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SUMMARY

Diet-induced obesity can induce low-level inflam-
mation and insulin resistance. Interleukin-1b (IL-1b)
is one of the key proinflammatory cytokines that
contributes to the generation of insulin resistance
and diabetes, but the mechanisms that regulate
obesity-driven inflammation are ill defined. Here we
found reduced expression of the E3 ubiquitin ligase
Pellino3 in human abdominal adipose tissue from
obese subjects and in adipose tissue of mice fed a
high-fat diet and showing signs of insulin resistance.
Pellino3-deficient mice demonstrated exacerbated
high-fat-diet-induced inflammation, IL-1b expres-
sion, and insulin resistance.Mechanistically, Pellino3
negatively regulated TNF receptor associated 6
(TRAF6)-mediated ubiquitination and stabilization
of hypoxia-inducible factor 1a (HIF1a), resulting in
reduced HIF1a-induced expression of IL-1b. Our
studies identify a regulatory mechanism controlling
diet-induced insulin resistance by highlighting a crit-
ical role for Pellino3 in regulating IL-1b expression
with implications for diseases like type 2 diabetes.

INTRODUCTION

There is a strong link between obesity-driven inflammation and

insulin resistance and diabetes (Xu et al., 2003). Diet-induced

obesity promotes chronic low-grade inflammation as typified

by accumulation of M1 macrophages in adipose tissue and

enhanced serum concentrations of proinflammatory cytokines

(Gregor and Hotamisligil, 2011). This proinflammatory milieu is

also associated with hepatic steatosis and ultimately drives pe-

ripheral insulin resistance. Multiple innate immune receptors,

including members of the Toll-like receptor (TLR) family, have

been implicated as triggers of the proinflammatory gene ex-

pression that leads to insulin resistance (Jin et al., 2013). Inter-

leukin-1b (IL-1b) is one of the critical proinflammatory cytokines

that promotes insulin resistance and diabetes (Tack et al.,
I

2012). The secretion of mature IL-1b requires two signals. First,

innate receptors, like toll-like receptor 4 (TLR4), promote

increased transcription of the gene encoding IL-1b, resulting

in expression of an inactive pro-IL-1b precursor (Skeldon

et al., 2014). The transcription of IL-1b is regulated by transcrip-

tion factors such as nuclear factor-kappa B (NF-kB) and hypox-

ia inducible factor-1a (HIF-1a) (Baker et al., 2011; Tannahill

et al., 2013). A second signal promotes formation of an inflam-

masome signaling platform containing caspase 1 that pro-

cesses pro-IL-1b precursor into the mature secreted form of

IL-1b (Martinon et al., 2002; Tack et al., 2012). Various mole-

cules, including the saturated fatty acid palmitate, can trigger

the second signal to manifest deleterious effects on metabolism

and insulin resistance (Wen et al., 2011). Although the IL-1b sys-

tem has become an important focus for therapeutic intervention

in insulin resistance and type 2 diabetes (Böni-Schnetzler and

Donath, 2013), the full mechanisms that regulate obesity-driven

IL-1b expression and inflammation are ill defined and are of cen-

tral importance to understanding the pathogenesis of insulin

resistance. Here we show an important role for the E3 ubiquitin

ligase Pellino3 in regulating diet-induced inflammation and insu-

lin resistance.

Pellino proteins form a family of E3 ubiquitin ligase that play

important roles in innate immunity (Moynagh, 2014; Schauvliege

et al., 2007). The three members of the Pellino family share a

phosphothreonine-binding N-terminal forkhead-associated

(FHA) domain and a C-terminal RING-like domain that allow for

respective recognition and E3 ligase-mediated ubiquitination of

substrate proteins such as interleukin-1 receptor-associated ki-

nase (IRAK) kinases in TLR pathways (Butler et al., 2007; Lin

et al., 2008; Ordureau et al., 2008; Schauvliege et al., 2006).

The E3 ligase activity of the Pellino proteins is subject to regula-

tion by phosphorylation (Goh et al., 2012; Smith et al., 2009,

2011; Strelow et al., 2003). Genetic models have demonstrated

a physiological role for Pellino1 as a mediator of TLR3 and

TLR4 signaling (Chang et al., 2009), a negative regulator of

T cell activation (Chang et al., 2011;Moynagh, 2011), and a driver

of CNS inflammation (Xiao et al., 2013). More recently we have

used Pellino3-deficient mice to show that Pellino3 negatively

regulates TLR3 signaling and type I interferon (IFN) expression

(Siednienko et al., 2012), mediates nucleotide-binding oligomer-

ization domain-containing protein 2 (NOD2) signaling in the
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Figure 1. Pellino3 Deficiency Is Associated with Insulin Resistance

(A) Immunoblot analysis of Pellino3 from the abdominal adipose tissue of lean control subjects and patients with obesity. Two separate cohorts of subjects were

used for the analysis. Immunoblotting with the anti-Pellino3 antibody was performed in the absence (top) or presence (middle) of the immunogenic peptide that

was used to generate the anti-Pellino3 antibody in order to define nonspecific binding of the antibody. Expression of b-actin was used as a loading control.

(legend continued on next page)
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intestine (Yang et al., 2013a), and regulates cell killing in

response to tumor necrosis factor (TNF) (Yang et al., 2013b).

We now demonstrate an important role for Pellino3 in regulating

high-fat-diet-induced insulin resistance.

Here we found that Pellino3 expression was greatly reduced in

adipose tissue from obese subjects and in mice fed a high-fat

diet. Pellino3-deficient mice showed heightened diet-induced

inflammation and IL-1b expression that exacerbated insulin

resistance. Pellino3 was found to protect against insulin resis-

tance by targeting TRAF6-mediated ubiquitination and stabiliza-

tion of HIF-1a, thus suppressing expression of HIF-1a-respon-

sive IL-1b. This study thus describes a new mechanism that

drives IL-1b expression and highlights Pellino3 as a critical mole-

cule in counteracting this pathway and reducing the risk of devel-

oping insulin resistance.

RESULTS

Pellino3 Deficiency Is Associated with Exacerbation of
Insulin Resistance
Given the strong links between obesity, inflammation, and insulin

resistance, we were keen to assess whether endogenous regu-

lators of the inflammatory response show differential expression

in lean and obese adipose tissue. Our recent studies identified

important roles for Pellino3 in regulating innate immunity (Sied-

nienko et al., 2012; Yang et al., 2013a, 2013b). In the present

study, we initially measured Pellino3 expression in human

omental tissue from lean subjects and obese patients. Central

abdominal adipose tissue was chosen because there is a strong

association between an increase in this type of adipose tissue

and insulin resistance (Item and Konrad, 2012; Matsuzawa

et al., 1995). The expression of Pellino3 was greatly reduced in

omental samples from obese patients (Figure 1A). Reduced

expression was also observed in adipose tissue of mice fed a

high-fat diet (HFD) (Figure 1B). Decreased expression of Pellino3

was also apparent in aging mice. In order to assess whether

decreased Pellino3 expression has functional consequence for

insulin sensitivity, a glucose-tolerance test was performed on

wild-type and Pellino3-deficient (Peli3–/–) mice. Loss of Pellino3

associated with reduced glucose tolerance (Figure 1C) and

increased serum concentrations of insulin (Figure 1D), suggest-

ing that Pellino3 might be able to regulate metabolic health.

