
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017 3441

A Linear Network Code Construction for General
Integer Connections Based on the Constraint

Satisfaction Problem
Ying Cui, Member, IEEE, Muriel Médard, Fellow, IEEE, Edmund Yeh, Senior Member, IEEE,

Douglas Leith, Senior Member, IEEE, Fan Lai, and Ken R. Duffy

Abstract— The problem of finding network codes for general
connections is inherently difficult in capacity constrained
networks. Resource minimization for general connections with
network coding is further complicated. Existing methods for
identifying solutions mainly rely on highly restricted classes
of network codes, and are almost all centralized. In this
paper, we introduce linear network mixing coefficients for code
constructions of general connections that generalize random
linear network coding for multicast connections. For such code
constructions, we pose the problem of cost minimization for the
subgraph involved in the coding solution and relate this mini-
mization to a path-based constraint satisfaction problem (CSP)
and an edge-based CSP. While CSPs are NP-complete in general,
we present a path-based probabilistic distributed algorithm and
an edge-based probabilistic distributed algorithm with almost
sure convergence in finite time by applying communication free
learning. Our approach allows fairly general coding across flows,
guarantees no greater cost than routing, and shows a possible
distributed implementation. Numerical results illustrate the per-
formance improvement of our approach over existing methods.

Index Terms— Network coding, network mixing, general
connection, resource optimization, distributed algorithm.

I. INTRODUCTION

THE problem of finding network codes in the case of
general connections, where each destination can request

information from any subset of sources, is intrinsically difficult
and little is known about its complexity. In certain special
cases, such as multicast connections (where destinations share

Manuscript received July 2, 2016; revised May 24, 2017 and July 31, 2017;
accepted August 10, 2017; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor G. Paschos. Date of publication October 6, 2017; date of
current version December 15, 2017. The work of Y. Cui was supported by the
NSFC under Grant 61401272 and Grant 61521062. The work of E. Yeh was
supported by the National Science Foundation under Grant CNS-1205562.
This paper was presented in part at IEEE GLOBECOM, December 2015.
(Corresponding author: Ying Cui.)

Y. Cui is with the Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
cuiying@sjtu.edu.cn).

M. Médard is with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: medard@mit.edu).

E. Yeh is with the Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA 02115 USA.

D. Leith is with Trinity College Dublin, Dublin, Ireland.
F. Lai was with the Department of Electronic Engineering, Shanghai Jiao

Tong University, Shanghai 200240, China. He is now with the Department of
Electronic Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109 USA.

K. R. Duffy is with Maynooth University, Maynooth, Ireland.
Digital Object Identifier 10.1109/TNET.2017.2746755

all of their demands), it suffices to satisfy a Ford-Fulkerson
type of min-cut max-flow constraint between all sources
to every destination individually. For multicast connections,
linear codes suffice [1], [2], and lend themselves to a dis-
tributed random construction [3]. While linear codes have
been the most widely considered in the literature, linear codes
over finite fields may in general not be sufficient for general
connections, as shown by [4] using an example from matroid
theory.

A matroidal structure for the network coding problem with
general connections was conjectured by the late Ralf Kötter
(private communication) but, while different aspects of this
connection have been investigated in the literature [5]–[11],
a proof remains elusive, except in special cases. Recently,
the problem of scalar-linear coding has been shown to have
a matroidal structure [8], [12]. There exists a correspondence
between scalar-linearly solvable networks and representable
matroids over finite fields, which can be used to obtain
some bounds on scalar linear network capacity or the capac-
ity regions of certain classes of networks. More generally,
the problem of finding the linear network coding capac-
ity region is equivalent to the characterization of all linear
polymatroids [9], whose structure was investigated in [10].
Reference [11] generalized the results of [13], which investi-
gated the connection among index coding, network coding and
matroid theory. In [14], polymatroids were used to produce
linear code constructions.

Progress in understanding the matroidal structure of the gen-
eral connection problem has, however, not yet provided simple
and useful approaches to generating explicit linear codes.
There has been considerable investigation of restricted cases,
such as a network with only two sources and two destinations,
generally referred to as the two-unicast network [15]–[19], but
thus far such investigation has yielded only bounds or linear
solutions for restricted cases of the two-unicast network.
It has been shown in [18] that the two-unicast problem is as
hard as the most general network coding problem. Since the
difficulty of coding in the case of general connections is in
effect an interference cancellation one, approaches relying on
interference alignment have naturally been explored [20], [21].
Reference [22] investigated the enumeration, rate region com-
putation and hierarchy of general multi-source multi-sink
hyper-edge networks under network coding.

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3442 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Even when we consider simple scalar network codes,
which have scalar coding coefficients, the problem of code
construction for general connections remains vexing. The
main difficulty lies in cancelling the effect of flows that
are coded together even though they are not destined for a
common destination. The problem of code construction is
further complicated when we seek, for common reasons of
network resource management, to limit fully or partially the
use of links in the network. For convex cost functions of flows
over edges in the graph corresponding to the network, finding
a minimum-cost solution is known to be a convex optimization
problem in the case of multicast connections (for continuous
flows) [23]. However, in the case of general connections,
network resource minimization, even when allowing only
restricted code constructions, appears difficult.

