variables including air temperature, 

soil moisture, photosynthetically active radiation (PAR), vapour pressure deficit (VPD) and 

precipitation showed no correlation with NEE on seasonal or annual scales due to the 

responses of the components of NEE (GPP and Reco) to the variances of the environmental 

variables (Peichl et al., 2012). This indicates the influence of other variables is dominating, 

or that these variables interacting together is affecting the overall signal.  
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Just under 10% of agricultural land in Ireland is cropland, planting crops disturbs soil and 

initiates the decay of carbon at greater depths (known as priming), meaning agricultural 

cropland can have significant levels of soil carbon flux (O’Brien, 2004). Conversion of other 

land-uses to cropland can cause reductions in SOC content and increased C flux, but Duffy 

et al. (2015) find no evidence that forestry, wetland, settlement, permanent grassland and 

other land are converted to cropland, the only land-use type which is converted is 

temporary grassland.  

Carbon stock changes in Irish soils are calculated using the Land Parcel Identification 

System (LPIS) dataset superimposed on the indicative soil map. LPIS contains all parcels of 

land under the remit of multiple agricultural and rural environmental administrative 

schemes since 2000 – effectively all agricultural land in Ireland. Under LPIS cropland is 

defined as lands cultivated in the reporting year, plus lands under temporary grassland 

which have been recorded as cropland at any point since 2000. 

Byrne and Kiely (2008) argue that adequately calibrated models can be used to investigate 

the effect of changes in management and climate, as well as providing a research tool which 

can be used to upscale from plot to field and regional level. They find relatively small losses 

of SOC at farm scale, but highlight that as grassland accounts for 53.3% (3.772 M ha) of land 

in the ROI, a SOC loss 0.1 t C ha-1 yr-1 equates to a loss of 0.377 million t C yr-1 if all grasslands 

respond in a similar way. It is therefore important to attempt to quantify the potential 

changes in soil carbon for all Irish soil types as climate changes. Changes in an area’s grass 

or cropland carbon pools could therefore have a significant effect on the total carbon budget 

when scaled nationally or globally (Janssens et al., 2003).  

Sanderman et al. (2017) use a statistical model to assess the influence of land-use and land-

cover change (LULCC) on soil carbon over time by simulating past and present SOC stocks 

and estimate that agricultural land uses have caused the loss of 133 Pg C from soil globally, 

indicating that further intensification of the Irish agricultural system may result in further 

SOC losses. Peichl et al. (2011) suggest that the drier and warmer summers expected for 

Ireland under climate change may slightly reduce the uptake potential of Irish grasslands 

due to a reduction in productivity as a result of drought, yet their position as carbon sinks 

is expected to continue.  

Creamer et al. (2016) produced the Irish Soil Information System map which derives 

estimates of carbon contents for all Irish soils except for peat, which lack data due to an 

absence of surveying. Two methods for mapping SOC stock were used: A. Mapping SOC 

based on the lead soil subgroup in the association, and B. Calculating the relative 
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proportions of each subgroup in the association and weighting the SOC of the subgroup 

constituents, giving the relative SOC (t/ha) for each subgroup within the association, then 

summing together for the entire soil association. Both methods were tested using two 

validation models, one which applied indices based on De Vos et al. (2005) to establish the 

predictive quality of SOC mapping using the soil subgroups, and another which directly 

compared observations to modelled values. This method was only applied to the SOC for the 

first 50cm as validation data is not available to 1m. The map which gave the most robust 

confidence results (33.3%) was the 50cm depth using approach B and validation model 2. 

Maps to 50cm and 1m are presented in Figures 1.5 and 1.6. 

While it is useful to get a national estimate of soil carbon quantity, accurate estimation of 

soil carbon fluxes is vital for national inventory reporting mandated by the United Nations 

Framework Convention on Climate Change (UNFCCC). As an Annex I party to the 

convention, Ireland is obligated to report its emissions annually.  

 Soil Carbon Sequestration (SCS) 

The potential for soils to sequester carbon and offset GHG emissions while enhancing crop 

yields, food security and water holding capacity has long been understood, and is regarded 

as a win-win/no-regret scenario for land managers (Lal, 2004b; Lal et al., 2015). Using soils 

to offset GHG increases is a difficult task as carbon offsets require high certainty and 

credibility, and SOM dynamics are complex, variable and scientifically uncertain, making it 

difficult to verify the magnitude of carbon sequestration (Campbell and Paustian, 2015). 

Nevertheless, SOM models (e.g. CENTURY, DAYCENT, ECOSSE) can and have been used to 

identify differences between ‘business as usual’ emissions scenarios and scenarios where 

changes in management practices are implemented (Dell et al., 2013). These models have 

been widely implemented (Henderson et al., 2015) including in Europe (Abdalla et al., 2010; 

Smith et al., 2005), Asia (Cheng et al., 2014), Australia (Scheer et al., 2014) and the USA (Ogle 

et al., 2010).  

After the ratification of the Paris Agreement in 2016, the 4/1000 initiative which was first 

launched at COP21 gained significant attention. The initiative argued that increasing global 

SOM stocks by 0.4% per year would compensate for the entirety of anthropogenic emissions 

for that year. A meta-analysis of the feasibility of this process was undertaken by Minasny 

et al. (2017) who analysed the potential for sequestration on managed agricultural land and 

found a potential global SOC sequestration of 2-3 Pg C yr-1, 20-35% of global anthropogenic 

emissions, concluding that SCS is a viable solution to reduce emissions in the short-term. 

Sanderman et al. (2017) simulate past and current SOC stocks globally and estimate a sink 

potential of ~133 Pg C in total, with 8 to 28 Pg C in cropland and grazing land, but 
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acknowledge that physical, social, economic and technical constraints (Smith et al., 2005b) 

mean that the amount of the carbon sink that has the potential to be filled is 10-30% 

globally, and may well be below 10%.  
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Figure 1.5 (left): Irish SOC 
stocks to 50cm depth 
(from Creamer et al. 
(2016)).        

 

Figure 1.6 (right): Irish 
SOC stocks to 1m depth 
(from Creamer et al. 
(2016)).
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 Complexities of the 4/1000 Initiative   

There is a danger that policymakers who do not have the time or knowledge needed to fully 

analyse the issue of SCS will take the message of the 4/1000 initiative as verbatim and will 

overestimate the ability of soils to sequester C (Baveye et al., 2018). While the goals of the 

4/1000 initiative are laudable and increasing SOC content is widely regarded as a win-win 

scenario, Chabbi et al. (2017) emphasise that we should focus on region-specific 

implementation options which identify the agroecosystems most suitable to SCS and assess 

the economic benefits on different soil types, climate zones and farm types. Seeing soil 

carbon sequestration as a panacea has been warned against for some time, as the quantity 

of C that can be stored in soil is finite, the process is reversible, and the increase in C 

sequestration may result in increases in other GHGs such as N2O and methane, or increases 

in fertilizer use to encourage plant growth, and associated emissions for production of this 

fertilizer (Powlson et al., 2011).  

Baveye et al. (2018) argued against the optimistic goal of the 4/1000 initiative, and were 

critical of more cautious research which shows that it may be possible for soils to sequester 

2-3 Pg C yr-1 (20-35% of global GHG emissions, Minasny et al., 2017) as being overly 

optimistic. Baveye et al. (2018) emphasise the fact that this sequestration of C is only 

effective in the short-term as soils become C saturated (sink-saturation), and that the 

effectiveness of soils as a sink declines immediately after sequestration is initiated i.e. there 

are diminishing returns until saturation is reached (Smith, 2016; Franzluebbers et al., 

2012). Smith (2016) estimated that global SCS had the potential to sequester 0.7 Pg C eq. yr-

1, while an analysis for the potential of French soils to sequester carbon concluded SCS 

would compensate ~9% of emissions resulting from agriculture, around 1-2% of total 

emissions (Chenu et al., 2014), much lower than the 4/1000 initiative envisaged. Baveye et 

al. (2018) also warn that Minasny et al. (2017) ignore the impact warming will have on soil 

microbial respiration, citing Crowther et al. (2016) who project declines in SOC content as 

temperatures warm that could be 12-17% of anthropogenic emissions of the period up to 

2050, meaning adding 0.4% to soils would merely compensate for the increases in 

respiration as a result of warming temperatures. Baveye et al. (2018) argue that inorganic 

carbon should be considered in these estimates too, as mobilisation of inorganic C due to 

temperature increases dissolving carbonates or increasing acidification of soils could result 

in much more substantial emissions to the atmosphere.  

The ambitious nature of the 4/1000 initiative, and the large funding which is now going into 

soil carbon sequestration research was challenged further by Amundson and Biardeau 

(2018), who argue that for the 4/1000 initiative to work, it must be immediately 
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implemented on all managed lands on Earth (570 million farms ran by 3 billion farmers), 

and must be sustained for decades, requiring support from these private landowners. The 

cultural, economic and physical barriers including conservative mindsets, lack of ownership 

of the land and a distrust of academic authority mean that soils as major carbon sinks may 

not be a feasible option, and that it is irresponsible to regard them as a panacea (Amundson 

and Biardeau, 2018). 

Experimental evidence from Poulton et al. (2018) find long-term studies at Rothamsted 

indicate that 4/1000 levels of sequestration (and above) are possible and have been 

observed in their experiments, with different land-management practices increasing GHG 

stocks at different rates, but these can be impractical or impossible for farmers to achieve 

due to a number of reasons including: 1. Insufficient resources available to farmers due to 

lack of animals for manure or crops for residues (smallholder farmers in Africa), 2. The 

practice is already widely used (incorporation of crop residues), 3. Widespread adoption 

would negatively impact global food security (conversion of agricultural land to forest or 

grassland), 4. Management change would financially harm the farmer or be impractical for 

some other reason – changes would require alterations in government policies, regulation 

or subsidies to promote the practice, a factor echoed by Baveye et al., (2018) who call for a 

financial analysis of SCS to determine what is socio-economically realistic.  

While using any methods possible (including soils) to mitigate climate change is admirable 

and positive, it is recommended that focus be made on increasing SOC by small amounts for 

the benefits it gives to soil quality as a whole, rather than for its mitigation potential, as the 

evidence base is stronger for the former (Baveye et al., 2018). Similarly Paustian et al. (2016, 

pp. 44) call for the pursuit of ‘all reduction measures that are feasible, cost effective and 

environmentally sustainable’, arguing the inability to quantify and verify soil mitigation 

activities is a major impediment to implementing SCS strategies on agricultural land. To 

overcome this, they suggest increasing the acceptance of SCS in compliance and voluntary 

carbon markets; reducing costs to governments for provision of environment-based 

subsidies; and meeting consumers demands for low-carbon products. Paustian et al. (2016) 

recommend the strengthening of soil GHG monitoring networks for fluxes and on-farm 

measurements which can help to illuminate the processes underlying these fluxes in 

different spatial contexts and informing and involving land-users who will be implementing 

practices, while taking advantage of their local knowledge.  

 Soil Carbon Sequestration in Ireland 

The sequestration potential for Ireland has been assessed by Kiely et al. (2017) who 

examined C deficits for different land-uses and found that croplands are currently at a level 
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of 38% C saturated, grasslands at 48% and forests of 56%, meaning there is significant 

potential for soils to sequester C. For example, Kiely et al. (2010) assessed the C density of 

Irish soils and found grasslands soils had a density of ~102 t C ha-1 for to 30cm depth and 

145 t C ha-1 to 50cm depth. Taking a conservative assumption that these soils are 75% 

saturated with C, this gives a potential C deficit of 48 t C ha-1. Ireland has an area of 3.6 

million ha-1 of grassland, giving a total C sequestration potential for Irish grasslands of 172.8 

Mt C.  

 Summary & Research Questions 

Our understanding of the carbon cycle and climate system has advanced significantly over 

the past centuries and decades; we better understand the interactions between the surface 

and the atmosphere, and how greenhouse gases affect these interactions. We know how 

important carbon is, and the impact carbon emissions are having on our climate. We can 

now measure and model changes in the carbon cycle, the importance of measuring these 

changes has been enshrined in international law, compelling us as both nations and citizens 

to act, with the goal of ultimately reducing our emissions to minimise the harm we are 

causing to our own species and others.  

After Kyoto and subsequent COP meetings, the Paris agreement in 2016 has resulted in the 

commitment of most (184 of 197) countries to significantly reducing their emissions to 

avoid ‘dangerous’ climate change, deemed anything past 2°C above pre-industrial levels, 

with a target of 1.5°C seen as optimal. Each nation has submitted nationally determined 

contributions (NDCs) which outline the measures they will take to cut their emissions, from 

whatever sources they arise. Soil plays a vital role in all of this, storing more carbon than 

the atmosphere and releasing a significant quantity of that carbon each year, a process 

exacerbated by agriculture, land-use change, and other human interventions. For this 

reason, soils are included in national inventory calculations, where their contribution to 

climate change can be estimated. Soils are also regarded as a potential resource for C 

sequestration, with Irish soils identified as having strong C sink potential. The land-surface 

is one of the largest sources of uncertainty in ESMs, meaning we need to improve our 

understanding of land-surface exchanges to best represent their dynamics.  

Emissions reporting is a complex process which has the potential to be improved using 

models to overcome the absence of measurements. Models can help to move national 

emissions estimates from a crude tier-1 approach towards a more refined tier-3 

methodology, where gaps in knowledge which previously necessitated the use of default 

emissions factors can be filled. Before models can be used for policy prescriptive purposes 

it is important that they are fully evaluated and robustly tested. This thesis will provide a 
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comprehensive evaluation and robust analysis of a widely used process based model, and 

will assess its ability to simulate soil carbon emissions at different scales in Ireland.  

Following a discussion of the information which motivated this work (Chapter 2) and an in-

depth analysis of modelling GHG emissions from soils (Chapter 3), this thesis will attempt 

to address the following research questions:  

A. Is it possible to use models to improve national emission estimates for soils and 

move towards a tier-3 reporting methodology?  

B. What is the potential impact of future extreme events on emissions of greenhouse 

gases from soils? 

In order to answer these questions, the following aims are outlined:  

1. To assess the ability of a model to simulate soil carbon emissions at a selected Irish 

site (Research Question A: Chapters 4 and 5)  

2. To upscale site emissions to national scale (Research Question A: Chapter 6) 

3. To investigate the impact of extreme weather events on quantities and fluxes of 

greenhouse gases in Irish soils (Research Question B: Chapter 7)  

 Thesis Structure 

Chapters 1-3 of this thesis provide context for the research questions and chapters that 

follow. Chapter 1 provides a background to our understanding of climate and the carbon 

cycle, with a summary of the importance of soil and its complexities, which forms the 

motivation for this work. Chapter 2 details how soils relate to climate, how humans have 

attempted to understand the interactions between soil and climate through theory and 

measurement, how we quantify these emissions at national and global scale, and how we 

have attempted to understand what may happen in the future. Chapter 3 provides an in-

depth discussion of process-based modelling of greenhouse gas emissions from soils and 

details the modifiers and methods used. The following chapters are presented in the form 

of academic papers though only one is published at this stage, Chapter 4 outlines the process 

of running the ECOSSE model at an Irish site and comparing outputs to observations, along 

with an evaluation of the model parameters (aim 1). Chapter 5 provides an assessment of 

the rate modifiers employed by ECOSSE to identify the potential sources of issues uncovered 

in the model simulations (aim 1). Chapter 6 outlines the process of upscaling the model from 

site to regional scale (aim 2). Chapter 7 outlines the potential response of soils to extreme 

events in the future (aim 3), finally Chapter 8 unites the previous chapters in discussion, 

and outlines directions for potential future work. Figure 1.7 illustrates this thesis structure.  
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Figure 1.7: Thesis Structure 
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 Research Context & Framework 

This chapter will outline the nature and properties of soils, their relationship to greenhouse 

gases, the factors which influence GHG fluxes from soils, and the history of modelling these 

fluxes. As chronologies overlap across topics, the chapter first describes the theory 

underlying the interactions between soil and greenhouse gases, then the observations and 

methods of soil GHG measurement are discussed, followed by the processes involved in 

modelling GHG fluxes, and a discussion of global soil carbon quantity.   

 Theoretical Understanding of Soil and Soil Fluxes 

 Soil and Greenhouse Gases 

Over the past 500 million years, carbon in plant and animal life has decayed and been 

deposited in geological reservoirs, which humans have exploited since the industrial 

revolution to provide fuel and energy for our development as a species, leading to an 

increase in the atmospheric concentration of CO2, and an imbalance in Earth’s relative 

homeostasis. The impact of this human development on our planet has even led to calls for 

a new geological era called the ‘Anthropocene’ to be recognised, as human actions are 

driving widespread changes to the life-supporting infrastructure of Earth (Lewis and 

Maslin, 2015).  

Figure 2.1 illustrates the major global pools of carbon showing the largest C pool is the deep 

ocean, where 37,000 Pg C has been absorbed and stored for a long time. The soil pool holds 

a significant amount of carbon, an estimated 2300 Pg C. The amount of C stored in the 

oceans, fossil fuel reserves and soils is vastly larger than that stored in the atmosphere (800 

Pg C), yet the exploitation of the fossil fuel reserve, combined with changes to land-use, 

cause emissions of ~9 Pg C yr-1 producing an increase in the atmospheric concentration of 

~4 Pg C yr-1. The remaining ~5 Pg C yr-1 is absorbed by the oceans and the terrestrial 

biosphere.  
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Figure 2.1: The global carbon cycle illustrating the movement of C between land, atmosphere and oceans. Yellow 
numbers are fluxes while red are human contributions in Pg C yr-1 (NASA, 2011).  

 Carbon  

Carbon (C) enters soils via tissue residues from plants and roots which interact with 

symbiotic fungi and are then broken down and respired by microorganisms and soil fauna, 

most of the carbon that enters soil from plant inputs either decomposes and returns to the 

atmosphere or is leached from the soil over decades to centuries (Trumbore and Czimczik, 

2008). If the rate of decomposition is lower than the plant inputs, SOM builds up over time 

(Paul, 2016). Carbon comprises a significant proportion of SOM, with different levels 

associated with different soil types, interactions between climate, soil, topography and land-

use determine the type of vegetation which grows and subsequently the quantity, location, 

timing and composition of C inputs to soil (Jackson et al., 2017). C in soils is made up of both 

inorganic and organic carbon, inorganic carbon is usually found in carbonate minerals e.g. 

calcite and dolomite, while soil organic carbon (SOC) is the major constituent of SOM and is 

present in microorganisms, plant and animal residues, humus, and highly carbonised 

compounds (charcoal, graphite and coal) typically comprising 48-58% of the SOM weight 

(Nelson and Sommers, 1982). The quantity of carbon stored in soils depends on the balance 
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between organic inputs from living organisms, and carbon losses through heterotrophic 

respiration (Post et al., 1982, Brady & Weil, 2016). Both organic inputs and the degree of 

respiration vary depending on the type and productivity of vegetation at a location, as well 

as the climate, soil management, and the soil texture and structure. Environmental variables 

like temperature, moisture, oxygen, N availability, phosphorous, pH, space and time all 

regulate the transformation of SOC, as does litter quality, organomineral properties of SOC, 

and microbial structure (Luo et al., 2016b). The balance of these fluxes is influenced by 

temperature and moisture which affect the accumulation and decay of carbon and nitrogen 

(Jenny, 1980; Oertel et al., 2016). Soils provide essential ecosystem services, giving food, 

fibre and fuel, filtering water, resisting erosion and being a carbon source or sink in relation 

to climate change mitigation (Schmidt et al., 2011).  

The threats to the terrestrial C pool are well documented; changes from natural to managed 

land-uses typically result in declines in organic matter (Davidson and Ackerman, 1993), 

while conversion of land used for cultivation back to natural or perennial vegetation allows 

soil carbon to accumulate, and increases the soil carbon pool (Post and Kwon, 2000). From 

1990-2010 emissions from Land Use and Land Cover Change (LULCC) comprised 12.5% of 

total anthropogenic C emissions (Houghton et al., 2012), while there are uncertainties 

associated with this estimate, the vulnerability of the soil carbon pool is clear. The latest 

global carbon budget indicates that emissions from land-use change released 1.3 ± 0.7 Pg C 

in 2016, compared to the 9.9 ± 0.5 from fossil fuels and industry, the high uncertainties 

relative to the total emphasises the knowledge gaps still associated with measuring the 

land-carbon flux, and the requirement for further research around this vital carbon pool (Le 

Quéré et al., 2018). 

The pools of C within soil that are recognised as sources of CO2 efflux are 1. the SOM 2. above 

and below ground plant residues, and 3. organic substances released by living roots, with 

no distinct boundaries between these three groups as plant residues become humified and 

part of SOM, and rhizodeposits originating from dead plants or roots (Kuzyakov, 2006). 

Kuzyakov (2006) suggests the major sources of CO2 efflux, and the mean residence times 

(MRT) of each component are: 

1. Microbial decomposition of SOM in soil without roots or undecomposed plant 

remains (basal respiration), MRT = decades to hundreds of years 

2. Microbial decomposition of SOM in soil with roots or plant residues present 

(priming effect), MRT = months to years to decades 

3. Microbial decomposition of dead plant litter, MRT = weeks to months 

4. Microbial decomposition of rhizodeposits from living roots (rhizomicrobial 

respiration), MRT = hours to days to weeks 
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5. Root respiration, MRT = minutes to hours  

Soil respiration (Rs) can be disaggregated into its components which include heterotrophic 

(Rh) and autotrophic respiration (Ra). Heterotrophic respiration is the decomposition of 

SOM by soil microbes (bacteria and fungi) which aerobically and anaerobically degrade 

organic matter, producing CO2 and other greenhouse gases (Xu and Shang, 2016). 

Autotrophic respiration is dominated by respiration by roots within the soil, which varies 

in its overall contribution to Rs depending on the time of year and the characteristics of the 

soil itself (Kuzyakov, 2006). Figure 2.2 illustrates the interactions between plants and soil 

and the different types of respiration resulting from these interactions.  

 

Figure 2.2: Conceptual model of the components of CO2 flux within soil (Source: r2dkits.com, n,d) 

Although estimates of SOC stocks and emissions from terrestrial soils remains highly 

uncertain (Houghton et al., 2012; Scharlemann et al., 2014; Oertel et al., 2016), there 

remains a pressing need to improve our understanding of soil C management to minimise 

soil C losses and increase the C sequestration potential of soils (Scharlemann et al., 2014). 

Increasing the carbon content in soils is seen as a win-win/no regret scenario as crop yields 

increase, food security is enhanced, soil structure is improved, surface and groundwaters 
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are purified, and carbon sequestration offsets anthropogenic CO2 emissions (Lal, 2004a, 

2004b).  

 Methane 

Methane (CH4) is the second most significant greenhouse gas (after CO2) accounting for an 

increase in radiative forcing of 0.48 ± 0.05 W m2 due to an increased atmospheric 

concentration from 722 ppb in pre-industrial times, to 1803 ± 2 ppb today (Myhre et al., 

2013).  Myhre et al. (2013) acknowledged that methane has a 100-year global warming 

potential (GWP) of 28, which has risen from an estimate of 25 in the fourth IPCC assessment 

report (IPCC, 2007). This estimate has recently been revised upward by Etminan et al. 

(2016) due to the inclusion of short-wave forcing and CH4’s absorption of solar radiation, 

with the 1750-2011 RF now estimated as being 20-25% higher (from 0.48 W m-2 to 0.61 W 

m2) than the IPCC value in 2013, giving a new 100-year GWP of 32, showing that there are 

still uncertainties with even the most basic aspects of climate science, and that it is 

constantly evolving. There is currently debate about the use of GWP as a metric for short-

lived climate pollutants (SLCPs), Allen et al. (2018) suggest using a new metric, GWP*, which 

relates cumulative emissions of CO2 with the current emissions of SLCPs in order to better 

meet future emissions targets.  

Methane is produced by soil microbial communities, specifically methanogens (a group of 

Archaea), as a consequence of anaerobic respiration in anoxic environments resulting from 

the anaerobic degradation of organic matter (fermentation) (Nazaries et al., 2013). Of the 

total global methane budget of 500-600 Tg CH4 yr-1, around 35% is from natural sources, 

with the remainder from anthropogenic activities (Conrad, 2009). Wetlands are the largest 

natural source of CH4, comprising 62% of the natural CH4 budget (ibid).  The remainder 

comes from oceans, sediments, plants, termites and geological sources, while anthropogenic 

methane sources include rice agriculture, livestock, landfills, waste treatment, biomass 

burning, fossil fuel extraction and consumption and now account for 63% of total global 

methane emissions – in pre-industrial times they represented less than 10% (Conrad, 2009; 

Nazaries et al., 2013). As wetlands cover such a small area on the planet this compensates 

for their relatively high emissions, while data remain scarce and for point locations and are 

not representative of the larger-scale (Oertel et al., 2016). For most CH4 sources listed, the 

actual production is typically higher than recorded emissions, as a large amount of initial 

CH4 is consumed by microorganisms before it reaches the atmosphere (Conrad, 2009). The 

average rate of CH4 emissions from different land-uses varies in wetlands (0.1-6950 umol 

CH4 m2 h-1) due to the diversity of wetland types and climates, while the average CH4 
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emissions from grasslands is <3 umol m-2 h-1 and either negative or <1 umol m-2 h-1 for 

croplands. 

Quantities of methane emissions from different wetland types are not identical. Turetsky et 

al. (2014) find that fens are less responsive to temperature than bogs or swamps, with the 

largest flux observed in bogs after 30 days of dry conditions followed by wet conditions, as 

fens and swamps record their highest fluxes when antecedent and current conditions are 

wet, with the exception of drained wetlands which did not show an increased flux in 

response to warm and wet conditions. These distinct interactions are important as ideally 

these diverse land-use types should be treated differently by models.  

The scale of methane emission across different soil and vegetation types is examined by 

Levy et al. (2011) who use almost 5000 chamber measurements of CH4 flux for 21 sites to 

attempt to model the emission process, finding larger emissions for organic over mineral 

soils (to be expected), with plant species composition giving the highest explanatory power 

to the model, followed by soil carbon content, peat depth, soil moisture and pH. As methane 

emissions have recently been increasing at a higher rate than CO2 and N2O, likely due to 

increased emissions from agriculture in Africa and Asia (Saunois et al., 2016), it is important 

to understand the factors affecting methane release to predict potential changes in climate 

as methane plays an increasing role as time goes on. This issue has previously been 

acknowledged in relation to GHG modelling by Bridgham et al. (2013) who highlight the 

inadequate incorporation of factors integral to CH4 production, consumption and transport 

into models, along with errors in emission estimates from spatial extrapolations from 

poorly mapped wetlands, and the paucity of observational evidence of CH4 fluxes and the 

environmental variables that may influence them.  

 Nitrogen 

The quantity of N in soils around the world is estimated at 133-140 Pg N in the upper 1m 

(Batjes, 1996). Nitrogen fixation is the transformation of un-reactive nitrogen to ammonium 

compounds and subsequently transformed into amino acids and oxidised compounds by 

microorganisms, then returned to the atmosphere through denitrification in soils, water 

and sediments. This process contributes 413 Tg of reactive nitrogen (Nr) to ecosystems 

annually, with anthropogenic activities responsible for 210 Tg N yr-1 which is transformed 

on land within soils and vegetation where the agricultural use of fertilizer N dominates 

(Fowler et al., 2013). Nr can be broken down into its constituents as follows: nitrate (NO3-) 

from fertilizer use is leaked from agricultural land and also contributes trace Nr compounds 

to the atmosphere. Ammonia (NH3) emissions from land and combustion related emissions 

of nitrogen oxides (NOx) emit 100 Tg N yr-1 to the atmosphere, which can generate 
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secondary pollutants like ozone and ammonium nitrate (NH4NO3) and ammonium sulphate 

(NH4)2SO4, leaching of NO3 comprises 40-70 Tg N yr-1 to the ocean, with a further 30 Tg from 

atmospheric deposition largely increasing the natural marine biological N fixation of 140 Tg 

N yr-1 (Fowler et al., 2013). Similarly to soil C, soil N concentration depends on the 

productivity of vegetation, decomposition of organic matter, rainfall, fertilizer input and N 

fixation, with losses occurring through leaching and denitrification (Post et al., 1985). 

Nitrous Oxide (N2O) is a long-lived atmospheric trace gas, the dominant sources of N2O in 

soils come from microbial nitrification and denitrification in managed and natural soils 

(Butterbach-Bahl et al., 2013). N2O is 298 times more powerful than CO2 as a greenhouse 

gas over 100 years (Ciais et al, 2013). N2O has increased in concentration from 270 ppb in 

pre-industrial times to 324 ± 0.1 ppb today, increasing total radiative forcing by 0.17 ± 0.03 

W m2 (Mhyre et al, 2013). This estimate was recently revised upwards by 2% by Etminan 

et al. (2016), who found N2O to be more powerful as a greenhouse gas than previously 

thought. Agricultural soil is the largest source of N2O emissions, particularly agricultural 

soils in southern Asia, where the increased use of N fertilizers in developing economies is 

responsible for the significant emissions increase (Saikawa et al., 2014). Grazing and non-

tillage on grasslands have been shown to enhance N2O emission rates, and grasslands are 

the largest source of N2O by land-use as they cover ~25% of global land area, meaning 

mitigation should be focused at this area (Oertel et al., 2016). N2O emissions from 

agricultural soils are strongly influenced by N application rate, crop type, fertilizer type, SOC 

content, pH, and soil texture, calculations of agricultural emissions of N2O and NO revealed 

global annual emissions to be 3.3 Tg and 1.4 Tg respectively (Stehfest and Bouwman, 2006). 

It is estimated that total global emissions of N2O from natural and anthropogenic sources 

have increased from 12 Tg N yr-1 in 1500 to 19 Tg N yr-1 in 2006, 55% of the latter is 

attributed to natural emissions and 45% to anthropogenic sources, largely due to food 

production which makes up ~60% of anthropogenic emissions. The average N2O emission 

rate from grasslands is 10 umol N2O m-2 h-1, higher than the <5 umol N2O m-2 h-1 from 

croplands, with a broader range for wetlands of between negative values to 23 umol N2O m-

2 h-1 (Oertel et al., 2016). A gap remains between terrestrial sources and the atmospheric 

content, which may be accounted for by uptake of N2O in the deep ocean (Syakila and 

Kroeze, 2011). 

 Uncertainties in Emission Estimates  

As the understanding of the complexities of the relationship between soil and greenhouse 

gases increases, the uncertainties associated with estimating GHG fluxes need to be 

understood in order to reduce them. Depending on the question asked, the tools used and 
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the scale chosen for analysis, it is estimated that errors of 10-20% can be present in results 

(Oertel et al., 2016). The overrepresentation of the northern hemisphere in the global 

system gives a strong bias to this data over the rest of the world where fewer observations 

are available (de Caritat and Reimann, 2012). Globally, there is still no standard 

methodology for estimating the fluxes of GHGs from soil, meaning intercomparisons of 

results are often difficult or impossible, and upscaling (from site measurements) or 

downscaling (from remotely sensed data) of data enhances these uncertainties, with 

associated errors said to ‘easily reach’ 50% (Oertel et al., 2016, pp. 345).  Oertel et al. (2016) 

argue for more experiments monitoring GHG emissions to be set up, over areas which are 

representative of all global biomes, along with a standardised method of analysis for all soil 

GHG emissions which homogenises the process of site-selection, methodological set-up of  

the flux and units, and the way data is displayed in coherent units in order for results to be 

comparable with one another, all the while reporting the metadata in full to avoid any 

potential mismatch across studies.  

 Factors that Influence GHG Fluxes 

This section outlines the various factors which influence the scale and magnitude of GHG 

fluxes from soils.  

 Substrate Quantity, Quality and Availability  

The ability of soil to emit GHGs strongly depends on the quantity and availability of the 

substrate, for instance, heterotrophic respiration (Rh) is strongly correlated with SOC 

content as the more C available in the soil, the more sources and reaction sites are available 

for microbes to decompose and respire the SOM (Wang et al., 2013b). The quality of SOC 

also affects the degree of respiration, as larger C particles have smaller surface areas for 

enzymes and microbes to decompose (meaning smaller particles will enhance the rate of 

respiration), freeze-thaw action in temperate or boreal climates, and the activity of soil 

fauna such as earthworms, can help to break down C particles into smaller units and 

increase the rate of respiration (Jennings and Watmough, 2016). The quality of substrate 

also refers to the chemical composition of the molecules, for example smaller SOC molecules 

like glucose and cellobiose can penetrate microbial cell walls easier than larger molecules 

like starch, cellulose and lignin. Larger molecules are therefore recalcitrant, or need to be 

broken down further before they are available to microbes who prefer labile C sources (Xu 

and Shang, 2016). The importance of substrate supply as a driver of soil CO2 emissions on 

European grasslands is highlighted by Bahn et al. (2008) who found reductions in substrate 

supply at different sites by removing above-ground biomass through grazing and cutting 

resulted in a significant decrease in soil respiration.  



35 
 

 Temperature 

Temperature is a key driver of SOM dynamics, yet the response of soils to changes in 

temperature is not fully understood, largely due to the fact that temperature effects are 

difficult to isolate from other factors which may also be temperature dependent (Campbell 

and Paustian, 2015). It is well established that microbial decomposition processes are 

strongly influenced by temperature at the micro-scale (Frey et al., 2013), however at 

ecosystem scale microbial responses may not be as clear cut, as microbes can acclimatise to 

temperature variations (Tucker et al., 2013). SOM responses to temperature change at 

landscape level can also become confounded with temperature effects on photosynthesis, 

transpiration, microbial communities etc. (Bardgett et al., 2008).  

Soil respiration is a temperature dependent biochemical reaction, where the temperature 

drops below freezing, soil respiration is significantly inhibited due to the weak metabolic 

rate of the roots and microbes (Xu and Shang, 2016). Increasing temperatures have been 

positively correlated with higher rates of soil respiration, both in experiments and in the 

extant global temperature record, across all biomes, climate types and land-uses (Lloyd and 

Taylor, 1994; Bond-Lamberty and Thomson, 2010; Wu et al., 2011). Across the 

experimental record the global soil respiration (Rs) flux (calculated from a database of 

worldwide respiration estimations linked to historical climate data) increased by 0.1 Pg C 

yr-1 between 1989 and 2008, giving a Q10 (rate of respiration increase as a result of a 10°C 

increase in temperature) of 1.5 (Bond-Lamberty and Thomson, 2010). This may not mean 

a direct increase in atmospheric CO2 however, as the observed increase could result from 

enhanced plant inputs to the soil, not mobilization of already stored carbon (ibid). 

Nevertheless, the increase is consistent with our understanding of the relationship between 

temperature and soil respiration.  

Q10 relationships can be confounded by factors other than temperature, as the seasonality 

of plant inputs (which themselves are influenced by temperature and radiation) provide 

different substrate quantity and belowground priming effects depending on the time of 

year, meaning temperature is not the sole driver of these changes, other (temperature 

dependent) factors are also at play (Curiel et al., 2004). Most of the available Rs data have 

been obtained from in-situ measurements, which are confounded with non-temperature 

factors, meaning the Q10 value may over or under-estimate the actual temperature effect on 

Rs (Xu and Shang, 2016). For example, the confounding effects of soil temperature and 

moisture on respiration reduced the Q10 during hot, dry summers in California as the soil 

moisture limitation inhibited the temperature response of the soil, making that soil at that 

time insensitive to changes in temperature (Xu and Qi, 2001). Experimental analysis of soil 
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cores and their response to temperature and moisture found increasing emissions of CO2, 

N2O and NO as a response to increases in temperature (Schaufler et al., 2010). Attempting 

to control for the temperature variable by performing laboratory experiments confirms that 

temperature has a strong influence on respiration, but uncertainties remain regarding 

incubation method and timing, as well as relating the experimental data to actual field 

conditions (Smith et al., 2008).  

Decomposition of SOC in response to temperature has also been linked to the availability of 

substrate, as soils with high substrate supply exhibited a Q10 of 2.5 compared to those with 

limited substrate supply having a Q10 of 1.4 (Fissore et al., 2013). Giardina et al. (2014) found 

that although warming increases the overall carbon flux, this increase is mainly due to 

enhanced litterfall and increased below-ground carbon flux, which do not influence SOC 

storage or turnover over centennial and millennial timescales. Most Q10 values reported in 

the literature fall between 1.5 and 3.0 (Xu and Shang, 2016), while it can vary from 1 up to 

237, though this extremely high estimate is for frozen arctic soils (Mikan et al., 2002).  The 

sensitivity of different SOC types (high-quality and low-quality) has been questioned before. 

Previous assumptions based on thermodynamics and Arrhenius kinetics thought that low-

quality carbon would cause high losses under warming in future, but this is not replicated 

in the empirical record (Sierra, 2012). This suggests that different measures used to assess 

the temperature sensitivity of substrates can give contradictory results even when based 

on the same principles. The contribution of roots to overall soil respiration was examined 

by Boone et al. (1998) who found that roots are more sensitive to increases in temperature 

than the bulk soil itself, with Q10 values up to 4.6 for roots and 3.5 for respiration by bulk 

soil. Liu et al. (2016) find temperatures above 20°C can turn a soil from a CO2 sink to a CO2 

source if other factors are kept constant, and that C sequestration of 300 kg SOC ha-1 yr-1 is 

achievable in colder environments. High temperatures mainly accounted for differences in 

SOC changes across sites, and reduced C sequestration despite favourable rainfall (ibid). 

The reported relationship between soil respiration and temperature has been criticised by 

Subke and Bahn (2010) who observe that the apparent relationship reported between 

respiration and temperature is too simplistic and is often confounded with other external 

effects. In response to this they suggest a move toward modelling entire ecosystem 

processes, and for experiments to incorporate isotopic tracer studies and environmental 

manipulations for projections around future climate to be as accurate as possible. 

Conversely Xu and Shang (2016) emphasise the importance of temperature sensitivity and 

argue it deserves more attention as it is a critical factor in the link between soil respiration 

and climate change feedback. Research shows that the contribution of temperature to soil 
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respiration is complex and often confounded by other factors which are themselves 

temperature dependent, nevertheless it remains a significant driver of soil respiration 

(Subke and Bahn, 2010).  

 Vegetation 

The type of vegetation growing in an area can affect the microclimate experienced by a soil, 

the quantity and quality of litter which reaches the soil, and the rate of root respiration 

(Raich and Tufekciogul, 2000). Vegetation also affects rhizosphere respiration as it depends 

on the supply of carbohydrates from photosynthesis, which is a factor of climate and plant 

physiological and morphological properties (Xu and Shang, 2016). Globally, plant litter 

production is highly correlated with both SOC content and Rs (Raich and Tufekciogul, 2000; 

Davidson et al., 2002b; Han et al., 2015), with the species of vegetation being a significant 

influence on the quantity and quality of litter provided to the soil, and therefore the degree 

of respiration (Hättenschwiler et al., 2005). A comparison of nine different litter types for 

234 cases by Harmon et al. (2009) gave decomposition rates ranging from 0.017 to 4.653 

yr-1, averaging at 0.353 yr-1. Vegetation type and quantity can affect the microclimate of the 

area around the soil, and can alter soil temperature and moisture by acting as a barrier to 

insolation and precipitation (Xu et al., 2004). 

Raich and Tufekciogul (2000) collate data from multiple studies to determine the direction 

and magnitude of the effects of different types of vegetation on soil respiration, and find no 

discernible differences across crop types, leading them to conclude that other associated 

factors such as temperature, moisture and substrate supply are more important than 

vegetation in most cases. However, experimental evidence investigating grassland 

vegetation on soil microbial structure indicates that removal of aboveground vegetation 

reduced carbon and nitrogen contents and reduced the rate of respiration (Thomson et al., 

2010). Wang et al. (2010) undertook a meta-analysis of results from over 100 scientific 

publications (114 papers and one book) and found significant positive correlation between 

the seasonal amplitude of the normalized difference vegetation index (NDVI) and the 

seasonal amplitude of respiration, indicating that seasonal variations in vegetation are a 

strong modulator of Q10 values across sites. 

Soil respiration is a process controlled by multiple variables which are all strongly 

interlinked (e.g. temperature, moisture, soil texture) that it is difficult to control for each 

one in order attribute responsibility for respiration. Vegetation type can potentially change 

these abiotic and biotic factors (Fu et al., 2013), meaning it should still be considered as a 

strong influence on respiration.  
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 Water 

In general, soil respiration is typically low in dry conditions, and is observed to increase 

with soil moisture until respiration reaches its maximum at an intermediate moisture level, 

and declines as water content increases to the point where oxygen is excluded (Xu and 

Shang, 2016). The diffusion of soluble substrates is affected by low soil moisture content 

while the diffusion of oxygen is affected at high water content, both processes limit soil 

respiration (Davidson et al., 2006). Reduced soil moisture also limits respiration by 

reducing the availability and mobility of carbon, causing lowered microbial activity and 

enzyme production, low levels of moisture also inhibit hydrolytic chemical reactions which 

break down polysaccharides, slowing the decomposition process (Barnard et al., 2015; Xu 

and Shang, 2016). The moisture content of soil also influences the oxygen content and 

subsequent respiration, as the metabolic pathway changes from aerobic respiration to 

anaerobic fermentation when oxygen is absent, and the outputs change from CO2 to CH4 

(Kane et al., 2013), while there is a decrease in CO2 efflux when soils are flooded (i.e. in 

wetlands) (Xu and Shang, 2016).  

The sensitivity of soil respiration to moisture content differs across biomes, and is found to 

be much more variable and important for regulating respiration in boreal and temperate 

forests ahead of other land-use types, though there are a paucity of data in other biomes to 

have strong confidence in this assertion (Hursh et al., 2017).  Experimental evidence 

indicates that respiration decreases with lower soil moisture in forest ecosystems, 

indicating that drought events reduce the level of respiration from the soil (Jiang et al., 

2013). 

Moisture and temperature interact with one another also, Wood et al. (2013) find the typical 

response of increased respiration to increases in temperature is constrained by the 

availability of soil moisture, with a parabolic relationship between moisture and CO2 flux 

which peaks at a volumetric soil water content of 0.375 m3/m3 (37.5%). In a synthesis of 

studies, Hursh et al. (2017) argue that precipitation and soil respiration are positively 

correlated at the global scale, but the relationship between soil moisture and soil respiration 

is more variable, with highest values of soil respiration occurring at around 27% volumetric 

water content, while respiration is inhibited when soils are dried out or saturated. The 

‘optimum’ value for soil respiration varies across studies, research has shown that the 

determinant of the value for soil moisture which maximises respiration varies according to 

clay content, with a positive relationship between the two (Balogh et al., 2011). The seasonal 

effects of soil moisture changes are often coupled with temperature effects, making it 

difficult to disaggregate the influence of both on soil respiration (Xu and Qi, 2001). N2O 
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emissions are positively correlated with soil moisture, NO and CH4 oxidation rates are 

negatively correlated with moisture, while the highest CO2 emissions have been observed 

at intermediate levels of soil moisture (Schaufler et al., 2010). Rewetting of dry soil can 

cause a strong and rapid increase in soil respiration and nitrification, with a 40-fold increase 

in microbial activity evident following rewetting in one study (Orchard and Cook, 1983). 

This is known as the ‘Birch effect’ and is thought to be caused by mineralization of dead 

microbial biomass or osmoregulatory substances released by soils in response to hypo-

osmotic stress (Unger et al., 2010).  

The importance of soil moisture is not to be underestimated as climate warms and drought 

conditions become more frequent, as the positive relationship between warmer 

temperatures and enhanced respiration is confounded by limited moisture availability 

(Hursh et al., 2017). Soils do not respond equally to changes at different depths, the factors 

which influence soil respiration are not equal across the soil profile. Changes in soil 

temperature, moisture, CO2 production and diffusion throughout the soil profile are 

illustrated in Figure 2.3 from Subke and Bahn (2010), where daytime temperatures are 

higher in the upper soil layers while night-time temperatures and moisture content are 

higher in lower layers, while respiration is highest in upper soil layers.  