This was further confirmed by demonstrating exacerbation of

HFD-induced glucose intolerance (Figure 1E), insulin resistance

(Figure 1F), and hyperinsulinaemia (Figure 1G) in male and fe-

male Peli3–/– mice. Furthermore, loss of Pellino3 resulted in

impaired insulin signaling in liver, adipose tissue, and muscle,
(B) Quantitative PCR of mRNA expression for Pellino3 in epididymal fat pad isolate

starting at 2 months of age for all groups and continued for an additional 2 or 7 m

(C and D) Glucose-tolerance test (GTT) (left) and the total area under the curve (AU

(D) from 10-month-old wild-type (WT) and Peli3–/– mice fed a chow diet (n = 9; *p

(E and F) GTT and AUC analysis (E) and insulin-tolerance test (ITT) and AUC analy

HFD from 2 months old (n = 11–14; *p < 0.05; **p < 0.01).

(G) ELISA analysis of insulin expression in serum from 6-month-oldWT andPeli3–/

as the mean ± SEM and were subjected to two-way ANOVA analysis, followed b

(H) Immunoblot analysis of phosphorylated (p-) and total AKT and ERK in liver, wh

left untreated (�) or after insulin (1 U/kg) injection (+) for 8 min. Mice were fed a H

See also Figure S1.

I

as evidenced by reduced insulin-induced phosphorylation of

AKT and ERK in all three tissues from Pellino3-deficient mice

(Figure 1H and Figure S1 available online).

We next addressed the underlying basis to the aggravated

enhanced insulin resistance in Pellino3-deficient mice. The loss

of Pellino3 does not have any major effect on obesity as indi-

cated by the fact that male and female Peli3–/– mice show com-

parable body weights to matched wild-type mice fed normal

chow (Figure S2A) and HFD (Figure S2B). Furthermore, HFD

wild-type and Peli3–/– mice had similar food intake (Figure S2C)

and similar sized fat pads apart from some modest increase in

the weights of gonadal and inguinal pads from Peli3–/– mice

(Figure S2D).

Loss of Pellino3 Exacerbates Inflammation in Response
to High-Fat Diet
We next characterized the inflammatory status of adipose tissue

from HFD Pellino3-deficient mice given that diet-induced obe-

sity and insulin resistance is strongly associated with adipose

tissue inflammation (Xu et al., 2003) as typified by accumulation

of adipose tissue macrophages, especially proinflammatory M1

macrophages rather than the anti-inflammatory M2 subtype

(Lumeng et al., 2007, 2008). Adipose tissue from HFD-fed

Peli3–/– mice demonstrated much more intense infiltration by

leukocytes than similarly fed wild-type mice (Figure 2A), with

HFD-induced levels of the M1 Itgax and Nos2 mRNA markers

also being higher in Peli3–/– mice (Figure 2B). This pattern was

also observed in liver samples. The amounts of M2 macro-

phage-associated Arg1, Mrc1, Fizz1, and Ym1 mRNA markers

were higher in tissues from wild-type mice (Figure 2B), suggest-

ing that lack of Pellino3 favors a heightening of the bias toward

accumulation of M1 macrophages in adipose tissue and liver in

response to HFD. Flow cytometric analysis, with Cd11c and

CD206 as cell surface markers of M1 and M2, respectively (Fu-

jisaka et al., 2009), confirmed that the Peli3–/– mice showed

greater accumulation of adipose tissue M1 macrophages but

lower numbers of M2 macrophages (Figure 2C). Pellino3 was

also examined for a potential cell-intrinsic role in regulating

macrophage polarization. Thus, M-CSF-cultured macrophages

from bone marrow of wild-type and Peli3–/– mice were stimu-

lated with LPS and IFN-g or IL-4 and IL-10 to generate in vitro

M1 and M2 populations, respectively (Figure S3A). Flow cyto-

metric analysis, with M1 and M2 markers, demonstrated that

M-CSF-cultured macrophages from Peli3–/– mice showed

greater expression of the M1 marker CD86, in response to

LPS and IFN-g, than similarly treated cells from wild-type

mice, whereas the induction of the M2 marker CD206 was
d frommice fed ad libitum a chow diet (18% fat) or high-fat diet (HFD) (60% fat),

onths (n = 5–6).

C) analysis (right) for GTT (C) and ELISA analysis of insulin expression in serum

< 0.05).

sis (F) in 6-month-old male (top) and female (bottom) WT and Peli3–/– mice fed a

–mice fed a HFD from 2months old (n = 13–14, *p < 0.05). All data are presented

y Bonferroni’s multiple-comparison test or to unpaired Student’s t test.

ite adipose tissue (WAT), and muscle from 6-month-old WT and Peli3–/– mice,

FD from 2 months old. b-actin was used as a loading control.
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comparable in IL-4- and IL-10-treated macrophages from wild-

type and Peli3–/– mice (Figure S3B). Furthermore, LPS and IFN-

g induced more M1-associated Nos2, Il1b, and Tnf mRNA in

macrophages from Peli3–/– mice whereas IL-4 and IL-10

induced similar expression of M2-associated Arg1, Fizz1, and

Il10mRNA in cells from wild-type and Peli3–/– mice (Figure S3C).

These findings suggest that Pellino3 has a cell-intrinsic role in

negatively regulating macrophage M1 polarization but does

not directly influence the generation of M2 macrophages. The

lower number of adipose tissue M2 macrophages in HFD-fed

Peli3–/– mice might be secondary to the strong M1 inflammatory

microenvironment. The lack of direct effect of Pellino3 in M2 po-

larization is also consistent with chow-fed wild-type and Peli3–/–

mice showing similar number of peritoneal macrophages (Fig-

ure S3D), because macrophages isolated from the peritoneum

have previously been shown to display a M2-type phenotype

(Takeda et al., 2010).