Among coding approaches for optimizing network use for
general connections, we distinguish two types. The first, which
we adopt in this paper, is that of mixing, by which we
mean coding together flows using random linear network
coding (RLNC) [3], originally proposed for multicast connec-
tions. The principle is to code together flows as though they
were part of a common multicast connection. In this case,
no explicit coding coefficients are provided, and decodability
is ensured with high probability by RLNC. For example, the
mixing approaches in [24] and [25] are both based on mixing
variables, each corresponding to a set of flows that can be
mixed over an edge. Specifically, in [24], a two-step mixing
approach is proposed for network resource minimization of
general connections, where flow partition (mixing) and flow
rate optimization are considered separately. This separation
imposes stronger restrictions on the mixing design in the
first step and leads to a limitation on the feasibility region.
Reference [25] studies the feasibility of more general mixing
designs based on mixing variables of size O(2P), where
P is the number of flows. Reference [25] does not, however,
provide an approach for obtaining a specific mixing design.
The second type of coding approach is an explicit linear
code construction, by which we mean providing specific linear
coefficients over some finite field, to be applied to coding flows
at different nodes. Often these constructions are simplified by
restricting them to be pairwise. For example, in [26] and [27],
simple codes over pairs of flows are proposed for network
resource minimization of general connections.

Some explicit linear network code construction approa-
ches [26], [27] are distributed, but they allow only pairwise
coding. The algorithms of [28] using evolutionary techniques,
which are also explicit code constructions, are partially distrib-
uted, since the chromosomes can be decomposed into their
local contributions, but require information to be fed back
from the receivers to all the nodes in the network. In addition,
the convergence results for evolutionary techniques are gener-
ally scant and do not yield prescriptive constructions. While
RLNC for multicast connections is a distributed algorithm,
most of the mixing approaches [24], [25] based on it have
remained centralized. In [29], we propose new methods for
constructing linear network codes for general connections
of continuous flows based on mixing to minimize the total
network cost. Flow splitting and coding over time are required

to achieve the desired performance. The focus in [29] is to
apply continuous optimization techniques to obtain continuous
flow rates. In [30], we consider linear network code construc-
tion for general connections of integer flows based on mixing,
and propose an edge-based probabilistic distributed algorithm
to minimize the total network cost. This paper extends the
results in [30].

Our contribution in this paper is to present new methods
for constructing linear network codes in a distributed manner
for general connections of integer flows based on mixing.
We introduce linear network mixing coefficients. The number
of mixing coefficients grows polynomially with the number of
flows. We formally establish the relationship between linear
network coding and mixing. We formulate the minimization
of the cost of the subgraph involved in the code construction
for general connections of integer flows in terms of the
mixing coefficients. We relate our problem to a path-based
Constraint Satisfaction Problem (CSP) and an edge-based CSP.
While CSPs are NP-complete in general, we present a path-
based probabilistic distributed algorithm and an edge-based
probabilistic distributed algorithm with almost sure conver-
gence in finite time by applying Communication Free Learn-
ing (CFL), a recent probabilistic distributed solution for
CSPs [31]. The path-based distributed algorithm requires more
local information than the edge-based distributed algorithm,
but converges faster. We show that our approach guarantees
no greater cost than routing or the simplified mixing design
in [24]. Numerical results also illustrate the performance
improvement of our approach over existing methods. While
our approach, like all other general connection code construc-
tions, is generally suboptimal, it allows more flows to be
mixed than is possible with pairwise mixing [26], [27] and
with the separate mixing design in [24]. Moreover, in contrast
to [24], [25], and [29], our approach does not require non-
scalar coding over time.

II. PROBLEM SETUP AND DEFINITIONS

A. Network Model

We consider a directed acyclic network with general con-
nections.1 Let G = (V , E) denote the directed acyclic graph,
where V denotes the set of V = |V| nodes and E denotes the
set of E = |E| edges. To simplify notation, we assume there
is only one edge from node i ∈ V to node j ∈ V , denoted
as edge (i, j) ∈ E .2 For each node i ∈ V , define the set of
incoming neighbors to be Ii = {j : (j, i) ∈ E} and the set of
outgoing neighbors to be Oi = {j : (i, j) ∈ E}. Let Ii = |Ii|
and Oi = |Oi| denote the in-degree and out-degree of node
i ∈ V , respectively. Assume Ii ≤ D and Oi ≤ D for all i ∈ V ,
where D is a constant.

Consider a finite field F with size F = |F|. Let P =
{1, · · · , P} denote the set of P = |P| flows of symbols in
finite field F to be carried by the network. For each flow

1Different from [29] for continuous flows, here we consider integer flows
and edge capacities, and do not allow flow splitting and coding over time.

2Multiple edges from node i to node j can be modeled by introducing
multiple extra nodes, one on each edge, to transform a multigraph intro a
graph.