 

Figure 2.3: Changes in abiotic and biotic factors throughout the soil profile. (A) Soil temperature (red lines; solid = 
mid-day, dashed = midnight) and moisture (blue dotted line). (B) Soil organic matter content (triangle width) and 
quality (shading indicates differences in complexity and molecular weight of carbon compounds). (C) CO2 
production (white bars: root and rhizospheric sources, dark brown bars: heterotrophic sources, light brown bar: 
mineral weathering). (D) CO2 diffusion between different depths resulting from CO2 production (Source: Subke and 
Bahn,  2010) 

 Management 

Management can affect the factors mentioned above by altering the substrate quantity and 

quality by planting different types of vegetation and using fertilizers, changing the 
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temperature by using greenhouses, changing the water content using irrigation, and 

changing the vegetation by planting different crops. Liu et al. (2016) use the APSIM-Wheat 

and APSIM-Agpasture models to simulate SOC changes across nine sites in eastern Australia 

to investigate how nitrogen fertilisation, stubble management and stocking rate affect SOC 

levels from sub-tropical to temperate environments. They find that continuously grazed 

pasture resulted in SOC increases over 60 years, while increasing the stocking rate 

decreased the rate of SOC change universally. Rotations between crop and pasture indicate 

that 4 years of pasture reduces declining SOC at low nitrogen application during cropping 

phases. N fertilization and residue (stubble) incorporation reduced the impact of the 

stocking rate by lessening the decline in SOC (ibid). Improvements in management practices 

on grasslands can help soils store more C, a meta-analysis of many studies showed 

improvements in fertilization, grazing management, conversion from cropland to grassland, 

sowing legumes, improving grass species, introduction of earthworms and irrigation all 

improved the C sequestration potential of grasslands at rates ranging from 0.105 to over 1 

Mg C ha-1 yr-1, with the largest increases coming from conversion from cultivation, sowing 

legumes, and fertilization (organic fertilizers produced enhanced sequestration compared 

to inorganic) (Conant et al., 2017).  

Land management can also affect the degree of soil respiration, the soil structure is altered 

through land-use change associated with the agricultural processes of ploughing, sowing, 

fertilizing, irrigating and cultivating crops, or covering the soil surface with our towns and 

cities, all affect the quantity of soil respiration. Cultivation increases the surface area of soil 

which is exposed to the air, improving the aeration and moisture leading to higher rates of 

soil respiration (Xu and Shang, 2016) and a decline in organic matter (Schlesinger and 

Andrews, 2000). 

 Soil pH 

The pH of a soil regulates the chemical reactions happening within the soil and within 

enzymes in microorganisms, many of which are pH dependent (Luo and Zhou, 2006). Most 

bacterial species thrive within the pH range of 4-9, while fungi thrive between 4 and 6, 

meaning the pH of a soil has a strong influence on the microbial and fungal communities, 

and therefore on soil respiration also (ibid). A long-term (over 100 year) experiment at 

Rothamsted in the UK showed that lower pH stimulated a fivefold decrease in bacterial 

growth and a fivefold increase in fungal growth, however if pH dropped below 4.5 all 

microbial variables were inhibited (Rousk et al., 2009). Soils with pH values of 3 produce 

between 2 and 12 times less CO2 than those at pH of 4 as microbial activity is inhibited, while 

CO2 production typically increases until pH 7 and declines beyond 7 (Luo and Zhou, 2006). 
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pH concentration can change during the agricultural year due to fertilizer addition or liming, 

and the degree of emission of N2O can result in a fourfold increase in N2O emissions from 

liming a soil with pH 4.5 (Baggs et al., 2010).   

 Other Factors  

Indirect human impacts from air pollution can cause acid rain which affects respiration in 

forest ecosystems, with varying outcomes depending on the forest type (Liang et al., 2013). 

The availability of soil enzymes and microbes also affect the rate of soil respiration, and 

though knowledge of individual enzymes and their quantity is still limited, they are clearly 

important to the understanding of soil respiration (Makoi and Ndakidemi, 2008). These 

enzymes and microbes are principally regulated through biotic and abiotic factors such as 

climate (Zogg et al., 1997; Barnard et al., 2015), pH (Zhalnina et al., 2015) oxygen supply, 

nutrient levels and substrate availability (Xu and Shang, 2016), emphasising the 

interrelationship between the variables previously discussed.  

 Observations of Greenhouse Gas Emissions from Soils 

Early measurements of ecosystem carbon fluxes began with inventory assessments; 

measurement, harvest and allometric scaling techniques which assessed changes in above-

ground biomass in order to estimate fluxes, these methods have significant limitations due 

to the intensive nature of the research, with many samples of vegetation types for different 

species sizes, ages and structure required with information on soil type. These methods only 

tend to provide an annual snapshot of ecosystem-atmosphere fluxes, rather than capturing 

complex seasonal dynamics (Baldocchi, 2014). The use of enclosure, cuvette and chamber 

methods to investigate the gaseous exchanges between different parts of plants and the 

atmosphere provide an indication of the type of flux to be expected from vegetation, but 

upscaling this information from leaf to canopy to ecosystem scale is not possible without 

introducing significant uncertainty, while the use of entire-plant chambers measures the 

flux from the whole organism, the presence of the chamber alters the microclimate and 

therefore the flux (ibid). To overcome these issues micrometeorological methods of flux 

measurement came to prominence and grew quickly during the 1990s (Baldocchi et al., 

1988; Aubinet et al., 1999; Baldocchi, 2003) coinciding with improvements in personal 

computer power and data storage. Regional networks of flux towers on different 

ecosystems have since been developed e.g. AmeriFlux, Fluxnet-Canada, EuroFlux, 

CarboEurope, OzFlux, ChinaFlux and AsiaFlux, all part of the global FLUXNET network 

(Baldocchi, 2014).  
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Soil respiration was initially used as an indicator of soil fertility, and measurements date 

back to the early 20th century, where the chemical absorption method was used. The method 

measures respired CO2 molecules absorbed by alkali solutions, a process which typically 

underestimates Rs when respiration is high, and overestimates when respiration is low, an 

effect which seems to cancel itself out (Xu and Shang, 2016). This method was popular until 

the 1970s, when the infrared gas analyser (IRGA) significantly improved the accuracy of 

respiration measurements (Norman et al., 1992; Pongracic et al., 1997; Davidson et al. 

2002b). Gas chromatography has been used by some studies to simultaneously measure 

multiple GHGs like CO2, CH4 and N2O (Ball et al., 1999; von Arnold et al., 2005). Most studies 

now use dynamic chambers to measure CO2 concentration inside the chamber using an 

IRGA, while the flux is calculated based on the change in CO2 concentration over time (Xu 

and Shang, 2016).  

Xu and Shang (2016) undertake a meta-analysis of global soil respiration measurements 

and find that there are currently 6147 soil respiration measurements across 1557 sites 

around the world, with most measurement sites located in North America, Western Europe 

and East Asia, and a dearth of measurements in Africa, the Middle East, Eastern Europe and 

Australia. The land distribution of these sites is biased towards evergreen needleleaf forests 

(1481), grassland sites (868) and cropland sites (768), with 76.5% of measurements taken 

using the IRGA method, 11.4% using chemical absorption, 9.7% using gas chromatography 

and 0.8% using the gradient method. Most measurements were taken in the 1990s and 

2000s using IRGA techniques, with only 6.4% of measurements taken before 1990 (Xu and 

Shang, 2016). Studies which have measurement durations of greater than one year account 

for 70% of the total measurements in the database. The average global flux of greenhouse 

gases based on these estimates is 0.845 kg C m2 yr-1 (ibid).  

The most common methods of estimating GHG emissions from soils include observational 

methods such as chamber measurement, eddy covariance, remote sensing, and 

mathematical methods which use empirical or process-based models, each approach has 

advantages and disadvantages associated with it (Oertel et al., 2016). All of these methods 

(particularly the modelling) are evaluated using laboratory experiments which take soil 

samples from multiple locations and investigate influence of parameters such as soil 

structure/temperature/moisture on GHG emissions by changing single parameters while 

keeping others constant (Schaufler et al., 2010). While these methods will be discussed in 

detail below, a number of studies which compare different methods of Rs measurement in 

more depth are available (Hanson et al., 2000; Davidson et al., 2002b; Pendall et al., 2004; 

Hibbard et al., 2005; Ryan and Law, 2005). 
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 Chambers 

Two types of chamber exist, closed chambers which are sealed and allow for the 

measurement of CO2, CH4 and N2O using various methods of analysis, and open chambers 

which have two openings drawing in ambient air and calculating the difference between gas 

concentrations at both ends. Open chambers are more technically sophisticated than closed 

chambers, which makes them more expensive, closed chamber systems remain the most 

common (Pumpanen et al., 2004). There are two types of closed chamber, closed static and 

closed dynamic. Closed static chambers are most common for CH4 and N2O fluxes (Pihlatie 

et al., 2013), and while it is possible to measure CO2 using these chambers by trapping the 

gas in an alkaline solution, that method is rarely used as it tends to underestimate CO2 fluxes 

(Nay et al., 1994). Closed dynamic chambers analyse gases accumulating within the 

chamber and are most common for monitoring CO2, it is possible to measure CH4 and N2O 

with closed dynamic chambers but this method is rarely used compared to static chambers 

(Oertel et al., 2016). The most popular method for estimating fluxes of CO2 at the pedon scale 

are closed chamber measurements from the soil surface, where the closed dynamic 

chamber method allows for measurement of the flux by analysing the increase of gas 

concentrations inside the chamber (Luther-Mosebach et al., 2018).  

Closed static or dynamic chambers can be either manual or automatic, a manual system 

requires permanent operation by hand, while automatic chambers can function with less 

human interference, but are less suited to being moved around, meaning higher material 

costs are involved as many more automatic chambers placed in different locations are 

required, while manual chambers can be moved to record gas concentrations at different 

locations (Oertel et al., 2016). It is possible for chambers to measure NEE if they are 

transparent (Wang et al., 2013); to measure ecosystem respiration the chambers should be 

opaque (Sanz-Cobena et al., 2014). Other sources of uncertainty arise from chamber 

methods as studies typically use measurements between 9 and 11am to represent the mean 

daily value of their chamber measurements, however this method may not be accurate 

across ecosystems or for every period of the year, with biases ranging from -29 to + 40%, 

particularly in trenched plots where roots have been severed, and the bias being more 

pronounced when fluxes are higher (Cueva et al., 2017).   

Experimental analysis of different chamber techniques against known quantities of CO2 

generated by a calibration tank, found over and under-estimation of fluxes across chambers, 

and even identical chambers with different collar designs showed highly variable results as 

the different methods of mixing of air within the chamber introduces error (Pumpanen et 

al., 2004), this highlights the uncertainties prevalent when using chamber measurements, 
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and the difficulties in comparing chamber data across studies. There is still no standardised 

chamber system in the geosciences, meaning comparison of datasets across space and time 

is often not possible (Pumpanen et al., 2004; Oertel et al., 2016). As a result of this 

uncertainty it is difficult to assess which method of chamber measurement is best.  

Due to the complex spatial heterogeneity of soil carbon efflux over 30 sampling points are 

necessary to reliably estimate the soil respiration of an ecosystem (Yim et al., 2003; Adachi 

et al., 2005), but this may not be possible due to time and budget constraints. Rodeghiero 

and Cescatti (2008) sample a large number of points and then reduce the points while still 

maintaining the accurate representation of the ecosystem respiration, and they found this 

method of stratified sampling reduced uncertainties in forest ecosystems by 55% and 57%, 

while only reducing uncertainties in grasslands by 12%, again emphasising the complexity 

of the system and the difficulties in applying similar techniques across ecosystems. Different 

methods of quantifying chamber measurements can introduce biases, as outlined by Huth 

et al. (2017) who observe a difference between the NEE balances of an agricultural field of 

between -200 to 425 g CO2-C m-2 depending on the data acquisition or gap-filling strategy, 

highlighting the importance of correct methodological decision making, and the 

uncertainties inherent in using chamber data which has been partitioned, motivating the 

authors to recommend a standard approach to be developed to reduce potential 

uncertainties. 

The importance of chamber positioning is examined by Xu and Shang (2016), who highlight 

the fact that Earth’s surface is uneven and that measurements taken from soils on slopes 

should consider the angle of slope when positioning the chamber, to measure the flux as 

accurately as possible. There are also uncertainties in relation to post-processing of 

chamber data, where modelled Reco, GPP and NEE can vary by up to 25% depending on the 

modelling approach, leading researchers to call for procedures which are clearly defined 

and universally applicable in order to facilitate comparability between closed chamber CO2 

data (Hoffmann et al., 2015).  

 Eddy Covariance Flux Towers 

Taking a direct micrometeorological approach, flux towers use the eddy covariance method 

which examines vertical turbulences to analyse the heat and gas exchange between the 

ecosystem surface and the atmosphere (Launiainen et al., 2005). Eddy covariance methods 

seek to capture the entire ecosystem carbon flux, as vegetation is also included in the 

footprint covered by the tower, which typically consists of a 2-10m high tower with an 

ultrasonic anemometer and gas analyser attached, and can measure continuously over 

areas up to multiple km2 (Myklebust et al., 2008). Fluxes can be underestimated if near-
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ground turbulent mixing occurs (Papale et al., 2006), and data must undergo extensive post-

processing including gap-filling, energy balance closure and friction velocity threshold 

estimation (u*) which can also introduce uncertainties in the outputs (Du et al., 2014).  

In order to calculate ecosystem respiration (Reco) the method of Reichstein et al. (2005) is 

typically used. This method employs a genetic algorithm which derives short-term 

temperature sensitivity of Reco from eddy covariance data and applies it to the night-to-

daytime flux, the method is not perfect, and it is recommended that alternative flux 

measurements (such as chamber fluxes) are provided. In order to calculate heterotrophic 

respiration further partitioning is necessary, with Hardie et al. (2009) proposing the Rh 

fraction is between 46 and 59% of Reco, other methods include running a process based 

model such as DNDC, and taking the Rh fraction and applying it to Reco (Khalil et al., 2013). 

The process of partitioning flux data introduces uncertainty, and the further data is 

partitioned, the potential for error is enhanced (Carbone et al., 2016). Xu and Shang (2016) 

provide guidelines for new measurement sites where the footprint of the site should be 

representative of the vegetation, soil, topography and microclimate conditions to match the 

remote-sensing and climate data as much as possible. The eddy covariance method remains 

a very popular way of measuring ecosystem fluxes today, despite significant uncertainties 

associated with partitioning.    

 Remotely Sensed Observations  

Satellite observations can provide information on tropospheric (near-surface) CO2 and CH4 

concentrations by measuring the intensity of reflected sunlight in the visible and short-

wave infrared portion of the spectrum (Oertel et al., 2016). The Orbiting Carbon 

Observatory-2 (OCO-2) is a high-resolution NASA satellite, launched in 2014 which can 

measure CO2 at a precision of 1-2 ppm, and performs well when compared to the ground-

based observations (Wunch et al., 2017). To follow on from this work, and with plans to be 

launched at the end of this decade, the European Space Agency’s FLEX (Earth Explorer - 

Fluorescence Explorer) aims to assess the way carbon moves between plants and the 

atmosphere and how photosynthesis affects the carbon cycle acquiring data in the 500-880 

nm spectral range (ESA, 2018).  Sentinel-5P is another satellite which aims to provide 

observations to support monitoring of air quality, ozone UV and climate, and in doing so 

provides measurements of NO2 (ESA, 2019).   

An alternative method is to use remotely sensed data to determine land-cover types e.g. 

using landsat data to classify surfaces into distinct land-cover types (Güler et al., 2007) . 

Specific emissions are then associated with the different categories of land-uses, allowing 

for the calculation of GHG budgets, however as there is no consensus between different 
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maps, and difference in land-cover maps will have different emissions associated with them, 

introducing bias into the budget (Oertel et al., 2016). There are issues with accuracy when 

using remote-sensing to classify land-use, and while no optimum method has been 

recommended, it is reported that combinations of GIS and remote sensing can improve 

accuracy (Rozenstein and Karnieli, 2011). It is also possible to measure concentrations of 

greenhouse gases at different levels of the atmosphere using airplanes, by collecting 

samples during the ascent and descent of the flight, but this method covers a very short time 

period and a small area (D’Amelio et al., 2009).  

 Estimates of Rs Based on Observations 

 Statistical Methods 

Early estimates of global soil respiration come from simple statistical methods of 

calculation, which estimate soil respiration based on other measurable factors. Beginning 

with Schlesinger (1977), the initial  estimate of global soil respiration flux was 75 Pg C yr-1, 

a figure obtained by assessing terrestrial detritus and assuming Rs is twice the amount of 

above and below-ground litter fall. A lower estimate of 50 Pg C yr-1 was proffered by 

Houghton and Woodwell (1989) in their seminal article on global climatic change, 

recognising soil respiration as a significant source of atmospheric C. Statistical methods also 

include the approach of Raich and Schlesinger (1992) who compiled published soil 

respiration data from the literature to generate a database, then calculating the average Rs 

flux for each biome and multiplying by the area of the biome. Based on extrapolations from 

171 measurements from land-biome areas, Raich and Schlesinger (1992) estimated a global 

Rs flux of 68 ± 4 Pg C yr-1, with a root contribution of 26%. This estimate came with the 

caveat that arid, semi-arid and tropical regions are vastly underrepresented by 

experiments. Xu and Shang (2016) combined global Rs statistics with MODIS satellite data 

to obtain estimates comparable to those resulting from empirical methods.  

 Empirical Methods 

Empirical methods of soil respiration estimation involve generating regression models to 

extrapolate respiration based on observations and other influencing factors such as 

temperature and precipitation. Early empirical estimates of Rs began with Raich and Potter 

(1995) who developed a database of 977 monthly Rs flux measurements from 1963-1991 

and used corresponding temperature and precipitation data to develop a nonlinear 

regression model which estimated the global Rs flux at 76.5 Pg C yr-1. This database was 

updated to exclude most chemical absorption methods of CO2 flux calculation, and the 

period measurements were taken from was changed to 1968-2000, giving a revised 

estimate of 80.4 Pg C yr-1 (Raich et al., 2002). Bond-Lamberty and Thomson (2010) 
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incorporated more measurements (1434 from 439 studies) to develop a linear regression 

model which included temperature and precipitation anomalies, and estimated the global 

Rs flux to be 98 ± 23.5 Pg C (95% confidence interval). Xu and Shang (2016) include MODIS 

vegetation map along with a database of respiration measurements and estimate 94.3 ± 17.9 

Pg C yr-1 (95% confidence interval). Large uncertainties in estimations are due to the spatial 

and temporal distribution of soil respiration measurements being concentrated in North 

America, Europe and East Asia, with gaps in Africa, Eastern Europe, North and Southeast 

Asia and Australia (especially in dry ecosystems) meaning confidence in estimates from 

these regions is low (Xu and Shang, 2016). 

Empirical models have some advantage over the purely statistical methods as they 

ameliorate the issue of sampling bias, however most regression models have an r2 value of 

between 0.3 and 0.6 (Raich and Potter, 1995; Raich et al., 2002; Hashimoto et al., 2015), 

which could be improved upon by adding more measurements from underrepresented 

areas of Africa, Eastern Europe, North and Southeast Asia, and the Middle East (Xu and 

Shang, 2016). In order to improve empirical models, Xu and Shang (2016) point out that the 

advance of data quality is more important than increasing data points, and that firstly gaps 

in the temporal sequence should be filled using non-linear regression methods using soil 

temperature and moisture as independent variables after Xu and Qi (2001).  

The use of high-resolution climate data (1km or finer) is recommended to minimise scale-

mismatching effects between Rs and climate data, as is the inclusion of more variables 

which have been shown to improve model performance such as SOC (Chen et al., 2014), LAI 

(Hashimoto et al., 2015), NDVI and snow cover, along with new techniques such as spatial 

hierarchical modelling, data mining and machine learning (Xu and Shang, 2016). Xu and 

Shang (2016) argue for a move toward models which operate at an annual time-step rather 

than monthly, potentially reducing noise and time-lag effects as monthly Rs fluxes are not 

independent of monthly temperature and precipitation (Xu et al., 2004).  

The empirical estimate of soil respiration with lowest uncertainty is that of Hashimoto et al. 

(2015) who estimate the global Rs flux to be 91 ± 4 Pg C yr-1 (95% confidence interval) with 

51 Pg C yr-1 heterotrophic and 40 Pg C yr-1 autotrophic. Hashimoto et al. (2015) used the 

same soil database as Bond-Lamberty and Thomson (2010) and improved their model by 

allowing Q10 to decrease linearly as temperature increased, and allowing antecedent 

precipitation conditions to affect respiration. Even with uncertainties reduced to 4 Pg C yr-

1, this estimation error is still too high to estimate global NEP (2.4 Pg C yr-1), showing that 

empirical methods require further development (Xu and Shang, 2016). 



48 
 

 Accounting Methods & National Inventory Estimates 

Accounting methods for greenhouse gas emissions, discussed briefly in Section 1.3, provide 

a means to estimate emissions based on activity data in an economy. Entities from 

individual to national scale can identify their emissions from their production and 

consumption of goods and services using known activity data and emission factors. 

Accounting methods for measuring CO2 (e.g. Janssens et al., 2003; Ciais et al., 2008) are 

useful for tracking commercial goods such as fuel crops and timber, but are less good at 

describing standing biomass and soil carbon accumulation. The methods used by countries 

to estimate their emissions are outlined in the IPCC Guidelines for National Greenhouse Gas 

Inventories (IPCC, 2006), and are summarised in Appendix A of this thesis.  

As agricultural systems and land-use change are often key categories, these areas are 

frequently targeted for tier 2 and tier 3 approaches (Campbell and Paustian, 2015). If the 

resources and data are available to develop a tier 3 methodology for agricultural soils, then 

this method should be employed (using models and/or measurement-based approaches). 

If the resources and data are not available, a tier 2 method using country-specific data on 

soil C stock changes due to land-use and management change is recommended. Failing 

these, if changes in C stocks in mineral soils are not a key category, and land-use and 

management data are available, then using default emission factors (tier 1 methodology) is 

recommended. Tier-1 is a crude method of assessment in comparison to others, but may be 

the only possible method in the absence of data. 

For example, Ireland’s latest national GHG inventory report (Duffy et al., 2018) indicates 

that the components of Irish agricultural emissions are enteric fermentation (55.6%), 

agricultural soils (32.2%), manure management (9.3%), liming (2.7%) and urea application 

(0.1%). Typically, these emissions are reported using Tier 1 Emission Factors with N 

emissions reported under the agriculture section and C emissions reported under LULUCF. 

Tier 1 methods for cropland remaining cropland assumes zero emissions of C where land 

management practices are well-established (Duffy et al., 2018). Tier 2 methods use the same 

methodology as tier 1 and incorporate country-specific reference stocks to improve the 

stock change factors, reference C stocks, climate regions, soil types, and/or the land 

management classification system, effectively building on Tables 10.1 and 10.2 (Appendix 

A) to produce country-specific data. A tier 3 approach involves using dynamic models 

and/or detailed inventory methods to estimate annual stock changes, with multiple models 

available, model selection should prioritise the capability of the model to represent all the 

various management practices for croplands, ensuring model inputs are compatible with 

input data for the country as a whole, and which can be evaluated using independent 
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observations that are representative of the interactions of climate, soil and cropland 

management on post-conversion change in soil C stocks. It is also noted that a 

measurement-based approach whereby a modelling network, sampled periodically to 

estimate SOC stock changes could be employed (IPCC, 2006). Process-based modelling used 

for tier-3 methods is outlined in detail in Chapter 3.  

 Soil Carbon Quantity  

As well as estimating the fluxes of greenhouse gases, the measurement efforts outlined in 

the previous section provide the basis for a major goal of the soil carbon community – to 

accurately quantify the amount of carbon in Earth’s soils. The quantity of carbon stored in 

soils is not fully agreed upon, as the process of estimation is complicated by the intricacies 

of the soil system, the inclusion of different forms of carbon in analyses, and the need for 

extrapolation across ecosystems due to a lack of observation coverage (Govers et al., 2013; 

Scharlemann et al., 2014; Lorenz and Lal, 2018). This section will outline the consensus 

around soil carbon quantities, attempt to synthesise the various estimates of soil carbon 

content, highlight the methods of analysis used, and the sources of uncertainty in 

estimation.  

 Global Soil Carbon Quantity 

Figure 2.4 illustrates the estimated global total soil carbon stock, composed of soil inorganic 

carbon (SIC) and soil organic carbon (SOC). It is important to note the reporting conventions 

between these types of soil carbon, for example Batjes (1996) reports total carbon in the 

first 1 m of soil as 2157-2293 Pg C, and total SOC in the first 1 m as 1462-1548. SOC is 

typically the focus of research as it is more capable of decomposition and therefore rapidly 

exchanges with the atmosphere and is thus a potential source and sink for CO2. SOC stocks 

to 1m depth are estimated as ~1500 Pg C, up to ~2450 Pg C to 2 m depth (Table 2.1), with 

peatland and permafrost soils containing up to 1400 Pg C more (Hugelius et al., 2014; Yu et 

al., 2010). When combined with the SIC stocks, the total global C stock estimate increases to 

3700-5400 Pg C (Figure 2.4; Lorenz and Lal, 2018).  
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Figure 2.4: Soil carbon stocks (adapted from Lorenz and Lal, 2018) based on estimates for SOC stocks 
to soil profile depth or 3m depth + permafrost C + Peatland C + SIC to 1m depth from Eswaran et al. 
(2000); Jobbágy and Jackson (2000); Yu et al. (2010); Hugelius et al. (2014); Köchy et al. (2015). Data 
on LIC and PIC stocks were unavailable. Labile, intermediate and passive SOC stocks to 3m depth are 
based on the conceptual SOM model in Trumbore (1997).  

The earliest recorded estimate of global soil organic carbon content was an extrapolation of 

measurements of nine soils in the USA and provided an estimate of 710 Pg C globally (Rubey, 

1951). This initial estimate was advanced by Bohn (1976) using the FAO-UNESCO soil map 

with an estimate of 2946 ± 500 Pg C, advanced again in 1982 to 2207 Pg C (Bohn, 1982), 

and again by Batjes (1996) who used the World Inventory of Soil Emission Potentials 

(WISE) and estimated stocks at 1462-1548 Pg C in the first 100cm. Figure 2.5 illustrates 

other studies and shows ranges decreasing over time with estimates converging closer to 

the median value of ~1500 Pg C. 

A more recent estimate of global SOC content based on spatial databases of observed soil 

carbon content by Tifafi et al. (2018) finds values higher than those reported in Figure 2.5 

using calculations based on depth and bulk density for the SoilGrids database, and organic 

carbon content, bulk density, gravel content and layer thickness for HWSD. To highlight the 

uncertainty in these calculations, SoilGrids estimate a total C content of 3421 Pg C while 

different methods of bulk density calculation for the HWSD lead to significantly different 

SOC totals, particularly in northern latitudes, as the SOTWIS method estimates 16% of the 

total carbon stock at Boreal latitudes (60°N-90°N) and the Saxton method estimates 29% at 

the same latitude. One method of bulk density calculation using soil type and depth 

(SOTWIS) gives a carbon total of 2439 Pg C while bulk density calculations using soil texture 

based on equations from (Saxton et al., 1986) give a total of 2798 Pg C. These estimates are 

again higher than a revised calculation of the HWSD by Batjes (2016) who used HWSD and 

WISE to estimate SOC content at 1m depth to be 1408 Pg C and 2m depth to be 2060 Pg C 

(see Figure 2.6).  Notably Batjes (2016) highlights that ~30% of this stock (607 ± 87 Pg C) 
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is in the northern circumpolar region which is particularly vulnerable to increasing 

temperatures.  

Table 2.1: Global SOC estimates (Pg C) in soils across a range of studies (adapted from Masciandaro et al., 2018) 

Source 0-1 m depth 0-2 m depth 0-3 m depth 
Post et al. (1982) 1395   
Batjes (1996) 1462-1548 2376-2456  
Kasting (1998) 1580   
Jobbágy and Jackson (2000) 1502 1993 2344 
Robert (2001) 1500 2456  
Hiederer and Kochy (2011) 1417   
Govers et al. (2013) 1400-1600 1990-2460  
Todd-Brown et al. (2013) 1260 (890-1660)   
Batjes (2016) 1408 2060  

 

 

Figure 2.5: Estimates of global SOC stocks through time (from Scharlemann et al. (2014)). Numbers represent 
different studies and lines connecting dots represent maximum and minimum ranges. The median across all 
estimates is 1460.5 Pg C with a range of 504-3000 Pg C (n = 27). Red dots denote spatially explicit methods while 
blue dots represent nonspatially explicit methods.  
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Figure 2.6: SOC content to 1m depth (Mg C ha-1) from a combination of datasets (WISE30sec; Batjes, 2016). 

Soil carbon databases which exist globally include SoilGrids, the Harmonised World Soil 

Database (HWSD) and the Northern Circumpolar Soil Carbon Database. Major discrepancies 

exist between the total carbon content estimated by these databases, and between the 

database and field measurements. Tifafi et al. (2018) calculate the SoilGrids estimate of total 

soil carbon stocks at 1m depth to be 3,400 Pg C whereas HWSD estimates the total as ~2,500 

Pg C. This estimate is similar to Hiederer and Kochy (2011) who estimated total C stocks 

from the HWSD to be 2469 Pg C to 1m. Köchy et al. (2015) advance the methodologies used 

to estimate global SOC from the HWSD by adjusting the bulk densities of soils high in organic 

C and setting the BD of Histosols to 0.1 g cm3, giving a mass of 1062 Pg C. This is further 

updated using specific research for the permafrost region (Tarnocai et al., 2009) and the 

incorporation of tropical peatland carbon which increases the global soil C estimate in the 

upper 1m from 1062 Pg C to 1325 Pg C, the total mass of SOC at depth is estimated as ~3000 

Pg C, with high uncertainties from SOC at depth, and from different estimates of bulk 

densities. These estimates are higher than the original 2m depth measurement by Batjes 

(1996) and Jobbágy and Jackson (2000) who analysed over 2,700 soil profiles in three 

global databases (National Soil Characterization Database (NCSD), WISE, and a Canadian 

Forest Service database) finding 2344 Pg C to 3m depth, highlighting further uncertainties 

in calculations and total carbon contents, and indicating that soils may be storing more 

carbon than previously thought, a claim backed up by more recent, larger estimates (Tifafi 

et al., 2018). Jackson et al. (2017) use a global soil database combined with regional 

permafrost data and estimate the global SOC stock in the upper 2m (depth of global 

datasets) as 2273 Pg C with boreal forests comprising 27% of this total and peatlands 

comprising 26%. Extrapolating the data to 3m gives an estimate of 2800 Pg C, with 
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quantities deeper than 3m assumed to contain 300-500 Pg C in permafrost and up to 50 Pg 

C in tropical peatlands, and unknown quantities in deltas, floodplains and loess deposits. 

Uncertainties arise here as ~300 Pg of permafrost region soil C is in peatlands, and care 

must be taken to not double-count peatlands and permafrost soils. Todd-Brown et al. 

(2013) point out that the HWSD and NCSD do not have an explicit uncertainty estimates, so 

using them as a benchmark with which to compare models may give incorrect results, as 

estimated uncertainty could exceed 770 Pg C (similar to the entire atmospheric C pool).   

 Uncertainties in Soil Carbon Quantity Estimates 

Typically SOC estimates are performed on a horizontal plane, which may underestimate the 

impact of slope on soil depth and SOC content. Chen and Arrouays (2018) use the HWSD 

and the Multi-Error-Re-Moved Improved-Terrain DEM (MERIT DEM, Yamazaki et al. 2017) 

to improve estimates from mountainous regions which vulnerable to climate change by 

including slope in calculations (calculating on tilted planes), and find increases in SOC from 

4.04 to 15% using 90m resolution elevation data. Similarly, Pelletier et al. (2016) combine 

topography, climate and geology to create high-resolution gridded dataset of the average 

thickness of soil, regolith and sedimentary deposits. When this dataset is applied to 

inventory methods of soil carbon content calculation it reduces estimates at 2m depth by 

nearly one third from 2047 to 1354 Pg C, and by ~10% from the 1m horizon (Jackson et al., 

2017). These estimates could potentially be improved by adding higher-resolution DEMs 

e.g. EuroDEM which is available at 60m resolution (EuroGeographics, 2019.) 

When comparing these databases to field measurements from the International Soil Carbon 

Network (ISCN) and others it was found that SoilGrids underestimated field stocks in the 

USA by 40% while the HWSD underestimated by 80-90%. SoilGrids overestimated by 30% 

in France and by over 150% for England and Wales. Tifafi et al. (2018) argue that the value 

estimated by SoilGrids is the closest to reality based on underestimation of organic carbon 

stock in northern latitudes, peatlands and wetlands by previous studies. They also maintain 

that low SOC values estimated from HWSD can be attributed to poor estimation of C stocks 

in wetlands and permafrost soils (a large fraction of total SOC stock). This suggests that 

estimates for non-permafrost or wetland soils are more accurate, but highlights the 

significant uncertainties prevalent in the calculations, and the importance of work yet to be 

done. SoilGrids data has recently been updated using machine learning techniques rather 

than linear regression, at an improved resolution of 250m from 1km, comparisons of the 

modelled SOC values to measured yielded an r2 value of 0.64, calling for more local 

assessments to be combined with their global data to improve estimates all round (Hengl et 

al., 2017).  



54 
 

Todd-Brown et al. (2013) examine total simulated soil carbon from 11 model centres to 

empirical data from the Harmonised World Soil Database (HWSD) and Northern 

Circumpolar Soil Carbon Databaes (NCSCD), they find ranges of stocks from 510 to 3040 Pg 

C from models, significantly different from the HWSD estimate of 1260 (ranging from 890-

1660 Pg C). The differences between models and databases are most pronounced at 

northern latitudes (60 to 820 Pg C for models vs 500 Pg C with a 95% confidence interval of 

380-620 Pg C for NCSCD and 290 Pg C for HWSD. At biome level models were relative 

accurate (mean r2 of 0.75), this is not the case at 1° resolution. Using seven ecosystem 

models to simulate global soil C stocks, Nishina et al. (2014) find a range of estimates from 

1090-2646 Pg C depending on model chosen, Tian et al. (2015) compare 10 terrestrial 

biosphere models and find a range from 425 to 2111 Pg C, with these large ranges attributed 

to differences in C inputs and residence times.  

In an attempt to overcome some of these uncertainties Duarte-Guardia et al. (2018) discuss 

the fragmented global database of SOC stocks and attempt to estimate global SOC using 

partial least squares regression and multiple geographic datasets describing SOC, climate, 

organisms, relief, parent material and time to predict SOC stocks. Their model explains 49% 

of SOC variability, overestimating low stocks and underestimating high stocks.  The 

usefulness of this dataset is primarily in the identification of areas of pristine (untouched) 

ecosystems which may have the potential for C sequestration as these estimates can be 

compared with observations indicating their potential C storage may not have been 

reached.  

These uncertainties within and across studies emphasise the nascent nature of the 

discipline and highlight the significant work remaining to reduce uncertainties and improve 

the accuracy of our estimates of soil carbon quantity and GHG fluxes. In order to improve 

these estimates, we must improve the models used to simulate fluxes. The next chapter will 

discuss the current state of modelling GHG emissions from soils.  

 Summary 

Globally, it is estimated that approximately 1500 Pg C of organic carbon is stored in 

uppermost meter of terrestrial soils (Scharlemann et al., 2014; Oertel et al., 2016). This 

represents the largest terrestrial carbon pool, roughly equivalent in sum to both the 

atmospheric (816 Pg C) and terrestrial phytomass (469.6 Pg C) pools (Scharlemann et al., 

2014).  Although estimates of SOC stocks in terrestrial soils and their emissions remain 

highly uncertain (Houghton et al., 2012; Scharlemann et al., 2014; Oertel et al., 2016), there 

remains a pressing need to improve our understanding of soil carbon management in order 
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to minimise soil carbon losses and increase the carbon sequestration potential of soils 

(Scharlemann et al., 2014).  

This chapter outlined how soil sequesters, stores and releases the main greenhouse gases, 

namely carbon, methane and nitrogen. The release of these gases depends strongly on the 

quantity of substrate supply, temperature, moisture, vegetation, soil characteristics and 

land-management. In order to model these processes successfully, it is essential that 

observations of these fluxes are recorded. Fluxes are measured in several ways including 

chambers placed on the soil, eddy covariance measurements from flux towers, and using 

satellites for remote sensing. These methods have led to various estimates of the global soil 

carbon flux, the latest estimates are ~94 ± 17.9 Pg C yr-1. The high uncertainties are 

associated with a lack of measurements in Africa, Eastern Europe, and parts of Asia, along 

with discrepancies in the methods used for measurement. Along with the carbon flux, it is 

also important to estimate global soil carbon quantity. Studies estimate global soil carbon 

content to be ~1500 Pg C to 1m depth, though these estimates also have significant 

uncertainties associated with them. These uncertainties stem from sparse sampling and the 

method of extrapolation chosen and highlight the difficult nature of estimating the 

emissions and stocks of carbon derived from highly complex processes within soils. The 

next chapter will outline the process of modelling the GHG emissions from soils, and how 

the observations outlined in this chapter are used to evaluate model outputs.   
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 Modelling Greenhouse Gas Emissions from Soils 

This chapter outlines the methods of process-based modelling of GHG emissions from soils. 

Simpler methods of estimating GHG emissions such as statistical and empirical methods 

which estimate/derive emissions based on observations are outlined in Chapter 2. This 

chapter focuses solely on process-based methods which are more complex. The chapter 

begins with a brief history of soil modelling and an outline of the different approaches used 

to assess soil respiration. This is followed by an in-depth analysis of process-based models, 

outlining their typical structure and the modifiers used to simulate soil respiration.  

 Introduction 

Attempts to quantify the biogeochemical processes within soils using models have been 

occurring since the 1930s when the first mathematical models to represent carbon fluxes 

were employed (Salter and Green, 1933). Since then with the advancement of computers, 

the quantity and variety of models developed highlights the ongoing effort to describe and 

quantify the complexities of soils and their biogeochemical interactions (Manzoni and 

Porporato, 2009). After decades of research on the topic, there remains an incomplete 

understanding of soil carbon processes, as soils are the most complex biomaterial on the 

planet and are heterogeneous at both molecular (Young and Crawford, 2004) and 

regional/continental scales (Ettema and Wardle, 2002). Soil dynamics occur on multiple 

different time and space scales, ranging from hourly responses to changes in the 

environment (Schwinning and Sala, 2004), to decadal responses of soils to ecosystem and 

climatic change, and timescales longer still for the development of soils themselves (Brady 

and Weil, 2016). All of these factors are further complicated by both climatic and 

anthropogenic forcing factors such as extreme events and agriculture (Manzoni and 

Porporato, 2009). In the 80 years of modelling reviewed by Manzoni and Porporato (2009), 

around 250 mathematical models from the highly-used stalwarts to less-known theoretical 

analyses of soil dynamics have been published, this number includes soil sub-models to 

ecological or hydrological models (Figure 3.1). 



57 
 

 

Figure 3.1: The number of soil C and N models over time (solid black line is exponential least square regression of 
the data, showing a 6% annual increase (from Manzoni & Porporato, 2009).  

Most of these models describe a system which includes characteristics of the SOM such as 

the substrates which are available to decomposers, and the nature of the decomposers 

themselves, and how they relate to inorganic compounds, environmental variables, and 

external inputs and outputs (Manzoni and Porporato, 2009). Nikiforoff (1937) split SOM 

into pools with different turnover times, a method still employed by models popular today 

(Coleman and Jenkinson, 1996; Smith et al. 2010a). Models advanced to represent the 

processes of decomposition at different depths by splitting the soil into layers which include 

water flow components  to influence the advection of dissolved compounds along the profile 

(Kirschbaum and Paul, 2002; Jenkinson and Coleman, 2008). This is a simplification of 

reality as soils are heterogeneous at depth, however it is necessary to reduce model 

complexity. Most models currently describe SOM dynamics over time using ordinary 

differential equations for each pool, a method first proposed by Hénin and Dupuis (1945). 

Though some models have advanced to include multiple complex biogeochemical reactions 

(Shaffer et al., 2001), 90% of models include less than 30 variables, and 70% include 2-10 

variables, with most incorporating a dynamic microbial biomass component, and including 

soil moisture and temperature as dynamic components (Manzoni and Porporato, 2009).  

Process-based models attempt to represent physical and chemical processes happening at 

field, pedon or point scale, and their interactions with abiotic factors such as temperature 

and rainfall, to estimate their production/sequestration of GHGs. Simulation models allow 

us to assess complex interactions between biogeochemical cycles and the processes driving 

these cycles (Burke et al., 2003). Soil heterotrophic respiration is primarily influenced by 

the decomposition of organic matter, which itself is dependent on substrate quality and 

quantity (Janssens et al. 2001; Hartley and Ineson, 2008), soil temperature (Lloyd and 
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Taylor, 1994; Kätterer et al., 1998; Conant et al., 2011), soil water content (Davidson et al., 

1998; Leirós et al., 1999), microbial community (Holland et al., 2000; Whitaker et al., 2014) 

and acidity (Walse et al., 1998; Schmidt et al., 2011). Typically, soil respiration models 

simulate pools of carbon with different substrate qualities and quantities and therefore 

different decay rates, which are then further attenuated using temperature, moisture and 

other edaphic factors (Del Grosso et al., 2005). While statistical, empirical and accounting 

based methods are outlined in the previous chapter, process-based methods are outlined in 

detail below.   

 Process-Based Models: An Overview 

Process-based models integrate major ecosystem processes including respiration, 

photosynthesis, decomposition, evapotranspiration, nutrient cycling and phenology 

(Running and Hunt, 1993; Parton et al., 1993). They are initialised and parameterised using 

site-based observations and produce outputs based on the knowledge of the ecosystem and 

the interactions between different processes. Most ecosystem models and Earth System 

Models (ESMs) simulate Rh and  root respiration (Rr), with few actually reporting Rr, 

making it difficult to compare global Rs estimates from empirical models with those from 

process-based models (Xu and Shang, 2016).  

An important purpose of process-based soil carbon models is to provide predictions of the 

size of SOC stocks for different soil types, with the potential to perturb the parameters of 

the model to incorporate differing management practices (grazing, crop rotation, fertilizer 

application) and changing climate variables including temperature, precipitation and 

evaporation (Stockmann et al., 2013). The most popular models in terms of citations from 

literature where models are used are CENTURY, the Rothamsted Carbon Model (RothC), 

DeNitrification-DeComposition (DNDC), Environmental Policy Integrated Climate (EPIC), 

Decision Support System for Agrotechnology Transfer (DDSAT) and DayCent (a daily 

version of the CENTURY model) (Campbell and Paustian, 2015). These are all process-based 

models which attempt to simulate processes involved in SOM transformation. They split 

SOM into conceptual C pools which differ by decomposition rates, typically with a number 

of SOM compartments including an ‘active pool’ with a mean residence time (MRT) of 1 year, 

a ‘slow pool’ with MRT of 100 years, and a passive/inert pool with an MRT of 1000 years. 

The models are based on first-order kinetic decay rates on daily, weekly or monthly 

timesteps and typically simulate the top 30cm of soil at field and regional scale. Since most 

models only simulate the top 30cm of soils, processes occurring below the ‘plough layer’ are 

not explicitly incorporated (Trumbore, 2009).  
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Process based models have been widely applied to a number of ecosystem and land-use 

types (Abdalla et al., 2010; Bell et al., 2011; Smith et al., 2010a; Stockmann et al., 2013). 

Smith et al. (1997) analysed the performance of nine SOM models across different land uses 

and climatic conditions; most showed good abilities in representing SOM dynamics, and 

their study highlighted the importance of model calibration in achieving accurate results.  

 CENTURY & DayCent 

The most widely used model based on the literature is CENTURY, a model designed to 

simulate long-term SOM dynamics, plant growth, as well as N, P and S cycling (Campbell and 

Paustian, 2015; Parton, 1996). Initially developed for grassland it has been extended to 

include arable, forest and savanna ecosystems (Parton, 1996). The model runs on a monthly 

timestep, and includes two forms of litter, metabolic and structural, splitting SOM into active 

(1-5yr MRT), slow (25 yr MRT) and passive (1000 yr MRT) pools (Stockmann et al., 2013). 

DayCent (Parton et al., 1998) is a daily version of the CENTURY model which allows for 

simulation of CH4, N2, N2O and NOx gas fluxes, plant production dynamics, soil N dynamics, 

soil NO3 leaching and SOM dynamics (Stockmann et al., 2013).  

 RothC 

The Rothamsted Carbon (RothC) model (Coleman and Jenkinson, 1996) was developed 

using data from long-term experiments at the Rothamsted Research centre in the UK, it is 

parameterised for arable land but has been applied to temperate grasslands and forest soils. 

RothC runs on a monthly timestep and splits SOM into decomposable plants, resistant plant 

material, microbial biomass, humified organic matter (all with MRT of 50 yr and comprising 

80-90% of SOC) and inert organic matter (MRT of 10,000 years, 5-15% of SOC) (Stockmann 

et al., 2013). These pools are broken down using first-order kinetics to give CO2 output, and 

the pools are recharged from plant inputs which are typically split in a DPM/RPM ratio of 

1.44, meaning 59% of the plant material is decomposable, and 41% is resistant to 

decomposition (Coleman and Jenkinson, 1996). RothC calculates decomposition rates, 

microbial biomass and the ratio of humus based on the clay content of the soil, and is similar 

in structure to CENTURY (Stockmann et al., 2013).  