The greater number of inflammatory M1 cells in the adipose

tissue and liver of Pellino3-deficient mice was associated with

higher HFD-induced tissue expression of the inflammatory

mRNAs Il1b, Tnf, Il6, and Ccl2 but lower amounts of anti-in-

flammatory Il10 mRNA in Peli3–/– mice relative to wild-type

mice (Figure 2D). The HFD-fed Peli3–/– mice also displayed

higher HFD-induced serum concentrations of the proinflamma-

tory cytokines (Figure 2E), suggesting that Pellino3 can limit

the magnitude of the inflammatory response in liver and adi-

pose tissue in response to HFD. Because hepatic steatosis

and liver injury are key features associated with obesity-driven

inflammation and are likely key contributors to insulin resis-

tance (Asrih and Jornayvaz, 2013), we also compared liver

samples from wild-type and Peli3–/– mice fed a HFD. Both

types of mice showed clear signs of hepatic steatosis but pa-

thology was exacerbated in Peli3–/– mice as evidenced by

more pronounced hepatocyte ballooning and empty vacuoles

in histological analysis of liver samples from mice lacking Pel-

lino3 (Figure 3A). The propensity of Peli3–/– mice to more se-

vere steatosis is further supported by the fact that these

mice expressed higher hepatic levels of the genes Fsn and

Acaca, which promote fatty acid biosynthesis, but lower levels

of Cpt1a that initiates mitochondrial b-oxidation of fatty acids

(Figure 3B). In addition, HFD-fed Peli3–/– mice also showed

higher serum concentrations of triglycerides than wild-type

mice on the same diet (Figure 3C). Taken together these

data strongly support a role for Pellino3 in limiting the extent

of obesity-driven inflammation and in protecting against hepat-

ic steatosis and insulin resistance.
Figure 2. Pellino3 Deficiency Exacerbates Inflammation in Response t

(A) H&E staining of sections of epididymal adipose tissue from 6-month old wild-ty

(B) Quantitative RT-PCR of mRNA expression for Itgax, Nos2, Arg1, Mrc1, Fizz1,

(WT) and Peli3–/– mice fed a normal chow diet or HFD from 2 months old (n = 6).

(C) FACS analysis of F4/80-positive stromal vascular fraction (SVF) cell number (le

F4/80-positive SVF from 1 g of epididymal fat tissue taken from 6-month-old WT

counted as M1 macrophages and F4/80+CD11c�CD206+ cells counted as M2 m

(D) Quantitative RT-PCR of mRNA expression for Il1b, Tnf, Il6, Ccl2, and Il10 in th

diet or HFD from 2 months old (n = 6 per group).

(E) ELISA analysis of IL-1b, TNF, IL-6, CCL2, and IL-10 expression in serum from

(n = 9–12).

Data are presented as themean ± SEM andwere subjected to two-way ANOVA an

***p < 0.001. See also Figures S2 and S3.

I

Pellino3 Deficiency Results in Enhanced Expression of
IL-1b that Drives Insulin Resistance
We next addressed the molecular mechanism underlying the hy-

perinflammatory response in HFD-fedPeli3–/– mice and explored

whether this heightened inflammation drives the more severe

insulin resistance observed in these mice. Although the exact

triggers of obesity-driven inflammation that leads to insulin resis-

tance remain to be defined, various Toll-like receptors (TLRs)

have been proposed to play roles (Könner and Brüning, 2011)

with particular focus on TLR4 (Poggi et al., 2007; Tsukumo

et al., 2007). TLR4 can be stimulated by LPS, whose circulating

levels increase in obesity (Baker et al., 2011), and by free fatty

acids to trigger inflammatory cytokine expression and insulin

resistance (Nguyen et al., 2007). To this end we used bone-

marrow-derived macrophages from wild-type and Peli3–/– mice

and compared their inflammatory responses to treatment with

LPS and the saturated fatty acid palmitate. LPS induced the

expression of IL-1b, TNF, IL-6, IL-10, IL-12, CCL5, CXCL1, and

CCL2 to the same extent in wild-type and Peli3–/– bone-

marrow-derived macrophages (BMDMs) (Figures 4A and S4).

Palmitate alone induced no detectable levels of cytokines but

notably strongly augmented the LPS-induced expression of IL-

1b while having no effects on the other cytokines (Figure 4A). In-

duction of IL-1b in response to LPS and palmitate was further

enhanced in Peli3–/– BMDMs relative to wild-type cells whereas

all other cytokines were expressed in similar amounts between

wild-type and Peli3–/– cells. Given the very selective targeting

of IL-1b expression by Pellino3, coupled to the previously

described roles for IL-1b in insulin resistance (Tack et al.,

2012), we assessed whether the exacerbation of HFD-induced

insulin resistance in Peli3–/– mice was directly attributable to

IL-1b. Glucose- and insulin-tolerance tests demonstrated that

administration of IL-1 receptor antagonist reversed insulin resis-

tance in Peli3–/– mice, resulting in restoration of insulin sensitivity

and glucose tolerance to these mice (Figure 4B). The IL-1 recep-

tor antagonist improved glucose homeostasis in Peli3–/– mice

without affecting weight, suggesting that the effects of the antag-

onist are not secondary to regulation of obesity (Figure 4C).

These data confirm that the augmented expression of IL-1b in

Peli3–/– cells is a critical and direct contributory factor to driving

the insulin-resistance phenotype and we therefore probed the

mechanism by which Pellino3 regulates IL-1b expression.

The production and release of IL-1b requires two signals: the

first signal induces transcription of Il1b and expression of precur-

sor pro-IL-1b and the second signal activates the inflammasome

to trigger caspase1-mediated processing of pro-IL-1b into
o HFD

pe and Peli3–/– mice fed a HFD from 2months old. Scale bars represent 25 mm.

and Ym1 in the liver and white adipose tissue (WAT) of 6-month-old wild-type

ft) and the frequency (middle) and number (right) of M1 and M2 macrophage in

and Peli3–/– mice fed a HFD from 2 months old. F4/80+CD11c+CD206� cells

acrophages (n = 9 per group).

e liver (top) and WAT (bottom) of 6-month-old WT and Peli3–/– mice fed a chow

6-month-old WT and Peli3–/– mice fed a chow diet or HFD from 2 months old

alysis, followed by Bonferroni’s multiple-comparison test. *p < 0.05, **p < 0.01,

mmunity 41, 973–987, December 18, 2014 ª2014 Elsevier Inc. 977



Figure 3. Pellino3 Deficiency Exacerbates Hepatic Steatosis in

Response to High-Fat Diet

(A) Hematoxylin and eosin (H&E) staining of liver sections from 6-month-old

wild-type and Peli3–/– mice fed a HFD from 2 months old. Scale bars represent

25 mm (top) and 100 mm (bottom).

(B) Quantitative PCR of mRNA expression for Fsn, Acaca, Cpt1a, and GCK in

the liver from 6-month-old wild-type and Peli3–/– mice fed a HFD from

2 months old. Data are presented as the mean ± SEM and were subjected to

two-way ANOVA analysis, followed by Bonferroni’s multiple-comparison

test. *p < 0.05.
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mature IL-1b that is secreted from the cell. We therefore sub-

jected adipose tissue from HFD-fed wild-type and Peli3–/– mice

to immunoblotting and measured the amount of pro-IL-1b and

mature IL-1b and found that the amounts of both forms were

higher in adipose tissue from Peli3–/– mice (Figure 4D). This sug-

gested that Pellino3 targets the initial expression of pro-IL-1b.