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3443

p ∈ P , let sp ∈ V be its source. We consider integer
flows. To simplify notation, we assume unit source rate
(i.e., one finite field symbol per second).3 Let S =
{s1, · · · , sP } denote the set of P = |S| sources. We assume
different flows do not share a common source node and no
source node has any incoming edges. Let T = {t1, · · · , tT }
denote the set of T = |T | terminals. Each terminal t ∈ T
demands a subset of Pt = |Pt| flows Pt ⊆ P . Assume Pt �= ∅
for all t ∈ T , and ∪t∈T Pt = P . Let P � (Pt)t∈T denote
the demands of all the terminals. We assume no terminal has
any outgoing edges.

As we consider integer flows, we assume unit edge capac-
ity (i.e., one finite field symbol per second).4 Let zij ∈ {0, 1}
denote whether edge (i, j) ∈ E is in the subgraph involved in
the code construction in a sense we shall make precise later.5

We assume a cost is incurred on an edge when information
is transmitted through the edge and let Uij(zij) denote the
cost function for edge (i, j). We assume Uij(zij) is non-
decreasing in zij . We are interested in the problem of finding
linear network coding designs and minimizing the network
cost

∑
(i,j)∈E Uij(zij) for general connections under those

designs.

B. Scalar Time-Invariant Linear Network Coding

In linear network coding, a linear combination over F of
the symbols in {σki ∈ F : k ∈ Ii} from the incoming
edges {(k, i) : k ∈ Ii} can be transmitted through the
shared edge (i, j) ∈ E . The coefficients used to form this
linear combination are referred to as local coding coefficients.
Specifically, let αkij ∈ F denote the local coding coefficient
corresponding to edge (k, i) ∈ E and edge (i, j) ∈ E . Denote
α � (αkij)(k,i),(i,j)∈E . Then, for linear network coding, using
local coding coefficients, the symbol through edge (i, j) ∈ E
can be expressed as

σij =
∑

k∈Ii

αkijσki, (i, j) ∈ E , i �∈ S. (1)

Starting from the sources, we transmit source symbols
{σp ∈ F : p ∈ P}, and then, at intermediate nodes,
we perform only linear operations over F on the symbols
from incoming edges. Thus, the symbol of each edge can be
expressed as a linear combination over F of the source sym-
bols {σp ∈ F : p ∈ P}. Let cij,p ∈ F denote the coefficient of
flow p ∈ P in the linear combination for edge (i, j) ∈ E . This
is referred to as the global coding coefficient of flow p ∈ P and
edge (i, j) ∈ E . Let cij � (cij,1, · · · , cij,p, · · · , cij,P) ∈ FP

denote P coefficients corresponding to this linear combination
for edge (i, j) ∈ E . This is referred to as the global coding
vector of edge (i, j) ∈ E . Here, FP represents the set of global
coding vectors, the cardinality of which is FP . Then, using

3A source with a positive integer source rate greater than one can be modeled
by multiple sources, each with unit source rate.

4An edge with a positive integer edge capacity greater than one can be
equivalently converted to multiple edges, each with unit edge capacity.

5There is either no flow or a unit rate of (coded) flow through each edge.
Under the unit source rate and edge capacity assumptions, we shall see that
there is one global coding (mixing) vector for each edge.

global coding vectors, the symbol through edge (i, j) ∈ E can
also be expressed as

σij =
∑

p∈P
cij,pσp, (i, j) ∈ E , i �∈ S. (2)

In this paper, we consider scalar time-invariant linear net-
work coding. In other words, αkij ∈ F and cij,p ∈ F are both
scalars, and do not change over time. Let ep denote the vector
with the p-th element being 1 and all the other elements being
0. For decodability to hold at all the terminals, the global cod-
ing vectors at all edges must satisfy the following feasibility
condition for scalar linear network coding.

Definition 1 (Feasibility of Scalar Linear Network Coding):
For a network G = (V , E) and a set of flows P with sources
S and terminals T , a linear network code c � (cij)(i,j)∈E is
called feasible if the following three conditions are satisfied:
1) cspj = ep for source edge (sp, j) ∈ E , for all sp ∈ S
and p ∈ P ; 2) cij =

∑
k∈Ii

αkijcki for edge (i, j) ∈ E
not outgoing from a source, for all i �∈ S and αkij ∈ F ; 3)
ep ∈ span{cit : i ∈ It}, for all p ∈ Pt and t ∈ T .

Note that when using scalar linear network coding, for each
terminal, extraneous flows are allowed to be mixed with the
desired flows on the paths to the terminal, as the extraneous
flows can be cancelled at intermediate nodes or at the terminal.

C. Scalar Time-Invariant Linear Network Mixing

To facilitate distributed linear network code designs for gen-
eral connections using the mixing concept (without requiring
the specific values of local or global coding coefficients in
the designs), we introduce local and global mixing variables.
Specifically, we introduce the local mixing coefficient βkij ∈
{0, 1} corresponding to edge (k, i) ∈ E and edge (i, j) ∈ E ,
which relates to the local coding coefficient αkij ∈ F . Denote
β � (βkij)(k,i),(i,j)∈E . βkij = 1 indicates that symbol σki

of edge (k, i) ∈ E is allowed (under our construction) to
contribute to the linear combination over F forming symbol
σij in (1) and βkij = 0 otherwise. Thus, if βkij = 0, we have
αkij = 0; if βkij = 1, we can further determine how symbol
σki contributes to the linear combination forming symbol σij

by choosing αkij ∈ F (note that αkij can be zero when
βkij = 1).