 DNDC 

The DeNitrification-DeComposition model (DNDC) (Li et al., 1992) is a daily timestep model 

consisting of two components, the first component consists of soil, climate, crop growth and 

decomposition sub-models to predict soil temperature , moisture, pH, redox potential and 

substrate concentration, while the second consists of the nitrification, denitrification and 

fermentation sub-models which predict NO, N2O, N2, CH4 and NH3 fluxes based on changes 

in environmental factors, and has been widely employed internationally including in the 
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NitroEurope EU project (Giltrap et al., 2010).  DNDC has advanced over the past 20 years to 

have versions applied all over the world for different ecosystem types and applications 

(Gilhespy et al., 2014).  

 ECOSSE 

The ECOSSE model is similar to RothC in that it separates SOM into five pools decaying at 

specific rate modifiers. Decomposition within the model is further modified by temperature, 

moisture, vegetation, soil texture, pH, bulk density and clay content while land-use and 

management data can also be inputted, and the model simulates C and N emissions for six 

vegetation categories: grassland, arable, forestry, seminatural, short-rotation coppice 

(willow) and Miscanthus (Dondini et al., 2015). The model was initially developed for 

organic soils, but has recently been used to simulate C and N cycles on mineral soils also 

(Dondini et al., 2016). The ECOSSE model is discussed in-depth in the following chapters.  

Multi-model inter-comparison studies are yet to identify the model which performs best, 

some models perform better than others at simulating different components of the soil 

system, or work better at different locations (Campbell and Paustian, 2015), suggesting that 

model performance ought to be assessed before a model is chosen. Burke et al. (2003) point 

out that temperature modifiers across biogeochemical models are based on a few imperfect 

data sources from experiments on litter decomposition and soil respiration, with a lack of 

field data to validate many models. Xu and Shang (2016) describe differences in ESM 

outputs and highlight the imperfections of current process-based models, which produce 

different results due to the alternative model structures, reinforcing the need for further 

measurement and modelling of Rs to improve the model accuracy and provide the best 

estimate of soil respiration for global carbon budgets.  

To illustrate how discrepancies across models arise, the following section will outline the 

current state of knowledge in relation to process-based soil respiration modelling and will 

examine common modifiers and their effects.  

 Process-Based Modelling 

 Decomposition Rates 

Nutrients in plant material are broken down and consumed by soil microorganisms during 

the transformation of plant material into humus, this process of respiration releases 50-60 

Pg C yr1 to the atmosphere, which in its simplest form can be expressed as: 

M = M0e-kt 
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where M0 is the original mass, k is an annual decay rate, and t is time in years (Bonan, 2015; 

pp 361). The larger the decay rate, the less organic material accumulates on the ground e.g. 

k = 1 means 37% of litter remains after one year (a humid tropical climate) while k = 0.1 

means 90% of the original litter mass remains after one year (representative of cold 

climates) (ibid). It is then possible for this simple decomposition rate can be further 

modified by both soil temperature and soil water content. A similar simple single pool 

model is outlined by Campbell and Paustian, (2015), shown in Figure 3.2, where 

hypothetical data used to formulate (A), calibrate (B), drive (C) and evaluate (D) model 

functions.  

 

Figure 3.2: A single pool SOM dynamic model which simulates decay over time. Models which incorporate climate 
(or other driving variable) variability and models with greater structural complexity require much more detailed 
computer functions and therefore lead to increases in complexity and computational time (from Campbell and 
Paustian, 2015).  

The heterogeneous nature of SOM calls for more complex mathematical representation of 

the decomposition process. Henin et al. (1959) first attempted to represent different 

decomposition rates for labile and stable material, and the transfer of material from the 

labile to the stable pool using the following basic model: 

𝑑X1

𝑑𝑡
= 𝐿 − 𝑘1𝑋1 

𝑑X2

𝑑𝑡
= 𝛼𝑘1𝑋1 − 𝑘2𝑋2 
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Where X1 is the C content of the labile pool and X2 is the C content of the stable pool, L is the 

input of organic matter, k is a decay constant, 𝛼 represents the transfer rate between pools 

(humification).  

To account for the effects of external factors on decomposition rates, biogeochemical 

models which simulate decomposition can be represented by systems of differential 

equations thus: 

𝑑X1

𝑑𝑡
= 𝑓1(𝜃1𝑘1𝑋1, … , 𝜃𝑚𝑘𝑚𝑋𝑚) 

     ⋮ 
𝑑X𝑚

𝑑𝑡
= 𝑓𝑚(𝜃1𝑘1𝑋1, … , 𝜃𝑚𝑘𝑚𝑋𝑚) 

Where 𝜃 is a parameter set modifying the decomposition rate - k, and m - the total number 

of compartments of the system (typically less than 10; Manzoni and Porporato, 2009) which 

can be modified by temperature, moisture and/or other edaphic conditions (Sierra et al., 

2012). The partitioning of SOM into different pools according to their decomposition rates 

reflects the different residence times of C compounds in the soil, respiration is therefore 

affected by the stability of C in each pool combined with environmental factors related to 

the soil type and the ecosystem (Delogu et al., 2017).  

The widely-used RothC model uses five pools, two representing plant material in the litter 

layer and three representing active, slow and passive material in the soil, with residence 

times varying from months to hundreds of years (Delogu et al., 2017). The decomposition 

rates of these pools are then modified further by climatic and edaphic factors. RothC then 

partitions SOM into decomposable plant material (DPM), resistant plant material (RPM), 

microbial biomass (BIO), humified organic matter (HUM) and inert organic matter (IOM), 

with a ratio of DPM:RPM of 1.44 (59% DPM, 41% RPM), DPM and RPM then decompose to 

BIO and HUM and release CO2 with 46% BIO and 54% HUM and the amount released as CO2 

dependent on the clay content of the soil, and the decomposition rate of each pool fixed 

based on comparison of the model to experiments (DPM:10.0, RPM:0.3, BIO:0.66, 

HUM:0.02), while modified by temperature, moisture and crop cover (Coleman and 

Jenkinson, 1996). Models which divide organic matter into multiple pools have C transfer 

methods which can be summarised as follows (Yiqi Luo et al., 2016):  

{

d𝑋(𝑡)

d𝑡
= 𝐵𝑢 − 𝐴ξ(t)KX(t)

𝑋(𝑡 = 0) = 𝑋0
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Where X(t) is a vector of pool sizes at time t, B is a vector of partitioning coefficients among 

plant pools, u denotes C inputs, A is a square matrix of transfer coefficients, ξ(t) is a diagonal 

matrix of environmental scalars, K is a diagonal matrix of exit rates and XO is a vector of 

initial pool sizes, with the exit rate being the first-order decomposition rate. Summing all 

column elements for each row of matrix A multiplied by -1 gives the mineralization of 

decomposed C to CO2, effectively the respiration for each pool.  

Inert Organic Matter (IOM) is often calculated using the Falloon method which uses 

radiocarbon data to derive IOM from SOC using Equation 3.1 with units t C ha-1 (Falloon et 

al., 1998): 

IOM = 0.049 x SOC1.139      Equation 3.1 

The equation was tested using additional variables (clay content, soil type, pH, land-use, C 

input, mean precipitation and mean temperature) which did not improve the model 

predictions (Falloon et al., 1998).  

 Temperature 

Soil respiration is commonly predicted by expressing respiration as an exponential function 

of soil temperature using a Q10 temperature coefficient representing the change in 

respiration due to a 10° C increase in temperature (Delogu et al., 2017). The use of a 

constant Q10 equation which responded linearly to changes in temperature was advanced 

by Lloyd and Taylor (1994) who collated measurements of respiration from multiple 

ecosystems and proposed an Arrhenius-type equation explaining the temperature 

sensitivity of soil respiration, as the Q10 method is too simplistic over wide temperature 

ranges. Kätterer et al. (1998) supported this and find linear Q10 functions are not as accurate 

as others in temperatures below 5°C across a range of experiments.  

Multiple temperature modifiers (often denoted as f(T)) are employed by different studies 

for various reasons, this section will outline modifiers commonly used in biogeochemical 

models, with equations adapted from Sierra et al. (2015). The Lloyd and Taylor (1994) 

temperature modifier is shown in Equation 3.2 where the effective activation energy for 

respiration varies inversely with temperature (Lloyd and Taylor, 1994). 

                                        f(T) =  exp (308 (
1

56.02
−

1

(𝑇+273)−277.13
))    Equation 3.2 

Where T is average air temperature (°C). Similar temperature modifiers from popular 

ecosystem models include the RothC model temperature modifier (Equation 3.3; Coleman 

and Jenkinson, 1996): 
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           f(T) =  
47.91

1+𝑒( 106.06
𝑇+18.27)

                                  Equation 3.3 

The CENTURY model has two iterations of temperature modifiers, Equation 3.4 (Burke et 

al., 2003) and Equation 3.5 (Adair et al., 2008)) shown below.  

                     f(T) = (
𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

0.2

exp (
0.2

2.63
(1 − (

𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

2.63

))    Equation 3.4 

                f(T) =  3.349 exp (
0.2

2.63
(1 − (

𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

2.63

) (
𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

0.2

)    Equation 3.5 

 

Where Topt is mean temperature. The DAYCENT model (a daily version of the CENTURY 

model) also has two iterations (Equation 3.6 (Kelly et al., 2000) and Equation 3.7 (Del 

Grosso et al., 2005)).  

                                                             f(T) = 0.8 exp(0.095𝑇𝑠)                 Equation 3.6 

                          f(T) = 0.56 + (1.46 arctan(𝜋0.0309(𝑇𝑠 − 15.7)))/𝜋   Equation 3.7 

Where Ts is soil temperature. Other popular temperature modifiers include that of 

Kirschbaum (1995) (Equation 3.8) who exclusively used laboratory based experimental 

data to form the temperature modifier. 

                                   f(T) = exp(−3.764 + 0.204𝑇(1 − 0.5𝑇/36.9))   Equation 3.8 

Demeter-1 (Foley, 1995) (Equation 3.9) which aimed to simulate the terrestrial carbon 

budget. 

                                               f(T) =exp((ln(Q10)/10)(𝑇 − 20))                   Equation 3.9 

StandCarb (Harmon and Domingo, 2001) (Equation 3.10) was developed to simulate the 

carbon stored in forest stands. 

                             f(T) = exp(−(T/(Topt + Tlag))
Tshape

)Q10
(T−10)/10                 Equation 3.10 

These varying methods for modifying the degree of soil respiration as a response to 

temperature have been formulated as part of the SoilR package (outlined in Sierra et al. 

(2012)), where the temperature modifiers from Kirschbaum (1995), CENTURY (Parton et 

al., 1989; Parton et al., 1994), DayCent (Parton et al., 1998), Lloyd and Taylor (Lloyd and 

Taylor, 1994), Demeter (Foley, 1995), StandardCarb (Harmon and Domingo, 2001) and 

RothC (Coleman and Jenkinson, 1996) are included as functions, the software allows for the 



65 
 

inclusion of other modifiers as user inputs. SoilR allows for an evaluation of the different 

modifiers and their effect on soil respiration. The responses of the modifiers to a range of 

increasing temperatures are illustrated in Figure 3.3, where the large range across 

modifiers is evident, particularly as temperatures increase, and change over time is 

considered. 

 

Figure 3.3: Modifiers used in biogeochemical models which predict the effects of temperature on decomposition 
rates. (a) shows dependence while (b) shows sensitivities to temperature, the thick black line shows the average 
across models, and grey areas show the standard deviation across models (from Sierra et al. (2015)).  

The choice of modifier will clearly have a significant impact the outcome of the study, and 

the importance of comparing the modelled results to observed data is therefore 

emphasised. This echoes research undertaken by Burke et al. (2003) who find variations in 

decomposition rate up to fivefold across different models, with models agreeing that 

decomposition increases with temperature, but none agreeing on the magnitude or rate of 

change. Sierra et al. (2015) outline the various temperature and moisture modifiers 

commonly used in studies and argue that the addition of new modifiers is not currently 

necessary, what is necessary is the critical assessment of the current modifiers to reject 

those which are not useful to reduce the uncertainty among models. It has been noted that 

widely used models such as CENTURY and DNDC may misrepresent the temperature 

sensitivity of different SOM pools, as they use kinetically-defined SOM pools and Q10 

functions (Campbell and Paustian, 2015), an approach which has been strongly criticised as 

it may overestimate the response of soil C stocks to warming (Tang and Riley, 2015).  
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 Water 

In addition to the temperature modifiers listed previously, models also typically modify 

decomposition rates using water/moisture modifiers (often denoted as f(W)). The moisture 

modifier for the RothC model (b) is shown in Equation 3.11.  

f(W) = if acc. TSMD < 0.444. max. TSMD, 

b = 1.0 

otherwise, 

                                    b = 0.2 + (1.0 - 0.2) 
max.  𝑇𝑆𝑀𝐷−𝑎𝑐𝑐.  𝑇𝑆𝑀𝐷

max.  𝑇𝑆𝑀𝐷−0.444 max.  𝑇𝑆𝑀𝐷
               Equation 3.11 

Where TSMD is topsoil soil moisture deficit and is calculated as 

Maximum TSMD = -(20.0 + 1.3 (%clay) - 0.01 (%clay)2) 

For the site in Rothamsted where clay content is 23.4%, TSMD = -44.94. The effect of the 

modifier is illustrated in Figure 3.4. 

 

Figure 3.4: RothC Rate modifying factor for soil moisture, adapted from Coleman and Jenkinson, (1996). 

Other moisture modifiers include CENTURY (Equation 3.12; Parton et al., 1989; Parton et 

al., 1994; Adair et al., 2008). 

                                                  f(W) = 11 + 30exp(−8.5W𝑖)                              Equation 3.12 
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Where Wi is the water content at each timestep. DAYCENT (Equation 3.13; Kelly et al., 2000) 

                                                    f(W) = (𝑊𝑖−𝑏
𝑎−𝑏

)
𝑑(

(𝑏−𝑎)

𝑎−𝑐
)
(𝑊𝑖−𝑐

𝑎−𝑐
)

𝑑
                                        Equation 3.13 

Where a-d are constants. The Demeter water modifier (Foley, 2011) is shown in Equation 

3.14. 

                                                       f(W) = 0.25 + 0.75(W𝑖)                                             Equation 3.14 

The Standcarb water modifier (Harmon and Domingo, 2001) is shown in Equation 3.15. 

f(W) = (1 − exp(−(3/𝑊𝑚𝑖𝑛)(𝑊𝑖 + 𝑎)))𝑏  exp(−(𝑊𝑖/(𝑀max + 𝑐))𝑑)  Equation 3.15 

SoilR also outlines these modifiers and more which calculate the effect of 

saturation/drought on soil respiration, these modifiers are applied to a moisture index from 

0 (totally dry) to 1 (saturated) in Figure 3.5.  

 

Figure 3.5: Modifiers used in biogeochemical models which predict the effects of moisture on decomposition rates. 
(a) shows dependence and (b) shows sensitivity to moisture, the thick black line shows the average across models, 
and grey areas show the standard deviation across models. From Sierra et al. (2015). 

The choice of water modifier can therefore also have a significant effect on the outcome of 

a study, as is shown by the significant variation in values at different levels of moisture. 

These modifiers are then applied to the decomposition rate and can therefore inhibit the 

degree of respiration significantly, depending on the modifier and the wetness of the soil.  

 Model Uncertainty 

Burke et al. (2003) examined a suite of popular soil carbon models and concluded that the 

decomposition and temperature relationships which the models are based on are built on a 

limited number of imperfect data sources, that rates across models vary significantly due to 

a lack of knowledge about the temperature-decomposition relationship, and that this 
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uncertainty results in a high degree of variability in model outputs. This is echoed by 

Campbell and Paustian (2015) who acknowledge that the quality of SOM modelling is 

dependent on the quality of measured data which support the modelling efforts. 

Uncertainties in modelling are also emphasised by Wieder et al. (2013) who note the 

inclusion of microbial process modelling in soil carbon models improves their simulation of 

carbon stocks under future change, as the adaptation of microbes to changes in temperature 

is crucial to the ability of the soils they dwell in to accumulate carbon. Many of the process-

based approaches are incorporated into the land surface models employed by climate 

models, Yiqi Luo et al. (2016) find that the incomplete use of observations in model 

parameterization is a large source of differences between models; CMIP5 model projections 

of global soil C stock range from 510 to 3040 Pg C. Moyano et al. (2013) highlight the 

questionable predictive capacity of current models due to the mechanisms determining the 

response of soil respiration to moisture availability, and recommend the inclusion of further 

soil moisture responses to develop a unifying model whereby the relationship between soil 

respiration and moisture can be quantified across soil types and biomes.  

Studies have shown that climate change feedback effects from enhanced soil respiration 

may significantly increase atmospheric CO2 concentration and subsequently global 

temperatures (Cox et al., 2000; Heimann and Reichstein, 2008). The magnitude of this 

feedback depends strongly on the Q10 of soil respiration, and there is still no consensus 

among modelling communities about how to best improve the Q10 function (Xu and Shang, 

2016). Future projections of the response of soil to climate change are also uncertain, as 

higher CO2 concentrations will increase C supply due to the carbon enrichment effect, it has 

been speculated that the rise in temperatures will also stimulate increased decomposition, 

leading to the effects to modulate one another, however the indirect effects of moisture 

availability will further complicate this process (Pendall et al., 2004). Tian et al. (2015) call 

for improved validations of NPP, C allocation and Rh against field observations toward more 

accurate simulation of global SOC dynamics, urge caution when interpreting model outputs 

due to the large range in estimates from different models.  

Increased detail regarding microbial biomass and activity has been incorporated into some 

models, yet more efforts in this direction are necessary such as the inclusion of 

stochiometric theory at all scales to link decomposer activity, nutrient availability, 

vegetation growth and climate dynamics (Manzoni and Porporato, 2009), and the inclusion 

of C dynamics when N is limited (Manzoni et al., 2008). The widespread idea that soil fauna 

are principally decomposers who assist in mechanical degradation (Smith et al., 1998a) may 

need to be advanced to include all of the interactions of the specific whole soil food-web 
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dynamics (Osler and Sommerkorn, 2007), though this requires detailed models which are 

only practical at the site scale, meaning calibration is difficult, leading modellers to use 

simpler representations of soil biota and microbes, though it is recommended that the 

potential errors from not introducing food-web interactions are quantified (Manzoni and 

Porporato, 2009). Recent advances have identified alternative drivers of soil respiration in 

response to warming, namely the changes in mineral reactivity and resulting nutrient 

availability in the soil strongly impacts soil respiration in response to warming as the 

mineral changes alter the microbial community composition, the carbon inputs and enzyme 

activity, meaning biogeochemical alteration of the soil matrix controls the composition of 

the soil microbial community, rather than short-term warming (Doetterl et al., 2018). The 

knowledge of this subject area is constantly advancing and models need to reflect this, 

although more complex approaches are not always matched by improved performance, as 

simple models often provide similar or better results than complex ones (Manzoni and 

Porporato, 2009). Overall, a better connection between advances in SOM research and SOM 

model applications is needed (Campbell and Paustian, 2015).  

Amid these significant uncertainties, a combination of top-down (atmospheric) and bottom 

up (process-based) methods which complement one another is recommended to get a fuller 

picture of soil carbon processes (Peters et al., 2010). 

 Improving Global Soil Carbon Modelling 

As plant-soil interactions are such a significant part of the carbon cycle and therefore 

strongly linked to climate change, the importance of including them in global carbon cycle 

models is highlighted by Ostle et al. (2009) who point out that the intricacies of biological 

and ecological analysis at field level are not represented in large-scale climate models, and 

call for these processes to be represented in models while not overly complicating the 

models themselves. Incorporating processes which are important at the local level is central 

to this goal. Recently, the inclusion of priming (adding fresh organic carbon as a result of 

litter input or root exudation of carbohydrates) in models has led to improved simulations 

of SOC content, with research finding that the inclusion of priming in models leads to 

improved model performance (Guenet et al., 2018).  

Wieder et al. (2013) find that inclusion of microbial processes in soil C models matches 

closer to observations than traditional models, as the microbial model includes the 

consumption of additional inputs to the soil by microbes. When adaptive microbial 

processes are included in the Community Land Use (CLM) model the results indicate large 

soil C losses under future climate change, higher than the modest losses traditional models 

project (ibid) (Figure 3.6). This recommendation is echoed by Suseela et al. (2012) who call 
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for simulation of the response of microbes to temperature resulting from the outcome of 

their experiments investigating the response of soil respiration to warming. Frey et al. 

(2013) find microbial breakdown of organic matter depends on both substrate quality and 

temperature, but efficiency declines as temperatures increase for more recalcitrant 

substrates, suggesting climate change and warming could affect stable organic matter 

compounds and their decay dynamics, enhancing the positive feedback to climate change in 

the short term, shifting to a more efficient microbial community in the long term. The 

importance of microbial interactions and a proposal for assimilating these interactions into 

ESMs is proposed by Xu et al. (2014) who find changes in vegetation will impact soil C 

storage more than climate effects on microbial activity. While improving models across 

scales by including microbial processes is desirable, it is not always sensible or feasible due 

to the cost of increased model complexity, and the lack of data on microbial processes 

needed to drive the models (Jackson et al., 2017).  
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Figure 3.6: Response to a 4.8°C increase in mean global temperature by 2100 based on RCP 8.5 from 2006-2100 
where conventional models (CLM4cn, black; DAYCENT, blue) are compared to the CLM microbial model where 
microbial growth efficiency (MGE) changes with temperature (solid green line), or microbial communities adapt to 
increasing temperatures without changing MGE (dashed green line) from Weider et al. (2013).  

While global estimates of SOM and SOC distributions are rapidly improving partly due to 

the analysis of soil profiles in global databases, uncertainties remain regarding wetlands, 

peatlands and permafrost soils as definitions of what exact conditions constitute these 

categories are different across countries and scientific disciplines (Jackson et al., 2017). 

Zhou et al. (2018) examine CMIP5 models and find those which include a nitrogen module 

have lower NPP and therefore lower C storage and C storage capacities due to the 

productivity of the ecosystem (plant productivity) being limited by lack of reactive N, and 

the CO2 fertilization effect being dampened by N limitation. Models which include an N 

module project decreasing global C stock trends compared to increasing trends in those that 

do not. It is recommended that future assessments take place at regional rather than global 

scales, to incorporate more region-specific factors and uncertainties (Zhou et al., 2018).   
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Smith et al. (2015) summarise global modelling research thus far and highlight that the 

knowledge gaps in modelling which require further study are: to aim for similarity in 

measured and modelled SOM fractions (after Zimmermann et al., 2007), to improve 

modelling in the subsurface soil layers, to develop spatially and temporally improved 

observational networks with which to validate models, to resolve representation of soil C in 

global models, and to further investigate the response to climate extremes. Todd-Brown et 

al (2013) call for the improvement of empirical datasets, model driving variables and 

parameterisation to improve the relationship between modelled and measured values. 

Keenan et al. (2013) investigate the most valuable data in improving model performance 

and conclude that fast-moving processes (NEE, soil respiration) combined with slow 

moving processes (turnover rates  of soil carbon pools, monthly/annual cumulative fluxes, 

litter from wood/leaves) improve performance most, and that carbon stock sizes were of 

little value when other more informative measurements were available – therefore they 

suggest prioritising collection of these data in future to avoid wasting scarce money and 

resources. Omuto et al. (2013) in a state-of-the-art assessment of global and regional soil 

information call for the unification of the soil science community at global, regional and 

national scales to plan activities in the short, medium and long term to best satisfy the needs 

of communities and stakeholders. The combination of both flux- and pool-based data is 

recommended to improve biogeochemical models to constrain C input and residence times 

(Yiqi Luo et al., 2016). In order to improve the modelling of soil respiration it is essential 

that data-sharing among the soil respiration community is encouraged and facilitated, as is 

the publication of Rs fluxes estimated by ecosystem and earth-system process-based 

models, advancements in computing and big data technologies like data mining and cloud 

computation could also help to improve soil carbon measurements (Xu and Shang, 2016). 

Recent meta-analyses (Stockmann et al., 2013; Campbell and Paustian, 2015) have called 

for improved measurement data to improve model calibration and validation, along with an 

inclusion of the entire soil profile, and deeper understanding of the soil system itself.   

Uncertainty in modelling regional fluxes is investigated by (Xiao et al., 2014) who use a 

simple model to estimate C fluxes based on vegetation and advise against using a single site 

to parameterise a plant functional type (PFT) as it may introduce biases to the flux estimates 

and not capture the ecological and biophysical properties within a PFT. It is recommended 

to use multiple observations where possible to parameterize the PFT used by the model, it 

is also noted that uncertainty assessment at regional scales can be computationally 

expensive, even for their simple model, as compromises in spatial or temporal resolution 

are necessary. These complexities show that there is currently no ideal modelling structure 
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and trade-offs must be made due to limitations in observational data, computation and 

memory.  

Despite the uncertainties and imperfections in modelling soil GHG stocks and fluxes, 

remarkable progress has been made in an incredibly complex area. The increased 

understanding of the role soil can play as a source or sink of GHGs along with the feedback 

processes is moving us toward a more complete understanding of the soil system, where 

geodatabases outlining the stocks and fluxes of soil GHGs around the world which are 

accurate, open and verifiable are the ultimate goal (Oertel et al., 2016). Smith et al. (2015) 

emphasise the importance of focusing on what we do know and making decisions on this 

basis, rather than focusing on what we do not know. Jackson et al. (2017) foresee decades 

of research ahead in experiments, synthesis and modelling of SOM.    
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 Simulating Soil Carbon Fluxes at an Irish Arable Site: 

Parameter Assessment 

Following the review of observations and models in chapters 1-3, this chapter outlines the 

process of simulating soil carbon fluxes using the ECOSSE model at an arable site in Co. 

Carlow, Ireland. The ECOSSE model is described in detail, the data which are used to drive 

it are outlined, along with any partitioning of the data. Results of the investigation into the 

model parameters are presented, and findings are discussed.  

 Introduction 

The ECOSSE (Estimating Carbon from Organic Soils – Sequestration and Emissions) model 

is a biogeochemical model originally developed to estimate the stocks and fluxes of 

greenhouse gases in organic soils, and has subsequently been employed on mineral soils for 

national inventories (Smith et al., 2010b). ECOSSE has been applied for multiple land-use 

types including European cropland (Smith et al., 2010b; Bell et al., 2011; Khalil et al. 2013; 

Dondini et al., 2017), peatland (Abdalla et al., 2014), land under Miscanthus and Willow 

(Dondini et al., 2016a) and bioenergy cover crops (Dondini et al., 2016b). ECOSSE has been 

used for national estimates of soil C using limited inputs, and to inform national inventories 

(Smith et al., 2010b), it has also been coupled with JULES (Joint UK Land Environment 

Simulator) in the latest Met Office Unified Model (Ostle et al., 2009); and forms an integral 

part of the Ecosystem Land Use Model (ELUM) project (Richards et al., 2016). 

ECOSSE differs from RothC in that it can scale to national level (Chapter 6) by making use of 

the limited available information by using measurements of soil C to interpolate the activity 

of the SOM and the plant inputs used to achieve those measurements. Other data inputs such 

as information on plant inputs, nutrient applications, and timing of management operations 

can also be included to improve the understanding of the factors driving SOM activity. If 

these data are unavailable the model can still provide simulations of SOM dynamics, though 

the accuracy will be lower due to the reduced detail of the inputs (Smith et al., 2010a). The 

full details of the ECOSSE model are outlined in Smith et al. (2010c). 

ECOSSE has been employed previously in Ireland at this site in the past (e.g. Khalil et al., 

2013), and has been recommended ahead of other similar models as it outperformed both 

DailyDayCent and DNDC in simulating N2O fluxes on Irish soil (Khalil et al., 2016). Based on 

an assessment of a selection of process-based models (DNDC, DailyDayCent and ECOSSE) 

on Irish soils, Khalil et al. (2016) found both the ECOSSE and DNDC models useful at 

estimating surface soil nitrate (0-10cm), while ECOSSE outperformed all other models 

when estimating N2O fluxes. DNDC underestimated total heterotrophic respiration by 50%, 
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DailyDayCent underestimated by 24%, while ECOSSE underestimated by just 7%. The 

model inherits some characteristics from RothC (Coleman and Jenkinson, 1996) and 

SUNDIAL (Bradbury et al., 1993) which have been widely used in the literature, with RothC 

recommended along with CENTURY as the most suitable model for simulating SOC stock 

changes in Irish grassland soils (Byrne and Kiely, 2008). The model (described in detail 

below) was employed in site-specific mode for a field location where flux data was recorded 

over the period 2004-2006, model outputs were subsequently compared to observed data 

in order to evaluate the model.  

 The ECOSSE Model 

Motivation for the development of the ECOSSE model came from drawbacks in previously 

existing methods for predicting fluctuations in soil C and N, which were largely based on 

mineral soils, and do not satisfactorily describe the processes and turnovers in organic soils 

resulting from land-use or climate change (Smith et al., 2010a). Accurate quantification of 

the effects of climate and land use change on all soils is vital for informing land-use policy, 

as soil can be either a carbon source or carbon sink under certain conditions (Scharlemann 

et al., 2014). The ECOSSE model was originally developed and applied in Scotland, to predict 

the responses of both organic and mineral soils to external changes in climate and 

management (Smith et al., 2010b). Its ability to simulate emissions from organic soils is 

important, as around 20-30% (~600 Pg C) of total terrestrial carbon is held in 3% of the 

land area in peatlands, most of which has accumulated since the last glacial maximum (Yu 

et al., 2010). The organic soil ecosystem is clearly a significant store and potential sink of 

CO2, but it is also a vulnerable landscape, with estimates for Scotland indicating that 15% of 

the country’s total emissions result from land-use changes on high C soils (Smith et al., 

2007). In order to get meaningful projections for national emissions, it is therefore 

important that the uncertainties regarding C storage and flux are minimised, and that all 

soil types are included.  

The aim of ECOSSE is to simulate the impacts of land-use and climate change on GHG 

emissions from organic, mineral, and peat soils. The model is driven by meteorological data 

and requires descriptions of soil characteristics and predicts the impacts of land-use and 

climate change on C and N stores. The model can function at both field (Chapter 4 and 5) 

and national (Chapter 6) scales, allowing results to inform national inventories and policies.  

 Model Structure 

The ECOSSE Model has developed from concepts initially implemented by the RothC 

(Coleman & Jenkinson, 1996) and SUNDIAL models (Bradbury et al., 1993). RothC measures 
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carbon turnover in mineral soils while SUNDIAL incorporates nitrogen dynamics, with 

parameters fitted from observing long-term field experiments at Rothamsted, where 

experiments have been running since 1843 (Johnston and Poulton, 2018). The pool type 

approach used in both RothC and SUNDIAL is also used in ECOSSE. This approach delineates 

SOM into pools of inert organic matter (IOM), humus (HUM), biomass (BIO), resistant plant 

material (RPM) and decomposable plant material (DPM), where processes and turnover 

rates of C and N are simulated using simple equations driven by common input variables 

such as soil characteristics and climate data. The decomposition process is described by first 

order rate equations (with specific rates for each pool) which are modified according to 

external factors such as temperature, moisture, crop cover and soil pH.  

 Temperature 

The ECOSSE model describes the decomposition of SOM and associated soil respiration 

using first-order rate equations based on temperature, moisture, crop cover and pH 

(Dondini et al., 2017). The temperature modifier in ECOSSE (mt), inherited from SUNDIAL 

and RothC for both aerobic and anaerobic decomposition, is shown in Equation 4.1: 

                                                𝑚𝑡 =  
47.9

1 + exp (
106

𝑇𝑎𝑖𝑟 + 18.27
)

                                             Equation 4.1 

where Tair is the mean daily air temperature (°C). ECOSSE also assumes a Q10 constant (rate 

of change of a system due to a 10°C temperature increase) of 2.0.  

 Water 

Soil water in the ECOSSE model also inherits its characteristics from the SUNDIAL model 

where water passes through soil layers via piston flow, once the first layer reaches field 

capacity the water then transfers to the second layer (Smith et al., 1996); this method 

assumes aerobic decomposition proceeds at its maximum rate as the soil dries from field 

capacity to the amount of water held at -100 kPa, with decomposition being increasingly 

inhibited until the soil reaches permanent wilting point as shown in Equation 4.2: 

         𝑚𝑤 = 1 −
((1−𝑚𝑤0) x (𝛹f−𝛹c−𝛹i))

𝛹f − 𝛹i
  ; (if (𝛹f−𝛹c) < 𝛹i, 𝑚w = 1)                Equation 4.2 

where 𝑚𝑤0 is the rate modifier at permanent wilting point (0.2), 𝛹c is the water held above 

permanent wilting point, 𝛹i is the water held between field capacity and -100 kPa, and 𝛹f is 

the water held between field capacity and permanent wilting point (all units in mm/layer -

1). This is calculated for each 5 cm soil layer to the specified depth in ECOSSE, leaching 

between layers is by simple piston flow. Saturated conditions are also known to inhibit 
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aerobic respiration (Reichstein and Beer, 2008) and ECOSSE includes a modifier for soil 

water conditions between field capacity and saturation. Each 5cm soil layer in ECOSSE is 

filled until it reaches field capacity, where it then drains to the next layer or is evaporated. 

At field capacity decomposition is assumed to be at its maximum, decomposition is reduced 

due to dry conditions below field capacity, and oxygen limitation above field capacity. When 

the soil is saturated, decomposition is 20% of the field capacity, and losses of methane 

dominate ahead of CO2 (Smith et al., 2010a). Any water remaining when all layers have been 

filled to field capacity is partitioned between drainage and excess, and either leaves the soil 

profile or fills each layer (from the bottom) to saturation. This process uses the inputted 

water table depth, available water at saturation and weather data to calculate ‘restriction to 

drainage’ (Richards et al., 2016). Figure 4.1 (adapted from Smith et al., 2010c) describes the 

rate modifier graphically.  

 

Figure 4.1: ECOSSE soil moisture rate modifier for aerobic decomposition of SOM (Adapted from Smith et al. 
(2010c)) 

 Crop 

ECOSSE simulates the modifying effect of crop cover on soil respiration using a crop 

modifier inherited from RothC. While the selection of the threshold is somewhat arbitrary, 
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it is based on findings from a number of studies (e.g. Sommers et al., 1981; Sparling et al., 

1982). The crop modifier (mcrop) is set as  

mcrop = 1 if the soil is bare (no effect), and  

mcrop = 0.6 if the soil is vegetated.  

This has the effect of reducing soil respiration during the growing season by 40%.   

 pH 

ECOSSE also incorporates a pH modifier, introduced for simulating decomposition in 

organic soils where pH is more variable. It is defined as shown in Equation 4.3: 

                      𝑚pH = 𝑚pH,min + (1 − 𝑚pH,min) (
𝑝𝐻 − 𝑝𝐻min

𝑝𝐻max − 𝑝𝐻min
)                               Equation 4.3 

where aerobic decomposition proceeds at an optimum rate (𝑚pH = 1) until the pH falls 

below a critical threshold (𝑝𝐻max  ) and the minimum rate of decomposition is set as, 

𝑚pH,min= 0.2, 𝑝𝐻min = 2, 𝑝𝐻max  = 4.5 

If the soil pH is closer to neutral (~7) this modifier is assumed to be 1, similar to RothC and 

SUNDIAL (Coleman and Jenkinson, 1996; Bradbury et al., 1993) for well managed arable 

soils, thus having no impact on the estimated soil efflux. 

 Decomposition in the Model  

The IOM pool does not decompose as the C is excluded from soil processes due to either its 

inert chemical composition or protected physical state. The HUM pool decomposes 

relatively slowly as it represents matter which has been stabilized due to earlier 

decomposition processes. The BIO pool decomposes quickly as it is still physically active 

and has not yet become humus. DPM and RPM pools consist of undecomposed plant 

material with DPM being readily decomposable and RPM being more recalcitrant. The ratio 

of DPM to RPM depends on the land-use type with DPM:RPM typically being 1.44 for arable 

land and grassland, 0.25 for forestry and 0.67 for semi-natural land (values taken from 

RothC model). The decomposition process results in losses of CO2 from the soil to the 

atmosphere under aerobic conditions, and mainly losses of CH4 under anaerobic conditions. 

Decomposition rate constants (k) in years for each pool (taken from RothC (Coleman & 

Jenkinson, 1996)) are set at: 

• DPM: 10 

• RPM: 0.3 

• BIO: 0.66 
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• HUM: 0.02 

These values are based on long term field experiments at Rothamsted. The amount of N in 

the soil follows the decomposition of the SOM at a stable C:N ratio defined for each pool at 

a given pH, with N being either mineralised or immobilised to maintain the ratio. N released 

from decomposing SOM as ammonium (NH4+) or added to the soil can be nitrified to nitrate 

(NO3-). Nitrification is the conversion of ammonia to nitrate which involves interactions 

with oxygen and two types of bacteria, nitrosomonas (ammonia oxidisers) and nitrobacter 

(nitrite oxidisers) which are collectively known as nitrifiers. C and N can be leached from 

the soil in the form of NO3-, dissolved organic carbon (DOC) and dissolved organic nitrogen 

(DON). Other routes for C and N loss include denitrification, volatilisation or crop offtake. C 

and N can be returned to the soil (or transferred from the atmosphere) via plant inputs, 

inorganic fertilizers, atmospheric deposition (from precipitation) or organic amendments.   

Ideally the model would calculate the sizes of the SOM pools quickly using the inputs about 

plants and organic amendments, in the same way as RothC. The relative proportions of these 

pools then determine the rate of decomposition of the SOM, if there is a more rapidly 

decomposing pool then decomposition will be higher and vice versa. However, data on plant 

inputs are rarely available, even at field scale, as the amount of litter, debris and root 

exudates in the soil is difficult to quantify. Consequently, an iterative process is used which 

allows for the comparison of simulated and measured values based on default values 

outlined by Falloon et al. (1998). The model iterates until it reaches a steady state and the 

simulated and measured values are within 0.0001kg C ha-1 layer-1. The model is assumed to 

reach a steady state when the SOM pool sizes and plant inputs closely match the observed 

soil C measurement, and the model can then be perturbed to calculate the impact changes 

to soil, land use and climate have on SOM turnover. Factors which are not defined as inputs 

are then estimated according to the relative pool sizes. If soils are likely to become saturated 

it is important to include water table depth explicitly as an input factor as otherwise the 

model will overestimate total soil C due to aerobic decomposition, under anaerobic 

decomposition the rate is slower, and the estimate is likely to be closer to reality. This serves 

to highlight the limitations of the model and the importance of having relative but not 

absolute confidence in simulations. If N limitation is being included as a factor, a more time-

consuming initialization procedure is needed to stop SOM accumulating instead of reaching 

a steady state.  
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 Model Equilibrium 

When total organic inputs to the system are balanced by the total losses of soil C, the model 

is considered to be at a steady state. Simulations begin with zero SOM in all pools, RothC 

default values for plant inputs based on land-use type are used to calculate organic inputs, 

and weather conditions (rainfall and air temperature) are taken from a 30-year average of 

long-term weather data on a monthly time step. The simulation continues until the total soil 

C in each layer differs to that of the previous year by less than 0.0001 kg C ha-1 layer -1. When 

this happens the spin-up is stopped and the organic inputs are adjusted according to 

Equation 4.4: 

                                                      𝐶in =  𝐶in,def x 
𝐶tot,meas

𝐶tot,sim
                      Equation 4.4 

Where 𝐶in is he annual organic input, 𝐶in,def is the default organic input, 𝐶tot,meas is the 

measured total soil C, and 𝐶tot,sim is the simulated total soil C (all in kg C ha-1 layer -1). This 

calculation is iterated until the simulated and measured values are within 0.0001 kg C ha-1 

layer -1. This methodology can also be adjusted to accommodate sites which are 

accumulating or losing carbon at constant rates.  

 Data and Methods 

 Site Description 

The experimental field site, located at Teagasc Oak Park Research Centre, Co. Carlow, 

Ireland (52.8588N, 6.9178W; Figure 4.2) is an arable field which had been under cropland 

for over 50 years with sugar beet, spring barley, maize and oil seed rape planted in rotation 

until 2000, since then spring barley has been the major crop. This study initially focuses on 

the years 2004-2006 due to the availability of suitable data.  
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Figure 4.2: Republic of Ireland showing Kilkenny (yellow) and Carlow (brown) with black points denoting Kilkenny 
synoptic station and the case study location at Oak Park, Co. Carlow. 

Full details of the site and soil characteristics are listed in Table 4.1. Land management 

details for the period including fertilizer applications are outlined in Table 4.2. A map of the 

field in relation to its surroundings is shown in Figure 4.3.  

Table 4.1: Oak Park Site Characteristics (adapted from measured and observed data, Abdalla et al., (2009); Davis 
et al., (2010); Khalil et al., (2013)) 

Site Characteristics  

Climate Data   

Latitude / Longitude (decimal) 52.8588 / -6.9178  

Elevation (m) 58.208 

Mean annual temperature  10.04 

Annual accumulated precipitation  822.7 

Land-use history Heavily cultivated for 40 years with a mix of oil 
seed rape, cereals and sugar beet, was previously 
under pasture. Spring barley since 2000. 

N concentration in rainfall (mg N l-1) 0.001* 

Atmospheric CO2 concentration (ppm) 380* 

Annual atmospheric N deposition (kg/ha-1):  11 

Soil Properties   

Vegetation cover Spring Barley 

Soil type Euteric Cambisol/Grey Brown Podzolics 
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Soil texture Sandy Loam 

Bulk density (g cm-3): 0-10/0-25cm 1.42/1.48 

Clay (%) 0-10/0-25cm 15.13/14.73 

Silt (%) 0-10/0-25cm 25.63/33.73 

Sand (%) 0-10/0-25cm 59.24/51.55 

Total SOC (kg ha-1): 0-10/0-25cm 19,912/42,888 

Total IOC (kg ha-1): 0-10/0-25cm 1478/3543** 

Organic C content at surface (kg C kg-1) 0.019 

Soil pH 0-10/0-25 7.24/7.35 

AW at field capacity (mm): 0-10/0-25cm 22.69/55.13  

Water content at saturation (%): 0-10/0-
25cm 

47.21 (AW=29.51mm)/ 45.56 = 133.87mm (AW = 
71.17mm) 

Water content at field capacity (%): 0-10/0-
25cm 

40.39 (AW= 22.69mm)/ 38.97 = 97.43mm (AW = 
54.73mm) 

Water content at wilting point (%): 0-10/0-
25cm 

17.70 (AW= 17.70mm)/17.08 (AW = 42.7mm) 

NH4 and NO3 (kg N ha-1): 0-10/0-25cm 2.8/6.92 and 9.5/23.17 

Harvest Grain harvest, mulch/till 

Tillage Conventional and reduced 

WFPS at field capacity (0-10cm depth) 0.68 

WFPS at wilting point (0-10cm depth) 0.12 

Depth of water retention layer (cm) 100 

Depth of impermeable layer (cm)  >150 (drainage class high) 
*Default values from Abdalla et al. (2009) 
**Total IOC was calculated using the Falloon method (Falloon et al., 1998), however the value 
reported here differs from that reported by Khalil et al. (2013). The IOM values listed here are 
calculated using t/ha, as required by the equation, rather than kg/ha, giving significantly smaller 
values than those reported elsewhere.  

 

Table 4.2: Management Timeline for the observations site growing Spring Barley fertilized with CAN NitroSulphur 

 2003 2004 2005 2006 

Crop 1 sow 20/03/2003 26/03/2004 14/03/2005 20/03/2006 

Crop 1 harvest 23/08/2003 26/08/2004 08/08/2005 01/08/2006 

Fert 1 Date 15/04/2003 27/04/2004 16/04/2005 12/04/2006 
Fert 1 (kg N / ha) 137 140 109 89.91 

Fert 2 Date - - 10/05/2005 11/05/2006 
Fert 2 (kg N / ha) - - 55 50 

Crop 2 type - - Mustard Cover - 
Crop 2 sow - - 12/09/2005 - 
Crop 2 harvest - - 21/02/2006 - 
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Figure 4.3: The pump field location (highlighted in yellow) where Plot 13 is the CARBOEurope verification site. Source: Provided with flux tower observation data. 
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 Meteorological Data 

Daily meteorological data were obtained from two sources: the Irish meteorological service, 

Met Éireann, who provided data from the nearby weather station located on the grounds of 

the Teagasc Oak Park Research Centre, and the nearest synoptic station located in Kilkenny 

approximately 30km away, the second source is the flux tower stationed in the 

experimental field, covering the period from 2004 to 2006. As ~7% of the data from 2004-

2006 were missing from the Oak Park meteorological station, gaps were subsequently 

infilled using either the meteorology recorded at the flux tower or Kilkenny synoptic station 

data, in that order. As long-term data were not available from Oak Park, data from the 

nearby Kilkenny synoptic station were obtained to derive the 30-year averages used for 

model spin-up (in which soil C is brought to equilibrium – see Section 4.2.3). Meteorological 

and climatological information used for the study is shown in Figure 4.4.  