This was confirmed by LPS and palmitate inducing higher levels

of Il1b mRNA from 12 hr in Peli3–/– BMDMs relative to wild-type

cells, indicating that Pellino3 regulates the transcription of IL-1b

(Figure 4E). Again this regulatory effect is selective for expression

of IL-1b: loss of Pellino3 had no major effect on the LPS-and-

palmitate-induced expression of mRNAs encoding IL-6 and

TNF (Figure 4E).

Pellino3 Negatively Regulates the Stability of HIF-1a
Protein
In order to probe the mechanism by which Pellino3 affects tran-

scriptional regulation of IL-1b, we examined its potential role in

regulating activation of NF-kB and HIF-1a, two transcription fac-

tors that are known to drive transcription of IL-1b (Baker et al.,

2011; Tannahill et al., 2013). LPS and palmitate promoted similar

profiles of time-dependent activation of NF-kB in wild-type and

Peli3–/– BMDMs as measured by phosphorylation of IkBa (Fig-

ure 5A) and its upstream kinases IKKa and IKKb (Figure S5).

LPS or LPS and palmitate costimulation resulted in increased

amounts of HIF-1a in wild-type cells, which were further

increased in Peli3–/– BMDMs (Figure 5A), suggesting that Pel-

lino3 targets the HIF-1a pathway. The enhanced expression of

HIF-1a in Peli3–/– BMDMs are especially evident at later times af-

ter LPS stimulation (e.g., 6–12 hr), and this is associated with

augmented IL-1b expression at 12–24 hr (Figure 5A, left panels).

The regulation of LPS and palmitate signaling by Pellino3 ap-

pears to be selective for HIF-1a because lack of Pellino3 does

not affect the ability of these stimuli to activate other pathways

such as the p38 (Figure 5A) and JNK MAPKs (Figure S5). Given

the selective targeting of HIF-1a by Pellino3, we then measured

HIF-1a protein in tissues from Peli3–/– mice and demonstrated

higher protein expression of HIF-1a protein in liver and adipose

tissue from Peli3–/– mice relative to the same tissues from wild-

type mice (Figure 5B). This is consistent with the higher expres-

sion of IL-1b in Peli3–/– mice and supports a role for Pellino3 in

targeting HIF-1a to control expression of IL-1b. We next investi-

gated the molecular basis of the regulatory effects of Pellino3 on

HIF-1a. Pellino3 fails to affect the transcription of the gene en-

coding HIF-1a as shown by the fact that LPS and palmitate

induced comparable Hif1a mRNA in BMDMs from wild-type

and from Peli3–/– mice (Figure 5C). Under the same conditions,

Peli3–/– BMDMs show higher LPS-and-palmitate-induced

expression of Vegf, another HIF-1a-responsive gene, further

confirming the regulatory effects of Pellino3 on HIF-1a (Fig-

ure 5C). The levels of Hif1a mRNA in liver and adipose tissue

are the same in wild-type and Peli3–/– mice although the expres-

sion of another HIF-1a-responsive gene, Pdk1, is increased in

tissues from Peli3–/– mice (Figure 5D), confirming that Pellino3

targets HIF-1a but posttranscriptionally. Such targeting of
(C) Serum concentrations of triglyceride (TG) from 6-month-old wild-type and

Peli3–/– mice fed a HFD from 2 months old. Mice were fasted overnight before

blood collection (n = 11–14 per group).



(legend on next page)

Immunity

Pellino3 Protects against Insulin Resistance

Immunity 41, 973–987, December 18, 2014 ª2014 Elsevier Inc. 979



Immunity

Pellino3 Protects against Insulin Resistance
HIF-1a by Pellino3 is likely to make an important contribution to

the protective effects of Pellino3 in insulin resistance because

HIF-1a has been shown to contribute to HFD-induced inflamma-

tion and insulin resistance (Jiang et al., 2011; Kihira et al., 2014;

Lee et al., 2014; Shin et al., 2012). Indeed, HIF-1a is increased

during M1 but not M2 macrophage polarization (Takeda et al.,

2010), with HIF-1a being important for mediating expression of

proinflammatory cytokines, including IL-1b, in adipose tissue

M1 macrophages but dispensable for expression of M2 marker

proteins (Fujisaka et al., 2013). Given that we demonstrated

above (Figure S3) that Pellino3 plays a cell-intrinsic role in regu-

lating M1 but not M2 macrophage polarization, we measured

HIF-1a and IL-1b protein expression in in-vitro-polarized M1

and M2 macrophages from wild-type and Peli3–/– mice (Fig-

ure 5E). As expected, costimulation of wild-type macrophages

with LPS and IFN-g induced strong expression of the M1marker

protein NOS2, and this was also accompanied by induction of

HIF-1a and IL-1b. The protein expression of NOS2, HIF-1a,

and IL-1b, in response to LPS and IFN-g, was further augmented

in M1 macrophages from Peli3–/– mice. In contrast, IL-4 and IL-

10 induced comparable expression of the M2 marker protein,

arginase 1, in macrophages from wild-type and Peli3–/– mice

and failed to induce HIF-1a or IL-1b (Figure 5E). TheM1-inducing

stimuli of LPS and IFN-g increased mRNA expression of Hif1a in

macrophages from wild-type mice but these were not further

enhanced in macrophages from Peli3–/– mice (Figure 5F). These

findings support a model in which Pellino3 can target HIF-1a

expression posttranscriptionally to negatively regulate genera-

tion of M1 macrophages and the expression of proinflammatory

cytokines such as IL-1b.

We next focused our studies on the potential regulatory effects

of Pellino3 on the stability of the HIF-1a protein. Under normoxic

conditions, newly synthesized HIF-1a is labile by virtue of being

subject to proline hydroxylation by three prolyl hydoxylases

(PHDs), resulting in interaction with von-Hippel-Lindau (VHL)

protein that recruits an elongin B-elongin C-cullin-2-ring box-1-

containing E3 ubiquitin ligase complex that targets the hydroxyl-

ated HIF-1a for polyubiquitination and proteasomal degradation

(Jaakkola et al., 2001; Ohh et al., 2000). Under hypoxic condi-

tions, the oxygen-requiring PHDs are inhibited and the reduced

hydroxylation of HIF-1a prevents VHL recognition and thus sta-

bilizes HIF-1a by sparing it from ubiquitination and degradation.