Similarly, we introduce the global mixing coefficient xij,p ∈
{0, 1} of flow p ∈ P and edge (i, j) ∈ E , which relates to the
global coding coefficient cij,p ∈ F . xij,p = 1 indicates that
flow p is allowed (under our construction) to be mixed (coded)
with other flows, i.e., symbol σp is allowed to contribute to
the linear combination over F forming symbol σij in (2), and
xij,p = 0 otherwise. Thus, if xij,p = 0, we have cij,p = 0;
if xij,p = 1, we can further determine how symbol σp

contributes to the linear combination forming symbol σij (note
that cij,p can be zero when xij,p = 1). Then, we introduce the
global mixing vector xij � (xij,1, · · · , xij,p, · · · , xij,P) ∈
{0, 1}P for edge (i, j) ∈ E , which relates to the global coding
vector cij = (cij,1, · · · , cij,p, · · · , cij,P) ∈ FP . Here, {0, 1}P

represents the set of global mixing vectors, the cardinality of
which is 2P .

We consider scalar time-invariant linear network mixing.
In other words, βkij ∈ {0, 1} and xij,p ∈ {0, 1} are both

3444 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

scalars, and βkij and xij,p do not change over time. Global
mixing vectors provide a natural way of speaking of flows as
possibly coded or not without knowledge of the specific values
of global coding vectors. Intuitively, global mixing vectors
can be regarded as a limited representation of global coding
vectors. Given network mixing vectors, it may not be possible
to tell whether a certain symbol can be decoded or not. Thus,
using the network mixing representation, the extraneous flows,
when mixed with the desired flows on the paths to each
terminal, are not guaranteed to be cancelled at the terminal.
For decodability to hold at all the terminals, the global mixing
vectors at all edges must satisfy the following feasibility
condition for scalar linear network mixing.

Definition 2 (Feasibility of Scalar Linear Network Mixing):
For a network G = (V , E) and a set of flows P with
sources S and terminals T , a linear network mixing design
x � (xij)(i,j)∈E is called feasible if the following three
conditions are satisfied: 1) xspj = ep for source edge (sp, j) ∈
E , for all sp ∈ S and p ∈ P ; 2) xij = ∨k∈Iiβkijxki for edge
(i, j) ∈ E not outgoing from a source, for all i �∈ S and
βkij ∈ {0, 1}6; 3) xit,p = 0 for all i ∈ It, p �∈ Pt and t ∈ T ,
and ∨i∈Itxit,p = 1 for all p ∈ Pt and t ∈ T .

Note that xit,p = 0, i ∈ It in Condition 3) of Definition 2
ensures that for each terminal, the extraneous flows are not
mixed with the desired flows on the paths to the terminal.
In other words, linear mixing allows only mixing at interme-
diate nodes. This is not as general as using linear network
coding, which allows mixing and canceling (i.e., removing
one or multiple flows from a mixing of flows) at intermediate
nodes.

Given a feasible linear network mixing design, one of
the ways to implement mixing when F is large is to use
random linear network coding (RLNC) [3], [24], as discussed
in the introduction. In particular, when βkij = 1, αkij can
be randomly, uniformly, and independently chosen in F using
RLNC; when βkij = 0, αkij has to be chosen to be 0.

III. MIXING PROBLEM FORMULATION

In this section, we formulate the problem of selecting
mixing coefficients β and x to minimize the cost of the
subgraph involved in the coding solution, i.e., the set of edges
used in delivering the flows.

In the following formulation, zij ∈ {0, 1} indicates whether
edge (i, j) ∈ E is involved in delivering flows, and f t

ij,p ∈
{0, 1} indicates whether edge (i, j) ∈ E is involved in
delivering flow p ∈ Pt to terminal t ∈ T .

Problem 1 (Mixing):

U∗(P) � min
z,f ,x,β

∑

(i,j)∈E
Uij(zij)

s.t. zij ∈ {0, 1}, (i, j) ∈ E (3)

xij,p ∈ {0, 1}, (i, j) ∈ E , p ∈ P (4)

βkij ∈ {0, 1}, (k, i), (i, j) ∈ E (5)

f t
ij,p ∈ {0, 1}, (i, j) ∈ E , p ∈ Pt, t ∈ T (6)

6Note that ∨ denotes the “or” operator (logical disjunction).