 
Figure 4.4: Meteorology for 2004-2006 for Oak Park and 30-year climatology from 1974-2003 from Kilkenny 
synoptic station (~30km from Oak Park). 

Reference evapotranspiration (ETo) values were unavailable for the Oak Park site for the 

years 2004-2006. Consequently, daily values for ETo for the period of interest were initially 

estimated using the Hargreaves method (Hargreaves and Samani, 1985). Since 2008 when 

the weather station was upgraded, Met Éireann calculate estimates of ETo using the FAO-

56 Penman-Monteith method, facilitating an evaluation of the Hargreaves method over the 

period 2008 to 2016. This evaluation indicated a significant overestimation of ETo values 
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derived using the Hargreaves approach when compared to the Met Éireann calculated 

values. A linear calibration was derived from the 2008 to 2016 period and subsequently 

applied to the Hargreaves estimated values for the 2004 to 2006 period, resulting in 

modified ETo values which were used as input to the model. Figure 4.5 illustrates the 

cumulative sums for the years 2008 to 2010 based on the original Hargreaves method, the 

modified Hargreaves estimates and the Met Éireann derived ETo values. A difference in 

annual accumulations of ~100mm is evident between the pre- and post- modified 

Hargreaves values. r2 values are over .99 (significant at p = 0.01) for both the Hargreaves 

method and the SPSS modified PE when compared to Met Éireann observed values, but MAE 

and RMSE values are much lower for the modified PE data than for Hargreaves, indicating 

it is much closer to the Met Éireann derived estimates (Table 4.3).  

 
Figure 4.5: Cumulative PE illustrating the overestimation derived using the Hargreaves calculation, compared to 
Met Éireann PE and PE modified, using calibration equation. 

Table 4.3: MAE and RMSE values for different PE calculation methods when compared to Met Éireann PE 

 Hargreaves Modified 
MAE 82.37 6.43 
RMSE 103.34 9.10 

 

 Flux Data 

The study site used in this analysis contributed to CARBOEurope, a member of the FLUXNET 

project, a network of flux measurement sites which record daily information on soil and 

meteorological characteristics (Baldocchi et al., 2001). The site hosted an eddy covariance 

flux tower (Figure 4.6) over the study period providing net ecosystem exchange (NEE) 
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measurements (Davis et al., 2010). Data available from the flux tower included meteorology, 

radiation, soil temperature, volumetric soil water content, latent heat and NEE, from which 

Reco (and subsequently Rh) were derived. NEE is typically presented in units of g C m2 yr-1, 

representing the amount of elemental carbon, not CO2 (Kiely et al., 2018).  

 

Figure 4.6: Eddy covariance equipment on a trolley, located in the study field facing west. Source: Provided with 
flux tower observation data. 

The model validation process is complicated by evaluation data which are not directly 

comparable to one another. The ECOSSE model simulates heterotrophic respiration (Rh) 

while the measured Eddy Covariance (EC) data allows for the calculation of Ecosystem 

Respiration (Reco), a combination of autotrophic and heterotrophic respiration from the 

ecosystem. As Reco represents the combined auto- and hetero- trophic respiration, the daily 

Reco values were partitioned between the gross autotrophic (plant) and heterotrophic 

(soil) components. This was achieved by running DNDC (DeNitrification-DeComposition; 

Giltrap et al., 2010), using the same inputs and weather data outlined previously, to derive 

ratios of Rh to Reco, following the method of Khalil et al. (2013). Alternatively, Hardie et al. 

(2009) propose that Rh is between 46-59% of Reco; Abdalla et al. (2014) split this 

seasonally so that Rh is assumed to be at its lowest at 46% during summer (JJA), 59% during 

winter (DJF) with a mean value (52.5%) for the rest of the year. Both these methods 
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produced a similar temporal signal (Figure 4.7), but the cumulative fluxes were found to be 

higher for the seasonal method.  

 

Figure 4.7: Comparison between Reco, estimated from measurements at the flux tower, Rh partitioned using 
relative proportions (Rh/Reco) from DNDC (following Khalil et al. 2013), and Rh partitioned using the method of 
Hardie et al. (2009). 

 Soil Chamber Data 

Due to the complexities regarding partitioning flux tower data into autotrophic and 

heterotrophic components, soil respiration measurements using  soil chamber data were 

also incorporated into the analysis. Comparison of chamber to eddy covariance flux 

measurements on blanket bogs in Ireland has previously indicated that, despite differences 

on a sub-daily and daily level, the results from both methods on larger scales gave similar 

estimates of the fluxes (Laine et al., 2006). However, soil respiration from chamber data was 

only available at this site for 2004. These chamber measurements of CO2 fluxes, obtained 

from Jones et al. (2010), were measured using a CIRAS 2 infra-red gas analyser coupled to 

static chambers (SRC-1 soil respiration chamber, PP Systems, Hitchin, Herts, UK). The 

system allowed automated in-field soil CO2 flux measurements every 20-90 min. Twelve 

collars were inserted to a depth of 5cm into the soil 12 days before measurements began to 

alleviate the effect of soil disturbance on the fluxes. It is likely that the measurements from 

the soil chambers include both components of heterotrophic (Rh) and autotrophic (Ra) 

respiration, the chamber data is therefore also partitioned to be comparable with model 

outputs.  
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 Chamber Flux Partitioning 

Measured soil respiration (Rs) incorporates both Rh and Ra, both processes which respond 

differently to environmental changes, however, chambers placed on soil are unable to 

separate the two, therefore it is necessary to partition the Rs data into its autotrophic and 

heterotrophic components to compare with ECOSSE model output which represents 

heterotrophic respiration. Soil respiration can be further disaggregated into root 

respiration (Rr), soil fauna respiration (Rf) and non-biological CO2 production (Rn) (Xu and 

Shang, 2016), however, for the purposes of this analysis the focus will remain on Ra and Rh. 

The partitioning of Rs into Ra and Rh has been widely discussed in the literature (e.g. 

Hanson et al., 2000; Subke et al., 2006) with ranges for the contribution of Rh to Rs from 

under 10% to over 90% across different soil and climate types, and a common trend being 

the higher the total respiration, the higher the autotrophic contribution to the total 

respiration (Bond-Lamberty et al., 2004). Studies that integrate root contribution to soil 

respiration give average annual values of 60.4% for the root contribution to respiration for 

non-forest vegetation (Hanson et al., 2000). Uncertainties abound in this type of research, 

as the trenching method of root exclusion (whereby respiration is recorded at a ‘normal’ 

site and at a site where the root system has been severed, to isolate the heterotrophic 

portion of respiration) can introduce errors as trenched plots may have reduced water 

uptake, the elimination of roots may reduce the ‘priming’ effect roots have on respiration, 

or the decaying roots may increase the substrate available to microbes, thereby increasing 

overall respiration, overestimating Rh and underestimating Ra (Savage et al., 2012). 

Kuzyakov (2006) discusses the advantages and disadvantages of methods of partitioning 

total soil CO2 efflux into root and SOM derived CO2, along with isotopic techniques for 

tracing the source of CO2, non-isotopic techniques such as root exclusion, shading and 

clipping, tree girdling, regression, component integration, excision of roots, and on-site 

measurements of root respiration are discussed, with no method coming out as distinctly 

‘best’, a suggested approach for partitioning should: 

1. Minimise or eliminate disturbance to the ecosystem 
2. Incorporate root, rhizomicrobial, plant residue, priming and basal respiration 
3. Be universally applicable to multiple ecosystems 
4. Generate reproducible reliable results 
5. Be inexpensive to set up, maintain and analyse.  

Regarding the choice of manual or automated systems to measure CO2 fluxes, Savage and 

Davidson (2003) found that weekly measurements using a number of manual flux chambers 

which are spatially distributed can adequately describe seasonal fluxes and characterise 

spatial variation very well, while automated chambers provide insight into the effects of 

rapid changes in water content and temperature. Ideally both manual and automatic 
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chamber approaches could be combined and used to inform and test each other, though this 

would be expensive.   

The potential contribution of Rh to Rs ranges from 3% to 99% in the literature across 

biomes, land-use types and seasons, and the values taken from temperate arable and 

grassland land-uses range from 27 to 90% (Subke et al., 2006), these values are chosen to 

illustrate partitioning ranges as this is the land-use type which most closely resembles the 

site. A popular method of partitioning fluxes employed by Dondini et al. (2016) is that of 

Koerber et al. (2010) who estimate the contribution of Rh to total respiration to be 32% in 

January, February, March, April and May, 79% in June July August and September, and 67% 

in October, November and December. Clearly there is no universally applicable process of 

partitioning chamber data, and the method chosen can significantly alter the results of a 

comparison, as the large potential ranges show. Amid these uncertainties it is difficult to 

ascertain a proportioning of Rs into Ra and Rh for a specific site in the absence of 

measurements and is therefore optimal to use experimental data which closely corresponds 

to the field where measurements were taken. An experiment was performed during the 

2005 growing season at the Oak Park site where 5x2m2 bare soil patches were left free of 

plants (and therefore roots) during the growing season, located 0.5m away from 

conventional tillage plots, meaning they recorded more heterotrophic respiration than 

measurements taken where roots were present (Kumar Jogi, 2007). Measurements were 

taking during the growing season, recommended as best practice for croplands (Hoffmann 

et al., 2017), and found an average Rh contribution of 47% across the growing season 

(Kumar Jogi, 2007). Application of this multiplier to the chamber data allows for comparison 

to model outputs and Rh partitioned from ecosystem respiration, and to ECOSSE model 

output (Figure 4.8).  
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Figure 4.8: Daily chamber data partitioning ranges (grey areas) from 27% to 90% of initial values (from Subke et 
al., 2006), black dots show data partitioned at 47% (Kumar Jogi, 2007).  

 Common Units 

In order for comparison of data to be as accurate as possible, it was first necessary to 

convert all of the data into comparable units, as NEE is typically presented in units of g C m-

2 yr-1 (units of elemental carbon (Kiely et al., 2018)), and the ECOSSE model outputs in units 

of CO2-C, Reco, Rh and chamber data were all converted to the same units in order for them 

to be comparable. The difference between CO2 and CO2_C is significant as the molar weight 

of C is 12.01 g/mol while the molar weight of CO2 is 44.01 g/mol, which would have a 

significant impact on the results. All the observed data are converted to kg C ha-1 to match 

the model output units.  

 Soil Water 

In the absence of direct field measurements of soil water tension, field capacity, water 

content at wilting point and water available at saturation are typically estimated using 

pedotransfer functions (after Saxton and Rawls, 2006); to determine soil water 

characteristics based on soil parameters at varying tensions. US based literature widely 

denotes -33 kPa as the tension at field capacity and -1500 kPa the tension at wilting point; 

AW is then the difference between the two. However, soil tension at field capacity estimates 

can range from ~-10 kPa for sandy soils to -33 kPa for loam and clay loam soils (Paul, 2006) 

with Irish soils being ‘commonly near -5 kPa’ (Keane and Collins, 2004, pp. 85), further 

increasing the upper range of available water estimates. Using pedotransfer functions at 33 

kPa a sandy loam soil has ~12% available water, at -10 kPa the same soil has 29% available 
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water. This gives a potential range of available water from 30 to 72.5 mm/25cm depending 

on kPa chosen for field capacity; available water to 25 cm is required as an input parameter 

to the model. Table 4.4 shows the results of pedotransfer equations for the sandy loam soil 

at Oak Park based on Saxton and Rawls (2006). These values differ from those reported by 

Abdalla et al. (2009b) who report water filled pore space (WFPS) at field capacity and 

wilting point, and from Khalil et al. (2013) who report AW at field capacity as 55.13mm for 

0-25cm depth.  

Table 4.4: Moisture characteristics from pedotransfer functions showing the percentage moisture and the 
moisture quantity to 250mm depth 

Sandy Loam % moisture 250mm 

Saturation (0 kPa) 44.6 111.5 
Field Capacity (10 kPa) 38.2 95.5 
Wilting Point (1500 kPa) 10.4 26 
Available Water (FC – WP) 27.8 69.5 

 

 Radiation 

The flux tower also measured daily radiation in MJ m2, this radiation data is used to provide 

context for the relationship between temperature, radiation, ecosystem respiration and leaf 

area index, to investigate whether the offset shown between model output and observations 

can be explained by natural environmental factors.  

 Leaf Area Index 

Leaf Area Index (LAI) was measured at the field site (plot 13, Figure 4.3) but only during the 

year 2006 on 19 dates across the year, this data is used to investigate the relationship 

between temperature, radiation and plant growth, to identify the dominant drivers of 

growth and whether natural factors account for the offset between measured and modelled 

data.   

 Results and Discussion 

The ECOSSE model was initialized using the meteorological, soil and management data 

outlined above, the results were analysed, and discrepancies investigated.  

 Model Evaluation 

Model output and partitioned Rh 2004-2006 are shown with chamber data from 2004 in 

Figure 4.9. A clear discrepancy exists between model output and Rh over the 3 years. 

Modelled fluxes peak later than partitioned Rh, and peaks are smaller in magnitude and 

duration in all years. Chamber data peaks are higher than both modelled output and Rh, and 

the temporal signal of the chamber data is not matched by the model output, which appears 

to be suppressed in the earlier part of 2004, throughout all of 2005, and during 2006 also.  

Dondini et al. (2017) suggest that since ECOSSE simulates GHG fluxes from the soil layers 
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defined by the user, whereas the flux data represents fluxes from the entire soil profile, 

model output will therefore fall below the estimated Rh.  

 

Figure 4.9: ECOSSE model simulated CO2 output, Flux tower partitioned Rh and chamber data partitioned at 47% 

 Cumulative Fluxes 

As the model fails to replicate the seasonal pattern of observations, it is difficult to discern 

its ability to estimate fluxes. Therefore Figure 4.10 shows annual accumulations of 

partitioned Rh and ECOSSE simulated Rh, where the model closely replicates fluxes in 2004, 

underestimates in 2005, and overestimates in 2006. r2 value for cumulative fluxes 

compared to cumulative observations is 0.58. Summing the fluxes over three years gives a 

total of 6495 kg C / ha for partitioned Rh, and 6069 kg / ha for ECOSSE simulated Rh, sums 

of the output are therefore very similar, though this is due to underestimations in one year 

being compensated for by overestimations in another. Underestimating of cumulative fluxes 

has also been observed by Abdalla et al. (2011) where the DNDC model is observed to 

underestimate annual emissions by 13%, while the ECOSSE model underestimates 

emissions by 6.78% over 3 years. Savage and Davidson (2003) also find trade-offs in 

temporal resolution where underestimates during some periods of CO2 flux are 

compensated for by overestimates in others.  
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Figure 4.10: Cumulative Flux tower partitioned Rh and model simulated respiration, summed on an annual basis 

When examining only chamber data against model output in 2004 (Figure 4.9), a 

suppression of the fluxes in the earlier part of the year is evident, as the model does not 

replicate the observations. To investigate the potential causes of discrepancy between the 

modelled and measured Rh, the sensitivity of the model parameters which influence the C 

flux were tested to investigate their influence on the results.  

 Parameter Analysis 

 Soil Parameters 

Changes to the bulk density parameter in the typical range of 1.35-1.65 did not result in any 

change in the outputted CO2 flux, even when unrealistic values such as 0.5 or 2 were used. 

Changes to soil pH also had no effect, even using unrealistic values from 2-10. Changes to 

the soil structure by adjusting sand and clay contents up to 50% in the input file also had no 

effect.  

 Crop Parameters 

To investigate the impact of different crop types on soil respiration and simulated soil 

water, multiple different crops were specified in the ECOSSE input files, as well as a test-

case where the model simulated respiration when no crops were present. Both water and 

respiration were investigated due to the impact of the water modifier, which limits 

respiration when soils are too dry or too wet. Running the model with no crop cover impacts 

the CO2 output, there is a much lower C flux as the soil is assumed to be bare, meaning there 

are no plant inputs to the soil providing substrate and stimulus for the microbial activity 
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belowground, meaning the breakdown and release of carbon is not being stimulated (Figure 

4.11). 

 

Figure 4.11: ECOSSE model simulated respiration when crops are present (Crop) and absent (No Crop) 

To assess the influence of crop cover, various crop types were selected to determine their 

influence on the simulated fluxes. The crop types selected were Winter Wheat, Potatoes and 

Spring Cabbage, chosen for their different demands on water and varying inputs to the soil. 

Changing from Spring Barley to other crop types impacted the magnitude of the CO2 flux 

(Figure 4.12) but does not affect the timing of the peaks.  
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Figure 4.12: ECOSSE model simulated respiration for various crops 

Investigating the impact of crop cover on model simulated water to 25cm showed values 

remaining relatively static and close to the value initially inputted over the period (~50 mm 

/ 25cm), yet when crops are included during the growing season the available water 

declines to 0 in every year, meaning the soil has dried out and respiration has effectively 

been inhibited (Figure 4.13). Consequently, the water parameters were assessed. 

 

Figure 4.13: ECOSSE model simulated water to 25cm when crops are present (Crop) and absent (No Crop)  
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 Water 

The impact of the water modifier was first investigated by examining the ‘Available Water’ 

parameter, which is inputted to the model as 69.5 mm/0-25cm estimated from soil 

characteristics after Saxton and Rawls (2006). Changes to the available water (AW) input 

parameter of the model were found to impact the timing, but not the magnitude of CO2 

fluxes, while changes to water available at saturation and water content at wilting point 

have no apparent impact on simulated CO2. Figure 4.14 illustrates the ECOSSE model output 

with the range of ten experimental runs using AW values from 0-110 mm (20-110mm are 

the wilting point to saturation for this soil – Table 4.4, while values below 20 were used to 

test the model sensitivity to unrealistic values), the figure also shows the 5 and 95% 

confidence intervals around these experiments. 

 

Figure 4.14: ECOSSE model sensitivity to available water (AW) with mean values displayed as a solid black line and 
grey shading indicating the 5 and 95% confidence intervals. 

The values underlying Figure 4.14 show the same CO2 output is obtained from using AW 

values of 0, 10, 20mm, while there is variation when using AW values between 30 and 100. 

To further investigate the processes occurring in the model the outputted available water 

in each 5cm layer was summed to the 25cm layer (Figure 4.15) which shows that no matter 

what available water is inputted, drainage within the model reduces available water to zero 

each year, likely having an inhibiting effect on the CO2 output as the soil moves into a 

drought state. Increasing the initial available water value does have the effect of changing 

the timing of when the soil moves into a drought state, but not the occurrence of the drought, 

though it does impact the resulting CO2 fluxes.   
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Figure 4.15: Sensitivity of available water (mm/ 25cm) outputted by the model 

Adjustments to the water parameters ‘water table depth at start’, ‘water content at 

saturation’ and ‘water content at wilting point’ were performed to investigate their 

influence on the fluxes, and ranges from 0-150 for water table depth, 10-100 for saturation 

and 10-100 for wilting point provided little to no change in the resulting CO2 flux. When 

specified in the site details input file water table depth changes had no effect, when altered 

in the management file there was a slight change in the CO2 output for values between 10-

70cm, after which values above 50 yielded the same results (Figure 4.16). Similarly, some 

change is evident when adjusting water available at saturation, but the change is minimal 

(Figure 4.17).  



98 
 

 

Figure 4.16: Simulated respiration from a range of Water Table Depth (WTD) values inputted into the model 

 

Figure 4.17: Simulated respiration from a range of Water Available at Saturation (WAS) values inputted into the 
model 

As modifying the available water parameter in the model was found to have no influence on 

the resultant CO2 fluxes, adjustments to clay content were performed to investigate the 

effects of soil structure on drainage. Sensitivity testing of both clay and sand content in the 
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soil yielded no change in the excessive drainage or CO2 output of the model, changes to the 

‘drainage class’ of the soil also showed no change. As this parameter assessment did not 

account for the discrepancy, potential natural drivers of the apparent offset were examined. 

 Radiation and Leaf Area Index 

Liu et al. (2006) previously found a strong correlation between soil CO2 efflux and the daily 

variation of photosynthetically active radiation (PAR). Figure 4.9 shows a clear offset 

between chamber, Rh and ECOSSE modelled data, to investigate this, potential natural 

drivers of this offset were investigated to determine whether temperature and therefore 

the temperature modifier are suitable indicators for plant growth and consequently Rs. The 

seasonality of Reco is dominated by above ground plant respiration (Barr et al. 2004; 

Matteucci et al. 2015), in turn reflecting the seasonal growth of plants. Hence, any 

partitioning of Reco to derive Rh will ultimately reflect this seasonality. As Rh variability in 

ECOSSE is primarily influenced / modified by temperature, an offset in model simulated Rh 

will result. The offset in timing between radiation and temperature at the site is not enough 

to account for the difference between the model simulated and measured values of Rh seen 

in Figure 4.9 (Section 4.4.1).  Radiation and leaf area index (LAI) data were included in this 

analysis to investigate the drivers of ecosystem processes and any potential insights this 

may provide. Figure 4.18 illustrates these variables along with temperature and ecosystem 

respiration where radiation and Reco correspond closely to one another, as does leaf area 

index, to be expected as the main driver of plant growth is solar radiation (specifically the 

region between 0.4 and 0.7 μm). There is a slight offset evident between radiation and 

temperature, as radiation peaks earlier each year than temperature does. On investigation, 

a temporal offset is evident between the timing of peak radiation and temperature at Oak 

Park, with leaf area index, here used as a proxy for plant growth, more closely 

corresponding with radiation (Figure 4.18). However, this offset is not enough to account 

for the significant discrepancy between the observed data and model simulated Rs. 
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Figure 4.18: Radiation, Reco, temperature (2004-2006) and leaf area index (LAI) (2006) measured at the site.  

 Conclusion 

Changes to the input parameters of the ECOSSE model including soil structure (sand, silt 

and clay content) and changes to bulk density did not impact CO2 fluxes, indicating the 

model is not sensitive to changes in these parameters. The impact of crop cover on available 

water is clear from Figure 4.13 where running the model with no crop cover meant the soil 

did not dry out nearly as much as when a crop was present. The CO2 flux was inhibited when 

no crops were present also, presumably due to the lack of priming and belowground activity 

associated with plant and root growth. Modelled respiration is clearly responsive to changes 

in the cropping regime, indicating that the crop modifier is functioning as it should. 

Changing crop types had a significant impact on the magnitude of CO2 fluxes, but not the 

timing, again indicating that alterations in the crop file do not account for the seemingly 

suppressed fluxes when compared to chamber measurements in 2004 (Figure 4.12). 

Natural factors do create an offset between plant growth and temperature, as plant growth 

is primarily driven by radiation, but this offset does not account for the larger discrepancy.   

From examining the model output against the observed data, the model is not able to 

replicate the CO2 flux from either the flux tower or chamber data. Changes to the available 

water inputs over different ranges did produce some changes in the modelled CO2 output, 

but these changes do not provide a significant enough change to explain the discrepancy 

between measured and modelled data. Interestingly, when the AW values are between 0-30 
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the resulting CO2 output is the same, one would assume values this low would inhibit the 

model’s CO2 simulation, but this does not appear to be the case. When examined alongside 

the water depth the simulations show identical responses throughout the year with 

different magnitudes depending on AW specified at initialization, in all cases the water 

available to the crop declines to zero each year, inhibiting the C flux (Figure 4.15). As 

Richards et al. (2016) highlight, the ECOSSE model uses water table depth and available 

water at saturation data to calculate the restriction to drainage, and adjustments to these 

parameters yielded different results (Figures 4.16 & 4.17) with no significant change in 

output. Investigating radiation and temperature (Figure 4.18) showed natural drivers do 

cause a slight offset, but not enough to account for that observed in 2004.  

In summary, ECOSSE has been previously employed in Ireland and has successfully 

simulated soil respiration when compared to partitioned ecosystem respiration (Khalil et 

al., 2013). Attempting to run the model for the same site using similar parameters to drive 

the model resulted in outputs which did not replicate the previous study. Investigating and 

testing the parameters which influence the modelled soil carbon flux showed some change 

in outputs, but nothing which rectified the discrepancy between modelled and measured 

values. Though the temporal simulation of respiration is incorrect, the cumulative fluxes 

show that underestimations in some periods can counteract overestimations in others 

(similar to Savage and Davidson (2003)), indicating that total sums of outputs from the 

model may be reasonable over longer time periods. As changing the model inputs and 

parameters which are the dominant influences on the CO2 flux do not correct the 

discrepancy between simulations and observations, further investigation of the model and 

its handling of decomposition processes is warranted.  
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 Simulating Soil Carbon Fluxes at an Irish Arable Site: 

Modifier Assessment 

The results of the previous chapter motivated further investigation of the ECOSSE model, to 

identify potential sources of the discrepancy between measured and simulated soil 

respiration values. As changing the model parameters did not account for the discrepancy 

between simulated and observed respiration (Chapter 4), this chapter will investigate the 

modifiers underlying the model. The chapter presents a background on the importance of 

conducting this investigation on the ECOSSE model, along with results from testing the 

modifiers, and recommendations for going forward. A version of this work has been 

published at the following reference: 

Flattery, P., Fealy, R., Fealy, R.M., Lanigan, G., Green, S. (2018) Simulation of soil carbon efflux 

from an arable soil using the ECOSSE model: Need for an improved model evaluation 

framework? Science of The Total Environment. 622–623, 1241–1249. 

 Introduction 

Further investigation of the ECOSSE model is warranted due to the outcomes from chapter 

4, where the ECOSSE model was initialized using available measurements, parameters and 

variables derived from observed values and evaluated against Rh, derived as a proportion 

of Reco. However, due to concerns over the methods used to estimate Reco, additional 

sources of data were required to investigate the modelled fluxes. In this chapter the model 

was also evaluated against data obtained from a separate soil chamber experiment at a 

nearby field, results from which overlapped in time with the model simulations. Following 

the evaluation of model parameters in the previous chapter, the influence of the individual 

temperature, moisture, crop cover and soil pH modifiers will be investigated in this chapter. 

This research seeks to contribute to the existing, growing, literature on the evaluation of 

ECOSSE, but highlights a potential area for model improvement.  

 Data and Methods 

 Site Description 

The experimental site used in this study is an arable field located at the Teagasc Oak Park 

Research Centre, Co. Carlow, Ireland, for further details see Section 4.3.1. The model was 

initialized using the same input data as the previous chapter. To investigate the influence of 

the various modifiers, additional evaluation data was required and is outlined below.  
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 Soil Moisture  

Volumetric soil water content (SWC) (%) measurements at the flux tower were available 

for the period 2004-2006, taken at the same location as the flux tower was positioned, 

making them highly representative of the site. The SWC data obtained from a previous study 

(Davis et al., 2010) was measured using a CS616 Water Content Reflectometer (Campbell 

Scientific) to a depth of 20 cm. The measured Soil Water Content (SWC) in the field ranged 

from 3.92% to 27.14% with a mean of 16.95% over the period of measurement. As the SWC 

was measured at a 20cm depth, for comparison with the ECOSSE model which requires 

water content to be specified to 25cm, the SWC volume percentage was estimated to a depth 

of 25 cm and converted to mm. Field experiments indicate that volumetric water content at 

relatively shallow depths does not vary greatly (Qiu et al., 2001;  Quesada et al., 2004; 

Tromp-van Meerveld and McDonnell, 2006; Martin et al., 2012), indicating that this method 

is appropriate. The derived SWC ranged in values from 9.8 to 67.85 mm, with an average of 

42.25 and median of 45.2 mm over the period of measurement.  

The ECOSSE water modifier (Equation 4.2) was applied to the model simulated available 

water (AW), outputted by the model for each 5 cm soil layer. For the purposes of this 

evaluation, the water modifier was applied to the simulated available water, accumulated 

over each 5 cm layer to a depth of 25 cm. While the soil depth in the ECOSSE model 

simulation was set to a depth of 45 cm, the dominant soil efflux typically arises from the 

uppermost layers - SUNDIAL allocates 80% of SOM to the 0-25cm layers (Bradbury et al., 

1993), and for simplification, only the AW accumulation to 25 cm was used. Also, the 

selection of this depth allowed for a direct comparison with soil water content derived from 

measurements. 

The Oak Park site is on a well-drained sandy soil, Figure 5.1 shows the indicative soil 

drainage map of Ireland illustrating the different drainage capacities of all Irish soils. Details 

of categories and their methods of calculation are outlined in Creamer et al. (2016).  
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Figure 5.1: Indicative Soil Drainage Map of Ireland showing drainage capacities of different Irish soils (Creamer et 
al., 2006) with the approximate location of the Oak Park site illustrated as a black circle.  
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 ESA Soil Moisture 

In addition to soil moisture measured at the flux tower, soil moisture data from the 

European Space Agency Climate Change Initiative (ESA CCI) was used as another test of soil 

moisture. This data comes from satellites which use active and passive microwave sensors 

and covers the period from 1980 to the present day and is available at a spatial resolution 

of 0.25 degrees. Potential errors in ESA soil moisture data can arise from sensors having 

different wavelengths and having different sensitivities to vegetation and soil penetration 

depths, from orbital issues which can impact backscatter strength, from topography giving 

erroneous readings, and from land-surface issues such as building cover and snow cover 

which obstruct soil moisture information (ESA, 2017). The data was downloaded from the 

ESA website and a grid box co-located to the Oak Park site was extracted.  

 Soil Respiration Simulation 

The ECOSSE model and input requirements have been extensively described elsewhere 

(Smith et al., 2010a; Dondini et al., 2016b; Dondini et al., 2017; and the previous chapter of 

this thesis). Although ECOSSE was originally developed for organic soils, it has been widely 

applied and evaluated on mineral soils (Bell et al. 2011; Khalil et al. 2013; Dondini et al. 

2016a; Dondini et al., 2016b; Dondini et al., 2017; Zimmermann et al., 2018) to varying 

degrees of success. In common with several similar models, ECOSSE describes the 

decomposition process using first order rate equations based on temperature, moisture, 

crop cover and soil pH (Dondini et al., 2017). These ECOSSE modifiers are outlined in the 

previous chapter, additional empirical formulations which relate the relevant variables to 

soil respiration are outlined below as they are subsequently employed.  

 Soil Temperature 

In the absence of soil moisture limitations, the relationship between soil respiration and 

temperature is generally considered to be positive, with colder soils inhibiting microbial 

activity and CO2 generation (Raich and Schlesinger, 1992; Lloyd and Taylor, 1994). 

However, the determination of the exact relationship remains challenging (Lloyd and 

Taylor, 1994). Consequently, numerous empirically based formulations relating soil 

respiration to either soil or air temperature have been proposed. In this study several 

selected temperature modifiers (outlined below and in Section 3.3.2) were applied to the 

observed data to compare against the ECOSSE modifier.  

Based on analysis of data from a range of different ecosystems and soil temperatures, Lloyd 

and Tylor (1994) derived a simplified expression (Arrhenius type expression) for soil 
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respiration rate based on temperature, at a standardized temperature of 10°C as shown in 

Equation 5.1: 

   𝑅𝑆 = 𝑅10exp (308.56 (
1

56.02
−

1

𝑇−𝑇0
))                   Equation 5.1 

where R10 is the respiration rate at 10°C, T is air temperature and T0 is a temperature 

between T and 0 K. Lloyd and Tylor (1994) suggest a value for T0 of 227.13 K, which 

provided an optimized fit to the observational data employed in their analysis. Jacobs et al. 

(2007) provide an alternative formulation, originally developed for grasslands, again 

derived from a simple Arrhenius type expression and includes a correction to modify soil 

respiration for conditions of soil water stress, as shown in Equation 5.2:  

  𝑅𝑆 = 𝑅10(1 − 𝑓(𝑤)) exp [(
𝐸0

283.15𝑅∗
) (1 −

283.15

𝑇𝑠𝑜𝑖𝑙+273.15
)]                  Equation 5.2 

Where, 𝑓(𝑤) = 𝐶
𝑤𝑚𝑎𝑥

𝑤𝑠𝑜𝑖𝑙+𝑤𝑚𝑖𝑛
 

where E0 is the activation energy (kJ kmol-1), R* (kJ kmol-1 K-1) is the universal gas constant 

and Tsoil is temperature in the first soil layer, and f(w) is a function to modify soil respiration 

under conditions of soil water stress, wmax and wmin are reference soil water content values 

of 0.55 and 0.005, respectively.  

The ECOSSE temperature modifier (inherited from RothC) is outlined in Section 4.2.1.1 of 

this thesis. 

 Soil Moisture 

There is a complex relationship between soil moisture and microbial respiration within soil 

(Reichstein and Beer, 2008); major factors affecting the rate of respiration include soil 

water content, substrate availability and time (Cook and Orchard, 2008) all of which vary 

with soil water content. Models typically simplify these interactions by using rate modifying 

factors. For example, the RothC model (Coleman and Jenkinson, 1996) which ECOSSE 

inherits some characteristics from, employs a modifying factor (b) for soil respiration due 

to soil moisture based on estimated soil moisture deficits (SMD), derived from rainfall and 

potential evapotranspiration (PE) data (Coleman and Jenkinson, 2014) as shown in 

Equation 5.3: 

If accumulated (acc) SMD < 0.444 max SMD, 

b =1. 

Otherwise,   
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𝑏 = 0.2 + (1.0 − 0.2) ∗  
max 𝑆𝑀𝐷 − 𝑎𝑐𝑐 𝑆𝑀𝐷

𝑚𝑎𝑥𝑆𝑀𝐷 − 0.444 max 𝑆𝑀𝐷
                    Equation 5.3 

Once a soil dries beyond a soil moisture deficit threshold, respiration becomes increasingly 

inhibited until wilting point, after which the modifier is set to 0.2. The ECOSSE water 

modifier has its origins in the SUNDIAL model and is outlined in Section 4.2.1.2. 

 Vegetation Cover & pH 

The effect of vegetation cover and pH in the ECOSSE model is outlined in Sections 4.2.1.3 

and 4.2.1.4. 

 Results & Discussion 

Soil chamber measurements for 2004 were used to compare to the ECOSSE model simulated 

Rh, as chamber measurements are considered more reliable than ecosystem respiration 

derived estimates (Dondini et al., 2017) (Figure 5.2). It was previously shown that the model 

simulated values did not compare to the Rh partitioned data across the simulated years 

2004-2006. However, from Figure 5.2, the model simulated Rh values appear much closer 

to the CO2 soil chamber measurements prior to April and after August, indicating that the 

model is capturing a component of the measured soil respiration. The model simulated 

output does not replicate the measured soil chamber values during the plant growing 

season, from April to August (crop sowing date: 25 March; crop harvest date: 25 August).  

 

Figure 5.2: Comparison between model simulated Rh, Rh partitioned using DNDC and measured soil respiration 
from the soil chamber experiment for 2004, partitioned at 47%. 
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To investigate this, the modifier equations outlined in Section 4.2.1 were applied to the 

meteorological data at the site to investigate potential sources of error in the timing and 

magnitude of the ECOSSE simulated values.  

 Temperature Modifier 

For comparison, the comparable component expressions from Equation 5.1 (Lloyd and 

Taylor, 1994) and Equation 5.2 (Jacobs et al., 2007) were employed along with the ECOSSE 

temperature modifier (Equation 4.1) (Smith et al., 2010a) to simulate soil respiration at the 

site. Figure 5.3 shows the simulated soil respiration response to temperature based on each 

of these methods, which all produce results positively correlated with the measured soil 

chamber data (Spearman’s Rho of 0.848 for each, significant at the 0.01 level). Despite the 

Jacobs et al. (2007) equation being derived for grasslands, the outcome is consistent with 

both the ECOSSE and Lloyd and Taylor expressions. 

 

Figure 5.3: Temperature modifiers (coloured lines), chamber data (dots) and model output (solid black line) for 
2004. 

 Water Modifier 

The model simulated AW and consequently, the water modifier (mw) has a significant 

impact on the simulated CO2 fluxes (Figure 5.4); results from applying both the temperature 

and water modifier closely replicate the ECOSSE model simulated values (r2 = 0.78), 

indicating the importance of model simulated soil water content, and the effect of the water 

modifier.  
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Figure 5.4: ECOSSE modifiers applied as follows, temperature (mt), temperature & water (mt, mw), temperature, 
water, crop and pH (mt, mw,mcrop, mpH), and ECOSSE model simulated soil respiration. 

 Crop and pH Modifiers 

Finally, the crop (mcrop) and pH (mpH) modifiers were applied. The crop modifier follows 

Jenkinson, (1977) and applies a rate of 0.6 when the crop is growing, and 1 when the crop 

is absent. This acts to further reduce the CO2 efflux during the growing season; but, in spite 

of the threshold value applied (i.e. 0.6) its effect is proportionately small due to the previous 

effect of the water modifier. The addition of the crop modifier improves the correlation 

between actual model output and the reconstructed model output presented here, with r2 = 

0.88. The modifier of 0.6 is arguably an arbitrary one, future work could examine the 

potential for amplified respiration resulting from increased root growth and microbial 

activity as plants grow. 

As soil pH is near neutral (pH ~7.3) at the site, the modifier is assumed to be 1 for well 

managed arable soils, similar to RothC and SUNDIAL (Coleman and Jenkinson, 1996; 

Bradbury et al. 1993), and thus had no impact on the calculated soil efflux. 

 Comparison with Measured SWC 

As a combination of the ECOSSE simulated AW and water modifier were found to have the 

largest impact on the simulated soil efflux, the model simulated AW was initially compared 

to the measured soil water content (volumetric % converted to mm over 25cm depth) 

(Figure 5.5). While the ECOSSE model appears to capture the timing and duration of soil 
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drying, the model overestimates the magnitude. This is particularly evident in 2004, where 

the measured SWCs remain high (no water stress), but the model simulated AW indicates 

complete drying of the soil layers to 25 cm (water stress). During 2005 and 2006, the 

measured SWCs indicate drying of the soil layers, but the model simulated AW again 

overestimates the magnitude, with complete drying of the model soil layers for ~10 weeks 

in 2005 and ~3 weeks in 2006. Drying which is not evident in the SWC observations. 

 

Figure 5.5: Soil Water Content derived for a depth to 25cm, estimated based on measured volumetric soil water 
content and ECOSSE modelled available water based on an accumulation of each 5 cm layer to a depth of 25 cm. 

As measured SWC values were available from the flux tower site, the ECOSSE water modifier 

was applied to the measured volumetric SWC extrapolated to 25 cm (mw(SWC)), rather than 

the model simulated AW. The results from this indicate a much lower suppression of soil 

respiration, relative to the ECOSSE model simulated values (Figure 5.6), particularly during 

the plant growing season. This is evidenced by lower Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) values for the empirical model using mw(SWC) compared to the 

actual ECOSSE model output; similarly, higher correlations are evident between the 

empirical model using mw(SWC) and the chamber measurements (Table 5.1). Similarly, 

using the areal values of soil moisture from ESA CCI, obtained for a location proximate to 

Oak Park, produced results consistent with observed SWC. 

Figure 5.6 illustrates the chamber data with the partitioning ranges from 27-90%, along 

with the various modifiers and data sources. The model output using observed SWC values 
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is sometimes below the lowest range of chamber measurements during the growing season, 

and is within the uncertainty bounds for the rest of the year.  

Table 5.1: Correlation (gray) MAE and RMSE (white) for ECOSSE modelled water (mt, mw, mcrop, mpH), water 
derived from observed SWC (mt, mw(SWC), mcrop, mpH) and ECOSSE model  simulated Rh (Model). 

 mt, mw, mcrop, mpH mt, mw(SWC), mcrop, mpH Model 
Chamber .154 .775* .238* 
Model .961* .515* 1 
MAEa  4.97 2.81 5.25 
RMSEa  7.21 3.78 7.38 

*Correlation is significant at the 0.01 level. 
aMAE and RMSE compare the chamber data to Rh derived from the ECOSSE modifiers, modifiers 
using SWC, and model simulated Rh.  

 

Figure 5.6: ECOSSE modifiers (mt, mw, mcrop, mpH) applied to both model simulated available water (yellow line) 
and using measured SWC (blue line). Soil chamber measurements partitioned at 47% are also plotted (black dots), 
along with the ECOSSE model simulated values (solid black line). Grey shaded areas show potential chamber 
partitioning ranges from 27-90%.  

 Weather  

As the water component of the model is shown to be deficient, it was necessary to 

investigate the factors which influence this. As changes to the soil and water model 

parameters did not significantly alter model outputs (Sections 4.4.3 and 4.4.4), adjustments 

to the input data which affect the water modifier (rainfall and evaporation) were performed 

to investigate their influence on the simulated fluxes. To keep these weather measurements 

realistic, adjustments were made based on precipitation figures from nearby stations 

(discussed in Section 4.3.2), where gaps in initial Oak Park meteorology (original) were 

infilled with nearest neighbours (Carlow NN rain), from the flux tower (flux rain), using data 
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from nearby Kilkenny as rainfall and PE inputs (Kilkenny PE and rain), using only Kilkenny 

PE and original rain from Oak Park (Kilkenny PE) and using actual evaporation calculated 

from the latent heat flux measured at the flux tower and converted to mm (Flux Tower ETa). 

Results are similar for all methods except for the flux tower ETa, which is significantly lower 

than values calculated by the model as the flux tower measurement gives actual 

evapotranspiration rather than potential evapotranspiration (Figure 5.7).  

 

Figure 5.7: Potential Evapotranspiration (PE) calculated using the Penman-Monteith method compared to actual 
evaporation recorded at the flux tower showing the significant difference between actual and potential evaporation   

Using actual evaporation derived from the flux tower measurements of latent heat (ETa) the 

fluxes are very similar to Rh partitioned, albeit with peaks later in each year (Figure 5.8). 

Lower evaporation allows for the soil to stay moist and respiration is therefore uninhibited 

throughout the growing season, giving fluxes of a similar magnitude to Rh sums. All other 

weather adjustments altered the model outputs, but not significantly, indicating that 

adjustments to the evapotranspiration inputs to the model can improve model simulations, 

and that the larger difference between potential and actual evapotranspiration, particularly 

on well-drained soils such as this, may be introducing errors to the model.   
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Figure 5.8: CO2 model output using various instances of evaporation and rainfall data, including evaporation 
recorded at the flux tower 

Comparison of the unchanged model run, the model run using observed SWC, and the model 

run using flux tower PE is shown in Figure 5.9, indicating that using actual 

evapotranspiration (recorded at the flux tower) has a similar effect on the CO2 output of the 

model as using observed SWC, though the fluxes using evaporation are slightly lower. The 

use of potential evapotranspiration (particularly the FAO standard Penman-Monteith 

formulation) may be unsuitable for running the ECOSSE model on similar well-drained sites.  

The effect of using flux tower derived ETa produces results consistent with using SWC 

observed at the flux tower, with a reduced suppression of fluxes during the growing season. 

This indicates that there are issues with the model simulation of water as respiration is 

unnecessarily inhibited compared to observations, and the water inputs to the model as PE 

causes excessive evaporation compared to ETa. When examined cumulatively, the fluxes 

using ETa from the flux tower are above the cumulative fluxes of partitioned Rh during 2004 

and 2006, and are below in 2005 (Figure 5.10). 
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Figure 5.9: Comparison of model runs using default ECOSSE parameters (black line), observed SWC (blue line), 
flux tower evapotranspiration (yellow line) shown with chamber data partitioned at 47% and ranges from 27-
90% for context.  

 

Figure 5.10: Comparison of cumulative fluxes using potential evapotranspiration (Original Model) and actual 
evapotranspiration (Flux ETa) and derived measurements (Rh Partitioned) 

These results show that the simulation of water by the ECOSSE model is not accurately 

representing soil moisture as evidenced by using observed soil water content instead of 

model simulated water. Further issues with how the ECOSSE model treats moisture are 

highlighted by the subsequent investigation of the PE model input, which shows that the 
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use of actual rather than potential evapotranspiration significantly alters the respiration 

output of the model, having a similar effect to using observed soil water content in the model 

(Figure 5.9).  

 Conclusion 

The development and application of models has a key role to play in improving our 

understanding of soil carbon science but also in informing and supporting future decisions 

on appropriate LULCC management options. However, prior to their use in decision making, 

models need to be thoroughly evaluated. The ECOSSE model has previously been widely 

applied on mineral soils, principally for grassland systems. The current study evaluated the 

model under an arable system on a free draining soil and found it was deficient in simulating 

available water. Investigating the modifiers applied by the model to input data indicates 

that the simulation of soil water in site-specific mode provides an inaccurate representation 

of SWC when compared to estimates of SWC derived from measurements, and in turn 

significantly impacts the simulation of soil respiration relative to soil chamber 

measurements. This may be because tillage systems (particularly on free-drained sandy 

soils) are highly dynamic.  