Hypoxia is also of particular relevance to obesity and insulin

resistance because adipocyte hypertrophy in obese situations

leads to hypoxia in the adipose tissue, and it has been proposed

that such oxygen deficiency is a key trigger for low inflammation

that leads to insulin resistance (Hodson, 2014; Lee et al., 2014;

Regazzetti et al., 2009). We therefore explored the regulatory
Figure 4. Pellino3 Targets the Expression of IL-1b to Regulate Insulin
(A) ELISA analysis of IL-1b, TNF, IL-6, and IL-10 expression in media from bone-m

treated for 0–24 hr with BSA (400 mM) or palmitate conjugated to BSA (PA-BSA)

(B and C) Glucose-tolerance test (GTT) (B, left) and insulin-tolerance test (ITT) (B, r

from 2 months old, and intraperitoneally injected with PBS or IL-1 receptor antag

(D) Immunoblot analysis of IL-1b in epididymal fat tissue from 7-month-old WT

processed forms of IL-1b (p17) are indicated.

(E) Quantitative RT-PCR ofmRNA expression for Il1b, Il6, and Tnf in BMDMs isolat

absence or presence of LPS.

All data are presented as the mean ± SEM of three or four independent experime

multiple-comparison test. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S4.
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role of Pellino3 in hypoxia-mediated stabilization of HIF-1a pro-

tein and demonstrated that the absence of Pellino3 in Peli3–/–

BMDMs resulted in enhanced HIF-1a protein in response to hyp-

oxic challenge (5% O2) (Figure 6A). This is also consistent with

hypoxic conditions inducing higher expression of the HIF-

1a-responsive genes Il1b, Itgax, Pdk1, and Vegf in Peli3–/–

BMDMs while the expression of other genes such as Tnf, Il10,

andHif1a itself were the same in wild-type and Peli3–/– cells (Fig-

ure 6B). LPS and hypoxia showed strong synergistic effects on

stabilization of HIF-1a protein and this was further augmented

in Peli3–/– cells (Figure 6A). Treatment of cells with the protea-

some inhibitor MG132 caused expected accumulation of HIF-

1a protein under normoxia and hypoxia with no differences

between wild-type and Peli3–/– cells (Figure 6C), indicating that

Pellino3 affects the pathway that promotes HIF-1a degradation.

We next used two PHD inhibitors, dimethyloxalylglycine (DMOG)

and cobalt chloride (Figure S6A), to stabilize HIF-1a protein, and

with both inhibitors the stabilized expression was similar in wild-

type and Peli3–/– cells, suggesting that hydroxylation of HIF-1a

protein is required to observe the regulatory effects of Pellino3.

However, Pellino3 does not affect the hydroxylation of HIF-1a

protein (Figure S6B), suggesting that Pellino3 targets events af-

ter HIF-1a hydroxylation. Under all of the above conditions of

normoxia and hypoxia, in the absence and presence of PHD

and proteasome inhibitors, the loss of Pellino3 had no effect

on the expression of PHD1-3 or the VHL, elongin B, and elongin

C components of the E3 ligase complex that targets HIF-1a for

degradation (Figures 6C and S6A). In addition, the absence

of Pellino3 had no effect on the assembly of the VHL-elongin

B-elongin C-cullin-2-ring box-1 complex (Figure S6C).

We then characterized the ubiquitination status of HIF-1a. As

expected, in wild-type cells HIF-1a showed high amounts of

degradative-type K48-linked polyubiquitination under normoxic

conditions and this was reduced in hypoxia (Figure 6D). K48-

linked ubiquitination of HIF-1a was greatly suppressed in

Peli3–/– cells under both normoxic and hypoxic conditions, sug-

gesting that Pellino3 facilitates K48-linked ubiquitination of HIF-

1a. The decreased K48-linked polyubiquitination of HIF-1a in

Peli3–/– cells was conversely associated with high amounts of

nondegradative K63-linked polyubiquitination of HIF-1a (Fig-

ure 6D), especially under hypoxic conditions, suggesting that

HIF-1a might be subject to competition for ubiquitination by

K48- and K63-linked chains resulting in HIF-1a degradation or

stabilization, respectively. The increased K63-linked poly-

ubiquitination of HIF-1a, with coincident reduction in K48-linked

polyubiquitination, was also observed in Peli3–/– cells that were

treated with LPS and palmitate (Figure 6E). Such findings sug-

gest that under hypoxic or inflammatory conditions, Pellino3
Resistance
arrow-derived macrophages (BMDMs) isolated fromWT and Peli3–/– mice and

(400 mM) in the absence or presence of LPS (100 ng/ml).

ight) and body weights (C) of 6-month-old male WT and Peli3–/– mice fed a HFD

onist (IL-1RA; 10 mg/kg) each day from 12 weeks of age for 12 weeks (n = 5).

and Peli3–/– mice fed a HFD from 2 months old. Precursor (pro) and active

ed fromWT and Peli3–/– mice and treated for 0–24 hr with BSA or PA-BSA in the

nts and were subjected to two-way ANOVA analysis, followed by Bonferroni’s
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positively regulates K48 ubiquitination of HIF-1a and negatively

affects its K63 ubiquitination, thus favoring degradation of HIF-

1a. Notably, Pellino3 is not a direct E3 ligase for HIF-1a (Fig-

ure 6F), suggesting that the effects of Pellino3 on HIF-1a are

indirect in nature.

Pellino3 Targets TRAF6-Mediated Ubiquitination and
Stabilization of HIF-1a
Our efforts next focused on how Pellino3 can indirectly regulate