∑

p∈Pt

f t
ij,p ≤ zij , (i, j) ∈ E , t ∈ T (7)

∑

k∈Oi

f t
ik,p −

∑

k∈Ii

f t
ki,p = σt

i,p, i ∈ V , p ∈ Pt, t ∈ T

(8)

f t
ij,p ≤ xij,p, (i, j) ∈ E , p ∈ Pt, t ∈ T (9)

xspj = ep, (sp, j) ∈ E , p ∈ P (10)

xij = ∨k∈Iiβkijxki, (i, j) ∈ E , i �∈ S (11)

xit,p = 0, i ∈ It, p �∈ Pt, t ∈ T (12)

where

σt
i,p =

⎧
⎪⎨

⎪⎩

1, i = sp

−1, i = t

0, otherwise

i ∈ V , p ∈ Pt, t ∈ T . (13)

Here, z � (zij)(i,j)∈E and f � (f t
ij,p)(i,j)∈E,p∈Pt,t∈T .7

We now explain Problem 1 using the concept of flow paths.
Consider a feasible solution z, f , x and β to Problem 1.
By (6) and (8), we know that for all p ∈ Pt and t ∈ T , all the
edges in {(i, j) ∈ E : f t

ij,p = 1} form one flow path (i.e., a set
of ordered edges (i, j) ∈ E such that f t

ij,p = 1) from source
sp to terminal t. We would like to obtain requirements on flow
paths (i.e., f) so that Problem 1 is feasible. First, combining
(3) and (7), we can eliminate z and obtain a constraint purely
in terms of f , i.e.,

∑
p∈Pt

f t
ij,p ∈ {0, 1}, (i, j) ∈ E , t ∈ T . (14)

From this, we know that for all p, p′ ∈ Pt, p �= p′ and t ∈ T ,
the two flow paths from sources sp and sp′ to terminal t are
edge-disjoint. In addition, the feasibility constraints in (10),
(11) and (12) together with (4) and (5) set other requirements
on flow paths (i.e., f) via the constraint in (9). Therefore,
a feasible solution to Problem 1 corresponds to a set of
flow paths satisfying certain requirements, as illustrated above.
These interpretations can be understood from the following
example.

Example 1 (Illustration of Problem 1): As illustrated in
Fig. 1, we consider a network with P = {1, 2}, S = {1, 2},
T = {8, 7, 10}, P1 = {1}, P2 = P3 = {1, 2}, and
Uij(zij) = zij ∈ {0, 1} for all (i, j) ∈ E . Problem 1 for
the network in Fig. 1 has two feasible solutions of network
costs 11 and 12, as illustrated in Fig. 1 (a) and Fig. 1 (b),
respectively. Specifically, the two feasible solutions share the
same flow paths from sources s1 and s2 to terminals t2 and
t3, i.e., flow paths 1−3−4−6−7, 2−5−7, 1−3−9−10,
2− 5− 4− 6−10. Notice that the two feasible solutions have
different flow paths from source s1 to terminal t1, i.e., flow
path 1− 3 − 8 for the feasible solution in Fig. 1 (a) and flow
path 1− 3− 9− 11− 8 for the feasible solution in Fig. 1 (b).
The optimal solution is the one illustrated in Fig. 1 (a) and
the optimal network cost is 11.

7Note that the optimal value in Problem 1 is a function of G, S , T and
P, which are assumed to be fixed. Here, we write U∗(P) as a function of
P only to emphasize the impact of P on U∗(P), which is helpful when
considering demand set expansion in Problem 2.

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3445

Fig. 1. Illustration of feasible solutions to Problem 1. P = {1, 2}, S =
{1, 2}, T = {8, 7, 10}, P1 = {1}, P2 = P3 = {1, 2}, Uij(zij) = zij ∈
{0, 1} for all (i, j) ∈ E . The flow paths from the two sources are illustrated
using green and blue curves, respectively. Since P2 = P3 = {1, 2}, the flows
from s1 to t2 and s2 to t3 are allowed to be mixed at edge (4, 6). The red
edges carry network-coded information. In this topology, Problem 1 has two
feasible solutions. However, neither the two-step mixing approach for general
connections in [24] nor routing provides a feasible solution. (a) One feasible
solution of network cost 11. (b) One feasible solution of network cost 12.

We now illustrate the complexity of Problem 1. The num-
ber of variables in β is

∑
(i,j)∈E Oj =

∑
j∈V IjOj ≤

D
∑

j∈V Oj = DE. The number of variables in f is smaller
than or equal to PTE. The numbers of variables in z and x
are E and PE, respectively. Therefore, the total number of
variables in Problem 1 is smaller than or equal to (D+1)E +
(T + 1)PE, i.e., polynomial in E, T and P . Problem 1 is a
binary optimization problem, and does not appear to have a
ready solution.

Remark 1 (Problem 1 for Multicast): When Pt = P for all
t ∈ T (i.e., multicast), the constraint in (12) is vacuous, and the
constraint in (9) is always satisfied by choosing βkij = 1 for
all (k, i), (i, j) ∈ E and choosing x accordingly by (10) and
(11). Therefore, Problem 1 for general connections reduces
to the conventional minimum-cost scalar time-invariant linear
network code design problem for the multicast case. The
complexity of the optimization for the multicast case is much
lower than that for the general case. This is because in the
optimization for the multicast case, variables x and β do not
appear, and the constraints in (4), (5), (9), (10), (11) and (12)
can be removed.