The use of observed SWC data as input to the water modifier equation clearly illustrates 

that excessive drainage of water in the model is suppressing CO2 fluxes from the soil, a trend 

not replicated in the observations. Model performance is significantly improved when using 

observed SWC data in the water modifier equation, showing a much higher correlation with 

chamber measurements than the ECOSSE modelled respiration (r2 of 0.775 vs 0.154). This 

shows that the modifier is functioning correctly, and that the issue stems from the 

simulation of water through the soil layers, as soils dry out more than in reality. This 

excessive drainage cannot be counteracted by adjusting relevant model parameters 

indicating a revision of the ECOSSE water component is needed for this model to perform 

optimally for arable systems on mineral soils. While using ECOSSE for the estimation of soil 

organic carbon sequestration from cropping systems may prove to be robust as this is often 

observed on a decadal scale based on cumulative annual fluxes, these findings have 

implications for the simulation of greenhouse gas emissions (particularly CO2 respiration 

and N2O emissions) for mineral soil-based crop systems. 

Similarly, Figure 5.9 shows the changes in simulated Rh resulting from changes in weather 

parameters, the most notable change occurs when actual evaporation is used rather than 

PE, it appears the soil stays wetter and allows for respiration to proceed uninhibited by 

drought. Even when using actual evaporation, an apparent offset between modelled and 
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measured data persists, and chamber measurements are still out of sync with ECOSSE 

modelled Rh, though magnitudes of fluxes in each year are similar.  

Zimmerman et al. (2018) assess the usefulness of the ECOSSE and other models at 

simulating N2O fluxes from Irish grassland and arable sites, and not only do they find the 

model to be less useful than previously thought, the authors were also unable to replicate 

results from previous studies (Khalil et al., 2013; Khalil et al., 2016), a similar finding to the 

present research. A potential source of uncertainty outlined by Zimmermann et al. (2018) 

is the simulation of variables such as soil water content, a finding echoed by Bell et al. (2011) 

and the present research. Unfortunately, as parameters are often estimated using 

pedotransfer functions developed in different climate and land systems than the one being 

modelled, the functions may introduce uncertainty into results that cannot be assessed due 

to lack of in-situ hydrological measurements. In the case of this study SWC values were 

recorded on site and the model’s ability to simulate SWC for this soil type was found to be 

deficient. The ECOSSE model is observed by Zimmermann et al. (2018) to perform well on 

grasslands but strongly overestimated N fluxes on arable sites, while this study shows the 

model underrepresents C fluxes at the site evaluated. Overestimation on arable sites could 

be attributed to the timing of management events and their interactions with temperature 

and moisture, though this could not be directly attributed by Zimmerman et al. (2018) due 

to the complexity of model simulation processes.  

To generalize the results; 2004 represented a year in which the observed and modelled soil 

water displayed the greatest divergence, hence the effects on soil respiration are also likely 

to be greatest. While 2004 may represent an ‘anomalous’ model year in terms of simulated 

water, such events provide an opportunity to investigate model response more fully. To 

what degree are the findings specific to the year and the case study location? At least two 

other studies have highlighted a similar model deficiency in soil water content (Bell et al., 

2011; Zimmermann et al., 2018). If these models are to provide useful guidance to inform 

mitigation strategies of future soil emissions, then they need to demonstrate a robust 

response to a broad range of meteorological conditions that could arise from changes in the 

climate system. A comprehensive framework for model evaluations is ultimately required; 

identifying a global network of sites with the requisite model input and evaluation data 

facilitating a more comprehensive inter-comparison of models. The identification of outlier 

events, such as 2004, for use in evaluations would also provide a focus to where greater 

research effort could be directed. The ultimate aim of which is to demonstrate the utility of 

these models and provide confidence in their use for informing policy.   
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Luo et al. (2016b) outline a standard of best practice to reduce biases in soil C modelling 

such that: 1. Model structures reflect real-world processes, 2. Parameters should be 

calibrated to match model outputs with observations from both pool and flux-based 

datasets and 3. External forcing conditions should accurately prescribe the environmental 

conditions that soils experience. In addition to calling for improvement of the underlying 

microbial processes that affect soil C decomposition, the use of observations to 

parameterise models is also highlighted as a key step to reduce biases in projections. 

Similarly, Tian et al (2015) recommend 1. Improvements to estimation and partitioning of 

NPP, 2. Incorporation of nutrient limitation, 3. Improve representation of litter composition, 

decay and N mineralisation by comparing model outputs to observations, 4. Inclusion of 

wetlands/peatlands and their traits, 5. Inclusion of lateral and vertical heterogeneities of 

SOC when extrapolating from small to large scale, 6. Inclusion of soil thickness so models 

can represent deep soil C dynamics at high latitudes, 7. Modelled SOC outputs should be 

compared to raw data instead of interpolated fields which are also modelled estimates. 

Experiments which combine temperature and precipitation interactions are recommended 

in order to investigate the importance of their combined interaction on soil C under future 

climate change (Wu et al., 2011), similarly Suseela et al. (2012) find complex responses 

between temperature and precipitation. Lugato et al. (2014) suggest that the most 

promising solution to the drawbacks of modelling are tier 3 approaches using sub-national 

data to calibrate and validate SOC models, ideally process based models which can be 

perturbed to assess alternative scenarios such as extremes or changes in land management. 

Jackson et al. (2017) foresee decades of research ahead in experiments, synthesis and 

modelling of SOM.   

While ECOSSE was found to underestimate emissions at the selected site, the model has 

previouslybeen evaluated on a range of soils and crop types, indicating that the model 

underestimation may be limited to well drained soils (shown in Figure 5.1) resulting from 

a larger difference between actual evapotranspiration and estimated potential 

evapotranspiration, though further studies comparing model outputs to observations are 

required to fully understand this. Zimmerman et al. (2018) find that ECOSSE outperforms 

other models at certain sites, suggesting that the model may provide useful estimates in 

regions where the simulated soil moisture is not limited. The model may therefore perform 

better on other sites, and as errors can be smoothed from moving from regional to global 

scale (Xu and Shang, 2016), similar error reduction may occur when moving from site to 

regional scale. Chapter 6 will therefore investigate the ability of a pre-release version of the 
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GlobalECCOSE model, a process-based model which functions spatially, to simulate carbon 

stocks and emissions of GHGs from Irish soils.  
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 Estimating GHG Emissions from Irish Soils: Moving from 

Site-Specific to GlobalECOSSE 

This chapter introduces the GlobalECOSSE model, which is in development with the aim of 

providing regional/spatial simulations of soil carbon stocks and GHG emissions. The data 

used to drive the model are outlined, along with the daily and monthly observations, with 

details on how gaps in data were accounted for and corrected. Results of the model runs are 

initially presented for daily and monthly site data, and regional simulations of GHG 

emissions are presented for the island of Ireland, with a focus on the cropland and grassland 

regions of the country. These modelled emissions are then discussed in the context of other 

national emissions estimates and research.  

 Introduction 

Xu and Shang (2016) argue that errors in model simulations can be reduced when moving 

from regional to global scales due to reductions in noise and time-lag effects, suggesting that 

similar upscaling from site-specific to regional scale may smooth errors produced from 

attempting to replicate the intricacies at site scale. Zhou et al. (2018) recommended that 

future SOC assessments take place at grid/regional rather than global scales, to incorporate 

more region-specific factors and uncertainties. de Vries et al. (1998) investigate the 

influence of scale on soil acidification models and find that model simplification is an 

adequate step in upscaling results from local to regional scale. Peters et al. (2010) 

recommend a combination of top-down and bottom up methods which complement one 

another to get a fuller picture of soil carbon processes. It has been suggested that the most 

promising solutions to the drawbacks of GHG modelling are tier 3 approaches which use 

sub-national data to calibrate and validate SOC models, ideally process based models which 

can be perturbed to assess alternative scenarios such as climate extremes or changes in land 

management (Lugato et al., 2014). For these reasons as well as the recommendation by 

Smith et al. (2015) that research should focus on the current state of knowledge and use 

this knowledge to make decisions, instead of focusing on what we do not know, this chapter 

will assess the ability of the ECOSSE model to scale from site to regional level to produce 

national spatial and temporal model outputs of soil GHG emissions, something which has 

never been attempted for Ireland before. This work is undertaken while recognising the 

findings of the previous chapter which highlighted issues with the simulation of water by 

the ECOSSE model. The results from modelling studies are useful even if the model itself 

may not reflect the full complexities of the soil system (Smith et al., 2015), for this reason 

the uncertainties associated with measurement and modelling are outlined explicitly in this 

thesis, and the shortcomings of the results are highlighted, so that this study can at the very 
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least provide a basis on which to build better models or to better parameterise models to 

improve results in future. It is also intended to provide a basis to examine where the 

application of such models may be useful.    

 Context 

Agriculture is responsible for ~33% of Ireland’s total national GHG emissions, significantly 

higher than the EU average of 9% (Kiely et al., 2017). This is due to Ireland’s large 

agriculture sector which employs 167,500 people, with Irish food and drink exports valued 

at €12.7 bn in 2017 (Teagasc, 2017). The implementation of an agricultural expansion 

strategy called ‘Food Harvest 2020’ has resulted in estimates of Ireland’s projected 

agricultural emissions to be revised upwards by 4% by 2020 and 7% by 2030, if existing 

measures are left unchanged, meaning Ireland will overshoot our 2030 climate change 

targets by in excess of 50 Mt CO2eq, and face significant fines (EPA, 2018b). Emissions 

reporting for agricultural land in Ireland is split into different categories, with N2O 

emissions from agricultural soils listed under agriculture, and other GHG emissions from 

cropland, grassland and wetlands listed under land-use, land-use change and forestry 

(LULUCF) (Duffy et al., 2018). Emissions from Irish agricultural soils were estimated using 

the IPCC accounting methods as 5598.85 kt CO2eq in 2016, an increase of 1.4% from the 

previous year (EPA, 2018a). 

The latest report on emissions from agricultural soils in Ireland (Duffy et al., 2018) splits 

the sector into cropland and grassland and uses the Land Parcel Information System (LPIS) 

data to designate each area. The ratio between Irish agricultural land and the total area of 

land in the country is the highest in the EU-27 at 71.5% of the entire territory (Eurostat, 

2018). Grassland is the dominant land-use category in Ireland, with the area of natural 

grassland currently around four million hectares (Teagasc, 2018). The area of cropland in 

Ireland has been in steady decline since the 1850s, with temporary increases during the 

world wars in the 20th century. Cropland area has fallen from 1,400,000 ha at its peak in 

the 1850s to under 400,000 ha in 2016. The definition of cropland has broadened since 

previous reports and is now defined as ‘those lands which have been cultivated in the 

reporting year, and those lands which are under temporary grassland, but have been 

recorded as having been also used to cultivate a crop at some time since 2000’, with no 

distinction given to crop types as it is assumed that the main factor in influencing changes 

in soil C stocks is the period under grassland, and conventional tillage practices (Duffy et al., 

2018, pp. 241).  

Soil carbon emissions in Ireland are currently calculated in a top-down manner based on 

SOC stock, with the SOC content in Irish soils determined from the soil type, and the default 
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reference carbon stocks for cold, temperate moist regions from the IPCC good practice 

guidance on LULUCF, Table 2.3, Chapter 5, Volume 4 (IPCC, 2006). The basic data source for 

soil type information is the Indicative Soils Map of Ireland (Fealy and Green, 2009), with 

plans to incorporate the Irish Soil Information System in future. Mineral soils are allocated 

to the categories of High Activity Clay (HAC), Low Activity Clay (LAC), sandy and humic 

classes, and peat soils allocated to IPCC wetlands class based on assessment of soil C stocks 

in Ireland by Tomlinson (2005). Around 98% of cropland soils are associated with LAC soils, 

with under 2% for HAC and <1% for peat soils (likely temporary grassland). For agricultural 

land on organic soils, default emission factors of 0.25 t C ha-1 yr-1 for managed grassland 

soils and 1 t C ha-1 yr-1 for cropland are used for cold temperate climatic regions, however it 

is assumed that no cultivation occurs on Irish organic soils (Duffy et al., 2018). Table 6.1 

outlines the proportions of soils in each category and their associated SOC contents 

calculated using the IPCC tier 1 approach to reporting GHG emissions.  

Table 6.1: Soil Class Coverage and SOC content for Irish soil types (adapted from Duffy et al. 2018). 

 
GSM Soil Association 

IPCC Soil Class Proportion of 
soil association 
area in Ireland 

HAC LAC Sandy Peaty/Humic Wetlands 

Basin Peat     0.34 0.06 
Brown Earth  0.19    0.13 
Brown Podzolic  0.21    0.15 
Gley  0.30   0.02 0.22 
Gley Brown Podzolic  0.30    0.21 
Lithosol   1.00 0.22  0.04 
Lowland Blanket Peat     0.31 0.05 
Podzol    0.78  0.08 
Renzinas 1.00     0.01 
Upland Blanket Peat     0.33 0.06 
Proportion of IPCC 
Soil class in Area of 
Ireland 

0.01 0.71 0.01 0.10 0.17  

SOCref (t C/ha) 95 85 71 115 NA  

Irish emissions are calculated based on activity data and country specific emission factors, 

under the Tier-1 methodology cropland remaining cropland and grassland remaining 

grassland are assumed to have zero net emissions where land-management practices are 

well established (Duffy et al., 2018). In 2016 (latest available year) Irish cropland is 

therefore estimated to be a sink of -131.93 kt CO2eq with an uncertainty of ± 72.15 kt CO2eq, 

highlighting the significant issues with tier 1 simulations. Uncertainties in estimating 

cropland emissions are highlighted by Duffy et al. (2018) who recalculate emissions based 

on refining the LPIS data and find a reduction in emissions of 77% from 1990 to 2015, 

cropland is a source of emissions during some years, and a sink in others. This fluctuation 
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occurs as carbon uptake is higher when croplands are designated as temporary grasslands, 

and lower when under tillage.  

Grassland is the dominant land-use category in Ireland, and though the IPCC (2006) 

guidelines assume that grassland remaining grassland has zero change in biomass C stocks, 

the soil C stocks use the same designations as Table 6.1 above, where C quantity is 

established using default reference SOC stocks. Essentially grassland remaining grassland 

is assumed to be a carbon sink, or at least “not a source” of emissions (Duffy et al., 2018). 

The main change to grasslands which results in a decrease in soil carbon and the release of 

GHGs are C and CH4 losses resulting from draining organic soils, and the conversion of 

grassland not in use to rough grazing. Grassland as a whole is estimated to be a source of 

6889.15 kt CO2eq in 2016 with uncertainty of ± 90.83 kt CO2eq (Duffy et al., 2018), though 

much of this comes from drainage of organic grassland soils. Natural unmanaged wetlands 

and peatlands are estimated to be sources of 2061.28 kt CO2eq with uncertainty of ± 101.45 

kt CO2eq (ibid). 

 GlobalECOSSE 

Spatial simulations using ECOSSE have been undertaken in the past (Richards et al., 2016; 

Dondini et al., 2016) using the ‘limited data’ mode of the ECOSSE model. GlobalECOSSE is a 

new spatial version of the ECOSSE model which is currently undergoing evaluation and has 

not been fully released to the modelling community. The model allows for the ‘limited data’ 

mode of the ECOSSE model to be employed at multiple locations using input data derived 

from spatial datasets, and collates the results of model runs producing outputs for regions, 

countries or continents. The following analysis serves as a further part of the ECOSSE 

evaluation procedure, parallel to the analysis of the site-specific model. As GlobalECOSSE is 

a regional model it runs at a different temporal and spatial resolution in contrast to the site-

specific version, ingesting monthly spatial data to produce monthly outputs for specified 

regions (in this case Ireland). GlobalECOSSE also has the advantage that it simulates outputs 

for multiple GHGs and therefore could facilitate the calculation of total GHG fluxes. The 

model has not been evaluated elsewhere, this thesis serves as the first test of the model to 

simulate GHG emissions.   

The move from site-specific to national scale requires less, and lower resolution, input data 

in order to simulate fluxes. In the initial study (previous chapters) the model is 

parameterised using daily temperature, precipitation and potential evapotranspiration, 

along with site-specific soil and management data with information on crop type, sow date, 

fertilizer application etc., whereas the regional model uses gridded temperature and 
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precipitation data to calculate PE using the Thornthwaite method (Thornthwaite, 1948), 

and utilises soil data from the Harmonised World Soil Database v2.0 (HWSD) to calculate 

soil C content. Management data are not inputted into the regional model, though it is 

possible to change the land-use type to assess the potential changes in GHGs to investigate. 

Land-use masks can also be created, and the model can run selectively at these locations. 

For instance the limited-data version of the model has been employed spatially in the past, 

the impact of introducing bioenergy crops (Richards et al., 2016), short rotation forestry 

(Dondini et al., 2016a; Dondini et al., 2015), or the impact of a reduction in fertilizer use 

(Abdalla et al., 2016). Xu and Shang (2016) recommend models be built on annual rather 

than monthly time-steps to reduce noise and time-lag effects, it is reasonable to assume that 

this reduction of noise would also happen in the move from daily to monthly models also.  

It is recognised that process-based models do not satisfactorily simulate the seasonal 

patterns of greenhouse gas emissions, even in cases where the sum of seasonal emissions 

compares well to observations, thought to be due to the uneven spatial distribution of input 

variables as spatial data inputted into models is typically averaged over surfaces, meaning 

the model simulates an averaged pattern while observations are taken at a much smaller, 

specific area (Cai et al., 2003). For this reason multiple studies report cumulative emissions 

when validating models by comparing to cumulative observations (Abdalla et al., 2010; 

Abdalla et al., 2011; Yamulki et al., 2013). Cumulative fluxes can be calculated by summing 

the daily output of a model (Cai et al., 2003), by summing the products of weekly mean flux 

and summing the number of days between samples (Deng et al., 2010), or using 

interpolation (Hinton et al., 2015) though different methods of interpolation can introduce 

uncertainty (Gana et al., 2018).  

Initially, the ability of the ECOSSE model to move from site to regional scale using different 

data requirements will be assessed, then emissions of different greenhouse gases and CO2 

equivalents for Ireland will be presented.  

 Data & Methods 

 Chamber Data  

Two sets of chamber flux data for this area were available, one chamber for the year 2004 

which is outlined in Section 4.3.4, and another from a nearby field (Site 2) where 

measurements were taken from the beginning of 2003 until mid-2005, and the crop type 

was the same (spring barley). The site is a well-drained sandy loam soil with bulk density 

between 1.36 and 1.5, pH of 6.8 to 7.3, and organic carbon content 1.6-1.9%, (16-19 g C kg).  

The data from a nearby site is included here to provide context for the other chamber data, 
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to ensure measurements are on the same scale as one another. Observations were taken 

sporadically, but at least once a month within the time period for each site. In order to scale 

the data, the interpolate function from Python’s pandas library (pandas.interpolate) was 

used to fill the gaps between the datapoints, a method which produced results analogous to 

using an average of the measurements in a month, multiplied by the days between 

measurements in that month.   

As previously discussed, the potential contribution of Rh to Rs ranges from 3% to 99% in 

the literature across biomes, land-use types and seasons, and the values taken from 

temperate arable and grassland land-uses range from 27 to 90% (Subke et al., 2006), 

highlighting the complexity and heterogeneity of the flux partitioning problem. Daily 

chamber flux partitioning is discussed in Section 4.3.4.1, where the chamber fluxes were 

partitioned using the average Rh contribution from a nearby study (Kumar Jogi, 2007), 

giving a fraction of 47%. Figure 6.1 presents the ranges of 27-90% as shaded areas behind 

the line graphs, and illustrate the 47% partitioning from the nearby field (Kumar Chamber), 

the ranges indicate a potential Rh of between 350 and 1500 kg C ha-1 for the month of July, 

illustrating the significance of the choice of partitioning option, and the associated 

uncertainties.  

 

Figure 6.1: Oak Park Chamber (Chamber) and nearby chamber (Kumar Chamber) partitioning ranges from 27-
90% (shaded areas) and chambers partitioned at 47% (black and blue lines) based on Kumar Jogi, 2007 
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 Flux Data 

The flux data partitioning is outlined fully in Section 4.3.3, to summarise; Reco was derived 

from NEE measured at the flux tower, and partitioned into Rh by running DNDC using the 

same site parameters and partitioning the data based on the DNDC fraction of heterotrophic 

respiration.   

 Gridded Climate Surfaces 

EObs data was employed for the current analysis, it represents a European land-only daily 

high-resolution gridded dataset with data for precipitation and temperature from 1950-

2006 (Haylock et al., 2008), with the latest version (v17.0) providing updated data to 

December 2017 on a 0.25° regular grid. Daily data were transformed to monthly averages 

for temperature and monthly sums for precipitation using Climate Data Operators (CDO) 

commands in a Linux environment (CDO, 2018).  

 HWSD Data 

The Harmonised World Soil Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) 

combines the European Soil Database (ESDB), the 1:1 million soil map of China, regional 

SOTER studies (SOTWIS Database) and the Soil Map of the World in a global effort to 

harmonise the disparate collections of soil data that are available. The data are available at 

30 arc second resolution (~1km grid scale), giving 21,600 rows and 43,200 columns of data 

covering 221 million grid cells over the Earth’s land. From these grid cells 16,000 soil 

mapping units (MU_Globals) are all linked to harmonised attribute data in the form of a MS 

Access database containing information on organic carbon content, pH, water storage 

capacity, soil depth, cation exchange capacity, clay percentage, exchangeable nutrients, lime 

and gypsum content, sodium exchange percentage, salinity, textural class and granulometry 

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012).  

 Land-Use Data 

The CORINE land-cover map was used to determine areas of grassland and cropland by 

merging the categories of Non-Irrigated Land and Complex Cultivation Patterns for cropland 

and Pastures and Natural Grassland for grassland using ArcGIS and creating raster and point 

shapefiles for each land-use, then linking these based on latitude and longitude to the MU 

Globals in the HWSD database (raster shapefiles shown in Figure 6.2). The arable shapefile 

covered 11.3% of total land area, while grassland made up 72% of total land area. These are 

then converted to csv files which restrict the model to running at those locations. Though 

there are issues with the CORINE land-cover dataset, particularly with the classification of 

sparse vegetation, it is estimated that agricultural classes have a high-level of reliability 

(EEA, 2006). Though these issues may result in some erroneous classifications, it is chosen 
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here for its accuracy on agricultural land, and broad coverage and applicability to multiple 

countries.  

 

Figure 6.2: Irish Cropland (blue) and Grassland (green) locations from the CORINE land-cover dataset 
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The model can then determine which soil type is associated with each land-use and produce 

outputs for that land-use only. Plant inputs are determined from RothC.  

 SoilR 

In order to evaluate the daily and monthly versions of the ECOSSE model and to investigate 

the model’s ability to scale-up temporally, the SoilR package (Sierra et al., 2012) developed 

for the R environment for statistical computing (R Development Core Team, 2011) was 

employed. The use of SoilR here is an attempt to provide an independent, albeit statistically 

based, assessment of the output from the ECOSSE model, and to investigate the scalability 

of results when moving from a daily to a monthly model. SoilR is a much simpler model than 

ECOSSE and allows for alterations to its modifiers and structure. SoilR includes the 

modifiers for the RothC model (hereafter SoilR RothC) along with a range of others, and 

allows for pool sizes and decomposition rates to be changed. SoilR was initialised using the 

climate and soil data for the Oak Park site, along with data on plant inputs to attempt to 

replicate ECOSSE. The SoilR RothC model is initialised with empty pools for DPM, RPM, BIO 

and HUM, with IOM calculated using the Falloon method (Falloon et al., 1998), and run to 

equilibrium for 500 years until the pool sizes match the observations. This was an iterative 

process and depended strongly on the amount of plant inputs. Plant inputs were set to 5.0 t 

ha yr-1 for the model spin-up, resulting in pool sizes equivalent to those found using the 

pedotransfer method, and those measured in the field. These pools sizes are outlined in 

Table 6.2 and displayed in Figure 6.3 and sum to 42.376 t ha-1, similar to the 42.888 t ha-1 

measured at the site (Flattery et al., 2018).  

The SoilR package contains a function ‘RothCModel’ which takes arguments for time, pool 

sizes, carbon inputs from plants, clay content, with a dataframe containing the temperature 

and water modifiers for each timestep, then calculates stocks for each pool per timestep, 

and the CO2 released from each pool. The RothC decomposition rates employed by SoilR are 

equivalent to those employed by both ECOSSE and GlobalECOSSE.  

Table 6.2: Pool sizes after the 500-year spin-up of the SoilR RothC model using annual inputs of 5 t C ha-1 

DPM RPM BIO HUM IOM 

0.032 6.146 0.816 31.972 3.41 
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Figure 6.3: SoilR pool sizes over time after running the model for 500 years using annual inputs of 5 t C ha-1 

After the 500-year spin-up run the model was then initialised and run on a daily timestep 

using the RothC temperature modifier (equivalent to the ECOSSE temperature modifier) 

and the Daycent water modifier (other water modifiers produced significantly different 

results, as is outlined in Section 3.3.3). Figure 6.4 shows model outputs using different water 

modifiers, including European Space Agency (ESA) soil moisture, observed SWC, and water 

calculated using the SoilR RothC model. The Daycent2 water modifier using both ESA soil 

moisture and observed SWC produced identical output (the modifier does not dry out the 

soil). The RothC water modifier clearly has a more pronounced effect on the fluxes. Using a 

water modifier of 1 produces results with almost identical temporal signal to ESA and 

observed water, but the magnitude is slightly higher. This reinforces the findings of the 

previous chapter where the model’s treatment of water is shown to significantly alter fluxes, 

and highlights the importance of the water modifier in soil models. For the purposes of this 

analysis observed water is used for comparison with observations, and the RothC modifier 

is used in an attempt to replicate the water modifier response in ECOSSE.
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Figure 6.4: SoilR model outputs using ESA Soil Moisture data and the Daycent 2 water modifier (black dots), water simulated from weather data using the RothC modifier (RothC Water 
Modifier – red line), water observed at the flux tower and the Daycent2 water modifier (green line) and using a water modifier of 1 (blue line)  
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The model was then rerun, but on a monthly timestep. In order to produce simulations that 

replicate the ECOSSE model. For comparison, a crop modifier of 0.6 was applied to the SoilR 

output for the growing season months of March, April, May, June and July.  

 Global ECOSSE 

Global ECOSSE facilitates the running of the ECOSSE model’s limited data mode on a regional 

basis using gridded climate and soil data, and is currently in the pre-release stage of 

production. Climate data comes from the EObs dataset (Haylock et al., 2008) while soil 

characteristics are obtained from the Harmonised World Soil Database (HWSD, Wieder et 

al., 2014). The model allows for a specification of the period to use as the ‘average’ weather 

data (in this case 1971-2000), and a period for a ‘future’ run. It is also possible to create a 

land-use mask with which to run the model, which was created from the CORNIE dataset.  

In order to compare the model to observations the years 2001-2010 were chosen as 

outputs. The model generates simulation files based on the inputted temperature and 

precipitation data from EObs, and estimates PE based on the Thornthwaite method 

(Thornthwaite, 1948). The model generates simulation files which take soil data from the 

HWSD, where top and subsoil organic carbon percentage weight is converted to kg C ha-1 

using information on bulk density. These simulation files point to files related to climate 

data (EObs in this case) where data are aggregated for each grid box on a monthly basis for 

each year, and an average for a specified period (e.g. 1970-2000). Where subsoil data is 

available, a new layer is created by the model to simulate soil carbon at depth. The model 

creates a number of input files based on lat/lon grid boxes, then uses these to run the 

ECOSSE model in limited data mode to obtain outputs for SOC, CO2, NO3 and N2O. These 

outputs are then aggregated and written to NetCDF files.  

To assess the ability of the GlobalECOSSE model to simulate soil C emissions, HWSD and 

EObs data for an areal/grid location proximate to the Oak Park site were initially used to 

run two different model executable files (model versions Agile and ELUM) and results were 

compared to observed Rh and chamber data in order to assess changes in outputs due to 

different input data. The ELUM model has been previously employed in the UK and has been 

parameterised for UK conditions, and was ultimately chosen for this analysis.  

GlobalECOSSE model parameters are set according to the values listed in Table 6.3, where 

certain sub-models can be specified or switched on and off. The model creates simulation 

files for each latitude and longitude location based on the HWSD and EObs characteristics, 

and the Model_Switches.dat file specifies the particularities of the model run for each of 

these sites. This file must be set up initially in a master folder, and is then included for each 
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lat/lon location for the multiple model runs, ensuring the model functions in the same way 

across all regions.  

Table 6.3: Setup of the Model_Switches.dat file, this file outlines how the model runs for each lat/lon area specified 
by the Global ECOSSE model  

2 Denitrification model chosen (Bradbury, 1 or NEMIS, 2) 
0 Crop model type: 0=SUNDIAL, 1=MAGEC 
2 Soil parameter model (from file, 1 or calc, 2) 
1 Methane Model 0 = off 1 = on 
2 DOC model 1 = off, 2 = on 
0 N limitation spin-up used? 0 = No, 1 =Yes 
0 Modify plant inputs according to full run using long term average weather data 
0 Modify decomposition according to full run using long term average weather data 
0 Choice of moisture rate modifier (0=ROTHC or 1=HADLEY) 
0 Choice of temperature rate modifier (0=ROTHC or 1=HADLEY) 
0 Use full equilibrium run of ECOSSE to initialise or not (0 = off, 1 = on) 

2 
Initialisation of N by assuming steady state (after Bradbury = 1) or initialisation of N by 
passing the C:N ratio of DPM and RPM (=2) 

1 

0 = pH set to neutral or passed from parameter file, 1 = pH is read in from input file and does 
not change,  2 = pH is calculated using VSD (a very simple dynamic version of the MAGIC 
model by Ed Rowe & Chris Evans, CEH, Bangor) 

0 Output full 0 = false, 1 = true 
1 Output summary 0 = false, 1 = true 

1 
Plant Input from input or estimated from Total Organic Carbon (PI input = 1, PI est from TOC 
= 2) 

 Results 

 Evaluation of SoilR and ECOSSE Daily Simulations 

Figure 6.5 presents all observations and model outputs on a daily basis for the years where 

data exists, with the nearby chamber beginning in 2003 and ending in August 2005. The Oak 

Park chamber covers the entirety of 2004 with observations taken at a frequency of 

approximately once per week or higher. Both chambers have been partitioned at 47%. 

Partitioning fluxes by 47% results in outputs of a similar scale to Rh derived from eddy 

covariance data, and model outputs. The partitioning of 47% is the average Rh contribution 

from an experiment in a nearby field with the same crop, and is considered the optimum 

partitioning method amid significant uncertainty. Also presented is the output from the 

ECOSSE site-specific model using actual evaporation calculated from the latent heat flux 

measured at the flux tower (Section 5.3.5), and SoilR daily model output using the Daycent 

2 water modifier. Though there is clear temporal variation across all variables, the 

magnitude of observations and model outputs is similar. 
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Figure 6.5: Daily observations and model outputs for Oak Park with chambers partitioned at 47%. SoilR uses the Daycent2 water modifier with observed SWC 
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 Replicating Daily ECOSSE using SoilR 

ECOSSE is a much more complex model than SoilR RothC, nevertheless the daily results are 

of a similar scale and magnitude to both the ECOSSE output and observations (Figure 6.6). 

This figure presents similar data to Figure 6.5, though the SoilR flux in this case uses the 

RothC temperature and water modifiers in an attempt to replicate ECOSSE output.   

While both site-specific ECOSSE and SoilR RothC do not accurately replicate the timing of 

fluxes from the chamber or Rh, the much simpler SoilR RothC model using similar inputs 

underestimates fluxes compared to ECOSSE in 2004, overestimates in 2005, and is similar 

during 2006, likely due to less inhibition by the water modifier compared to ECOSSE. The 

Pearson’s r value for ECOSSE and SoilR RothC for the entire period is r = 0.21. Comparing 

SoilR RothC to observations gives a correlation of r = 0.21 compared to the chamber, and r 

= 0.004 compared to Rh. Using a different water modifier (e.g. Daycent2) produces results 

which are less constrained by dry periods, and match more closely to chamber and Rh 

(Figure 6.7). Correlation values improve significantly using the Daycent2 water modifier, 

with r = 0.76 when compared to chamber, r = 0.34 compared to Rh, and r = 0.3 compared to 

ECOSSE. Both figures indicate that SoilR is reproducing ECOSSE model outputs on a similar 

scale, suggesting the outputs from the ECOSSE model are reasonable.  
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Figure 6.6: ECOSSE and SoilR outputs shown with observations for context –the chamber has been partitioned at 47%, SoilR uses RothC temperature and water modifiers, choice of water 
modifier can significantly affect the output.
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Figure 6.7: ECOSSE and SoilR outputs shown with observations for context –the chamber has been partitioned at 47%, SoilR uses RothC temperature modifier and the Daycent2 water 
modifier with observed SWC 
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To assess SoilR’s ability to move from daily to monthly timestep the model was run daily, 

with values then summed monthly and the outputs compared to the monthly timestep run. 

The results indicated that the model is performing similarly on daily and monthly timesteps, 

meaning it is suitable for use in comparison to Global ECOSSE which runs on a monthly 

timestep.  

 Evaluation of Global ECOSSE Simulations 

The outcome of running the model for a location proximate to the Oak Park site is presented 

in Figure 6.8. This figure illustrates the differences between the ELUM models when 

employed in site (daily) and regional (monthly) modes. Daily sums of the ECOSSE model 

and ELUM model are illustrated with dashed lines while the model run on a monthly basis 

is represented by a solid line. Differences are evident across all model runs on daily and 

monthly timesteps. Based on total sums the limited data model runs using EObs and HWSD 

data perform better in comparison to Rh than the outputs of the models using site data. 

Sums of the data show that ELUM sums to 6384 kg C ha-1 using EObs and HWSD data, close 

to the 6495 kg C ha-1 Rh sum, though it is clear the model is well below the values for both 

chambers, though some values are within the chamber range during the 2nd half of 2004. 



137 

 

 

Figure 6.8: Comparison of limited data models using site data (Elum (site)), EObs and HWSD data (ElumEObs), observations (Rh partitioned using DNDC, Chamber partitioned at 47%), and 
daily ECOSSE site specific model using raw climate data summed monthly (Daily Sums)
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 Evaluation of Monthly Simulations  

For all data to be comparable, the SoilR RothC model was parameterised using HWSD data 

approximate to the Oak Park field, while Global ECOSSE output is obtained by querying the 

gridded NetCDF file outputted by the model for the lat/lon coordinates of the Oak Park field. 

Figure 6.9 shows monthly observations (chambers, Reco, Rh) and model outputs (Global 

ECOSSE and SoilR) where chamber data has been partitioned by 47% and SoilR monthly 

output has had a multiplier of 0.6 applied for the growing season, in order to best replicate 

global ECOSSE. The SoilR model peaks higher than Global ECOSSE throughout most of the 

period, both follow a similar pattern as the water modifiers in RothC and Global ECOSSE are 

alike. While the models correspond reasonably well to Rh, there remain significant timing 

and magnitude issues between Global ECOSSE and the chamber data, with models being 

below the chamber ranges over the four-year period. The discrepancy between partitioned 

chambers and Rh makes interpretation of the suitability of a model difficult, as the temporal 

pattern may obscure the total fluxes.  

 Cumulative Fluxes  

Figure 6.10 highlights the significant differences across models and observations when 

examined cumulatively. The figure illustrates annual sums of two SoilR RothC model 

outputs (one using the RothC water modifier, another using observed SWC, both using the 

DayCent2 water modifier), Daily ECOSSE output summed annually using actual (ECOSSE 

ETa) and potential evaporation (ECOSSE ETo), GlobalECOSSE output, and observations. 

Heterotrophic respiration (Rh partitioned) is derived from ecosystem respiration, which is 

itself derived from NEE, and is mostly below even the lowest partition range of the 

chambers, with the global ECOSSE model output lower still. In 2004 and 2005, Global 

ECOSSE is around half the magnitude of Rh, with similar results for Rh and Global ECOSSE 

in 2006. Daily ECOSSE summed on an annual basis is closer to Rh in both years, and is 

included here to illustrate the scale of the ECOSSE model in comparison to SoilR. Also 

included is ECOSSE ran in limited data mode using actual evaporation from the flux tower 

(Flux ETa), which shows similar results to daily ECOSSE and Global ECOSSE. Partitioning 

ranges for chambers illustrate the significant uncertainty associated with the choice of 

partitioning method, as annual flux values can range from ~3000-12000 kg C ha-1. Both 

SoilR models correspond more closely to chamber data than Global ECOSSE, yet are 

significantly higher than Rh.   
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Figure 6.9: Monthly observations and model outputs, shaded areas are the 27-90% Rh partitioning ranges for the nearby and site-based chambers
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Figure 6.10: Cumulative fluxes for observations and model outputs for the years where data is available. Shaded areas indicate potential partitioning ranges of 27-90% for the Rh contribution 
to Rs. 
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 Statistical Analysis of Simulations 

Table 6.4 shows statistics for models compared to observations, ECOSSE ETa is not included 

in these simulations as it requires unrealistic alterations to the model inputs, therefore the 

unaltered GlobalECOSSE Elum model is used. r2 values indicate that the model which most 

closely corresponds to all observed data is the SoilR model using observed water and the 

Daycent2 water modifier (SoilR Obs) with r2 values between 0.5 and 0.78, followed by SoilR 

using the RothC water modifier (SoilR RothC) with values from 0.03 to 0.37, then Global 

ECOSSE with values from 0.03 to 0.24.  

However, due to the seasonality of the data, typical correlation and regression techniques 

such as Pearson’s r and r2 are likely capturing the seasonality in the relationships 

(Wooldridge, 1991), giving erroneous results. To more accurately compare the modelled 

and measured data to each other mean absolute error (MAE) and root mean square error 

(RMSE) (which are unaffected by seasonality) were chosen as evaluation metrics. When 

examining RMSE and MAE the lowest values across all datasets are for Global ECOSSE 

compared to Rh, with all models having their lowest scores when compared to Rh ahead of 

the chambers.  

Table 6.4: Statistics for models vs observations, SoilR RothC uses the RothC water modifier, SoilR Obs uses 
observed water content and the Daycent2 water modifier.  

 
r2 RMSE MAE 

Global ECOSSE Vs Chamber 0.24 529.55 415.07 
Global ECOSSE Vs Kumar 0.09 622.36 476.67 
Global ECOSSE Vs Rh 0.03 164.96 120.57 
SoilR RothC Vs Chamber 0.03 387.06 316.86 
SoilR RothC Vs Kumar 0.15 439.32 317.42 
SoilR RothC Vs Rh 0.37 189.12 163.99 
SoilR Obs Vs Chamber 0.66 278.32 235.46 
SoilR Obs Vs Kumar 0.78 347.41 241.75 
SoilR Obs Vs Rh 0.55 205.23 180.26 

Having evaluated the ECOSSE model versions and investigated their ability to scale up using 

SoilR, the GlobalECOSSE model performs ‘best’ ahead of SoilR test models when compared 

to Rh data (based on RMSE and MAE scores), though Table 1.4 shows that the statistical 

method of assessment and the observed data used for comparison can affect the results. As 

RMSE and MAE scores are independent of seasonality they are regarded as better measures 

in this case. These data are also based on results from of a well-drained field in Ireland which 

has been shown to be problematic when simulating water (Chapter 5), simulated 

respiration is therefore likely to be lower than observed. Recognising these limitations, the 

next section presents national outputs of the Global ECOSSE model, which has the advantage 
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of providing outputs for carbon dioxide (CO2), Nitrous Oxide (N2O), nitrate (NO3) and 

methane (CH4), allowing for the calculation of CO2 equivalent emissions of GHGs. Not all 

Irish soils are well-drained (Figure 5.1), suggesting that the model may perform well on 

other soils.  

 Global ECOSSE National Outputs 

The GlobalECOSSE ELUM model requires a .json file which contains land-use information 

which it uses to determine plant inputs, optional inputs are as follows: 'Arable', 'Forestry', 

'Miscanthus', 'Grassland', 'Semi-natural', 'SRC' (short-rotation coppice), 'Rapeseed', 'Sugar 

cane', 'SRF' (short-rotation forestry), 'Wheat'. As it is not possible to run the model with 

different land-uses at the same time, the land-use file used for these national output runs 

regards all land-use as grassland, as this is the majority land-use in Ireland. This has the 

effect of altering the monthly plant inputs to match that shown in Table 6.5. Treating all 

land-uses as receiving the same plant inputs will introduce uncertainties and errors, ideally 

multiple different land-uses would be specified in the model, though as this is not yet 

possible the majority land-use was used. Irish cropland and grassland areas with their 

associated plant inputs will be examined separately in a later section.  

Table 6.5: Default pattern of plant carbon and nitrogen inputs to the soil for Arable and Grassland, patterns for 
other land-uses are not included but are available from Smith et al., 2010a 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Arable 

0-30cm 0.00 0.00 0.30 0.30 0.30 0.60 1.87 0.00 0.00 0.00 0.00 0.00 
30-100cm 0.00 0.00 0.30 0.30 0.30 0.30 1.17 0.00 0.00 0.00 0.00 0.00 
> 100cm 0.00 0.00 0.30 0.30 0.30 0.30 1.17 0.00 0.00 0.00 0.00 0.00 

Grassland (Improved grassland) 
0-30cm 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.89 0.25 0.25 0.25 0.25 

30-100cm 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 
> 100cm 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

 

 SOC 

Average SOC from 2001-2017 outputted by GlobalECOSSE is presented in Figure 6.11, these 

carbon contents are calculated from organic carbon contents in the HWSD and associated 

bulk density values. As the HWSD reports organic carbon percentage weight (c), the 

following process is undertaken to convert to kg C ha-1 where total C content TC is: 

𝑇𝐶 = (
(

𝑐
100

) ∗ 100000000

1000
) ∗ 𝐿𝐷 ∗ 𝐵𝐷 

This converts c to a proportion, from cm3 to ha-1, from g to kg, LD is layer depth and BD is 

bulk density. C content ranges from below 100,000 kg C ha-1 to over 500,000 kg C ha-1, 



143 
 

highest values are observed in the midlands and western regions of the country, and 

correspond to peatland areas of the country with high organic C contents.  

 

Figure 6.11: Soil Organic Carbon content for Irish soils outputted from the Global ECOSSE model 

 CO2 

Annual mean CO2 emissions from 2001 to 2017 are presented in Figure 6.12, with highest 

emissions evident in the year 2007. The spatial pattern of emissions shows higher emissions 

in the south-east of the country in most years, with lower emissions on the east coast and 

in mountainous uplands. A patch of low emissions is evident in the west of Ireland each year, 

corresponding to the karst landscape of the Burren, where low emissions are present. 

Simulated emissions are over 300 kg C ha-1 yr-1 for certain locations (particularly the south-

east of the country) during most years, likely due to the higher sunshine hours (PAR) and 

temperatures experienced in this part of the country.  
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Figure 6.12: Annual average soil CO2 emissions outputted from the Global ECOSSE model for the years 2001-2017 
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National outputs for Global ECOSSE are presented for CO2 on a seasonal basis (Figure 6.13), 

as averages of data from 2001-2017. Seasonal outputs show summer having the highest 

emissions, while spring has the lowest. Emissions appear highest in the north-west of the 

country during the summer months, in the south-east during winter, and are evenly 

distributed during spring and autumn. While the winter months have got the lowest values 

(darkest blue colours) in some parts of the country, there remain some high-emission areas 

in the south and south-east which are not present in spring and autumn.  

 

  

Figure 6.13: Seasonal average soil CO2 emissions outputted from the Global ECOSSE model from 2001-2017 
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The average annual CO2 emission over the entire period is illustrated in Figure 6.14 and 

shows the spatial distribution of emissions over time, with the lowest emissions observed 

on the west coast and in mountainous regions of the country, and the highest in the south, 

south-east and midlands. The orographic influence is clear in the south-west of Ireland as 

emissions are lower in mountainous regions. Grid-boxes visible on this graph indicate the 

dominant influence of temperature data and are more pronounced due to averaging the 

data. The influence of climate in the average CO2 emission maps is clear as emissions are 

higher during the warmer months showing the driving effect of temperature data. Plant 

inputs are also higher during these months (Table 6.5) which provide more substrate for 

decomposition and therefore higher emissions.  

 

Figure 6.14: Average CO2 emissions from Irish soils outputted from the Global ECOSSE model for the period 2001-
2017 
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 NO3  

Nitrate is a form of inorganic nitrogen which occurs naturally in soils and arises from 

decomposing plant material, animal manure, chemical fertilizers, plant exudates, rainfall 

and lightning. Figure 6.15 shows seasonal average emissions of nitrate which follow a clear 

spatial pattern, where emissions are highest inland and lowest in coastal and upland areas. 

Emissions of nitrate are highest in spring and summer but are uniform across all seasons, 

as all land is being treated as grassland there are no spikes that would be seen at the start 

of the growing season (spring) if the land were treated as arable. There is a clear influence 

of the climate data on the seasonal outputs as emissions are lowest in areas with high 

rainfall (west coast and upland areas) while high emissions are experienced in high-C 

midland soils.  