the ubiquitination of HIF-1a. We previously showed that Pellino3

can negatively regulate the E3 ubiquitin ligase TRAF6 (Sied-

nienko et al., 2012) and the latter has recently been implicated

as an E3 ligase of HIF-1a to promote its K63-linked ubiquitination

and stabilization (Sun et al., 2013). Therefore, we hypothesized

that Pellino3 might negatively regulate the competing pathway

of K63-linked ubiquitination of HIF-1a. The K63-linked poly-

ubiquitination of HIF-1a (Figure 7A) and overall expression of

HIF-1a (Figure 7B) were greatly reduced in TRAF6-deficient cells

under normoxic and hypoxic conditions. Reconstitution of

Traf6–/– cells with wild-type TRAF6, but not a C70A point mutant

form that lacks E3 ligase activity, resulted in restoration to normal

expression of HIF-1a (Figure 7C). TRAF6 is known to be subject

itself to ubiquitination at K124, and interestingly a point mutation

of TRAF6 (K124A), which abrogates ubiquitination of TRAF6, is

more effective than wild-type TRAF6 in elevating HIF-1a expres-

sion (Figure 7C), suggesting that ubiquitination of TRAF6 nega-

tively regulates its ability to stabilize HIF-1a. We demonstrate

that Pellino3 promotes ubiquitination of TRAF6 because

Peli3–/– cells show less ubiquitination of TRAF6 than wild-type

cells under normoxia and hypoxia (Figure 7D) and in response

to stimulation with LPS and palmitate (Figure 7E). This is consis-

tent with the enhanced expression of HIF-1a that was observed

under these conditions in Pellino3-deficient cells. We next

explored how Pellino3-induced ubiquitination of TRAF6 can

regulate the effects of TRAF6 on HIF-1a. Hypoxia promoted

increased interaction of TRAF6 with HIF-1a and Pellino3 (Fig-

ure 7F), but the TRAF6-HIF-1a association was greatly enhanced

in Peli3–/– cells (Figure 7G), suggesting that Pellino3-mediated

ubiquitination of TRAF6 serves to inhibit the interaction of the

latter with HIF-1a. This is fully consistent with overexpression

of Pellino3, but not a RING domain mutant form that lacks E3

ligase activity (Yang et al., 2013a), abrogating the ability of

TRAF6 to promote K63-linked ubiquitination of HIF-1a (Fig-

ure 7H). Pellino3 also contains a phosphothreonine-binding

FHA domain, but mutation of this site does not affect the ability

of Pellino3 to bind TRAF6 (Figure S7) or regulate TRAF6-induced

ubiquitination of HIF-1a (Figure 7H). The negative effects of Pel-

lino3 on TRAF6-mediated ubiquitination of HIF-1a probably un-

derlies the ability of Pellino3, but not its RING domain mutant

form, to reduce expression of HIF-1a, under hypoxic conditions,

in wild-type cells (Figure 7I). Notably, Pellino3 fails to affect HIF-

1a expression in Traf6–/– cells (Figure 7I), confirming the depen-

dency of TRAF6 formanifesting the regulatory effects of Pellino3.

Finally, we used coexpression studies to directly demonstrate

that Pellino3 inhibits the ability of wild-type TRAF6 to stabilize

HIF-1a but not the stabilizing effects of the K124A TRAF6mutant

that is resistant to ubiquitination (Figure 7J). This supports our

overall model that Pellino3-mediated ubiquitination of TRAF6 is

a critical step in negatively regulating the interaction of TRAF6
I

with HIF-1a, resulting in decreased K63-linked ubiquitination

and destabilization of HIF-1a.

DISCUSSION

Obesity-driven inflammation is stongly associated with insulin

resistance and IL-1b is a central driver of the low-level inflamma-

tion that can lead ultimately to diabetes. Given such damaging

consequences of IL-1b, it is vitally important that the body is

equippedwith regulatory systems to control this unwanted activ-

ity and avoid pathology. Most studies to date have focused on

inflammasome-mediated processing of the inactive precursor

pro-IL-1b to mature IL-1b as a key regulatory checkpoint in the

production of IL-1b (Tack et al., 2012). We now propose a major

role and signaling axis for the arm of the pathway that drives the

transcription of the IL-1b gene. We show that inflammatory and/

or hypoxic conditions can employ TRAF6 to ubiquitinate and sta-

bilizeHIF-1a anddrive IL-1b expression. Pellino3 is shown to be a

negative regulator of this pathway by ubiquitinating TRAF6 and

so inhibiting the ability of the latter to interact with and stabilize

HIF-1a, resulting in suppression of IL-1b expression and protec-

tion against insulin resistance. The targeting of TRAF6byPellino3

is especially intriguing given our recent study that showed Pel-

lino3 to inhibit TLR3-induced expression of type I interferons by

promoting ubiquitination of TRAF6, thus precluding interaction

of the latter with IRF7 (Siednienko et al., 2012). This leads to

reduced ubiquitination of IRF7, resulting in less nuclear translo-

cation and reduced type I interferon expression. In the present

study,Pellino3 ubiquitinates TRAF6with lysine63-linkedpolyubi-

quitin chains to block the interaction of TRAF6 with HIF-1a. This

results in reduced lysine 63-linked polyubiquitination of HIF-1a,

making it more susceptible to lysine 48-linked polyubiquitination

and proteasomal degradation. These findings propose an

emerging paradigm of Pellino3 ubiquitinating TRAF6 to impair

binding of the latter to effector molecules and so suppress or

terminate downstream signaling and limit cytokine expression.

The study further emphasizes the intrinsic link between

obesity, inflammation, and insulin resistance. Pellino3-deficient

mice, which show aggravated insulin resistance in response to

high-fat diet, bear all the hallmarks of low-grade chronic inflam-

mation that is typical of obesity-driven insulin resistance. The

mice show enhanced M1 macrophage accumulation in adipose

and liver tissue, with the latter also demonstrating clear signs of

severe steatosis. In addition, Pellino3 seems to target HIF-1a to

negatively regulate the generation of M1 macrophages and

the expression of proinflammatory cytokines such as IL-1b, at

least in an in vitro setting. Pellino3-deficient mice also express

higher amounts of proinflammatory cytokines in both adipose

and liver tissue and serum. However, the enhanced levels of

proinflammatory IL-1b appears to be the critical factor in driving

insulin resistance in Pellino3-deficient mice by virtue of insulin

sensitivity being restored in response to administration of the

IL-1 receptor antagonist.

We also highlight the importance of hypoxia and the transcrip-

tion factor HIF-1a in driving IL-1b expression. Such factors prob-

ably play key contributing roles in the generation of insulin resis-

tance. Obesity is associated with adipocyte hypertrophy that

results in hypoxia in the adipose tissue, thus promoting inflam-

mation and insulin resistance (Hodson, 2014; Lee et al., 2014;
mmunity 41, 973–987, December 18, 2014 ª2014 Elsevier Inc. 981



Figure 5. Pellino3 Regulates HIF-1a

(A) Immunoblot analysis of HIF-1a, IL-1b, phosphorylated (p-), and total levels of IkBa and p38 in cell lysates fromWT and Peli3–/– BMDMs stimulated for 0–24 hr

with BSA or PA-BSA in the absence or presence of LPS.

(B) Immunoblot analysis of HIF-1a expression in liver and epididymal fat (eFat) tissue from 7-month-old WT and Peli3–/– mice fed a HFD from 2 months old.

(C) Quantitative RT-PCR of mRNA expression forHif1a and Vegf in BMDMs isolated fromWT and Peli3–/– mice and treated for 0–24 hr with BSA or PA-BSA in the

absence or presence of LPS.

(D) Quantitative RT-PCR of mRNA expression forHif1a and Pdk1 in the liver and white adipose tissue (WAT) of 6-month-old wild-type (WT) and Peli3–/– mice fed a

normal chow diet or HFD from 2 months old (n = 6).

(legend continued on next page)
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Figure 6. Pellino3 Deficiency Augments

Hypoxia-Induced K63-Linked Ubiquitina-

tion and Stabilization of HIF-1a and Expres-

sion of HIF-1a-Responsive Genes

(A) Immunoblot analysis of HIF-1a expression in

WT and Peli3–/– BMDMs left untreated or treated

with LPS (100 ng/ml) under normoxia (21% O2) or

hypoxia (5% O2) conditions for 5 hr.