In the following, we show that a feasible linear network
code can be obtained using a feasible solution to Problem 1
(e.g., using RLNC [3]), as illustrated in Section II-C.8

8Please refer to [32] for the details of the proof.

Theorem 1: Suppose Problem 1 is feasible. Then, for each
feasible x and β, there exists a feasible linear network code
design α and c with a field size F > T to deliver the desired
flows to each terminal.

Next, the minimum network cost of Problem 1 is no greater
than the minimum costs of the two-step mixing approach for
general connections in [24] and routing for integer flows,
owing to the following reasons. Problem 1 with βkij = 1
for all (k, i), (i, j) ∈ E , instead of (5), is equivalent to the
minimum-cost flow rate control problem in the second step of
the two-step mixing approach for general connections in [24].
Problem 1 with an extra constraint

∑
p∈P xij,p ∈ {0, 1} for all

(i, j) ∈ E is equivalent to the minimum-cost routing problem.
Fig. 1 illustrates a feasible solution to Problem 1 that cannot
be obtained by the two-step mixing approach [24] or routing.
In this example, the minimum network cost of Problem 1 is
smaller than those of the two-step mixing approach [24] and
routing (which can be treated as infinity).

When Pt ∩ Pt′ = ∅ for all t �= t′ and t, t′ ∈ T
(e.g., multiple unicasts), Problem 1 for general connections
reduces to the minimum-cost routing problem and cannot take
advantage of the network coding gain. This is because using
the network mixing representation, for decodability to hold,
the extraneous flows of each terminal are not allowed to be
mixed with the terminal’s desired flows on the path to this
terminal, thus limiting the network coding gain. To address
this limitation, we now formulate Problem 2, which allows
the expansion of the demand sets and the optimization over
the expansions to increase the opportunity for mixing flows to
different terminals. Let Pt denote the expanded demand set,
which satisfies Pt ⊆ Pt ⊆ P . Let P � (Pt)t∈T denote the
expanded demand sets of all the terminals.

Problem 2 (Mixing with Demand Set Expansion):

U∗ = min
{Pt}

U∗(P) (15)

s.t. Pt ⊆ Pt ⊆ P , t ∈ T (16)

where U∗(P) is the optimal value to Problem 1 for P .
We now compare the complexity of Problem 2 with that

of Problem 1. The number of feasible expanded demand sets
P (satisfying (16)) is 2PT−

�
t∈T Pt . For each feasible P ,

we need to obtain U∗(P) by solving Problem 1. Therefore,
the complexity for solving Problem 2 is 2PT−

�
t∈T Pt times

of that for solving Problem 1. It can be shown that the range
of the exponent, PT −

∑
t∈T Pt, is constrained to be in

{0, 1, · · · , PT − max{P, T }}, by establishing the following
range of

∑
t∈T Pt. First, as Pt ⊆ P for all t ∈ T , the

maximum value of
∑

t∈T Pt is PT , achieved in the case of
multicast (i.e., Pt = P for all t ∈ T). Next, to derive the
minimum value of

∑
t∈T Pt, consider the following two cases.

(i) When P ≥ T , as ∪t∈T Pt = P , the minimum value of∑
t∈T Pt is P , achieved in the case of unicast (i.e., Pt∩Pt′ =

∅ for all t �= t′ and t, t′ ∈ T). (ii) When P < T , as Pt �= ∅,
the minimum value of

∑
t∈T Pt is T , achieved in the case of

a general connection. Thus, the minimum value of
∑

t∈T Pt

is max{P, T }. Finally, it is clear that
∑

t∈T Pt can take
any integer value between max{P, T } and PT . Therefore,∑

t∈T Pt ∈ {max{P, T }, max{P, T } + 1, · · · , PT }, and so
PT −

∑
t∈T Pt ∈ {0, 1, · · · , PT − max{P, T }} follows.

3446 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 2. Illustration of the network coding gain improvement of Problem 2
over Problem 1 for two unicasts over the butterfly network. Problem 1 (left)
is not feasible, as the flows from s1 to t2 and s2 to t1 are not allowed to
be mixed over edge (3, 4) when P1 ∩ P2 = ∅. However, Problem 2 (right)
is feasible, as the flows are allowed to be mixed over edge (3, 4) after the
demand set expansion to P .

The network coding gain improvement of Problem 2 can
be easily understood from the case of two unicasts over the
butterfly network, as illustrated in Fig. 2. By Theorem 1,
we can easily show the following result.

Corollary 1: Suppose Problem 2 is feasible. Then, for each
feasible solution, there exists a feasible linear network code
design with a field size F > T to deliver the desired flows to
each terminal.

By comparing Problem 1 and Problem 2, we can obtain the
following lemma.

Lemma 1: Suppose Problem 1 is feasible. Then, Problem 2
is feasible and U∗ ≤ U∗(P).

In the following sections, we focus on solving Problem 1
for given P . However, the obtained centralized and distributed
algorithm can be easily extended to solve Problem 2 by further
optimizing over P . Later, in Section VI, we shall illustrate the
results for Problem 1 and Problem 2 numerically.