 

Figure 6.15: Seasonal average nitrate emissions from Irish soils outputted from the Global ECOSSE model in kg N 
ha-1 
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Figure 6.16 shows average NO3 emissions for the period 2001-2017 where a clear spatial 

pattern is evident with lowest emissions observed in the north-west and south-west of the 

country, and in upland locations. Highest emissions are evident on the east coast in lowland 

areas indicating that NO3 emissions are low in mountainous regions with high rainfall and 

high in lowland areas in soils which have a high C content. Giles et al. (2012) caution against 

drawing clear conclusions however, as the controls on denitrification and nitrate release 

are not well understood, though it is recognised that nitrate release is influenced by many 

factors including community composition, soil type and environmental conditions.  

 

Figure 6.16: Average NO3 emissions from Irish soils outputted from the Global ECOSSE model for the period 2001-
2017 
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 N2O 

Nitrous Oxide emissions are highest in soils during spring, with emissions low in summer 

and autumn and very low during winter (Figure 6.17). Emissions are spatially uniform in 

each season, with all areas having similar emissions during each season. As all land-use is 

treated as grassland the plant inputs are common across the country, giving a similar spatial 

response. 

 

Figure 6.17: Seasonal average N2O emissions from Irish soils outputted from the Global ECOSSE model for the 
period 2001-2017 
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Average N2O emissions (Figure 6.18) show a more distinct spatial pattern, emissions are 

lowest in the north-west, south-west coast and east coast, and are high in the north-east and 

midlands. Emissions range from 0 to 0.18 kg N ha-1 yr-1, indicating that emissions are low 

regardless of spatial differences. Springtime emissions are the dominant source of N2O 

while winter emissions are extremely low, with moderate fluxes in summer and autumn.  

 

Figure 6.18: Average N2O emissions from Irish soils outputted from the Global ECOSSE model for the period 2001-
2017 
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 CH4 

Methane is the only variable which shows negative emissions (sequestration), with the most 

sequestration happening during summer, very little in winter, and a small amount in spring 

and autumn (Figure 6.19). The negative fluxes are present in the same areas that have the 

highest C contents in Figure 6.11, suggesting that these high C soils act as C sinks during the 

warmer months. The influence of climate data on methane fluxes is much lower than with 

the other modelled variables, as the dominant source of emissions is the carbon content of 

the soil, with high C soils in the uplands and midlands being the largest CH4 sinks during the 

summer months.  

 

Figure 6.19: Seasonal average CH4 emissions from Irish soils outputted from the Global ECOSSE model for the 
period 2001-2017 
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Average CH4 fluxes (Figure 6.20) effectively follow the same pattern of summer in Figure 

6.19, with smaller values accounting for the inclusion of the lower sequestration values in 

other seasons. There is no evidence of the influence of climate data on this map indicating 

that soil type and plant inputs dominate the fluxes. C sequestration is highest in upland and 

peatland areas of the country, while most other areas have zero or negligible fluxes.  

 

Figure 6.20: Average CH4 fluxes from Irish soils outputted from the Global ECOSSE model for the period 2001-
2017 
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 Emissions from Agricultural Land-Use Types 

 Grassland  

Grassland emissions were obtained by using the grassland areas outlined in Section 6.2.5 

and restricting the model to running only at these locations. This analysis only takes into 

account soils from the Republic of Ireland to facilitate comparison to national emissions 

inventory stocks (Duffy et al., 2018), for this reason Northern Ireland is not included. 

Average annual grassland emissions are estimated as 281 kg C ha-1 over the period 2001-

2017 (Figure 6.21), while cumulative emissions for the year 2016 equal 322.80 kt C. Total 

grassland area covered by the model run is 48,897km2. Emissions are lowest in upland areas 

of the country and highest in the midlands, south and east on average.  

 

Figure 6.21: Average grassland CO2 emsisions outputted from the Global ECOSSE model for 2010-2016 

As the ECOSSE model only simulates soil respiration and not sequestration, to investigate 

gains/losses of SOC, the sum of SOC for each month was calculated and aggregated for the 

entire country (Figure 6.22). This graph shows declining levels of SOC, a loss of 1.41% over 

the period 2001-2017 (calculated as the mean value in 2001 compared to the mean value 

in 2017), a loss of 0.08% per year. The decline is higher in the earlier years of the period 

and appears to level off after 2010 as the soils adapt to a new equilibrium.  
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Figure 6.22: Monthly average model simulated Grassland SOC content from 2001-2017 

The importance of including gases other than CO2 in estimates is highlighted by Figure 6.23, 

where most Irish grasslands are GHG sources rather than sinks. Highest sequestration levels 

occur in the south and southeast of the country, while highest emissions occur in the 

midlands and close to the border.  

 

Figure 6.23: Average annual GHG fluxes for Irish grasslands outputted from the Global ECOSSE model, units in kg 
C ha 
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 Cropland 

Cropland emissions were obtained by using the cropland areas outlined in Section 6.2.5 and 

restricting the model to running only at these locations. Average cropland emissions over 

the period 2010-2016 are 111.12 kg C ha, with the annual CO2 sum for 2016 being 14.50 kt 

C. The cropland area consists of numerous relatively small areas on the map, making up a 

total of 3777.75 km2. Though it is difficult to identify a pattern on this map as the areas are 

so small, it is clear the highest emissions are in the south, southeast and midlands while 

lower emissions (blue colours) are evident in the east, southwest, west and northwest 

(Figure 6.24).  

 

Figure 6.24: Average cropland CO2 emissions outputted from the Global ECOSSE model for 2011-2017 

 

As the model does not simulate sequestration, to assess C losses or gains the quantity of SOC 

is examined (Figure 6.25) and shows a decline of 1.44% over the period 2001-2017, a loss 

of 0.085% per year, a rate slightly higher than grassland decline. The degree of decline 

appears to level off after 2010, though not to the same degree as grassland.  
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Figure 6.25: Arable average SOC content for Irish soils from 2001-2017 

Figure 6.26 shows the GHG fluxes from cropland areas of the country, all fluxes are positive 

meaning no sequestration is simulated by the model. Highest emissions occur in the 

southeast and midlands with patches of lower emissions in the midlands and Donegal.   

 

Figure 6.26: Average annual GHG fluxes for arable soils outputted from the Global ECOSSE model for 2011-2017, 
units in kg C ha 
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 Discussion & Conclusion 

Difficulties arise in soil carbon model evaluation and assessment when observations from 

eddy covariance towers and chambers can have such a large range of uncertainty associated 

with them, and models output values without uncertainty bounds. Depending on the 

observed data chosen to compare the model to, and the metric used to represent model 

accuracy, different models will emerge as the ‘best’ (Table 6.4). The choice of model and 

comparison data clearly affects the results of the study, for example if the SoilR model were 

to be judged against chamber data partitioned at 47%, it would be assessed as the optimally 

performing model, as the Global ECOSSE model has higher MAE and RMSE scores compared 

to chambers than SoilR. However, were the Global ECOSSE model to be compared to Rh, it 

would be judged the optimally performing model for the same reasons. The large 

differences between chamber and Rh data and the lack of metadata on both significantly 

hinder the evaluation process, as no particular set of data can be seen as ‘better’ than the 

other; however, more metadata is available for the Rh data, and the partitioning range is 

more certain, indicating it may be a more useful resource than chambers, depending on 

network protocols used.   

R-values for correlation have been used in previous studies to assess the usefulness of the 

ECOSSE model (Dondini et al., 2016), yet these values are likely to be capturing the 

seasonality of the data, giving a stronger correlation than may be present otherwise. For 

example, were the r2 values listed in Table 6.4 to be used as the sole metric for model 

performance, the recommendation would be different than using MAE and RMSE values. 

The statistics presented here compare the model outputs to chambers partitioned at 47%, 

the accuracy of which is questionable due to large potential ranges, though a certain level of 

partitioning must be chosen for evaluation to be possible and for statistics to be derived. 

Based on the statistics, the SoilR model using observed SWC and the Daycent2 water 

modifier performs best in comparison to chamber data, SoilR using RothC water performs 

best in comparison to Rh, as does Global ECOSSE, which has lower values for both MAE and 

RMSE than the other models in comparison to Rh. SoilR does not have the same capabilities 

as ECOSSE however, and is limited in its ability to simulate national emissions. As Rh is the 

variable with the least range of uncertainty associated with it, and the MAE and RMSE scores 

are better metrics than r2, the ECOSSE model is deemed appropriate for simulating soil C 

emissions, though the model is likely to be underestimating the actual respiration due to 

the discrepancy with chamber data, though this is similar to that observed in other studies 

(Dondini et al., 2017). Even with significant underestimation of totals, r values from Dondini 

et al. (2017) for the arable site are 0.8, much higher than observed in this study, though 
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these values come from running ECOSSE in site-specific mode using more accurate 

parameters than Global ECOSSE. r2 values of ~0.2 have been reported previously for the 

ECOSSE model in the past (Zimmerman et al., 2018), where the model has been reported as 

out-performing others. r2 values of 0.3-0.5 have also been observed (Khalil et al., 2013, 

Abdalla et al., 2014), indicating that the model can perform well at certain sites, but typically 

underestimates observations. Uncertainties in observations are not reported by these 

studies however, the statistics shown in Table 6.4 emphasise the importance of 

observations and statistical method chosen to evaluate model performance, as the 

assessment of model performance can change significantly based on the chosen metrics.  

Several complexities are unearthed when trying to move from site to regional scale, 

particularly due to the lack of observations across time and space. It is clear from the 

cumulative fluxes (Figure 6.10) that the ECOSSE model remains on a similar scale when 

moving from site-specific to limited-data mode, with differences in outputs likely due to 

input data discrepancies as site-specific mode allows for more inputs to be specified. The 

site-specific model is initialised using characteristics measured at the site or nearby 

(Section 4.3.1), while the regional model uses interpolated fields of precipitation and 

temperature (EObs data) combined with interpolated soil characteristics (HWSD). HWSD 

data has been observed to underestimate field stocks of carbon by 80-90% compared to 

observations (Tifafi et al., 2018), which raises questions on the accuracy of Figure 6.11.   

Querying GlobalECOSSE then introduces further uncertainty, as the output is also an 

interpolated surface which can be queried for a specific point location, but will select a point 

which represents an area, perhaps accounting for the lower values seen in the regional 

model when compared to site-specific ECOSSE. From examination of the cumulative fluxes 

it is likely that Global ECOSSE is underestimating the actual fluxes as it is lower than both 

chamber and Rh, though it is difficult to be confident in the degree of underestimation due 

to the significant uncertainty surrounding observations. The model outputs being 

significantly lower than observations from both eddy covariance and chamber derived 

fluxes are consistent with at least one other study on arable land as Dondini et al. (2016) 

show. Though the model is underestimating the fluxes Dondini et al. (2016, pp. 937) say the 

model ‘adequately simulates soil processes under different land-use systems’. 

 CO2 

National emission estimates of the variables simulated by Global ECOSSE follow a pattern 

which is to be expected based on understanding of how the model functions, with emissions 

responding strongly to temperature as the highest emissions correspond to significantly 

warm Irish years (Met Éireann, 2018b), and low emissions from soil types which contain 
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very little carbon e.g. the negligible emissions in the Burren, Co. Clare (Figure 6.14). 

Seasonal analysis of the data shows highest emissions during the summer months with the 

lowest emissions of CO2 (darkest blue colours) evident in winter and spring, meaning soil 

respiration is responding to temperature as expected, and the model is performing as it 

should (Figure 6.13). Figure 6.14 outlines the average emissions over the period where the 

spatial pattern shows the importance of soil type along with temperature, as lowest 

emissions come from peatland and mountainous areas along the west coast. A drawback of 

these modelled emissions is that management practices such as fertilizer applications, 

sowing and tillage are not simulated, as these practices would affect decomposition and 

respiration. Figure 6.9 shows Global ECOSSE underestimates CO2 output in comparison to 

observations, this is similar to findings on arable sites in other studies (Dondini et al., 2016; 

Zimmerman et al., 2018) though the model has also been shown to overestimate fluxes at 

some locations (Abdalla et al., 2014). Possible explanations for the underestimation are 

discussed by Dondini et al. (2017) who hypothesize that the soil may not have been in a 

steady state at the start of the simulation, causing excessive SOM to be lost and an 

underestimation of decomposition, though there are not enough observations for this 

theory to be validated, leading the authors to recommend increased observations of Rh 

across a wider spatial area.  

 Other Gases 

Nitrate emissions are relatively constant throughout the year (Figure 6.16), likely due to 

consistent plant inputs as all land-use is treated as grassland (Table 6.5), though it is 

unusual that there is little response to seasonal temperature changes, as it has been shown 

that NO3 emissions have a positive relationship with temperature (Malhi et al., 1990). 

Emissions of nitrous oxide are highest in spring, as plant inputs are consistent throughout 

winter and spring months, this spring spike may be due to the spring-thaw effect, notable 

as a time when chambers are typically placed on soils to capture N2O emissions as soils thaw 

(Butterbach-Bahl et al., 2013), though this may not be significant for Ireland. Soil 

temperature purportedly explains 86% of the variations in N2O emissions in European 

forest soils (Schindlbacher et al., 2004), leading to the expectation that emissions would be 

highest during the summer months, however this is clearly not the case. The spatial pattern 

of N2O emissions (Figure 6.17) is similar to from that of NO3 (Figure 6.16) with upland areas 

having low emissions, though the variation in emissions is much greater regarding NO3 with 

ranges from 0-90 kg N ha-1, while N2O emissions vary from under 0.15 to over 0.18 kg N ha-

1. Methane emissions simulated by the model are zero or below during each season, and CH4 

sequestration is highest during summer months, an unusual finding as methane emissions 



160 
 

are known to increase as soil temperatures increase (van Hulzen et al., 1999; Oertel et al., 

2016). Areas with highest C content (Figure 6.11) are also the areas with highest CH4 

sequestration (Figure 6.20). 

 Modelled Emissions and National Emissions Inventory Estimates 

It is difficult to compare model outputs for grassland and cropland in relation to the tier 1 

and 2 inventory-based methods undertaken by Duffy et al., (2018), as their assumptions are 

that cropland remaining cropland and grassland remaining grassland are not C sources and 

may well be C sinks where management practices are well established. Duffy et al. (2018) 

estimate croplands to be C sinks of -131.93 kt CO2eq, with a combined uncertainty 

estimation of 72.15%, while grasslands are sources of 5.77 kt CO2eq due to N2O emissions, 

CO2 emissions are presumed to be zero. Modelled results indicate Irish croplands are a CO2 

source of 14.50 kt C. The 2.32% decline of SOC content over time indicates that Irish 

croplands are C sources, while the inclusion of other greenhouse gases reinforces this as 

cropland fluxes remain positive when all GHGs are examined, though emissions are lower 

than when examining CO2 alone. Management related activities including ploughing, sowing 

and fertilizer application are a typical feature of croplands and are not simulated by the 

model at regional scale. Improved measurement/monitoring protocols are required to 

quantify these management related disturbances (Osborne et al., 2010), before these 

processes can be included in model simulations.  

Irish grasslands are observed to be carbon sinks in research (Kiely et al., 2017) yet ECOSSE 

model outputs shows them as CO2 sources, which agrees with Duffy et al. (2018), indicating 

further research into grassland emissions is needed. The model only simulates soil 

respiration, and therefore does not factor in C sequestration, though this can be estimated 

from examining the SOC content over time, which is in steady decline for Irish grasslands 

(Figure 6.22). According to the model outputs grassland SOC is declining at a rate of 0.153% 

per year, though the decline appears to slow down during the later years of the model run. 

Examining all GHGs together (Figure 6.23) shows most Irish grasslands are GHG sources, 

though some areas are shown to be sinks, emphasising the importance of including gases 

other than CO2 when modelling soil fluxes, particularly CH4 and N2O (Tian et al., 2015). 

Global ECOSSE does not include the application of fertilizers and other management 

practices which may be occurring to enhance C or N in the soil, while the assumptions of the 

tier-1 method that cropland remaining cropland on well managed land may also be 

erroneous. More observational evidence on different land-use and soil types is vital if we 

are to have confidence in either tier-1 or tier-3 methodologies. Once the observations are in 

place to compare the model outputs to, the model must also allow for the inclusion of typical 
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management practices based on the observations, in order to calibrate it as accurately as 

possible for simulating emissions.  

Smith et al. (2010d) outline the multitude of factors which must be accounted for in order 

to accurately estimate the carbon budget of croplands, from field to continental scale. They 

find that the diversity and complexity of croplands makes it impractical to attempt to 

upscale from individual sites to continental scale, and argue that the intricate data at field 

or farm scale can be useful to parameterise or validate ecosystem models, which can be 

combined with continental-scale datasets to estimate fluxes over large areas. Xu and Shang 

(2016) estimate the global average Rs from croplands to be 0.704 kg C m2 yr-1, lower than 

grasslands at 0.841 kg C m2 yr-1, and forests at 0.907 kg C m2 yr-1, with the low values for 

croplands attributed to lower C inputs to soil as a result of the removal of aboveground 

biomass when the crop is harvested. Average grassland emissions for Ireland as projected 

by the ECOSSE model are also higher than croplands, and significantly above the estimates 

from Xu and Shang (2016) as average Global ECOSSE grassland CO2 emission estimates are 

2.81 kg C m2 yr-1 and cropland are 1.6 kg C m2 yr-1. Examination of all GHGs does indicate 

that some Irish grasslands are sinks, which agrees with Kiely et al. (2017) though further 

integration of observations and model processes is necessary to have strong confidence in 

model outputs.  

Irish grassland emissions are assumed to be net zero or sinks on the basis of the 

implementation of well-established management practices such as appropriate fertiliser 

usage, manure management and managed grazing (Duffy et al., 2018) – it is not possible to 

factor these management practices in to the ECOSSE model regional runs as they use the 

limited data mode, and as the model does not simulate sequestration it is difficult to 

compare these results. These issues highlight the uncertainties associated with attempting 

tier-3 modelling for grassland and cropland and emphasise the need for models which can 

incorporate more advanced management practices, and the integration of models with 

actual farm practices. For models to be useful to estimate national emissions it is essential 

that more observational data is recorded and published for modelled emissions to be 

evaluated, the inclusion of management practices into models to reflect real-world 

behaviour is also recommended.  

While the use of biogeochemical models to assess the carbon cycle is expanding, there is still 

a need for improvement of these models (Robertson et al., 2015). This analysis shows that 

the significant uncertainties inherent in data partitioning and model parameterisation can 

complicate the evaluation procedure, and that transparency around the type of partitioning 

and the uncertainties in model evaluation are often absent in the literature and should be 
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highlighted. Further complexities are introduced when running a limited-data model for a 

country and comparing it to very limited point-scale observations. Ideally, the model 

outputs would be compared to a range of CO2, N2O, NO3 and CH4 data in order to assess the 

usefulness of the model across land-use types and times of year. The maps presented in the 

results section serve mainly as an indication of model performance, rather than a definitive 

national emissions estimation. Availability, accessibility and openness of data is to be 

encouraged in order to evaluate models with a higher degree of confidence.  

While models may not provide accurate estimates of amounts, and it is difficult to assess 

accuracy when the range in observations is so large, they could still be useful for providing 

information on relative differences, and on the reaction of the soil system to changes in 

climate, particularly resulting from extreme events. To examine this, the next chapter 

describes the process of generating extreme climate scenarios which are used to drive the 

model, and are compared to a ‘normal’ climate.  
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 Simulated Response of Extreme Weather Events on Soil 

GHG Emissions 

This chapter aims to assess the impact of extreme weather events on emissions of GHGs 

from Irish soils. To achieve this a novel block resampling methodology was developed which 

assesses the observed climate sequence and extracts extreme seasons for temperature and 

precipitation, then generates a new sequence which can be used to drive the GlobalECOSSE 

model. The data and methods of analysis are described, and results are presented for a 

series of theoretical extreme scenarios. These results are then discussed, and limitations are 

outlined.  

 Introduction 

The response of the terrestrial biosphere to climate extremes has been widely discussed in 

the literature (Reichstein et al., 2013; Frank et al., 2015), climate extremes have the 

potential to disrupt carbon dynamics, the global energy balance and the structure of 

ecosystems themselves, with consequences for C sequestration, radiative forcing and the 

global climate (Bahn et al., 2015). It is virtually certain that the incidence of extreme events 

will increase in future, with increases in frequency and intensity of extremes highly 

dependent on the degree to which humans reduce GHG emissions (Seneviratne et al., 2012). 

These enhanced extreme events will impact the entire carbon cycle and will have a notable 

impact on soil physical and chemical characteristics and soil respiration (Reichstein et al., 

2013). The observational record shows that the occurrence of prolonged hot, dry weather 

(heat-waves and droughts) can significantly impact the ability of the terrestrial biosphere 

to sequester and store carbon; four years’ worth of C sequestration was undone in just one 

summer during the 2003 European heat-wave (Ciais et al., 2005). The response of 

ecosystems to extreme events is far from linear, and can vary depending on the ecosystem 

and antecedent conditions (Bastos et al., 2013), and events may be lagged, so the effects of 

a climate extreme on an ecosystem may take seasons or years to express itself fully, while 

responses may exceed the duration of the extreme event (Frank et al., 2015). Examples of 

this include reduced productivity in the years following drought, increased pest mortality 

as a result of a climate extreme, loss of biomass due to fire, or loss of soil carbon due to 

heavy precipitation (ibid).   

This chapter seeks to investigate the impact of various notional extreme events on Irish 

soils, their C contents, and GHG emissions.  Though the ECOSSE model has proven to be 

problematic in the temporal simulation of GHG fluxes at both site and regional scales, this 

chapter will explore the use of the model as a tool to investigate the potential impact of 

extreme events, focusing in particular on relative changes associated with different 
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storylines of extreme events. A proportional indication of the response of the soil system to 

climatic shocks is still useful to give an indication of potential relative change, as a study 

investigating these events on emissions of greenhouse gases from Irish soils has yet to be 

undertaken.  

 Climate Extremes  

An extreme weather event is described by the IPCC as ‘the occurrence of a value of a weather 

or climate variable above (or below) a threshold value near the upper (or lower) ends of the 

range of observed values of the variable’ (Seneviratne et al., 2012 pp. 557). A small change 

in the mean or variance of a climate variable can lead to disproportionately large changes 

in the frequency of extreme events, making hitherto infrequent extreme temperature and 

precipitation events more likely (Nicholls and Alexander, 2007). Along with climate change, 

it is important to consider the potential impact extreme events have on soil GHG quantity, 

as soils are known to respond strongly to extreme events (Ciais et al., 2005) and extreme 

events are more likely to occur in future (Seneviratne et al., 2012). Changes in the climate 

system are already evident, not just with changes in the mean climate but also in changes in 

both the frequency and intensity of extreme events (Mora et al., 2018). Climate extremes 

are hard to predict, and future simulations of extremes typically have high uncertainties 

associated with them or are not well resolved spatially (e.g. drought, heavy precipitation) 

(Seneviratne et al., 2012). Temperate regions are highly susceptible to temperature and 

precipitation extremes, droughts and storms and their associated impacts (Frank et al., 

2015).  

 Observations 

The effects of extreme events such as heat-waves on ecosystems has come to prominence 

as a result of the high frequency of warm events in the first decade of the 21st century 

(Bastos et al., 2014), where along with warm summers in 2002, 2006 and 2007 and 2018, 

Europe experienced two ‘mega-heatwaves’ of extreme magnitude, extent and duration in 

the years 2003 and 2010. These events were so extreme they are thought to have broken 

500-year-long seasonal temperature records, the 2010 event being so warm that 

temperatures over 4 standard deviations above the mean were recorded, causing increases 

in human mortality, wildfires, ecosystem and crop impacts (Barriopedro et al., 2011). The 

2003 heat-wave had significant impacts on the European C cycle. Europe’s terrestrial 

biosphere is an annual sink of between 135 and 205 Tg C yr-1, equivalent to 7-12% of 

European anthropogenic C emissions (Janssens et al., 2003). Current C sinks in temperate 

ecosystems could become C sources as the frequency of extreme events increases (Ciais et 

al., 2005).  
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The mechanisms of C release in response to extreme weather are not fully understood, and 

indeed depend on the nature of the extreme event itself. Analysis of vegetation productivity 

data from MODIS showed that moisture deficits combined with high temperatures were the 

main causes of the extreme response of vegetation in 2003, while in 2010 the sole driver of 

the reduced productivity appeared to be the extremely high temperatures (Bastos et al., 

2014). Though the impact of extreme events on the carbon cycle are not fully known, 

increasing temperatures are thought to increase terrestrial C uptake (carbon enrichment 

effect), though droughts and storms can cause the release of terrestrial C via a reduction in 

primary productivity and leaching of carbon, potentially negating this enhanced C uptake 

(Reichstein et al., 2013).  

 Future Projections of Climate Extremes 

The frequency and intensity of extreme events is expected to increase with temperatures, 

leading to ecosystem responses which could accelerate further climate change (Rolinski et 

al., 2015). According to Seneviratne et al. (2012) it is virtually certain that the frequency 

and magnitude of warm daily temperature extremes and decreases in cold temperature 

extremes will increase by the end of the 21st century across the globe, and it is very likely 

that heat waves will increase in both length, frequency and intensity over most land areas, 

where areas in southern Europe will experience 1-in-20 year events at the frequency of 1-

in-2 year events, with the exception of high northern latitudes where they are likely to 

become 1-in-5 year events. In terms of temperature, a global increase of just 1.5°C will lead 

to a 3°C increase in temperature on extreme hot days in the mid-latitudes, with the number 

of hot days increasing across most global land regions, with the scale of temperature 

increase dependant the degree of collective human action to reduce emissions (IPCC, 2018). 

Precipitation extremes are also likely to increase, particularly in winter in northern mid-

latitudes, there is medium confidence that these increases in heavy precipitation will occur 

alongside decreases in overall precipitation, resulting in increased intensity (Seneviratne et 

al., 2012). The risks from extreme precipitation events are projected to be higher at 2°C 

warming than 1.5°, though there is medium confidence in this (IPCC, 2018). As projections 

are uncertain and models are unable to capture all processes which influence these events 

(e.g. sub grid-scale), there is low confidence in changes in fluvial flooding, and medium 

confidence that droughts will increase in frequency and intensity (Seneviratne et al., 2012). 

Christidis et al. (2015) analyse the likelihood of extreme hot summers following the 2003 

European heatwave, and conclude that the temperature increase of 0.81 K since 2003 

enhances the probability of extreme events such that an event that would occur twice every 

100 years would occur twice every ten years under new climate conditions. Depending on 
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the emissions scenario chosen, the distribution of the future state of temperature differs, 

with warmer (high radiative forcing) scenarios increasing the chances of more frequent 

extremes like the heat wave of 2003 (IPCC, 2018).  

Heatwaves, droughts and high temperatures can have combined or separate effects on 

carbon fluxes, and their effects on respiration in different land cover types may differ 

(Bastos et al., 2014). As is to be expected with modelling complex ecosystems, establishing 

a simple relationship between driver and responder variables is far from easy. Different 

ecosystems also respond differently to drought, with southern European ecosystems under 

major threat, more so than ecosystems in northern Europe as only ~1/5th of total European 

land area is vulnerable to extreme drought (Rolinski et al., 2015). As the feedbacks from 

extreme events can be nonlinear, a small shift in the severity or frequency of climate 

extremes can substantially reduce the carbon sink potential of an ecosystem and could 

result in positive climate feedbacks, shifting a previous C sink into a source (Reichstein et 

al., 2013). 

There is a need for targeted assessments in regions vulnerable to climate extremes in order 

to understand the vulnerabilities of unique areas, to prepare the most appropriate tailored 

response (Reichstein et al., 2013). Current models are not complex enough to include all 

these feedbacks and dynamic responses – and are constrained by the lack of observational 

evidence of ecosystem responses to change. Without this prior knowledge it is difficult to 

include these factors in analyses, nevertheless this research will continue based on what 

data is available.  

Smith et al. (2015) acknowledge that the future brings increased climatic variability with 

more precipitation extremes and high severity of droughts, leading to stresses in soil 

function, and therefore recommend research into the interactions between these extremes 

and the soil. Reichstein et al. (2013) suggest future research should address the effect of 

these extreme events on the mechanisms driving C cycling at ecosystem scale. Frank et al. 

(2015) emphasise the need for regional investigations of the interactions between the 

carbon cycle and extreme events, to allow for global upscaling of the impacts of climate 

extremes on carbon-climate feedbacks. This study aims to add to this growing area of 

research.  

 Data & Methods 

 Observed Climate Data 

EObs data (outlined in the previous chapter) was utilised with Ireland extracted for ease of 

processing. The land area representing Ireland was extracted to reduce the file size and to 
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increase processing speed when generating extreme scenarios, and to ensure extremes 

were analysed for Ireland only, as temperature and precipitation ranges are much greater 

in European countries, and extremes are experienced differently across Europe. 

 Observed Soil Data 

HWSD soil data (outlined in Section 6.2.4) is used by the Global ECOSSE model to determine 

soil carbon content. The ECOSSE model has not been validated against N emissions in this 

study, but has previously been shown to adequately simulate N emissions across European 

sites (Bell et al., 2011).  

 Generating Climate Extremes: Block Resampling 

In order to investigate the potential impacts future extreme weather events may have on 

soil carbon stocks in Ireland several methods of analysis were considered. These included 

stochastic weather generation, future climate model runs and block resampling 

methodologies.  

While future climate model runs have sometimes been considered the ‘most reliable and 

robust method available’ (Prudhomme and Davies, 2009; Murphy et al., 2004), model 

projections are limited by the large range of climate model outputs across emissions 

scenarios and model intercomparison projects, which often does not serve as an adequate 

driver of factors which affect regional or local scale processes (e.g. rainfall) and can have 

significant uncertainties associated with it, which increase as further granularity is added 

(a ‘cascade of uncertainty’; Wilby and Dessai, 2010). These uncertainties have not been 

improved upon in the CMIP5 range of models when compared to CMIP4, as the addition of 

more processes and observations to the models did not result in a reduction in uncertainties 

(Knutti and Sedláček, 2013). While our understanding of the systems has increased, the 

modelling of these additional processes means the models are now more complex and 

represent a more intricate understanding of the climate system, there remains an inability 

to perfectly model the hugely complex atmospheric processes which affect and are affected 

by climate change (Knutti and Sedláček, 2013). The ranges of output by different climate 

models across future climate scenarios have significant uncertainty and display large 

variability, and projections can be complicated to the point of being contradictory when 

choosing one model over another, they are also computationally expensive to run and take 

up large amounts of storage. Reichstein et al. (2015) call for an improved experimental 

approach which measures impacts at plant and ecosystem levels in order to delineate the 

differential responses of ecosystem components including soils. Frank et al. (2015) call for 

future experiments to assess the lagged and legacy effects of extreme events on ecosystems, 

including the response of systems to multiple climate extremes, in order to elaborate on the 
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mechanisms and processes at large, this information would serve to improve 

biogeochemical models and their treatment of extreme events.  

For the purposes of this analysis a block resampling methodology similar to that of 

Prudhomme and Davies (2009) was employed using EObs climate data from 1951-2017. 

Prudhomme and Davies (2009) argue that three-month (seasonal) resampling is preferable 

to 1-month resampling in order to maintain the seasonal structure of variables sampled. 

This method is utilised in the present research to better represent soil moisture. Analysis is 

performed on the data to extract extreme seasons for warm, cold, wet or dry seasons based 

on percentiles above 0.8 for extreme hot/wet, and below 0.2 for extreme cold/dry, so that 

the ‘extreme’ seasons are only those which are anomalous to the observed record, meaning 

the extremes are realistic for the location as they have occurred in the past. Those seasons 

which are not extreme are also available to select from as ‘normal’ seasons. The 

methodology allows for selection of deterministic sequences of seasons or years, making it 

possible to choose ‘normal’ or ‘extreme’ years or seasons in whatever order the user desires. 

After a block is resampled it remains available to be sampled again, ensuring there is always 

data available for any length of a new series. A new climate series is then derived from a 

random selection of seasons, respecting the annual sequence. For example, to test the 

influence of a heat wave the sequence of 10 ‘normal’ years followed by an anomalously hot 

summer could be generated, along with any permutations of warm, wet, dry and cold 

seasons can be selected in whatever order desired. A comprehensive example of the block 

resampling code is printed in Appendix B for Temperature, the full code in the form of 

jupyter notebooks (Python 2.7) is available here (https://github.com/podgeflat/block-

resampling). The process can be summarized as follows: 

• EObs NetCDF data from 1950-2017 for temperature and precipitation downloaded  

• Each year divided into seasons (3-month blocks: DJF, MAM, JJA, SON) using 
December from the previous year as the first winter month, to respect the 

climatological sequence.   

• Observed series separated into four sub-series containing 3-month blocks of the 
same season (winter, spring, summer, autumn). 

• Each block consists of daily rainfall or temperature, which the model uses to 
calculate PE using the Thornthwaite method (Thornthwaite, 1948).   

• Anomalies are calculated based on differences in seasonal averages/sums of 

temperature/precipitation compared to the long-term averages/sums.  

• Quantiles are used to determine which seasons can be considered ‘extreme’, if a 

seasonal anomaly falls below 0.2 or above 0.8, the season is considered ‘extreme’ 

and is noted in a list.  

• The methodology allows for the sampling to be entirely random, or entirely 

deterministic, for example it is possible to select a number of random ‘normal’ 

https://github.com/podgeflat/block-resampling
https://github.com/podgeflat/block-resampling
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years, or a number of random ‘extreme’ years, or a combination of the two, 

depending on the requirements of the investigation.  

• The selections respect the annual sequence (i.e. a spring block selected after a 

winter block). Though this can be changed if the user desires.  

• Each seasonal block is selected independently from the preceding one so that two 

consecutive blocks may not be selected from the same year they were recorded.  

• After a block is resampled, it is put back into the corresponding sub-series (winter, 
spring, summer, autumn) so that the same block can be selected more than once, 

and some blocks may not be used at all.  

• Changes in multi-season extremes are facilitated by allowing observed blocks (even 
the largest) to be resampled more than once in a resampled series. 

• New extreme datasets are then joined to existing EObs data using a utility tool 

provided with GlobalECOSSE. 

This method only resamples observations from 1950-2017 and may not capture historical 

natural variability for the same location outside the records, or variability for different 

locations. It also excludes possible future extreme seasons which are outside the range of 

extremes that have already been observed.  

 Extreme Storylines 

In future under a warmer climate extreme events will increase (Seneveritne et al., 2012), 

the incidence of extreme events is highly dependent on the changes in radiative forcing 

associated with the pathways of human activity (IPCC, 2018). Due to computational 

limitations it is not possible to run numerous climate scenarios to get a range of potential 

responses of Irish soils to future climate change. It is still useful to assess the potential 

impacts extreme events will have on soil carbon emissions, particularly when the response 

of soil to warming is still a widely debated topic in soil science (e.g. van Gestel et al., 2018; 

Crowther et al., 2018; Xiao et al., 2018; Hicks Pries et al., 2018), and the models are not yet 

capable of accurately representing responses to future warming as we still do not 

understand the entire soil system. Running multiple climate model scenarios will therefore 

give a range of outputs, with very little confidence in any, and will not be useful for policy 

prescriptive purposes. We do, however, know that soil responds strongly to extreme events 

(Reichstein et al., 2013) and that these extreme events will be more likely in future as 

changes in the mean climate will result in changes in the extremes (Seneveritne et al., 2012), 

for that reason it is still very useful to investigate the potential impact climate extremes will 

have on soil GHG fluxes, in order to anticipate the degree of shock which may be felt from a 

range of different extreme scenarios. 

For the purposes of this analysis, several possible extreme climate storylines were defined 

and compared to a notional baseline climate in order to investigate the impact of potential 

shocks. These storylines select randomly from the climate series meaning temperature and 
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rainfall regimes are realistic as they have previously occurred in the observed record. As 

the incidence of cold extremes is highly likely to decline in future, storylines will be based 

on high temperature extremes along with both ‘normal’ and ‘extreme’ precipitation. This 

analysis will thus compare a control climate set consisting of 10 years of ‘normal’ 

precipitation and temperature data to the impact of 10 years of: 

1. Hot climate 

2. Very hot climate 

3. Hot and dry climate 

4. Hot and wet climate  

Where ‘hot’ consists of seasons where the average temperature anomaly is greater than the 

80th percentile, very hot is greater than the 90th, hot and dry has temperatures greater than 

the 80th percentile and rainfall below the 20th percentile, while hot and wet consists of 

temperatures and rainfall greater than the 80th percentile. Tian et al. (2015b) argue that 

large increases in both CH4 and N2O emissions are likely in future and therefore these GHGs 

along with CO2 must be considered simultaneously when evaluating effective, efficient 

mitigation policy. These variables were therefore converted from their atomic to molecular 

mass (CO2: 44/12, CH4: 16/12, N2O: 44/28) and then to their 100-year global warming 

potential (GWP) value by multiplying by a factor from IPCC (2007) values (CO2: 1, CH4: 23, 

N2O: 296). 

 

 Results 

 Observed Changes in Temperature Extremes 

Figure 7.1 illustrates observed changes in extremely warm summers and cold winters from 

the EObs climate dataset. Warm summers are increasing and cold winters are decreasing 

over the observed period, with notable warm summers 1995 and, as well as the winter of 

2010, the coldest winter for 50 years, and the cold winter of 2011 (Met Éireann, 2018a).  
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Figure 7.1: Occurrence of extremely cold winters (top) and warm summers (bottom) over the period 1950-2016, 
‘extreme’ seasons are defined as those which are >0.8 or <0.2 percentiles from the mean value.  

 

 Observed Changes in Precipitation Extremes 

Changes in precipitation extremes are less seasonally distributed than temperature and can 

occur at different times of the year, they are therefore presented as annual seasonal sums 

(counts of extreme seasons in each year), and are shown here (Figure 7.2) as extremes of 

wet and dry. Again this allows for testing of the veracity of the methodology used, by 

comparing to annual reports from Met Éireann (Met Éireann, 2018b), where on 

examination of the annual report for 2012 it is clear that one season had particularly high 

rainfall (summer 2012) while the others had below average rainfall, this is reflected in 

Figure 7.2 where one extremely wet and three extremely dry seasons are evident.   
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Figure 7.2: Occurrence of wet (top) and dry (bottom) extreme seasons on an annual basis for the period 1950-
2017, ‘extreme’ seasons are defined as those which are >0.8 or <0.2 percentile values above or below the mean 
values 
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 Assessment of Extreme Events 

 Normal Temperature & Precipitation (control) 

Figure 7.3 outlines the annual CO2 emissions when the Global ECOSSE model is run using 

‘normal’ weather, where most years show relatively low CO2 emissions. This is used as the 

‘control’ climate, and extreme scenarios are differenced from this control to determine the 

relative response. Figure 7.4 outlines the seasonal pattern of different GHG emissions, with 

highest CO2 emissions during summer, and lowest in spring and autumn, NO3 emissions are 

consistent throughout the year, N2O emissions peaking during spring, and CH4 

sequestration highest in summer with emissions highest during winter.  

 

Figure 7.3: CO2 output running 10 'normal' years of data where seasons within the 0.2 and 0.8 percentiles were 
selected at random to run the model 
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Figure 7.4: Average seasonal GHG model outputs for CO2, NO3, N2O and CH4 from running the model using 'normal' 
data for 10 years. CH4 uses a different colour ramp to illustrate sequestration and emission.  

Figure 7.5 shows average CO2 emissions for the 10-year period with highest emissions 

observed in the midlands, south and southeast, and lowest emissions in the northwest and 

upland areas. Examining the average SOC across the country in year 1 and year 10 (Figure 

7.6) indicates that SOC does not fall significantly over the period, over the 10 years average 

annual SOC declined by 0.31%. This equates to 0.031% per year and is lower than the 

grassland decline calculated in Section 6.3.8.1, as the extremes which naturally occurred 

during those years are not included in this dataset. Emissions for the 10 ‘normal’ years are 

consistently lower than those outlined for the years 2001-2017 in the previous chapter 

(Figure 6.13), as the extremes experienced in those years have not been included in this 

control version.  
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Figure 7.5: The average in CO2 emissions over the 10-year period of normal weather  

 

Figure 7.6: Average SOC from Irish soils over time for the control model run using ‘normal’ non-extreme weather 

 Hot Temperature, Normal Precipitation  

The model was run using hot temperature data where seasonal average temperatures are 

greater than the 80th percentile. Precipitation data is within the 20th to 80th percentiles. 

Figure 7.7 illustrates the 10-year average seasonal responses of different modelled 

variables to hot temperatures, showing CO2 increases are highest in winter (indicating 
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winter temperatures no longer suppress respiration) and show decreases during summer, 

which may be due to excessive drying of the soil with extreme temperatures. NO3 increases 

are consistent throughout the year but strongest in autumn. N2O increases are most 

significant during spring, while CH4 does not change significantly in most seasons, except 

for summer when CH4 sequestration is higher in soils with high C content.  

Figure 7.8 indicates that increases in emissions are most prevalent in the west and 

northwest of the country, with relatively smaller increases in the east and southeast. Hot 

weather increases emissions by over 30kg/ha in the most extreme areas. SOC losses over 

the 10-year period with hot weather extremes are 1.00%, over three times that of ‘normal’ 

weather at 0.31%.  

 

Figure 7.7: GHG model outputs for CO2, NO3, N2O and CH4 from running the GlobalECOSSE model using extreme hot 
temperature and non-extreme precipitation data 
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Figure 7.8: The average difference in CO2 emissions over the 10-year period of hot extreme weather in comparison 
to the control run. 

 Very Hot Temperature, Normal Precipitation  

To further test the model’s sensitivity to temperature and to investigate the impact of 

warmer extremes, ‘very hot’ extreme temperatures were used to run the model, where ‘very 

hot’ seasons are those where the seasonal average temperature anomaly is above the 90th 

percentile.  

Figure 7.9 shows the seasonal responses of modelled variables to extreme hot 

temperatures, comprised of seasons with temperature anomalies greater than the 90th 

percentile. Results show enhanced emissions during winter, spring and autumn for CO2 and 

lower emissions during summer, likely due to excessive soil drying. NO3 emissions are 

higher across all seasons, N2O emissions see the largest increases during spring, increases 

during winter and autumn, and decreases in some areas during summer. Very hot weather 

enhances CH4 sequestration during summer and autumn and has little effect during winter 

and spring. CH4 fluxes in Figure 7.9 indicate that temperature drives higher sequestration 

levels, though the scale of sequestration is relatively small (between -0.08 and +0.08 kg C 

ha-1) compared to CO2.  
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Figure 7.10: The average difference in CO2 emissions over the 10-year period of very hot extreme weather in 
comparison to the control run. 

Figure 7.9: GHG model outputs for CO2, NO3, N2O and CH4 from running the model using very hot extreme temperature 
and normal precipitation data 
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Figure 7.10 shows the average difference in CO2 emissions of very hot extreme weather 

compared to the control. The scale of these emissions is higher than that of the hot extremes 

shown in Figure 7.8, indicating that even though emissions are lower in summer, the overall 

increase in emissions for very hot extreme weather outweighs the decrease in the summer 

months. Calculating the loss of SOC from year 1 to year 10 of the simulation reflects this, as 

1.1% of total SOC was lost over the 10-year period, slightly higher than the 1.00% lost from 

the ‘Hot Temperature, Normal Precipitation’ storyline.  

 Hot & Dry  

Figure 7.7 shows apparent reductions in emissions during extremely hot weather and 

normal precipitation during the summer months, perhaps due to excessive drying of the 

soil. To further test this reaction the model was run using 10 years of extreme hot and 

extreme dry weather, where seasonal temperature anomalies are above the 80th percentile 

and seasonal rainfall anomalies are below the 20th percentile. Figure 7.11 shows seasonal 

responses of modelled GHGs to hot/dry temperature extremes. For CO2, emissions are 

significantly lower in summer, autumn and spring for most areas, and are slightly higher 

during the winter months. This is due to respiration being inhibited due to the lack of water, 

similar to the reduced fluxes resulting from dry soils in Chapters 4 & 5.  