(B) Quantitative PCR of mRNA expression for Tnf,

Il1b, Itgax, Pdk1, Vegf, Il10, HIF-1a, and Peli3 in

WT and Peli3–/– BMDMs incubated under nor-

moxia (21% O2) or hypoxia (5% O2) conditions for

24 hr. Data are presented as the mean ± SEM of

three independent experiments and were sub-

jected to two-way ANOVA analysis, followed by

Bonferroni’s multiple-comparison test. *p < 0.05,

**p < 0.01, ***p < 0.001; ns, not significant. The

inset shows immunoblot analysis of HIF-1a

expression in WT and Peli3–/– BMDMs incubated

in 21% or 5% O2 for 24 hr.

(C) Immunoblot analysis of HIF-1a, PHD1, PHD2,

PHD3, VHL, Elongin B, and Elongin C in WT and

Peli3–/– BMDMs left untreated or treated with

MG132 (20 mm) for 1 hr before 5 hr incubation in

21% or 5% O2. b-actin was used as a loading

control.

(D and E) Immunoblot (IB) analysis of K63-linked

ubiquitin, K48-linked ubiquitin, and HIF-1a in

immunoprecipitated (IP) HIF-1a samples from WT

and Peli3–/– BMDMs treated for (D) 6 hr in 21% or

5%O2 in the presence ofMG132 (20 mm) or (E) 7 hr

in the absence or presence of LPS with BSA or

PA-BSA.

(F) Immunoblot analysis of K48-linked ubiquitin,

HIF-1a, and myc (Pellino3) in immunoprecipitated

(IP) HIF-1a and lysate (input) samples from in vitro

ubiquitination assay.

Data are representative of two to three experi-

ments. See also Figure S6.
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Regazzetti et al., 2009). HIF-1a has also been shown to

contribute to HFD-induced insulin resistance (Jiang et al.,

2011; Kihira et al., 2014; Lee et al., 2014; Shin et al., 2012). The

present study provides a plausible signaling framework of such

HIF-1a-mediated effects and how hypoxic conditions in adipose
(E and F) Immunoblot analysis of NOS2, IL-1b, Arginase 1, HIF-1a, and b-actin (E) and quantitative RT-PCR of

marrowmacrophages (BMMs) (F) fromWT and Peli3–/– mice costimulated with LPS and IFN-g or IL-4 and IL-1

All data are presented as the mean ± SEM of three or four independent experiments and were subjected to t

multiple-comparison test. *p < 0.05, ***p < 0.001. See also Figure S5.

Immunity 41, 973–987, D
tissue can trigger low-level inflammation

and ultimately insulin resistance.

Although LPS has recently been shown

to elevate succinate concentrations

to inhibit prolyl-hydroxylase-mediated

hydroxylation of HIF-1a resulting in

increased stability of the latter and induc-

tion of IL-1b (Tannahill et al., 2013), we

now provide evidence for an important

signaling axis of TRAF6-HIF-1a-IL-1b

that also drives IL-1b expression. Pellino3

is an important negative regulatory of this
pathway and acts as a critically important checkpoint to avoid

unwanted IL-1b expression. The consequences of removal of

this regulatory system is revealed by Pellino3-deficient mice

showing exacerbation of HFD-induced inflammation and insulin

resistance. Notably in a human context, diabetic obese subjects
mRNA expression forHif1a in M-CSF cultured bone

0 to generate M1 andM2 populations, respectively.

wo-way ANOVA analysis, followed by Bonferroni’s

ecember 18, 2014 ª2014 Elsevier Inc. 983



Figure 7. Pellino3 Targets TRAF6 to Negatively Regulate Stabilization of HIF-1a

(A) Immunoblot analysis of K63-linked ubiquitin, HIF-1a, and TRAF6 in immunoprecipitated (IP) HIF-1a and lysate (input) samples from WT and Traf6–/– MEFs

treated for 6 hr in 21% or 5% O2 in the presence of MG132 (20 mm).

(legend continued on next page)

Immunity

Pellino3 Protects against Insulin Resistance

984 Immunity 41, 973–987, December 18, 2014 ª2014 Elsevier Inc.



Immunity

Pellino3 Protects against Insulin Resistance
show greatly reduced adipose tissue levels of Pellino3. Although

the molecular basis to the reduced expression of Pellino3 in

obesity remains to be delineated and no polymorphisms or mu-

tations in Pellino3 have yet been identified that associate with

insulin resistance or diabetes, the present studies implicate

Pellino3 as a molecule with potential protective function in the

control of metabolic health.

EXPERIMENTAL PROCEDURES

Mice

Peli3�/� mice were generated on a C57BL/6J background as described (Sied-

nienko et al., 2012; Yang et al., 2013a, 2013b). For diet studies, 8-week-oldmice

were fed a chow diet (Teklad diet 2918 with 18% calories from fat [Harlan]) or a

HFD (Teklad high-fat diet TD.06414with 60%calories from fat [Harlan]), andhad

free access to food and water with a 12 hr/12 hr light/dark cycle. For glucose-

tolerance tests (GTT), mice were fasted overnight prior to intraperitoneal injec-

tion with glucose (1.5 mg/g body weight). Blood glucose levels were measured

from whole tail blood with a glucose monitor (Freestyle, Abbott Diabetes Care)

at intervals of 0, 15, 30, 60, and 120 min after the glucose injection. For insulin-

tolerance tests (ITT), mice were injected intraperitoneally with insulin (1.2 mU/g

body weight [Novolin]) after a 5 hr fast and glucose values were measured as

above. For IL-1 receptor antagonist (IL-1RA) administration, mice were fed a

HFD at 8 weeks old and then injected intraperitoneally with either IL-1RA

(10 mg/kg body weight) or endotoxin-free PBS daily, starting at 12 weeks of

age, for 12 weeks. Body weights were measured every 2 or 3 weeks. For meta-

bolic measurements, mice were fasted overnight. Blood samples were

collected and serum was stored at �20�C until analysis. The insulin levels

were determinedwith anUltrasensitive Insulin ELISAkit (Crystal CHEM). Triglyc-

eride (TG) levels weremeasuredwith a commercial kit (Stanbio Laboratory). For

food intake test, mice were individually caged. Food intake was measured

weekly. All animal experiments were performed in accordance with the regula-

tions and guidelines of the Irish Department of Health and protocols approved

by the Research Ethics committee of National University of Ireland Maynooth.

Analysis of Human Adipose Samples

A total of 20 human subjects (aged 22–66 years) were recruited for this study

with all individuals providing written informed consent. The study was

approved by the Ethics Committee at St. Vincent’s University Hospital (Dublin,

Ireland). Half of the subjects were classified as lean (based onmean bodymass

index [weight (kg)/height (m)2] of 24.5) and half were categorized as obese

(based on mean body mass index of 51.6). Patients with underlying hormone

deficiencies, genetic disorders, inflammatory conditions, or occurrences of

recent acute infections were excluded. In both groups, 40% of the subjects
(B) Immunoblot analysis of HIF-1a and TRAF6 in WT and Traf6–/– MEFs left untrea

O2. b-actin was used as a loading control.