IV. CENTRALIZED ALGORITHM

In this section, we develop a centralized algorithm to solve
Problem 1, based on the concept of edge-disjoint flow paths
discussed before. The centralized algorithm is conducted at a
central node which is aware of global network information.

For all p ∈ Pt and t ∈ T , let N t
p denote the number of

flow paths from source sp to terminal t. For Problem 1 to
be feasible, assume N t

p > 0. As illustrated in Section III,
obtaining a feasible solution to Problem 1 is equivalent to
selecting a set of flow paths satisfying certain requirements.
Thus, we introduce flow path selection variables to indicate
the flow paths selected for information transmission. Let nt

p ∈
{1, · · · , N t

p} denote the flow path selection variable for source
sp and terminal t (i.e., the index of the selected flow path
from source sp to terminal t). Denote the flow path selection
variables as n � (nt

p)p∈Pt,t∈T . In the following, we express
variables z, f ,x and β in terms of n. To satisfy (6) and (8),
we require nt

p to take only one value from {1, · · · , N t
p}. Let

Lt
p(n

t
p) denote the selected flow path (i.e., the set of edges on

the selected flow path) from source sp to terminal t. To satisfy
(3) and (7) (or equivalently (14)), we require that the Pt flow
paths from sources {sp : p ∈ Pt} to terminal t are edge-
disjoint, i.e.,

Lt
p(n

t
p) ∩ Lt

p′(nt
p′) = ∅, p, p′ ∈ Pt, p �= p′, t ∈ T . (17)

Then, variables f(n) �
(
f t

ij,p(n
t
p)

)

(i,j)∈E,p∈Pt,t∈T can be
expressed in terms of variables n as follows:

f t
ij,p(n

t
p)

=

{
1, (i, j) ∈ Lt

p(nt
p)

0, otherwise
, (i, j) ∈ E , p ∈ Pt, t ∈ T . (18)

By (7) and the monotonicity of Uij(·), variables z(n) �
(zij(n))(i,j)∈E can be chosen based on f(n) and expressed
implicitly in terms of variables n as follows:

zij(n) = max
t∈T

∑

p∈Pt

f t
ij,p(n

t
p), (i, j) ∈ E . (19)

In addition, to satisfy (4), (5), (9) and (11), β(n) �
βkij (n)(k,i),(i,j)∈E can be chosen based on f(n) and expressed
implicitly in terms of variables n as follows:

βkij(n) =

{
1, maxt∈T ,p∈Pt f t

ki,p(n
t
p)f t

ij,p(n
t
p) = 1

0, otherwise,

(k, i), (i, j) ∈ E . (20)

Then, based on β(n), (10) and (11), x(n) can be determined
in topological order 9 and expressed implicitly in terms of
variables n. Finally, to satisfy (12), we require

xit,p(n) = 0, i ∈ It, p �∈ Pt, t ∈ T . (21)

Based on the above relationship between the flow path selec-
tion variables and the variables of Problem 1, we now describe
the procedure of the centralized algorithm, i.e., Algorithm 1,
which obtains the feasible flow paths of the minimum network
cost.

Note that Constraints (6) and (8) are guaranteed
in Step 1 and Step 8; Constraints (3) and (7) are guaranteed in
Step 2 and Step 7; Constraints (4), (5), (9) are guaranteed in
Step 9; Constraints (10) and (11) are guaranteed in Step 10;
and Constraint (12) is considered in Steps 11–15. Therefore,
we can see that the optimization to Problem 1 can be obtained
by Algorithm 1.

V. PROBABILISTIC DISTRIBUTED ALGORITHMS

In this section, using recent results for CSP [31], we develop
two probabilistic distributed algorithms to solve Problem 1.

A. Background on Decentralized CSP

We review some existing results on CSP in [31].
Definition 3 (Constraint Satisfaction Problem) [31]: A CSP

consists of M variables {λ1, · · · , λM} and K clauses
{φ1, · · · , φK}. Each variable λm takes values in a finite set
Λ, i.e., λm ∈ Λ for all m ∈ M � {1, · · · , M}. Let
λ � (λ1, · · · , λM) ∈ ΛM . Each clause k ∈ K � {1, · · · , K}
is a function φk : ΛM → {0, 1}, where for an assignment of
variables λ ∈ ΛM , φk(λ) = 1 if clause m is satisfied and

9A topological order of a directed graph G = (V , E) is an ordering of its
nodes such that for any directed edge (i, j) ∈ E , node i ∈ V comes before
node j ∈ V in the ordering. Such an order exists for any directed acyclic
graph.

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3447

Algorithm 1 Centralized Algorithm for Problem 1

1: For all p ∈ Pt and t ∈ T , obtain all the flow paths {Lt
p(nt

p) :
nt

p ∈ {1, · · · , N t
p}} from source sp to terminal t, using depth-

first-search (DFS).
2: For all t ∈ T , obtain the set of Pt edge-

disjoint flow paths Lt = {(Lt
p(n

t
p))p∈Pt : nt

p ∈
{1, · · · , N t

p} for all p ∈ Pt and (17) is satisfied} from sources
{sp : p ∈ Pt} to terminal t.