The north-west of the country (Figure 7.11) appears to have higher emissions during most 

seasons, suggesting that soils here do not dry out as much, or that enough rainfall happens 

in these regions even in extreme drought conditions for the country, that soils do not dry 

out enough for respiration to be inhibited. The west coast of Ireland sees increasing 

emissions during winter, spring and autumn, as the west coast receives more rainfall than 

the rest of the country. Increases in respiration during winter are likely due to the high 

rainfall during the winter months, even when an extremely dry season is chosen, it is not 

dry enough for respiration to be inhibited during winter.  NO3 emissions are higher across 

all seasons, with significant increases in the high C soils in the midlands of the country, over 

80 kg N ha-1 higher than the control period. Emissions of N2O are higher in winter and much 

lower in spring and summer, while the majority of areas are lower in autumn. CH4 emissions 

are very similar in winter and spring, with enhanced sequestration during summer and 

autumn, particularly in high-C soils.  
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Figure 7.12 shows the average difference in CO2 emissions between the control and the 

hot/dry scenarios, where CO2 emissions are higher in the northwest, west and southwest, 

and significantly lower in the rest of the country. The dry weather clearly inhibits soil 

respiration in most areas except for those areas which receive high enough rainfall levels 

for soil respiration to continue uninhibited. Hot/Dry extremes caused losses of 0.84% over 

the period, less than hot and very hot extremes, but still higher than the 0.31% from normal 

climate data.  

Figure 7.11: GHG model outputs for CO2, NO3, N2O and CH4 from running the GlobalECOSSE model using hot 
and dry extreme weather data.  
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Figure 7.12: The average difference in CO2 emissions over the 10-year period of very hot extreme weather in 
comparison to the control run 

 Hot & Wet  

As very hot extreme temperatures (Section 7.3.3.3) and dry temperatures (Section 7.3.3.4) 

caused emissions to be lower in certain areas, this is likely due to drier soils inhibiting 

respiration, to test this the model was run using extreme hot and wet weather (temperature 

and rainfall seasonal anomalies greater than the 80th percentile) to investigate the modelled 

responses. Emissions are higher than the control for most GHGs in most seasons with the 

exception of NO3 (Figure 7.13). Figure 7.14 shows the differences between the control run 

and the hot/wet run, with emissions in most areas much higher than observed in all other 

scenarios, with differences in emissions of over 150 kg C ha-1 in this case compared to over 

60 kg C ha-1 for the hot and very-hot scenarios. This indicates that the increased rainfall does 

not allow the soil to dry out and therefore emissions are enhanced. This increase is most 

pronounced during summer in the southeast of the country. NO3 emissions are more varied, 

with emissions decreasing during spring and summer, and increasing during winter and 

autumn, though these increases are not observed in the west and northwest of the country 

where decreased emissions are evident. The scale of difference in emissions here is lower 

than observed during the hot/dry extreme sequence, as increases and decreases are no 

higher than ~25 kg N ha-1 compared to the increases of > 80 kg N ha-1 from the hot/dry 

sequence. N2O emissions during winter are not significantly different from the normal run, 

with increases highest during summer, then spring, then autumn. Changes in CH4 emissions 
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are negligible in winter and spring, with increased emissions observed during summer and 

autumn, again in soils with high C content.   

Figure 7.14 shows the average difference in CO2 emissions between the control and the 

hot/dry scenarios, where CO2 emission increases in all areas, but increases are lower in the 

northwest, west and southwest, and higher in the rest of the country. The wet weather does 

not allow soil respiration to be inhibited, leading to much higher annual average fluxes. 

Hot/Wet extremes caused losses of 2.1% over the period, well above hot and very hot 

extremes, and significantly higher than the 0.31% from normal climate data.  

 

Figure 7.13: GHG model outputs for CO2, NO3, N2O and CH4 from running the GlobalECOSSE model using hot 
and wet extreme weather data 
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Figure 7.14: The average difference in CO2 emissions over the 10-year period of hot and wet weather in comparison 
to the control run 

 CO2 Equivalent Maps for Each Run 

Figure 7.15 illustrates the results of calculating CO2 equivalent values for all GHGs, which 

follow the pattern of individual emissions with highest emissions from the hot/wet scenario 

and lowest from the ‘normal’ scenario. The GHG maps give a better picture of the fluxes of 

GHGs, normal climate sees most of the country as a GHG sink, while the hot and very hot 

scenarios show increasing GHG emissions across the country, and the hot/dry scenario 

showing reductions in emissions due to the inhibition of respiration and other GHG fluxes. 

The hot/wet scenario sees most of the country become a source of GHGs. The normal 

climate sees more sequestration than averages in the previous chapter, showing the 

influence of removing extremes.  
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Normal Hot 
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Figure 7.15: GHG CO2 equivalent fluxes for normal and extreme weather runs, units in kg C ha-1, scale is identical 
for all maps. 
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 Discussion & Conclusion 

In Ireland the incidence of extremely warm summers is increasing, while the incidence of 

extremely cold winters is decreasing according to analysis of the EObs dataset (Figure 7.1), 

agreeing with observed trends in Irish climate (Walsh and Dwyer, 2012). This also agrees 

with global trends towards a shift in the mean climate towards a warmer state, with more 

frequent and intense hot extremes, and fewer cold extremes (Seneviratne et al., 2012).  

 Carbon 

The climate observations were used to create scenarios of changes in extremes to assess 

potential responses of Irish soils to extreme events. The findings indicate that soil carbon 

emissions will increase when temperature alone increases, as is to be expected as 

respiration typically increases with increasing temperatures in all climates and land-use 

types (Lloyd and Taylor, 1994; Bond-Lamberty and Thomson, 2010; Wu et al., 2011). 

Running the model for hot/dry scenarios showed respiration is inhibited strongly in 

summer, likely due to excessive drying of the soil, and is enhanced in winter as even dry 

winters in Ireland do not appear to be dry enough to inhibit respiration, particularly on the 

west coast (Figure 7.11).  Soil respiration is typically lower in dry conditions and increases 

to a maximum at intermediate moisture then declines when oxygen becomes excluded (Xu 

and Shang, 2016), and the typical positive relationship between soil respiration and 

temperature is known to be constrained by the availability of soil moisture (Wood et al., 

2013), indicating that the model is responding correctly to environmental changes. 

Reichstein et al. (2013) note that ecosystem respiration declined during the 2003 heat 

wave, though GPP also declined causing the reduction in sequestration observed (Ciais et 

al., 2005). 

 Nitrogen 

Experimental evidence shows increases in soil nitrogen mineralisation in response to 

increasing temperature, to a point of 25°C, and that N mineralisation is highest when soil 

moisture content is between 80-100% of field capacity (Guntiñas et al., 2012), indicating 

that N emissions should increase as temperature and moisture increase. Modelled results 

show increases in both NO3 and N2O for the hot and very hot scenarios in all seasons except 

summer, where some decreases in emissions compared to the normal run are observed. N 

leaching is shown to be enhanced with increasing temperatures, particularly with increases 

2°C above normal (Jabloun et al., 2015). When hot-dry emissions are examined (Figure 

7.11) emissions are significantly enhanced for nitrate, and are reduced in all seasons but 

winter for nitrous oxide, indicating that N2O fluxes are more moisture dependent and are 

inhibited when moisture is limited, as is the case in reality where water filled pore space is 
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positively correlated with increased N2O emission (Smith et al., 1998b; Unger et al., 2010). 

Hot/wet temperatures saw increases in N2O emissions in all seasons except winter, again 

behaving as is expected (ibid). Changes in N2O emissions across scenarios are relatively 

small (±0.1 kg N ha-1) as they are typically enhanced by agricultural fertilizer use, an activity 

not included in these model runs. NO3 emissions under the hot/wet scenario are variable, 

with increases in winter and autumn on the east coast and decreases in the west, the 

opposite spatial pattern in summer, and decreases across most of Ireland during spring, 

making interpretation of these results difficult. NO3 emissions are highest from high-C soils, 

during the hot, very hot and hot/dry scenarios, which is known to occur in N mineralisation 

studies (Liu et al., 2017). The pattern is less apparent during the hot/wet simulation. The 

ECOSSE model was observed by Zimmermann et al. (2018) to perform well on grasslands 

but strongly overestimated N fluxes on arable sites, which should also be acknowledged 

when interpreting these results as N2O emissions may also be underestimated here. As 

manure and fertilizer applications are not simulated it is highly likely that modelled N2O 

emissions are lower than they would be in reality.  

 Methane 

Hot and dry weather acts to enhance CH4 sequestration during the warmer months, a 

finding contrary to observations which show methane emissions increase significantly with 

temperature where water is non-limiting (Yvon-Durocher et al., 2014), indicating that even 

on peat soils the model may be drying excessively. Hot, very hot, and hot/dry extreme 

scenarios enhanced methane sequestration, however the hot/wet scenario showed 

emissions to increase on the same soils, indicating that the lack of moisture may be 

inhibiting CH4 emission in the model, though this does not seem to be the case in 

observations where methane production is observed to increase with increasing 

temperatures (van Hulzen et al., 1999). It has been observed that soil hydrology is a 

significant control on methane emission, with methane uptake increasing as soil moisture 

decreased, while emissions are high when water table depth is low in typically wet soils 

(Christiansen et al., 2016), likely explaining why methane emissions are so prominent in the 

high C soils of Ireland under hot and wet conditions. Changes in methane emissions across 

scenarios are relatively small also, with ranges from ± 0.2 kg C ha1, indicating that these 

fluxes may not be very significant. Renou-Wilson & Wilson (2018) assess the potential 

impact of climate change on Irish peatlands in future, projections indicate that CO2 

emissions from peatlands will be enhanced on drained peat soils causing a positive feedback 

on climate change, while rewetted peat soils have lower CO2 emissions and some are likely 

to remain as sinks under future climate change. This enhanced CO2 emission as a response 
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to warmer temperatures from peatlands is not shown in the Global ECOSSE spatial 

simulations, indicating that improvements to the simulation of emissions from peat soils 

need to be considered in future model developments. In order to fully assess the potential 

impacts of rewetting and drainage of peat soils it may be useful to allow for the 

categorisation of peat into categories of drained/rewetted for simulations to account for 

these effects. The findings of Renou-Wilson & Wilson (2018) also indicate that rewetting of 

peatlands is to be prioritised as an adaptation measure to protect peat soils from increased 

emissions resulting from warming temperatures and extreme events.  

 CO2 Equivalents 

Examination of global warming potential files showed the importance of converting 

emissions to GHG equivalents and highlights the radiative forcing importance of GHGs other 

than CO2 as it is evident that most Irish soils under normal climate are sinks of GHGs, but 

extreme temperatures can turn these areas from sinks to sources, particularly when 

hot/wet extremes are combined. This is highlighted by Tian et al. (2015) who acknowledge 

the importance of including the three major GHGs (CO2, CH4 and N2O) simultaneously when 

evaluating climate change mitigation policy. These gases can have amplifying or 

suppressing effects on the total GHG flux, and are affected differently by changes in 

management, climate and land-use, meaning their inclusion is essential if a realistic 

estimate of the ecosystem response is to be made.   

Drought conditions enhance GHG sequestration across most of the country, particularly on 

the west coast (Figure 7.15), a result which may give an incorrect indication of the response 

of soils to this type of extreme. Lagged effects such as changes to soil microbial community 

structure and activity (Frank et al., 2015), the initial pulse of respiration after re-wetting of 

soils (Davis et al., 2010), and enhanced respiration one year after a warm event (Arnone III 

et al., 2008) are not simulated by the model. Additionally, the suppression of fluxes within 

the model as a result of dry conditions may not be accurate due to the excessive drying of 

soils and issues with the water modifier (Chapter 4).   

The calculation of GHG equivalents has recently been revised by Etminan et al. (2016) who 

reassess the conversion factors of greenhouse gases to CO2eq, particularly methane which 

has a greater warming potential in its short-wave spectrum, meaning previous estimates of 

GHG projections may have underestimated the impact of CH4. Methane’s 100-year global 

warming potential is revised upwards by 14% compared to the IPCC (2013), and 

uncertainties for CO2 and N2O emissions are ±10%, indicating that regular revision of GWP 

calculations is necessary as knowledge advances.  
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 Uncertainties and Improvements 

As the future climate data used here are sequences of observed past extreme events, it is 

possible that temperature and precipitation amounts are too low for future scenarios, as 

future warming may shift the climate into a state where extremes are outside those 

previously experienced in the observed record. The response of the soil to warming and to 

warm/wet and drought conditions may be more extreme than the model projections 

presented here. The definition of what constitutes an ‘extreme’ event has been questioned 

by Reichstein et al. (2013) who find that defining extremes based on climate statistics alone 

is not the most ideal way of assessing impacts on ecosystems and the carbon cycle, as what 

may be considered ‘extreme’ climatologically may not stimulate an ‘extreme’ response from 

the ecosystem. Ecosystems may be affected by different degrees of ‘extreme’, Reichstein et 

al. (2013) argue that an extreme event should be determined based on the severity of the 

ecosystem response, not the climatic drivers. Their full definition is “conditions where an 

ecosystem function (such as carbon uptake) is higher or lower than a defined extreme 

percentile during a defined time period and over a certain area, traceable to single or 

multivariate anomalous meteorological variables” (Reichstein et al., 2013, pp. 288). Rolinski 

et al. (2015) outline their methodology for redefining ecosystem vulnerability as 

“hazardous conditions when the ecosystem is losing carbon over a long time” (pp. 1823), 

rather than previous popular definitions which focus on weather conditions that form a 

hazard for an ecosystem (Van Oijen et al., 2014). This method recognises that all ecosystems 

respond differently to change, and that an ecosystem-specific approach which uses 

observations to recognise the factors which cause vulnerability for that ecosystem is a 

better way of assessing the impact of potential future shocks than assuming a generic 

response to climate changes. The ecosystem-specific approach (if observed data are 

available) also allows for the linking of ecosystem processes to driver changes, elucidating 

the complexities of each ecosystem and allowing for more accurate estimation of responses 

to potential shocks. While the use of ecosystem responses as an indicator of what 

constitutes extreme is laudable and sensible, unfortunately a lack of observations means 

this process is not often possible, for example Vicca et al. (2014) investigate whether 

observed soil moisture responses can be used to simulate CO2 efflux under altered 

precipitation regimes, finding that it is not possible, likely due to a lack of high-frequency 

measurements on which to base the projections.  

Frank et al. (2015) outline the potential direct impacts of droughts on soil respiration and 

find changes in microbial community and structure are both a direct and indirect effect of 

drought, while peatland-carbon decomposition due to a reduced water table is regarded as 
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a potential indirect effect. Analysis of the sensitivity of different ecosystem factors to 

extreme drought found GPP and NPP are typically more sensitive than ecosystem 

respiration, with the sensitivity increasing as drought severity increased, with a lack of 

rainfall attributed to the reduction in GPP and NPP, and a lack of moisture in the soil, 

reduced C input and a drought-induced reduction in soil C content being the causes of the 

reduction in Rh. As drought severity increased, the response of Rh increased to resemble 

that of NPP and GPP, and responses varied across mesic and xeric sites showing that the 

reactions of Rh to extreme drought can vary in magnitude, timescale and can be exacerbated 

by different mechanisms (Shi et al., 2014).  

The response of an ecosystem to a climatic shock may not always be immediate, Zona et al. 

(2014) find a delayed response to extremely warm and dry conditions one year after the 

initial event, highlighting the complexity of individual ecosystem responses and the need 

for further investigation of extremes and multiple extreme scenarios (compound events). 

The impact of drought extremes can have direct impacts on the carbon cycle by affecting 

plant physiology and soil microbial activity, and lagged impacts including changes to soil 

microbial community structure and activity (Frank et al., 2015). Drought is known to 

decrease the rate of soil respiration, though observations have shown that rain events which 

end the drought stimulate a pulse of soil respiration in mineral soils, this effect varied by 

site and the degree of soil drainage, the main determinant of soil respiration across sites 

with different degrees of drainage is still mainly temperature (Davis et al., 2010). Though 

recent research is indicating that soil moisture and photosynthesis may be more important 

than previously thought (Zhang et al., 2018). Arnone III et al. (2008) find grassland 

respiration is enhanced one year after an anomalously warm season, offsetting the net 

ecosystem carbon uptake. The GlobalECOSSE model does not simulate these interactions 

and feedbacks, which is potentially a source of error in these simulations.  

According to the results in Section 7.3, future warming on the west coast of Ireland is more 

likely to enhance soil respiration during winter due to higher levels of precipitation allowing 

for respiration to continue uninhibited, however in most areas during the other seasons soil 

respiration during drought conditions is expected to decrease. Heavy precipitation events 

(expected to increase as the climate warms; Seneveritne et al., (2012)) can also affect the 

long-term productive capacity of soils and can cause crop damage/failure as a result of 

waterlogged soils moving to an anaerobic state (Reichstein et al., 2015). Hot, very hot and 

hot & dry extreme events are predicted to increase NO3 emissions, N2O emissions are 

expected to increase under hot, very hot and hot/wet extreme events, and decrease under 

hot/dry extreme events, as grassland are the largest source of N2O by land-use (Oertel et al., 
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2016), and grasslands dominate Irish land-use, this should be considered in future extreme 

analysis studies. CH4 emissions are expected to decrease during hot, very hot and hot/dry 

extremes while hot/wet extreme scenarios can be expected to enhance emissions or reduce 

sinks, particularly in high-C soils. These GlobalECOSSE model runs do not account for 

changes in land-use or for the implementation of management practices such as changing 

the cropping regime, irrigation or fertilizer application, which would likely result in changes 

to these projections, and which should be considered in any future work.  

Tian et al. (2015a) argue that extensive manipulated experiments are needed to assess the 

magnitude, distribution and response of Rh to changes in climate, land-use and extreme 

events to serve as a benchmark for reducing model uncertainty, this data is essential in 

order to fully assess whether the ECOSSE model is correctly simulating the responses to 

extremes.  In response to the myriad uncertainties associated with these projections, this 

research recommends the approach of Smith et al. (2015) who argue that although more 

knowledge is needed and more experiments/modelling studies need to be performed to 

protect soils in the long-term, the best practices for protecting and enhancing soils is already 

known and many can be immediately implemented. A key recommendation of this chapter 

is that amid significant uncertainties policy-makers and stakeholders must build resilience 

into systems to reduce their vulnerabilities to potential shocks. Resilience can be built by 

increasing soil carbon content in simple ways such as using cover crops and crop rotation, 

incorporating straw and manure, and moving toward reduced/minimum tillage.  
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 Thesis Discussion & Conclusion 

 Introduction 

This chapter summarises the findings of the thesis, and includes further discussion of soil 

and greenhouse gases, difficulties in modelling, and interactions between variables which 

make modelling a challenge. Uncertainties in the modelling process are highlighted, along 

with directions for potential future research.  

The research questions this thesis attempted to answer were:  

A. Is it possible to use models to improve national emission estimates for soils and 

move towards a tier-3 reporting methodology?  

B. What is the potential impact of future extreme events on emissions of greenhouse 

gases from soils? 

The aims and associated objectives identified to answer these questions were 1. To 

investigate whether it is possible to simulate soil carbon emissions from Irish soils by 

comparing modelled soil carbon emissions to observations at an Irish site, 2. To upscale 

these emissions to national scale using the GlobalECOSSE model, and 3. To investigate the 

impact of extreme weather events on quantities and fluxes of GHGs by creating extreme 

scenarios adapted from observations.  

 Summary of Research  

Chapter 1 outlined the motivation underlying soil carbon modelling, the links between the 

global carbon cycle and climate change, and the legal frameworks which emerged from 

these links. This chapter also described the importance of soil in relation to the carbon cycle 

and emissions inventories with a focus on Ireland, along with the potential for 

sequestration. Chapter 2 was an in-depth description of theory, observations and methods 

of modelling soil GHG emissions. Chapter 3 discussed process-based modelling of 

greenhouse gas emissions from soils in detail, outlining various models and modifiers and 

the equations that drive them. Chapter 4 outlined the process of simulating soil CO2 

emissions for an Irish site using the ECOSSE model and assessed model parameters to 

identify potential causes for the offset between simulations and observed data. Chapter 5 

delved deeper into these issues by deconstructing the ECOSSE model to its modifiers, 

finding the simulation of water by the ECOSSE model to be problematic, along with the 

simulation of evaporation. Chapter 6 discussed the upscaling of the model from site to 

national scale, introduced the GlobalECOSSE model, and compared its outputs to 

observations before simulating GHG emissions for Irish soils. Chapter 7 outlined the 
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potential response of Irish soils to extreme weather events generated using a novel block 

resampling methodology. Chapter 8 summarises the thesis, outlines limitations and 

uncertainties, discusses policy implications, and outlines potential directions for future 

work. As a result of the findings in Chapters 4-7, the following conclusions can be drawn 

from the research aims: 

 Aim 1 (Research Question A): To assess the ability of a model to simulate soil 

carbon emissions at a selected Irish site. 

An offset between observations and model outputs is evident, which cannot be 

overcome by changing model parameters (Chapter 4). Running the ECOSSE model for 

an arable site and comparing model outputs to flux and chamber measurements showed a 

discrepancy between model outputs and observations during the growing season. On a 

cumulative basis model performance is good in year one, underestimates in year two, and 

overestimates in year three. Adjustments to various model parameters including crop, 

water, soil and pH did not overcome the issues observed. Removing crops entirely allowed 

the soil to stay moist, but CO2 fluxes were significantly reduced due to the lack of plant 

inputs to the soil. The model was responsive to changes in crop type, with magnitudes of 

fluxes changing, likely due to changes in plant inputs from different crops, though the timing 

issues remained. Alterations to water parameters did not significantly affect modelled CO2 

fluxes, and the soil still dried out when changes to available water parameters were 

implemented, meaning the fluxes were still inhibited. Similarly changes to soil parameters 

including sand, silt, clay, bulk density and pH exhibited little change in output, motivating 

further research into the source of the issue.  

The simulation of water by the ECOSSE model is the apparent cause of the difference 

with observations, while potential evaporation causes excessive drying in 

comparison to actual evaporation (Chapter 5). Further investigation into the offset 

identified in Chapter 4 first prompted examination of potential natural causes for the offset. 

Radiation, temperature and leaf area index indicated that a natural offset is present as plant 

growth is strongly linked to radiation while the modelled emissions are linked to 

temperature, however the natural offset is small and doesn’t account for the discrepancy 

highlighted in Chapter 4. Following this, components of the ECOSSE model in terms of its 

fundamental modifiers for temperature, water, crop and pH are analysed. Application of the 

ECOSSE temperature modifier along with temperature modifiers from different studies 

indicated that the modifier is performing as expected and is not the source of the offset. 

Including the water modifier in simulations (using water content to 25cm outputted by the 

ECOSSE model) showed a significant decline in respiration, as simulated water content was 
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so low during the growing season that a modifier of 0.2 was applied, inhibiting respiration 

by 80%. Changes to the crop parameter reduced respiration by 40% during the growing 

season by applying a modifier of 0.6, while the pH is static so the modifier had no effect. 

Deconstruction of the ECOSSE model in this way produced output similar to the model itself, 

indicating that the process of simplifying the model was successful. Results indicate that the 

simulated drying of the soil by the model is not realistic. Soil water content measurements 

available at the site were used as inputs to the water modifier which showed significant 

improvement over the model simulations. The water modifier of the ECOSSE model 

therefore functions correctly when observed soil water content is used, but the simulation 

of water by the ECOSSE model allows the soil to dry unrealistically compared to reality, 

erroneously inhibiting respiration. The ECOSSE model is therefore deficient at simulating 

soil moisture at this site at least. Changes to the weather data inputted to the model can 

overcome this by using actual rather than potential evaporation, which allows more 

moisture to remain in the soil, though this may only be true for this arable site on well-

drained sandy soil.  

 Aim 2 (Research Question A): To upscale site emissions to national scale. 

Irish soils respond as expected to weather events according to model simulations on 

a seasonal and annual basis, with results indicating that Irish grasslands and 

croplands are sources of CO2, though some grasslands are overall GHG sinks when all 

GHGs are included (Chapter 6). Though there is an offset present in the model, which is 

due to the water modifier, issues with the ECOSSE water modifier have been identified 

before (Bell et al., 2012; Zimmermann et al., 2018), and ECOSSE performs well at certain 

sites (Zimmermann et al., 2018). The SoilR model is introduced in this chapter which 

confirms the strong influence water can have, and allows for assessment of the ability of the 

ECOSSE model to be scaled temporally. A pre-release spatial version of the ECOSSE model 

(GlobalECOSSE) was used to simulate GHG emissions from Irish soils using the HWSD soil 

database and EObs temperature and precipitation data, with PE calculated using the 

Thornthwaite method. GlobalECOSSE is used here to assess the ability of the model to 

simulate national emissions, producing the first GHG emission maps for Ireland. Model 

outputs align with theory as warm temperatures increase respiration, and soils with the 

highest C content have the highest CO2 emissions during warm temperatures, along with 

the highest sequestration of CH4. The importance of including all GHGs, not just CO2 is 

emphasised by the agricultural simulations, where croplands are exclusively GHG sources, 

while grasslands have much lower emissions, and some are CO2 sinks. Though the model is 

likely to underestimate emissions on well-drained sandy soils due to issues with the water 
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component, these model outputs are a baseline of simulations on which future work can 

build. Increased observations are essential in order to evaluate model performance, and it 

is important to have consistency across observations as partitioning of flux and chamber 

data introduce large error ranges, with no optimum method available. It is possible to 

upscale emissions to national scale, but it is difficult to have confidence in these estimates 

due to issues with both the model and observations.  

 Aim 3 (Research Question B): To investigate the impact of extreme weather events 

on quantities and fluxes of greenhouse gases in Irish soils. 

Soils respond as expected to extreme events, with warmer temperatures increasing 

emissions, though the interactions between temperature and moisture are 

important, as hot and dry extremes reduce respiration due to issues previously 

highlighted with the water modifier, meaning hot and wet extreme conditions show 

the largest GHG emissions. There are clearly uncertainties associated with the national 

emissions projections, nevertheless it remains a useful exercise to assess the response of 

Irish soils to extreme events, to get an indication of potential future change. The model was 

ran using new sequences of weather data derived from seasonal extremes, results indicated 

enhanced respiration in response to warming, reduced respiration during drought and 

significantly enhanced respiration during hot and wet extreme conditions. Reduced 

respiration during drought is to be expected based on the results from Chapters 5 & 6, 

where dry conditions inhibit respiration, though this is uncertain as some modelled soils 

may dry excessively compared to reality. The importance of including multiple GHGs is 

emphasised in the CO2 equivalent maps (Figure 7.15) where most Irish soils are GHG sinks 

under ‘normal’ or non-extreme conditions, and under hot and dry conditions, while hot and 

wet conditions show most Irish soils to be GHG sources. Feedbacks, legacy effects, and 

delayed reactions are not simulated by the GlobalECOSSE model, and ought to be included 

in future simulations. Model outputs are indicative only, as uncertainties are significant, this 

output serves an initial assessment which can be built upon in future, and emphasises the 

need for building resilience into the soil system as the response to potential shocks is so 

uncertain.  

 Limitations of the Research 

Considering the findings of this thesis, this section details the intricacies and uncertainties 

in the relationship between soil and climate change, and the limitations imposed on the 

research because of these uncertainties.  
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 Soil & Greenhouse Gases 

It has long been noted that soil stores a significant amount of carbon which is vulnerable to 

changes in temperature and precipitation as a result of climate change. Contradictory 

empirical and modelling studies highlight complex interactions between SOM 

decomposition and changes in environmental variables (temperature and rainfall) creating 

uncertainty around both current stocks and future projections (Davidson and Janssens, 

2006).  

Enhanced carbon absorption by terrestrial ecosystems as temperatures increase (CO2 

fertilization effect) can be offset by the increased release of CO2 by soils in temperate regions 

(Bellamy et al., 2005), and the magnitude of release dependent on efficiency of soil microbe 

carbon use (Allison et al., 2010). The response of soils to warming under experimental 

conditions is similar, as warming soils by 4°C increased annual soil respiration by 34-37% 

to 100cm depth (Hicks Pries et al., 2017). The future timing and magnitude of soil C release 

and its response to different combinations of forcing factors such as temperature, rainfall 

and land management remains uncertain. Amid this uncertainty the estimated direction of 

change globally is assumed to be the same – studies show that warming will cause soil 

carbon losses, these losses depend strongly on the initial soil C stocks, meaning high 

latitudes are most vulnerable as they have the highest soil C stocks and are projected to 

experience the greatest temperature increases (Crowther et al., 2016). These claims have 

been challenged with the inclusion of more studies, which indicate that the change in soil C 

stocks in response to warming is not significantly different from zero across studies, 

emphasising the need for more local assessments as there appear to be no hard-and-fast 

rules for assessing soil C responses to warming (van Gestel et al., 2018).  

Though this thesis finds enhanced respiration as a response to warming, the response of 

soils to warming is a hotly debated topic in soil science, with papers challenging the 

estimates of other researchers, showing the vitality and dynamism of the topic and the lack 

of consensus on this important issue (van Gestel et al., 2018; Crowther et al., 2018; Xiao et 

al., 2018; Hicks Pries et al., 2018). As the climate changes, soil carbon stocks are projected 

to change, yet the magnitude of this change is uncertain, even the direction of change varies 

across studies, and remains unclear (Jackson et al., 2017). It is vital that this process is 

understood correctly in order to project potential future emissions accurately. Some 

researchers argue that decomposition rates (and therefore emissions) do not vary with 

temperature (Giardina and Ryan, 2000), some suggesting NPP and therefore soil C content 

will increase as a result of warming (Cao and Woodward, 1998) and others suggesting the 

effect of warming on soil C will increase NPP but also encourage microbial activity which 
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enhances soil C decomposition and causes greater C losses (Drake et al., 2011; Phillips et al., 

2012). Others suggest that soil C loss will be more pronounced than previously thought, as 

a result of non-labile SOC being more sensitive to temperature changes (Knorr et al., 2005). 

Despite this debate, it has been acknowledged that increasing temperatures result in 

increased decomposition of organic matter, and as a consequence, greater CO2 is released 

to the atmosphere (Powlson, 2005). The results from this thesis agree with this, as higher 

emissions are observed during warmer temperatures, however the interactions between 

temperature and moisture are vital to acknowledge, as drought conditions strongly inhibit 

respiration and can lead to enhanced C sequestration according to these results (Section 

7.3.3.6). Some studies attempt to link increasing temperatures to SOC losses (Bellamy et al., 

2005) though the confidence in these links is undermined by factors other than climate 

change, urging caution when interpreting results (Smith et al., 2007). 

According to the IPCC (Ciais et al., 2013) around half of the emissions arising from fossil fuel 

burning and land-use change have remained in the atmosphere since pre-industrial times. 

The other half has been sequestered and stored by sinks in the global carbon cycle, namely 

the ocean (155 ± 30 Pg C), and vegetation biomass and soils not affected by land-use change 

(160 ± 90 Pg C). Examining all greenhouse gases in the terrestrial biosphere together is 

important as global land CO2 uptake from 2001 to 2010 is outweighed by the warming 

capacity of biogenic methane and N2O emissions by a factor of two. This is emphasised by 

the results of Chapter 6 where land can change from a source to a sink when all GHGs are 

included in analysis. The terrestrial biosphere is therefore a source of GHGs at the rate of 

3.9±3.8 (top down) and 5.4±4.8 (bottom up) CO2eq (Tian et al., 2016). These large ranges 

reflect the uncertainties inherent in modelling complex biogeochemical systems and 

emphasise the importance of measurement-based approaches to quantification and 

modelling of GHGs. 

 Projected Changes 

Smith et al. (2005) investigated projected changes in carbon stocks of European (defined as 

EU25 countries plus Norway and Switzerland) croplands and grasslands up to 2080 with 

areas for cropland and grassland as 126.5 Mha and 62.7 Mha respectively. Technology 

improvements are expected to increase soil carbon stock by increasing inputs to the soil, 

this is thought to be more effective for cropland as grassland is typically extensively 

managed and less likely to benefit from yield enhancing technologies, though the potential 

for Irish grasslands to store more carbon is highlighted by Kiely et al. (2017), who argue a 

conservative estimate of 48 t C ha-1 to 50cm is available, and recommend the potential for 

Irish soils to sequester carbon be included in GHG emissions inventories.  
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Smith et al. (2005) suggest average European SOC stocks across multiple SRES scenarios 

are projected to increase by 1-7 t C ha-1 in croplands and 3.2-6.2 t C ha-1 in grasslands, this 

is without factoring in potential changes in land-use. The projected land-use changes 

include reductions in cropland and grassland, and when they are factored in to the estimates 

the SOC stocks decline in all scenarios for cropland, and in all-but-one scenario for 

grassland. Regional changes are different under each scenario, emphasising the importance 

of studies which focus on specific locations to guide regional policymaking. Lugato et al. 

(2014) use the CENTURY model to project organic carbon stock changes in European 

agricultural soils and find increases across north-western Europe with decreases in carbon 

at lower latitudes and towards the east. These increases are attributed to enhanced NPP and 

C input due to atmospheric C enrichment, they also find SOC losses in vulnerable soils in 

south and eastern Europe are limited in magnitude suggesting resilience in SOC. Though 

GHG sequestration is simulated by the model in some cases in Chapter 6, the direction of 

change in SOC is downward for Irish cropland and grasslands, disagreeing with the 

CENTURY model projections for north-west Europe, though the addition of fertilizer 

applications and land management could alter these results. Impacts of extremes are 

‘difficult to be predicted and simulated’ (Lugato et al., 2004 pp. 324) and it is recommended 

they be included in future, Chapter 7 assessed the potential response of Irish soils to 

extreme events and found they agreed with the theoretical understanding of the response 

of soil carbon to temperature and moisture, and that a warmer/wetter climate will see the 

greatest increase in emissions.   

Crowther et al. (2016) synthesise 49 studies to investigate the responses of global soil 

carbon to warming and find losses of 30 ± 30 Pg C to 203 ± 161 PgC under one degree of 

warming, and under business as usual emissions a loss of 55 ± 50 Pg C by 2050. These 

considerable uncertainties largely stem from a lack of understanding of how soil 

communities take to acclimatise to warming, if the effects are realised slowly the losses by 

2050 will be closer to 200 Pg C, if soils acclimatise more rapidly the estimates will be toward 

the lower end of the estimate (50 Pg C). The losses are strongly associated with initial soil C 

stocks, with losses beginning to occur in areas with 2-5 Kg C m-2 and losses becoming 

considerable in soils with >7 Kg C m2. This vulnerability is presumed to result from the high 

temperature sensitivity of C decomposition and biogeochemical limits on the potential C 

inputs to the soil. Claims made by Crowther et al. (2016) about the importance of initial soil 

C stocks and the direction of change as a response to warming were challenged by van Gestel 

et al. (2018), who performed a similar analysis on a larger number of datasets (94), and 

found the importance of initial stocks were not replicated in their larger sample, and the 
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direction of change under warming was not statistically significant from zero, similar to Lu 

et al. (2013). van Gestel et al. (2018) recommend future experimental work to focus on 

underrepresented regions of the global database, as most studies come from mid-latitude 

countries and are predominantly from the USA, mainland Europe and China. It is also 

recommended that data is integrated more with process-based models, as is undertaken in 

this thesis. In response, Crowther et al. (2018) acknowledged the significance of including 

more sites, and argued the inclusion of yet more data may well adjust the relationship again, 

but maintain their conclusions on the potential loss of C from areas with initially high C 

content still stand, though it may be processes underlying the development of C stocks 

which are good predictors for response to warming, rather than the C stocks themselves. 

They echo van Gestel et al. (2018) in calling for the inclusion of more data from under-

sampled regions of the globe, and highlight the importance of further research in this area 

to get a more definitive perspective on the responses of soil C to warming. It is clear that 

more data will help to elucidate the responses of soils to warming in different regions, an 

issue which has been previously highlighted (Smith, 2012).  

 Confounding Interactions 

Projecting changes in SOM and SOC, along with GHG emissions from soils under climate 

change is a complex and multifaceted process, made more difficult by responses of different 

variables which can reinforce or counteract one another. For example, increased plant 

productivity resulting from higher levels of atmospheric C has been found to stimulate both 

C and N cycling in forests, as the increase in plant inputs in the upper soil layers is not stored 

in the soil for long due to accelerated decomposition by microbes (Phillips et al., 2012). This 

means that although more C may be inputted into soils as atmospheric CO2 increases 

resulting from increased productivity, this may not necessarily translate to higher C storage 

as microbial activity counteracts or outweighs the C inputs. In contrast to this, in a meta-

analysis of experimental responses of soils to artificially induced warming, Lu et al. (2013) 

found that although litter decomposition, soil respiration and DOC leaching are enhanced 

under warming, implying the turnover rate of C will increase, the ecosystem storage of C 

could remain stable due to the increased plant-derived C influx counteracting the enhanced 

soil efflux as the climate warms. The increase of soil respiration is estimated at 9%, 

comparable to the 12% increase estimated by Wu et al. (2011). When the effect of 

experimental warming is tested over the whole soil profile the increase in respiration is 

much higher at 34-37%, albeit for one soil type in a forest ecosystem (Hicks Pries et al., 

2017), suggesting other studies do not account for substantial increases in fluxes by not 

warming soils deeper, and that models do not accurately represent SOC sensitivity as the 
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Q10 found at depth is higher than that used by most ESMs ( Todd-Brown et al., 2013; Hicks 

Pries et al., 2017). Similar to Crowther et al. (2016), responses of soil C stocks to warming 

were observed independently of environmental factors such as latitude, MAT and MAP, and 

forcing factors such as the magnitude of warming and experimental duration. The 

experimental methods used by Hicks Pries et al. (2017) were criticised by Xiao et al. (2018) 

who pointed out that warming the soil profile in its entirety is not realistic as surface 

warming would gradually heat the soil profile with a thermal lag from shallow to deep soils. 

Xiao et al. (2018) also criticised the removal of certain Q10 values as ‘outliers’ when they 

may have been reactions to the unrealistic warming, and the non-removal of the CO2 data 

which corresponded to these outliers. By reanalysing the data using a different 

methodology and including outliers Xiao et al. (2018) found surface soil layers to be more 

responsive to warming with a much higher temperature sensitivity than deeper soil layers. 

Hicks Pries et al. (2018) respond to the criticism with claims that over climatic timescales 

soils have been shown to warm at the same rate throughout the profile (with the exception 

of permafrost), and that the experiments cited by Xiao et al. (2018) do not show warming 

in the entire profile due to lateral heat transfer, and argue that their warming of the entire 

profile to 1m by 4°C is more realistic. Hicks Pries et al. (2018) argue the outliers they 

removed were likely due to differences in substrate availability and microbial communities, 

not warming. They also emphasise that their conclusions were different only in magnitude 

compared to Xiao et al. (2018), and that the direction of change found by both research 

teams was the same. CO2 production increased across all depths, and though changes in 

deep soils may only make up 10% of the response to warming, this is a significant amount 

when scaling from site to global scale. These uncertainties again emphasise the need for 

using observed data, with long-term field measurements of warming induced changes to 

soil C stocks recommended in order to improve our understanding of soil C dynamics and 

our projections.  

Wu et al. (2010) find increased temperatures enhanced plant biomass and productivity, 

respiration and ecosystem photosynthesis, but did not affect overall C uptake, increased 

precipitation enhanced respiration and ecosystem photosynthesis, leading to higher overall 

C uptake seen in increased plant biomass and productivity. Reductions in precipitation 

constrained aboveground biomass and productivity, soil respiration, photosynthesis and 

net C uptake, as is observed during dry conditions in Section 7.3.3.4. Overall Wu et al. (2010) 

find C fluxes were more sensitive to increased precipitation than reduced precipitation, and 

when both warming and precipitation were altered, the responses of ecosystems were 

smaller than single-factor effects. This finding is echoed by Suseela et al. (2012) who point 
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out the complex interactions between soil respiration and altered warming and 

precipitation and find seasonal variation of the temperature sensitivity of microbial 

respiration in the field. An independent analysis of the global soil respiration database 

(SRDB) found the contribution of global Rh to be increasing (Bond-Lamberty et al., 2018), 

the authors posit two possible explanations for the increase in Rh, either GPP increases 

resulting in higher C uptake by ecosystems and therefore greater detritus production and 

substrate availability for soils (thereby enhancing respiration), but this theory is hampered 

by the fact that substrate inputs are not rising fast enough to match the increases in Rh. The 

second explanation Bond-Lamberty et al. (2018) posit is that climate changes and increased 

temperatures have enhanced SOC mineralization, as the increase in global Rh of 1.2% in 25 

years concurrent with temperatures rising by 0.7°C is consistent with results from 

experimental warming studies (Crowther et al., 2016; Lu et al., 2013; Zhou et al., 2016; 

Wang et al., 2014). Bond-Lamberty et al. (2018) warn of the difficulty of observing a 

statistically significant increase in Rh at a certain site, even if 25 years of perfect Rh 

observations were available as the climate driven increase (particularly at one site) is small 

compared to the interannual variation of Rh.  

Further complexities in projecting future emissions are exemplified by the possible 

countervailing impacts of reducing emissions of one greenhouse gas unintentionally leading 

to increases in other GHGs, which may offset the initial reduction. For example, soil carbon 

sequestration can lead to enhanced N2O emissions with 100 year GWPs that offset 75-310% 

of the sequestration (Li et al., 2005). The ability of soil carbon in arable land to significantly 

mitigate against climate change has been questioned due to enhanced N2O emissions from 

C management practices, with findings showing short-term sequestration potential can be 

offset by increased N2O emissions in the long-term, with soils eventually becoming a GHG 

source when N-fixing cover crops are used, and remaining a small sink when crop residue 

retention and low soil disturbance is practiced (Lugato et al., 2018). Alternative 

management practices such as manure application may well increase SOC content, but 

associated increases in N2O emissions can largely offset the benefits, even in warm 

temperate climates, acidic soils, and soil textures of sandy and clay loams (Zhou et al., 2017).  

The potentially confounding effects of N2O increases as a result of SCS are highlighted by 

van Groenigen et al. (2017) who point out that the typical C:N ratio is 12:1, and the 

sequestration rate of agricultural soils would have to be 1200 Tg C yr-1 according to the 

4/1000 initiative, meaning 100 Tg N yr-1 would be required to meet demand, calling for an 

increase of ~75% of global N production, or N2 fixation rates twice that of the current rate. 

Theoretically surplus N would be enough to meet this demand, but it is not evenly spatially 
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distributed across the planet, and N surpluses are likely to decline in the coming decades 

(Zhang et al., 2015). Soil chemistry constraints therefore reduce the likelihood of the 

4/1000 initiative meeting its goals, leading van Groenigen et al. (2017) to call for a more 

localised mitigation framework via a spatially explicit action plan for agricultural soils, 

where soils with low C stock and high nutrient availability (degraded soils in nutrient-rich 

areas) should concentrate on increasing SOC, others should focus on reducing non-CO2 

GHGs and improving N retention. This emphasises the importance of looking at both C and 

N together when performing mitigation analysis, as N has the potential to confound the C 

sequestration potential of soils, as is shown in Chapters 6 & 7 where C, CH4 and N emissions 

together can change soils from overall GHG sources to sinks. 

 Model Uncertainties 

The uncertainties stemming from modelling fluxes from the soil carbon pool are 

comparable to those related to cloud feedbacks, widely regarded as the biggest uncertainty 

in climate modelling (Jones & Falloon, 2009).  As soil carbon is such a vital part of the global 

carbon cycle (Stockmann et al., 2015) with LULUCF being responsible for ~25% of 

anthropogenic GHG emissions, 10-14% from agricultural production (mainly soils and 

livestock management) and 12-17% from land-use change including deforestation 

(Paustian et al., 2016), the contribution of soil C can account for 10% of the C in the 

atmospheric pool (Raich and Potter, 1995), it is therefore vital that Earth System Models 

(ESMs) capture this cycle accurately as it is a major source of the uncertainty.  

Nishina et al. (2014) examine seven terrestrial biome models and find SOC stocks initially 

vary from 1090 to 2650 Pg C in historical periods, when forced using the four RCPs 

uncertainties are then amplified, RCP 8.5 is projected to change from a net sink of 347 Pg C 

to a source of 122 Pg C. The potential sink is attributed to increased fertilization and NPP 

from higher atmospheric CO2 levels stimulating soil C accumulation. Crowther et al. (2016) 

suggest IPCC (Ciais et al., 2013) assessments which project increased soil C under warming 

at high latitudes due to increased plant productivity are inaccurate, due to increased efflux 

from respiration and DOC leaching as temperatures increase. Projections of soil C dynamics 

in CMIP5 models vary greatly (as discussed in Section 3.3.4) and while the estimated stocks 

are relatively accurate at the biome scale, they correlate poorly to observations at the grid 

scale, with differences in SOC content observed by ESMs not due to structural differences 

between the models, rather due to differences in simulated NPP and soil decomposition 

(Todd-Brown et al., 2013; Todd-Brown et al., 2014).  