(C) Immunoblot analysis of HIF-1a and Flag in WT and Traf6–/– MEFs transfected w

(K124R, C70A) and exposed to 5% O2 for 5 hr. b-actin was used as a loading co

(D and E) Immunoblot (IB) analysis of TRAF6 and ubiquitin in immunoprecipitated

(D) 6 hr in 21% or 5% O2 in the presence of MG132 (20 mm) or (E) 7 hr with BSA

presence of LPS (100 ng/ml).

(F) Immunoblot analysis of HIF-1a, Pellino3, and TRAF6 in immunoprecipitated (IP

O2 for 6 hr in the presence of MG132 (20 mm). The controls (Con) represent sam

(G) Immunoblot (IB) analysis of TRAF6 and HIF-1a in immunoprecipitated (IP) TRA

21% or 5% O2 in the presence of MG132 (20 mm).

(H) Immunoblot analysis of HA-ubiqutin, HIF-1a, flag (Traf6), and myc (Pellino3

HEK293T cells previously transfected with constructs encoding HA-tagged K63A

Traf6, and myc-tagged Pellino3s and corresponding mutant forms containing m

no3sRm [C360A, C363A]) and incubated in the presence of MG132 (20 mm) for 3

(I) Immunoblot analysis of HIF-1a and Myc in WT and Traf6–/– MEFs transfected

mutated FHA (mPellino3Fm) or RING (mPellino3Rm) domain and exposed to 5%

(J) Immunoblot analysis of HA-HIF-1a, Flag-tagged Traf6 proteins, and myc-tagg

with constructs encoding HA-HIF-1a, Flag-tagged Traf6 (left) or Traf6 with amutat

mutant forms containing mutations in the FHA (Pellino3lFm [R155A, S185A]) and

Data are representative of two to three experiments. See also Figure S7.

I

were male and the mean age of the lean and obese subjects were 49.8 and

43.8 years, respectively. Obese subjects had glycated haemoglobin (HbA1c)

levels ranging from 38 to 54 mmol/mol. Omental adipose tissue samples

were initially collected into DMEM, supplemented with 10% (v/v) fetal calf

serum, from patients undergoing bariatric surgery (obese subjects) or explor-

ative laparoscopically assisted colonoscopy (lean subjects). Anonymized bi-

opsy samples were stored at�80�C for batch analysis. Frozen biopsy samples

were thawed and placed in cell lysis buffer (50mMTris-HCl [pH 7.4], containing

150 mMNaCl, 0.5% sodium deoxycholate [w/v], 1% Triton X-100 [v/v], 50 mM

NaF, 1 mM Na3VO4, 1 mM DTT, 1 mM PMSF, and complete protease-inhibitor

‘‘cocktail’’), followed by sonication. Cell lysates were centrifuged for 10 min at

14,000 3 g for removal of cell debris, nuclei, and fat layer. Supernatants were

assayed for protein concentration and lysate samples (50 mg) were resolved by

SDS-PAGE, transferred to nitrocellulose membranes, and analyzed by immu-

noblot with anti-Pellino3 (generated in-house). Immunoblot analysis was per-

formed in the absence or presence of the immunogenic peptide that was

used to generate the anti-Pellino3, to ‘‘define’’ the nonspecific binding of the

antibody. Immunoreactivity was visualized by the Odyssey Imaging System.

In Vitro Polarization of M1 and M2 Macrophages

Tibias and femurs were removed from wild-type and Peli3�/� mice by sterile

techniques and the bone marrow was flushed with fresh RPMI-1640 medium

plus GlutaMAX-I medium. Cells were plated in medium supplemented with

M-CSF (25 ng/ml) for 6 days. On day 6, cells were left untreated or were cos-

timulated with LPS (100 ng/ml) and IFN-g (20 ng/ml) or with IL-4 (25 ng/ml) and

IL-10 (10 ng/ml) for 24 hr.

In Vitro Ubiquitination Assay

Recombinant Pellino3 proteins were produced as previously described (Yang

et al., 2013a). For the K48 ubiquitination assay, purified recombinant HIF-1a

(400 ng) was incubated with a form of ubiquitin containing a single K at residue

48 (K48) (4 mg), E1 (100 nM), UbcH6 (E2) (500 nM), and a protease inhibitor

mixture (EDTA-free) in the absence or presence of recombinant Pellino3s

(0.5 mg) in 20 mM Tris-HCl (pH 8), containing 2 mM MgCl2, 2 mM ATP, and

100 mM NaCl. Reactions were incubated at 30�C for1.5 hr and terminated

by the addition of 1% (w/v) SDS. Samples were heated to 95�C for 5 min to

dissociate HIF-1a from any associated proteins and then were diluted 10-

fold in lysis buffer (20 mM Tris-HCl [pH 7.4], containing 150 mM NaCl, 1%

[vol/vol] Igepal, 10% [wt/vol] glycerol, 50mMNaF, 1mMNa3VO4, 1mM dithio-

threitol, 1 mM phenylmethylsulfonyl fluoride, and complete protease-inhibitor

cocktail [Roche]) before immunoprecipitation and immunoblot analysis.

Statistical Analysis

Prism5 software (GraphPad Software) was used for all statistical tests. A

p value of 0.05 was considered significant.
ted or treated with DMOG (200 mm) for 1 hr before 5 hr incubation in 21% or 5%

ith constructs encoding Flag-tagged wild-type Traf6 or point mutants of Traf6

ntrol.

(IP) TRAF6 and lysate (input) samples fromWT and Peli3–/– BMDMs treated for

(400 mM) or palmitate conjugated to BSA (PA-BSA) (400 mM) in the absence or

) TRAF6 (T6) and lysate (input) samples fromHeLa cells, exposed to 21% or 5%

ples immunoprecipitated with an isotype (IgG) control antibody.

F6 and lysate (input) samples from WT and Peli3–/– BMDMs treated for 6 hr in

) proteins in immunoprecipitated (IP) HIF-1a and lysate (Input) samples from

ubiquitin (K63AUb; all K residues except K63 mutated to alanine), Flag-tagged

utations in the FHA (Pellino3sFm [R131A, S161A]) and RING domains (Pelli-

hr.

with constructs encoding myc-tagged wild-type mPellino3 or mPellino3 with a

O2 for 5 hr. b-actin was used as a loading control.

ed Pellino3 proteins in cell lysates from HEK293T cells previously transfected

ed K124R (middle) or C70A (right) andmyc-tagged Pellino3l and corresponding

RING domains (Pellino3lRm [C384A, C387A]).
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