Todd-Brown et al. (2014) examined changes in SOC by 2100 using 11 ESMS from CMIP5 for 

the RCP 8.5 scenario and found ranges from a loss of 72 Pg C to a gain of 253 Pg C (mean 
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gain of 65 Pg C). These gains are attributed to increases in NPP and uncertainties are largest 

in tundra and boreal regions where models project losses of 37 Pg C to gains of 146 Pg C 

(mean gain of 39 Pg C). These differences are largely attributed to initial SOC stock estimates 

between models, with decomposition dominated by changes in Q10 factors, decomposition 

rate and soil temperature changes. It is acknowledged that most models perform poorly in 

estimating changes in high latitudes, as modelled accumulations are not matched by 

empirical studies which project serious losses of SOC at these latitudes (Koven et al., 2011; 

Todd-Brown et al. 2013). Permafrost dynamics in northern latitudes are also poorly 

represented, as are constraining effects on SOC storage like priming and nutrient 

availability. It is suggested that the inclusion of these limiting effects will estimate lower 

SOC storage than models currently project (Todd-Brown et al., 2014). Uncertainties are 

complicated by different estimates of soil carbon stocks at high latitudes, with ranges from 

290 Pg C (HWSD) to 380-620 Pg C (NCSCD) (Todd-Brown et al., 2013).  

 Policy Implications 

This thesis attempted to assess the ability of models to improve GHG reporting for national 

emissions inventories by moving toward a tier-3 reporting methodology. Considering the 

findings and the limitations outlined above, the results indicate that more work is needed 

for a tier-3 methodology to be successfully employed. Though the ECOSSE model has been 

recommended ahead of others for simulating emissions from Irish soils in the past (Khalil 

et al., 2016), rigorous testing found the model simulation of water on a well-drained sandy 

soil to be deficient, resulting in erroneously inhibited fluxes. Though not all Irish soils are 

well-drained, it is important that this issue is rectified in the model structure before it is 

possible to have confidence in results from well-drained soils, particularly as climate is 

likely to exacerbate soil drying in future, and before models can be used to accurately inform 

policy. 

To move toward a tier-3 reporting methodology it is vital that simulations are evaluated 

against observations, though as shown in the findings of the thesis and the limitations 

discussed in Section 8.3, observations have significant uncertainties associated with them. 

Measurements can be taken in multiple different ways, and post-processing which 

introduces uncertainties is also often required. More observations are required before 

spatial model simulations can be used for national greenhouse gas emission estimates, as 

current model outputs cannot be adequately evaluated without observations to compare 

them to. These observations need to cover multiple land-uses and soil types, should span 

large timescales, and include fluxes of all GHGs. The importance of including all GHGs cannot 

be overstated, as simulation results in Chapter 6 show their inclusion can turn land from a 
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GHG sink to a source. For ECOSSE or similar models to be used for tier-3 reporting there 

also needs to be consistency across observations. A combination of complementary flux and 

chamber measurements combined with experiments which isolate the heterotrophic 

component of respiration are required, as model outputs must be evaluated against data 

which has robust provenance. Significant investment in infrastructure would be required 

for this to take place.  

Considering the limitations outlined above, the simulation of extreme events by the model 

(Chapter 7) is still useful in informing current policy, as results indicate that increased 

warm, wet weather will enhance the emission of GHGs by soils, with higher emissions 

observed with warmer temperatures. Observations of emissions over long periods of time 

which span extreme events are required to have strong confidence in these results however. 

It is also important that models begin to incorporate complexities such as lagged and legacy 

effects of extreme events, again informed by observations across a wide range of soil types. 

Nevertheless, the results of extreme event simulations lead to the recommendation that 

policy ought to be prescribed in accordance with the IPCC’s Special Report on Global 

Warming of 1.5°C (IPCC, 2018), to limit emissions as much as possible with the aim of 

restricting global warming to 1.5°C, as soil emissions are likely to be enhanced as 

temperatures and precipitation increase. This requires immediate drastic action on behalf 

of government and industry to reduce emissions by 45% compared to 2010 levels by 2030, 

and to net zero by 2050 (IPCC, 2018). As Ireland is already poised to miss less ambitious 

targets set by the EU, significant political effort is needed for emissions reductions to be 

achieved.  

Avoiding increased emissions from soils is essential if Ireland is to achieve its mitigation 

obligations. Robust adaptation measures which enhance soil carbon quantity can sequester 

atmospheric CO2 but also improve crop yield and soil health, therefore these strategies 

ought to be encouraged. It is also vital that monitoring networks which examine the holistic 

response of soils to these measures are set up, and that all GHGs are examined together to 

assess potential confounding interactions as outlined above.  

 Future Research 

To improve modelling studies in future it is essential that observations improve in quantity 

and quality, as models cannot be accurately assessed without improvements in 

measurements. A national network of soil respiration measurements across soil types and 

land-uses over long time periods is essential for model outputs to be adequately evaluated. 

Data and metadata must be made freely available and readily accessible. It is vital that 

observations and model outputs are directly comparable, as some observations (such as 
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NEE measured by eddy covariance) must be partitioned into the relevant components for 

comparison to be possible. Various methods of partitioning fluxes are practiced, which all 

introduce uncertainties when partitioning NEE into ecosystem respiration (Stoy et al., 

2006) and when partitioning ecosystem respiration into its autotrophic and heterotrophic 

components (Koerber et al., 2010; Khalil et al., 2013). Partitioning of chamber data also 

introduces uncertainties, with ranges for the heterotrophic component from 3% to 99% 

across biomes and land-uses, and 27-90% for temperate grasslands (Subke et al., 2006), 

emphasising the uncertainties introduced when choosing a method of partitioning. Ideally 

multiple measurements which are comparable to one another ought to be used in order to 

determine the most accurate representation of the C flux, as it is difficult to be confident in 

model assessments when comparing to observations with such large variation. Ideally on-

site experiments which partition fluxes into autotrophic and heterotrophic components 

would be used, though the experimental method also introduces uncertainties (Subke et al., 

2006), a standardised methodology is now recommended (Hoffmann et al., 2017). 

Standardisation of methods is desirable for model and observation inter-comparison 

studies to be possible, yet this may not be feasible as different methods of partitioning may 

work better in different situations, and on-site root-exclusion experiments are expensive 

and time-consuming. It is difficult to foresee a universally applicable measurement and 

partitioning framework, even though improvements to chamber estimations have been 

suggested (He et al., 2016). 

Increased knowledge about soil carbon turnover and fluxes remains to be fully 

implemented in ESMs (Bradford et al., 2016). Nevertheless, the projected direction of global 

change (soil carbon loss) is consistent across warming scenarios, with most C losses 

occurring at high latitudes due to both the initial high levels of C in their soils and the 

projected fast rates of warming in these regions, leading to a positive feedback to the global 

carbon cycle and enhancing climate change. These losses at high latitudes far outweigh 

potential increases in soil C at lower latitudes, contradicting projections from the IPCC 

(2013) who projected increases in soil C at high latitudes due to increasing plant 

productivity (Crowther et al., 2016). The potential impacts of shocks resulting from 

increased frequency and intensity of extreme weather are not discussed, though this study 

suggests that extreme temperature increases will lead to SOC losses if enough moisture is 

present to allow for respiration to continue uninhibited.  

Sequestered soil C is also vulnerable to future changes in management, temperature and 

rainfall, as carbon sequestered in soil is vulnerable to management practices e.g. when plant 

residue retention (returning plant litter to the soil) was halved, soil C was lost, with similar 
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consequences when N fertilizer was changed. These losses were further exacerbated with 

increasing temperature and/or rainfall. The effect of rainfall change is moderate, and 

depends on the direction of change, meaning local management strategies for C 

sequestration and retention are advised (Luo et al., 2016).  

Amid these estimates it is also important to note that the complex nature of SOM and SOC 

means it is very difficult to predict what is going to happen to stocks in the future, with 

contradictory results from field and lab experiments leading to researchers questioning the 

intricacies of the SOC response to warming. Conant et al. (2011) note that experimental 

differences may have resulted from studies which minimised the influence of SOM 

availability found that slow processes responded more to changes in temperature, 

indicating that low quality substrates are more responsive to temperature regarding 

depolymerization, or that temperature increases affect enzymes which degrade low-quality 

polymers more than others. The dearth of knowledge regarding these processes led the 

researchers to call for experiments which focus on the impact of temperature on microbial 

efficiency and enzyme production, as well as long-term low-cost experiments giving field-

level data on SOC responses to warming. Similarly Todd-Brown et al. (2014) call for 

inclusion of priming, nutrient availability, mineral surface stabilization and aggregate 

formation in models, and predict that this will constrain increases in SOC as the climate 

warms. The contribution of Rh to Rs is highly variable, and in-situ observations (ideally with 

exclusion experiments) are preferable to identify the contribution of the heterotrophic 

component of respiration (Bond-Lamberty et al., 2004). The desirability of accurate point-

scale observations also creates problems, as Bond-Lamberty et al. (2018) highlight the 

uncertainty regarding the sensitivity of Rh to changes in temperature, precipitation and 

organic matter inputs  is directly due to the infrequent, small scale and variable nature of 

Rh observations. These limitations are intrinsic to work which attempts to represent the 

complex global soil infrastructure and bridging the gap between small and large-scale will 

remain a research challenge. Robust adaptation is essential in the face of uncertainty, and 

resilience must be built into systems now to protect against any future shocks.  

The EU climate and energy package 2020 prohibits the use of the LULUCF sector to offset 

national emissions, yet there is potential for change here for the period 2020 to 2030 to 

allow states to achieve their emissions reduction targets (European Commission, 2016). 

Schulte et al. (2016) assessed Ireland as an example of an Atlantic climate zone and 

considered 5 elements of the SOC cycle relevant to similar pedoclimatic regions 

recommending the following processes as best-practices for maintaining and increasing 

Irish soil C content: 
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1. Maintenance of SOC stocks. 53-75% of SOC in Ireland is stored in peat soils, estimated 

at 1500 to 1500 Mt C. 

2. Reduction of existing SOC emissions. The largest source of SOC emissions on Irish 

soils comes from artificially drained wet soils, denoted as ‘emission hotspots’ they 

are typically intensively managed drained histic soils (peaty O horizon, overlying 

mineral soil or rock) (SIS Technical Report, 2008). 59% of emissions from land 

drainage arises from these hotspots, even though they make up only 18% of the 

Wetlands Supplement land area, and 6% of the total agricultural area.  

3. Preventing new CO2 emissions. Milk quota abolition has led to an expansion of 

dairying in Ireland resulting in poorly drained fertile soils being drained, leading to 

oxidation and SOC losses. Cost benefit analysis by O’Sullivan et al. (2015) found 

financial benefits from drainage and increased productivity outweighed the 

increased GHG emissions financial penalties, however, using new figures from 2030 

price projections this relationship is reversed for some areas. It could be argued that 

considering purely financial consequences of increased emissions is myopic at best 

and recklessly irresponsible at worst, as much more than financial penalties are at 

stake where GHG emissions are concerned.   

4. Enhanced long-term sequestration in grasslands. Grasslands in Ireland are thought 

to be net carbon sinks on balance (Abdalla et al., 2013) with the potential for 

enhanced SCS (Kiely et al., 2017)  

5. Enhanced sequestration through land-use change (afforestation). Ireland has the 

lowest forest cover of any EU member state at 11%. Since all land is not suitable for 

afforestation, Farrelly and Gallagher (2015) highlight that 0.9m ha of potentially 

suitable Irish land is subject to habitat conservation, 2.4m ha of productive 

agricultural land will probably be the focus of agricultural intensification in 

accordance with the FoodWise 2025 strategy, leaving 1.3m ha of ‘marginal 

agricultural land’ where competition for other land-uses is low.  
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 Appendix A: IPCC Accounting Methodology  

To find which method to use (tier 1 – tier 3) countries are obliged to follow the decision 

trees shown in Figure 10.1 and Figure 10.2 for mineral and organic soils. 

 

Figure 10.1: Generic decision tree to determine the appropriate tier to estimate changes in carbon stocks in mineral 
soils by land-use category (from IPCC, 2006) 
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Figure 10.2: Decision tree to determine the appropriate tier to estimate change in carbon stocks in organic soils 
by land-use category (from IPCC, 2006) 

Default reference SOC stocks for mineral soils are outlined in Chapter 2 of the IPCC (2006) 

guidelines and are separated into High Activity Clay (HAC), Low Activity Clay (LAC), Sandy, 

Spodic, Volcanic and Wetland soils for multiple climate regions. These stocks are derived 

from soil databases (Jobbágy and Jackson, 2000), and mean values are presented with 

nominal error estimate of 90%.  
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Cropland emissions are estimated using tier 1 method for estimating changes in SOC stocks 

in mineral soils using Equation 10.1 to estimate changes in SOC stocks by subtracting C 

stocks in the last year of an inventory time period from the stock at the beginning of the 

inventory time period, with annual changes estimated as difference in stocks over time 

divided by the time dependence of cropland stock change factors, taken from 2006 IPCC 

Guidelines, Volume 4, Chapter 5 (IPCC, 2006).  

∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙 =  
(𝑆𝑂𝐶0 − 𝑆𝑂𝐶(0−𝑇))

𝐷
                  Equation 10.1 

𝑆𝑂𝐶 =  ∑(𝑆𝑂𝐶𝑅𝐸𝐹𝑐,𝑠,𝑖

𝑐,𝑠,𝑖

• 𝐹𝐿𝑈𝑐,𝑠,𝑖
• 𝐹𝑀𝐺𝑐,𝑠,𝑖

• 𝐹𝐼𝑐,𝑠,𝑖
• 𝐴𝑐,𝑠,𝑖 

Where:  

∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙  = Annual C stock change in mineral soils, t C yr-1 

𝑆𝑂𝐶0  = SOC stock in the last year of an inventory period, t C  

𝑆𝑂𝐶(0−𝑇) = SOC stock at the beginning of the period, t C 

𝑆𝑂𝐶0 and 𝑆𝑂𝐶(0−𝑇) are calculated using the SOC equation where the reference carbon 

stocks and stock change factors are assigned according to the land-use and management 

activities and corresponding areas at each of the points in time (time = 0 and time = 0-T) 

T = number of years over the inventory time period 

c = represents the climate zones, s the soil types, and i the set of management systems 

that are present in a country 

SOCREF = the reference carbon stock, t C ha-1   

FLU = stock change factor for land-use systems or sub-system for a particular land-use, 

dimensionless  

FMG = stock change factor for management regime, dimensionless  

FI = stock change factor for input of organic matter, dimensionless  

A = land area of the stratum being estimated, ha. All land in the stratum should have 

common biophysical conditions (i.e., climate and soil type) and management history over 

the inventory time period to be treated together for analytical purposes.  

 

Stock changes in cropland soils for different management activities are estimated for tier 1 

methodologies using Table 5.5 in Chapter 5 of the IPCC (2006) guidelines, shown as Tables 

10.1 and 10.2 below.  
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Table 10.1: Relative stock change factors for different management activities on cropland from IPCC (2006) 
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Table 10.2: Part 2 of relative stock change factors for different management activities on cropland from IPCC (2006) 

 
 

The steps for estimating SOC changes over time using a tier 1 methodology for cropland 

remaining cropland on mineral soils using the equation and information above are (IPCC, 

2006):  

- Step 1: Sort the data into inventory time periods using the years in activity data 
were collected (e.g., 1990 to 1995, 1995 to 2000, etc.)  

- Step 2: Determine the amount of Cropland Remaining Cropland by mineral soil 
types and climate regions in the country at the beginning of the first inventory time 
period. The first year of the inventory time period will depend on the time step of 
the activity data (0-T; e.g., 5, 10 or 20 years ago).  

- Step 3: Classify each Cropland into the appropriate management system using the 
decision tree in the guidance document.  
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- Step 4: Assign a native reference C stock values (SOCREF) from based on climate and 
soil type.  

- Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels 
(FI) to each Cropland based on the management classification and Tables 10.1 and 
10.2 (Step 2).  

- Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock (SOCREF) to 
estimate an ‘initial’ soil organic C stock (SOC(0-T)) for the inventory time period.  

- Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using 
the same native reference C stock (SOCREF), but with land-use, management and 
input factors that represent conditions for each cropland in the last (year 0) 
inventory year.  

- Step 8: Estimate the average annual change in soil organic C stocks for Cropland 
Remaining Cropland (∆CMineral) by subtracting the ‘initial’ soil organic C stock (SOC(0-

T)) from the final soil organic C stock (SOC0), and then dividing by the time 
dependence of the stock change factors (i.e., 20 years using the default factors). If an 
inventory time period is greater than 20 years, then divide by the difference in the 
initial and final year of the time period.  

- Step 9: Repeat steps 2 to 8 if there are additional inventory time periods (e.g., 1990 
to 2000, 2001 to 2010, etc.). 

- Grassland soils use the same equation and methods as croplands (Equation 10.1), 

though it is recommended for tier 1 approaches that data on grassland management 

activity should be obtained and classified into appropriate land-management 

systems, then stratified by IPCC climate regions and soil types. Tier 1 methods use 

Table 10.3 (from IPCC, 2006) to determine relative stock change factors for 

managed grasslands, these values are for management effects on the top 30cm of 

the soil profile. 
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Table 10.3: Relative stock change factors for grassland management (From IPCC, 2006) 

 

In order to estimate SOC stocks and stock changes it is the same steps as listed above for 

cropland are followed, for full details see IPCC (2006). 

Tier 2 methods use equation 10.1 along with country-specific information on reference C 

stocks, climate regions, soil types and/or land-management classification systems, 

effectively updating Table 10.3 using values derived for more detailed country-specific 

classification schemes of management, climate and soil types, and following the same 

methodology. A tier 3 approach uses dynamic models and/or detailed inventory approaches 

in the same way as croplands, with the same caveats for choice of model. Uncertainties in 

GHG inventory assessments can help identify issues with SOM models, with the expectation 

that future research will help to improve these areas by reducing the uncertainties, however 
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it is first important to quantify these errors and uncertainties before they can be reduced 

(Campbell and Paustian, 2015).  
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 Appendix B: Block Resampling Code 

NOTE: This code is for temperature data, full code for temperature and precipitation data 
is available online in the form of jupyter notebooks at github.com/podgeflat/block-
resampling  

1. # # Block Resampling    
2.    
3. # This code resamples a NetCDF file using percentiles.      
4. # ### User-Defined Variables    
5. # Change these values for the degree of extreme you want - but be careful, if you 

go to high you won't have enough data for each season, so some trial and error ma
y be necessary   

6.    
7. upperlimit = 0.8 #this method uses percentiles, if this number is 0.9 the top 10% 

of data will be considered 'extreme' and so on   
8. lowerlimit = 0.2   
9.    
10. # ### Load Necessary Packages   
11. import pandas as pd # data manipulation  
12. import numpy as np  # maths library 
13. import os  # interacts with the operating system 
14. import matplotlib.pyplot as plt  # draws graphs 
15. get_ipython().magic(u'matplotlib inline' # shows graphs in jupyter as code runs 
16. import matplotlib  # plotting library  
17. #additional NetCDF things:    
18. import xarray  # Excellent library for data with 3+ dimensions 
19. np.set_printoptions(precision=3, linewidth=100, edgeitems=2)  # make numpy less v

erbose   
20.    
21. # ### Read in & display climate data   
22. # Read in netCDF for Ireland   
23. ds = xarray.open_dataset('C:/Path/ToFile/IrelandEObsMonthly.nc')  
24. ds #check it   
25.    
26. #plot a slice to see if it is what it's supposed to be   
27. temp = (ds.tg).isel(time=4)   
28. temp.plot()   
29.    
30. #convert to dataframe   
31. df = ds.to_dataframe()   
32. df.head()   
33. #df.to_csv('E:/Temp/dfexplore.csv') #write to csv to explore (optional)   
34. df = df.reset_index()   
35. df.head(n=440)   
36.    
37. #convert datetime from unix time to readable date (https://stackoverflow.com/ques

tions/19231871/convert-unix-time-to-readable-date-in-pandas-dataframe)    
38. df['time'] = pd.to_datetime(df['time'],unit='s')   
39. df.head()   
40. df.tail()   
41.    
42. # Find start and end year of the data   
43. no_of_years = df['time'].dt.year #creates a variable for the year column   
44. no_of_years = list(no_of_years) #turns it into a list   
45.    
46. startyear = no_of_years[0] #gets the first value   
47. print startyear   
48.    
49. endyear = no_of_years[-1] #gets the last value   
50. print endyear   
51.    
52. # Split data into seasons based on months   
53. # Winter = 1, Spring = 2, Summer = 3, Autumn = 4   

https://github.com/podgeflat/block-resampling
https://github.com/podgeflat/block-resampling
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54. #create a season function to split data into seasons   
55. def get_season(row):   
56.     if row['time'].month >= 3 and row['time'].month <= 5:   
57.         return '2'   
58.     elif row['time'].month >= 6 and row['time'].month <= 8:   
59.         return '3'   
60.     elif row['time'].month >= 9 and row['time'].month <= 11:   
61.         return '4'   
62.     elif row['time'].month <= 2 or row['time'].month >= 12:   
63.         return '1'   
64.     else:   
65.         return '-9999'   
66.  
67. # Apply the season function to the data   
68. df['Season'] = df.apply(get_season, axis=1)   
69. df.tail()   
70.    
71. # Create 'Year' column from the 'date' column   
72. df['Year'] = df['time'].dt.year   
73. df.head()   
74.    
75. # Make December of previous year part of winter for current year (to keep climato

lgical year)    
76. #Everywhere the month is '12', the year column gets increased by 1.    
77. df.loc[df['time'].dt.month == 12, 'Year'] += 1   
78. df.head()   
79.    
80. # Create a new dataframe indexed by Year and Season   
81. #how to multiindex from here: http://stackoverflow.com/questions/33435971/selecti

ng-time-series-data-in-a-specific-sequence-using-pandas/33437422#33437422   
82. df2 = df.set_index(['Year', 'Season'], inplace=False)   
83. df2.head()   
84.    
85. # # Temperature Extremes   
86. # Calculate mean values for each season   
87. seasmean = df['tg'].groupby(df['Season']).mean()   
88. print seasmean.head() #check the averages - do they seem correct?    
89.    
90. # Calculating differences between each season overall season means   
91. df2['seasdif'] = df2['tg'].groupby(level=['Year','Season']).mean() - seasmean #cr

eates an anomaly column   
92. seasdif = df2['tg'].groupby(level=['Year','Season']).mean() - seasmean #creates a

 series   
93. seasdif   
94.    
95. # # Extracting extreme seasons   
96. # Create a copy of the dataframe and two blank lists for hot and cold extremes 
97. seasdif2 = pd.DataFrame(seasdif)   
98. warm = []   
99. cold = []   
100. seasdif2   
101.    
102. # ### [Quantiles/ Percentiles](http://pandas.pydata.org/pandas-

docs/stable/generated/pandas.DataFrame.quantile.html)   
103. # (works in the same way as [numpy.percentile](http://docs.scipy.org/doc/numpy

-dev/reference/generated/numpy.percentile.html))   
104. seasdif2['warm'] = 0 #add a blank column for warm   
105. seasdif2['cold'] = 0 #add a blank column for cold   
106.    
107. seasdif2.loc[seasdif2['tg'] > seasdif2['tg'].quantile(upperlimit), 'warm'] = 1

 # adds 1 for hot percentile   
108. seasdif2.loc[seasdif2['tg'] < seasdif2['tg'].quantile(lowerlimit), 'cold'] = 1

 # adds 1 for cold percentile    
109. seasdif2   
110.    
111. # count the extremes   
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112. extremecount = seasdif2[['warm','cold']]   
113. extremecount   
114.    
115. # ### Select out combinations of extremes   
116. #identify columns with  extremes   
117. extremeseasons = seasdif2.loc[(seasdif2.cold==1) | (seasdif2.warm==1)]   
118. extremeseasons   
119.    
120. # Examine the frequency of extremes, are warm summers increasing? Are cold win

ters decreasing?   
121. matplotlib.rcParams['figure.figsize'] = (20.0, 10.0) #change plotting params   
122.    
123. extremewinters = extremeseasons.xs('1', level='Season')   
124. extremesprings = extremeseasons.xs('2', level='Season')   
125. extremesummers = extremeseasons.xs('3', level='Season')   
126. extremeautumns = extremeseasons.xs('4', level='Season')  
127.   
128. # make the plots for winter   
129. extremewinters[['cold']].plot(kind='bar', title = 'Frequency of extremely cold

 winters')   
130. extremesummers[['warm']].plot(kind='bar', title = 'Frequency of extremely warm

 summers')   
131. extremewinters[['cold']].plot(kind='bar', title = 'Frequency of Extremely Cold

 Winters', color = 'blue')   
132. plt.title('Frequency of Extremely Cold Winters', fontsize = 30)   
133. plt.legend().remove()   
134. plt.tick_params(labelsize = 20)   
135. plt.xlabel('')   
136. plt.yticks(np.arange(0, 2, step=1.0))   
137. plt.tight_layout()   
138. #save it   
139. os.chdir('E:\Location')   
140. plt.savefig('ColdWinterFreq.jpeg', format = 'jpeg', dpi = 400)   
141.    
142. # summer   
143. extremesummers[['warm']].plot(kind='bar', title = 'Frequency of Extremely Warm

 Summers', color = 'red')   
144.    
145. plt.title('Frequency of Extremely Warm Summers', fontsize = 30)   
146. plt.legend().remove()   
147. plt.tick_params(labelsize = 20)   
148. plt.xlabel('')   
149. plt.yticks(np.arange(0, 2, step=1.0))   
150. plt.tight_layout()   
151. #save it   
152. os.chdir('E:\Location')   
153. plt.savefig('WarmSummerFreq.jpeg', format = 'jpeg', dpi = 400)   
154.    
155. # Create new index for extremes   
156. df2.index.tolist()   
157.    
158. # Count extreme values in each year   
159. extremecount = seasdif2.groupby(level=[0]).sum()   
160. extremecount.drop(extremecount.columns[[0]], axis=1, inplace=True)   
161. extremecount   
162.    
163. # ## Plot frequency of extremes   
164. extremecount['cold'].plot(kind='bar')   
165.    
166. # ### Create new extreme dataframes to sample from   
167. #cold   
168. extremecold = seasdif2.loc[(seasdif2.cold==1)]   
169.    
170. #hot   
171. extremehot = seasdif2.loc[(seasdif2.warm==1)]   
172.    
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173. #normal   
174. normal = seasdif2.loc[(seasdif2.cold == 0) & (seasdif2.warm==0) & (seasdif2.dr

y==0) & (seasdif2.wet==0)]   
175.    
176. #extreme   
177. extreme = seasdif2.loc[(seasdif2.cold == 1) | (seasdif2.warm==1) | (seasdif2.d

ry==1) | (seasdif2.wet==1)]   
178.    
179. #test    
180. extreme   
181.    
182. # **Get the index to re-index the dataframes later **   
183. #cold   
184. coldindex = extremecold.index.tolist()   
185.    
186. #hot   
187. hotindex = extremehot.index.tolist()   
188.    
189. #normal   
190. normalindex = normal.index.tolist()   
191.    
192. #extreme   
193. extremeindex = extreme.index.tolist()   
194.    
195. #test   
196. extremeindex   
197.    
198. # Create indices from the dataframes   
199. #cold   
200. extremecold = df2.loc[coldindex]   
201.    
202. #hot   
203. extremehot = df2.loc[hotindex]   
204.    
205. #normal   
206. normal = df2.loc[normalindex]   
207.    
208. #extreme   
209. extreme = df2.loc[extremeindex]   
210.    
211. #test view   
212. extreme   
213.    
214. # ### Resample the data and create a new sequence   
215. df3 = df2   
216. df3.head()   
217.    
218. # ### Separate years into seasons for each extreme variable   
219. #Cold years   
220. coldsample = [[],[],[],[]] #empty list of lists   
221. for (yr,se) in coldindex:    
222.     coldsample[int(se)-

1] += [yr] #function which gives the years which have extreme seasons [[1],[2],[3
],[4]]   

223. coldsample   
224.    
225. #hot years   
226. hotsample = [[],[],[],[]] #empty list of lists   
227. for (yr,se) in hotindex:    
228.     hotsample[int(se)-

1] += [yr] #function which gives the years which have extreme seasons [[1],[2],[3
],[4]]   

229.    
230. #normal years   
231. normalsample = [[],[],[],[]] #empty list of lists   
232. for (yr,se) in normalindex:    
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233.     normalsample[int(se)-
1] += [yr] #function which gives the years which have extreme seasons [[1],[2],[3
],[4]]   

234.    
235. #extreme years   
236. extremesample = [[],[],[],[]] #empty list of lists   
237. for (yr,se) in extremeindex:    
238.     extremesample[int(se)-

1] += [yr] #function which gives the years which have extreme seasons [[1],[2],[3
],[4]]   

239.        
240. #test   
241. hotsample   
242.    
243. # ### Check if extreme indices have enough data to sample from   
244. #    
245. # Checks the data to see if there are enough extreme years and prints an error

 otherwise - if there are no errors you can assume there is at least one full yea
r of data for each extreme type.   

246. #    
247. # If there is an error - you will not be able to generate that variable (tends

 to happen for short datasets and combinations of extremes (cold/wet, warm/dry et
c).    

248. #    
249. # To overcome this you can change your threshold for extremes (quantiles) or f

ind longer data. You can also comment out the variables in the code below if ther
e is not enough data.   

250.      
251. #cold years    
252. cold_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 autum

n)   
253. coldseq = [] #blank list   
254. try:   
255.     for yrlist in coldsample:    
256.         ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled year f

rom previous cell   
257.         cold_ctr += 1 # increment cold_ctr variable by 1   
258.         coldseq += [(ran_yr[0], cold_ctr)] #populate coldseq with a random yea

r and a random season (in order)   
259. except:   
260.     print('coldseq (cold extremes) does not have enough extreme data for a ful

l year, it contains: ' + str(coldsample))   
261.    
262. ##############################################################################

##################################################   
263. #hot years    
264. hot_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 autumn

)   
265. hotseq = [] #blank list   
266. try:       
267.     for yrlist in hotsample:    
268.         ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled year f

rom previous cell   
269.         hot_ctr += 1 # increment counter variable by 1   
270.         hotseq += [(ran_yr[0], hot_ctr)] #populate blank sequence with a rando

m year and a random season (in order)   
271. except:   
272.     print('hotseq (hot extremes) does not have enough extreme data for a full 

year, it contains: ' + str(hotsample))   
273.        
274. ##############################################################################

##################################################   
275. #Normal years   
276. normal_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 aut

umn)   
277. normalseq = [] #blank list   
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278. try:   
279.     for yrlist in normalsample:    
280.         ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled year f

rom previous cell   
281.         normal_ctr += 1 # increment counter variable by 1   
282.         normalseq += [(ran_yr[0], normal_ctr)] #populate blank sequence with a

 random year and a random season (in order)   
283. except:   
284.     print('normalseq (non-

extreme data) does not have enough data for a full year, it contains: ' + str(nor
malsample))   

285.        
286. ##############################################################################

##################################################   
287. #extreme years   
288. extreme_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 au

tumn)   
289. extremeseq = [] #blank list   
290. try:   
291.     for yrlist in extremesample:    
292.         ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled year f

rom previous cell   
293.         extreme_ctr += 1 # increment counter variable by 1   
294.         extremeseq += [(ran_yr[0], extreme_ctr)] #populate blank sequence with

 a random year and a random season (in order)   
295. except:   
296.     print('extremeseq (extreme data) does not have enough data for a full year

, it contains: ' + str(extremesample))   
297.    
298. # If the output above says there is not enough extreme data for a full year - 

omit the extreme from your analysis (you will hit errors which will prevent you f
rom using it anyway)   

299.    
300. # ## Annual resampling   
301. #normal years    
302. normal_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 aut

umn)   
303. normalseq = [] #blank list   
304.    
305. #extreme years   
306. extreme_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 au

tumn)   
307. extremeseq = [] #blank list   
308.    
309. #cold years    
310. cold_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 autum

n)   
311. coldseq = [] #blank list   
312.    
313. #hot years    
314. hot_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4 autumn

)   
315. hotseq = [] #blank list   
316.    
317. # Comment/uncomment sections here to alter the way you choose data   
318.    
319. # ## Seasonal Resampling   
320. # First - convert the annual dataframes into seasonal dataframes   
321. #normaldata   
322. normalwinter = normalsample[0]   
323. normalspring = normalsample[1]   
324. normalsummer = normalsample[2]   
325. normalautumn = normalsample[3]   
326.    
327. #extreme data   
328. extremewinter = extremesample[0]   
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329. extremespring = extremesample[1]   
330. extremesummer = extremesample[2]   
331. extremeautumn = extremesample[3]   
332.    
333. #cold data   
334. coldwinter = coldsample[0]   
335. coldspring = coldsample[1]   
336. coldsummer = coldsample[2]   
337. coldautumn = coldsample[3]   
338.    
339. #hot data   
340. hotwinter = hotsample[0]   
341. hotspring = hotsample[1]   
342. hotsummer = hotsample[2]   
343. hotautumn = hotsample[3]   
344.    
345. # ### Define annual functions (for generating normal and extreme years)   
346. def normalyear(projection, years):   
347. '''''Function takes 2 arguments: 'projection' is the dataframe you will genera

te and populate with your data, 'years' is the number of output years'''   
348.     normal_ctr = 0 #variable to count from (1 is winter, 2 spring, 3 summer, 4

 autumn)   
349.     normalseq = [] #blank list   
350.     for i in range (years): #change number here for number of years   
351.         for yrlist in normalsample:   
352.             ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled ye

ar from previous cell   
353.             normal_ctr += 1 # increment cold_ctr variable by 1   
354.             normalseq += [(ran_yr[0], normal_ctr)]   
355.         for item in normalseq: #item is a tuple with year and season, coldseq 

is all extreme cold year and season pairs    
356.             projection.append(normal.query("Year == %d and Season == '%d'" % i

tem))   
357.             normalseq = [] #reset coldseq to an empty list so it samples from 

a new random year   
358.             normal_ctr = 0 #reset counter to 0 so seasons stay as 1,2,3,4     
359.    
360. def extremeyear(projection, years):   
361. '''''Function takes 2 arguments: 'projection' is the dataframe you will genera

te and populate with your data, 'years' is the number of output years'''   
362.     extremeseq = [] #reset to an empty list so it samples from a new random ye

ar   
363.     extreme_ctr = 0 #reset counter to 0 so seasons stay as 1,2,3,4   
364.     for i in range (years): #change number here for number of years   
365.         for yrlist in extremesample:   
366.             ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled ye

ar from previous cell   
367.             extreme_ctr += 1 # increment counter variable by 1   
368.             extremeseq += [(ran_yr[0], extreme_ctr)]   
369.         for item in extremeseq: #item is a tuple with year and season, coldseq

 is all extreme cold year and season pairs    
370.             projection.append(extreme.query("Year == %d and Season == '%d'" % 

item))   
371.             extremeseq = [] #reset to an empty list so it samples from a new r

andom year   
372.             extreme_ctr = 0 #reset counter to 0 so seasons stay as 1,2,3,4   
373.  
374. def hotyear(projection, years):   
375. '''''Function takes 2 arguments: 'projection' is the dataframe you will genera

te and populate with your data, 'years' is the number of output years'''   
376.     hotseq = [] #reset to an empty list so it samples from a new random year   
377.     hot_ctr = 0 #reset counter to 0 so seasons stay as 1,2,3,4   
378.     for i in range (years): #change number here for number of years   
379.         for yrlist in hotsample:   
380.             ran_yr = np.random.choice(yrlist, 1) #choose a randomly sampled ye

ar from previous cell   
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381.             hot_ctr += 1 # increment counter variable by 1   
382.             hotseq += [(ran_yr[0], hot_ctr)]   
383.         for item in hotseq: #item is a tuple with year and season, coldseq is 

all extreme cold year and season pairs    
384.             projection.append(extremehot.query("Year == %d and Season == '%d'"

 % item))   
385.             hotseq = [] #reset to an empty list so it samples from a new rando

m year   
386.             hot_ctr = 0 #reset counter to 0 so seasons stay as 1,2,3,4   
387.    
388. # ### Define seasonal functions   
389. def futurewinter(projection, data, input_list):   
390. '''''function takes 3 arguments, projection is the dataframe you will write yo

ur data to, data is the dataset you are sampling from (e.g. extreme contains all 
extreme data), and input_list is the list of years for your variable(e.g. extreme
winter contains all years with extreme winters).'''   

391.     items = [] #blank list to populate with year/season pairs   
392.     ran_yr = np.random.choice(input_list, 1) #chooses a random year   
393.     items += [(ran_yr[0], 1)] #takes the random year and appends number 1 (to 

denote winter)   
394.     for item in items:   
395.         projection.append(data.query("Year == %d and Season == '%d'" % item)) 
396.  
397. def futurespring(projection, data, input_list):   
398.     items = [] #blank list to populate with year/season pairs   
399.     ran_yr = np.random.choice(input_list, 1) #chooses a random year   
400.     items += [(ran_yr[0], 2)] #takes the random year and appends number 2 (to 

denote spring)   
401.     for item in items:   
402.         projection.append(data.query("Year == %d and Season == '%d'" % item))  
403.    
404. def futuresummer(projection, data, input_list):   
405.     items = [] #blank list to populate with year/season pairs   
406.     ran_yr = np.random.choice(input_list, 1) #chooses a random year   
407.     items += [(ran_yr[0], 3)] #takes the random year and appends number 3 (to 

denote summer)   
408.     for item in items:   
409.         projection.append(data.query("Year == %d and Season == '%d'" % item))  
410.    
411. def futureautumn(projection, data, input_list):   
412.     items = [] #blank list to populate with year/season pairs   
413.     ran_yr = np.random.choice(input_list, 1) #chooses a random year   
414.     items += [(ran_yr[0], 4)] #takes the random year and appends number 4 (to 

denote autumn)   
415.     for item in items:   
416.         projection.append(data.query("Year == %d and Season == '%d'" % item))  
417.    
418. # ## All possible year and season combinations   
419. #    
420. #To generate your final sequence you can choose combinations of years and seas

ons, i.e. you can have 5 'normal' years followed by a cold winter,a wet spring, a
 dry summer and a wet autumn. Do this by copying and pasting the relevant code   

421. #    
422. # **WARNING: IF SECTIONS OF CODE DON'T RUN IT IS DUE TO LACK OF DATA COMBINATI

ONS**   
423.    
424. projection = [] #sample blank dataframe so code runs   
425.    
426. #normal year   
427. normalyear(projection, 1) #one normal year for example   
428.    
429. #extreme year   
430. extremeyear(projection, 1) #one extreme year   
431.    
432. #hot year   
433. hotyear(projection, 1) #one extreme hot year   
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434.    
435. # **Winter Functions**   
436.    
437. #normal winter   
438. futurewinter(projection, normal, normalwinter)   
439.    
440. #extreme winter   
441. futurewinter(projection, extreme, extremewinter)   
442.    
443. #wet winter   
444. #futurewinter(projection, extremewet, wetwinter)   
445.    
446. #dry winter   
447. #futurewinter(projection, extremedry, drywinter)   
448.    
449. #hot winter   
450. futurewinter(projection, extremehot, hotwinter)   
451.    
452. #cold winter   
453. futurewinter(projection, extremecold, coldwinter)   
454.    
455. # **Spring Functions**   
456. #normal spring   
457. futurespring(projection, normal, normalspring)   
458.    
459. #extreme spring   
460. futurespring(projection, extreme, extremespring)   
461.    
462. #hot spring   
463. futurespring(projection, extremehot, hotspring)   
464.    
465. #cold spring   
466. futurespring(projection, extremecold, coldspring)   
467.    
468. # **Summer Functions**   
469. #normal summer   
470. futuresummer(projection, normal, normalsummer)   
471.    
472. #extreme summer   
473. futuresummer(projection, extreme, extremesummer)   
474.    
475. #hot summer   
476. futuresummer(projection, extremehot, hotsummer)   
477.    
478. #cold summer   
479. futuresummer(projection, extremecold, coldsummer)   
480.    
481. # **Autumn Functions**   
482. #normal autumn   
483. futureautumn(projection, normal, normalautumn)   
484.    
485. #extreme autumn   
486. futureautumn(projection, extreme, extremeautumn)   
487.    
488. #hot autumn   
489. futureautumn(projection, extremehot, hotautumn)   
490.    
491. #cold autumn   
492. futureautumn(projection, extremecold, coldautumn)   
493.    
494. # ## Generate your new sequence   
495. #    
496. # Simply copy and paste the functions above (following seasonal sequence) to g

enerate your future climate.    
497. # The example below shows 2 'normal years', followed by 2 'extreme' years, a c

old winter, wet spring, hot/dry summer, and hot/wet autumn.    
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498.    
499. # ### First, The spin-up dataframe for the period 1970 to    

2000, used to get average data to initialise the model   
500. spinupdf = df2   
501. spinupdf.head()   
502.    
503. spinupdf = spinupdf.reset_index()   
504.    
505. spinupdf = spinupdf.set_index(['time'])   
506. spinupdf.head()   
507.    
508. spinup = spinupdf.loc['1970-01-31':'2000-11-30'] #extract your years here   
509. spinup.tail(n=100)   
510.    
511. spinup = spinup.reset_index() #reindex the df so you should be able to append 

your data after this data   
512. spinup.head()   
513. spinup.tail()   
514.    
515. #reset index for the coords of the netCDF file (NEEDS TO BE UNIQUE)   
516. spinup.set_index(['latitude', 'longitude', 'time'], inplace=True)   
517.    
518. #back to xarray dataset   
519. spinup = spinup.to_xarray()   
520. spinup   
521.    
522. #comment this back in when you need it IF you want to save to NetCDF   
523. #spinup.to_netcdf('E:/Path/ToFile/1970-

2000.nc', engine='scipy') #save it as a NetCDF file   
524.    
525. # ## Now generate your future run   
526. # this blank dataframe will create annual or seasonal sequences - make sure yo

u respect the seasonal sequence if doing individual seasons!    
527. # Choose what you want your future scenario to be and ONLY choose the ones you

 actually want, for example if you want 10 hot years then just run the hotyear co
mmand with a 10 in it   

528.    
529. future = [] #blank dataframe (should be the first argument in all following fu

nctions)   
530.    
531. # 10 hot years   
532. hotyear(future, 10)   
533.    
534. # 10 normal years   
535. normalyear(future, 10) #change number here for number of years   
536.    
537. # 10 extreme years   
538. extremeyear(future, 10) #change number here for number of years   
539.    
540. #cold winter   
541. futurewinter(future, extremecold, coldwinter)   
542.    
543. #cold spring   
544. futurespring(future, extremecold, coldspring)   
545.    
546. #hot summer   
547. futuresummer(future, extremehot, hotsummer)   
548.    
549. #hot autumn   
550. futureautumn(future, extremehot, hotautumn)   
551.    
552. #concatenate the dataframe and print for inspection   
553. future = pd.concat(future)    
554. future.head()   
555.    
556. # rename the columns   
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557. future = future.rename(columns={"time":"date"})   
558.    
559. #write the future data to excel to use the EurasiaUtilsGUI which creates NetCD

F files which function with GlobalECOSSE   
560. futureXLS = future.to_excel('E:/Data/EObs/10VeryHotYears_Tg.xlsx') # write to 

Excel   
561.    
562. # At this point use this excel file and the EurasiaUtilsGUI to generate future

 climate files   
563.    
564.    
565. # ## ALTERNATIVE Creating Future Data without EurasiaUtilsGUI   
566.    
567. # This section allows for the generation of a new NetCDF file from the spinup 

and future periods, by creating a dummy date variable from 2000-
2010 for the future data, and joining this to the real data from 1970-1999   

568.    
569. future = future.reset_index()   
570. future.head()   
571.    
572. # #### add new date variable from file   
573. '''''this excel file contains dates on a seasonal basis for each lat/lon combo

   
574. from 2000-2010 to allow for merging with the 1970-1999 EObs past data'''   
575. df = pd.read_excel('E:/Vault/Dates2000-2010.xlsx')   
576. df.head()   
577.    
578. #add this to the future data as the 'time' column   
579. future['time'] = df['date']   
580. future.head()   
581.    
582. # #### Join spinup and new df   
583. #the spinup df goes to Nov 1999, the future df picks up in December 1999   
584.    
585. spinup = spinupdf.loc['1970-01-31':'1999-11-30'] #extract your years here   
586. spinup.tail(n=100)   
587.    
588. #reset the index    
589. spinup = spinup.reset_index()   
590. spinup   
591.    
592. #set the index so the xarray dataset has coordinates   
593. spinup = spinup.set_index(['latitude', 'longitude', 'time'])   
594. spinup.head()   
595.    
596. future = future.reset_index()   
597.    
598. #set the index so the xarray dataset has coordinates   
599. future = future.set_index(['latitude', 'longitude', 'time'])   
600. future.head()   
601.    
602. #convert to xarray dataset   
603. spinupds = spinup.to_xarray()   
604.    
605. #convert to xarray dataset   
606. futureds = future.to_xarray()   
607.    
608. #merge the datasets using xarray merge command   
609. merged = spinupds.merge(futureds)   
610.    
611. #have a look at the new dataset   
612. merged   
613.    
614. #write the data to a netcdf file for running the model with   
615. merged.to_netcdf('E:/Path/ToFile/10HotYears.nc')   