3: Calculate the network costs of L =
�

t∈T Lt combinations of Pt

edge-disjoint flow paths for all terminal t ∈ T , and sort the L
combinations in the ascending order of their network costs, where
Lt = |Lt| and the l-th combination is of the l-th smallest network
cost Ul.

4: initialize l = 1 and flag = 1.
5: while flag = 1 do
6: For all p ∈ Pt and t ∈ T , let nt

p denote the index of the flow
path from source sp to terminal t in the l-th combination.

7: For all p ∈ Pt, t ∈ T and (i, j) ∈ E , set f t
ij,p(nt

p) according
to (18).

8: For all (i, j) ∈ E , set zij(n) according to (19).
9: For all (k, i), (i, j) ∈ E , set βkij(n) according to (20).

10: Based on {βkij(n)}, (10) and (11), determine {xij,p(n)} in a
topological order.

11: if (21) is satisfied then
12: let U∗

x (P) = Ul, z∗ = z(n), f∗ = f(n)}, x∗ = x(n)},
β∗ = β(n), and set flag = 0

13: else
14: set l = l + 1
15: end if
16: end while

φk(λ) = 0 otherwise. An assignment λ ∈ ΛM is a solution to
the CSP if and only if all clauses are simultaneously satisfied

min
k∈K

φk(λ) = 1. (22)

To solve a CSP in a distributed way, clause participa-
tion is introduced in [31]. Let λ−m � (λ1, · · · , λm−1,
λm+1, · · · , λM) ∈ ΛM−1. For each variable λm, let Km

denote the set of clause indices in which it participates,
i.e., Km � ∪λ−m∈ΛM−1{k : minλm∈Λ φk(λm, λ−m) = 0,
maxλm∈Λ φk(λm, λ−m) = 1}. Thus, we can rewrite the left
hand side of (22) in a way that focuses on the satisfaction of
each variable, i.e., minm∈M mink∈Km φk(λ) = 1. This form
enables us to solve CSPs in a distributed iterative way by
locally evaluating the clauses in Km and then updating λm.

CSPs are in general NP-complete and most effective CSP
solvers are designed for centralized problems. The CFL
algorithm [31, Algorithm 1], summarized in Algorithm 2,
is a distributed iterative algorithm which can find a sat-
isfying assignment to a CSP almost surely in finite time
[31, Corollary 2]. Note that Algorithm 2 keeps a probability
distribution over all possible values of each variable. The value
of each variable is selected from this distribution. For each
variable, if all the clauses in which a variable participates
are satisfied with its current value, the associated probability
distribution is updated to ensure that the variable value remains
unchanged; if at least one clause is unsatisfied, the probability
distribution evolves by interpolating between it and a distri-
bution that is uniform on all values except the one that is
currently generating dissatisfaction. Therefore, if all variables
are simultaneously satisfied in all clauses, the same assignment

Algorithm 2 Communication-Free Learning [31]

1: Initialize qm(λ) = 1
|Λ| for all λ ∈ Λ, where |Λ| denotes the

cardinality of Λ.
2: loop
3: Realize a random variable, selecting λm = λ with probability

qm(λ).
4: Evaluate mink∈Km φk(λ), returning satisfied if its value is

1 and unsatisfied otherwise.
5: if satisfied then

6: set qm(λ) =

�
1, if λ = λm

0, otherwise
7: else

8: set qm(λ) =

�
(1 − b)qm(λ) + a

|Λ|−1+a/b
, if λ = λm

(1 − b)qm(λ) + b
|Λ|−1+a/b

, otherwise
,

where a, b ∈ (0, 1] are design parameters.
9: end if

10: end loop

of values will be reselected indefinitely with probability 1.
Algorithm 2 possesses two parameters a and b. The value of
a determines the algorithm’s aversion to variable values for
which clause failure has been experienced, and the value of
b determines how quickly the past is forgotten and impacts
on the speed of convergence of the algorithm. Optimal values
of a and b depend upon each problem and a performance
metric [31, Sec. III-C].

B. Path-Based Probabilistic Distributed Algorithm

In this part, we develop a path-based probabilistic distrib-
uted algorithm to solve Problem 1, using recent results in [31].
This distributed algorithm is based on the concept of edge-
disjoint flow paths discussed before. It can be viewed as a
distributed version of the path-based centralized algorithm,
i.e., Algorithm 1. For all p ∈ Pt, t ∈ T and nt

p ∈ {1, · · · , N t
p},

this algorithm requires each node on the nt
p-th flow path from

source sp to terminal t to know its neighboring edge on this
flow path. Note that it is not necessary for each node on the
nt

p-th flow path to be aware of other edges on the nt
p-th flow

path.
First, we construct a path-based CSP corresponding to the

feasibility problem obtained from Problem 1. Treat n as the
variables of the path-based CSP, where nt

p ∈ {1, · · · , N t
p}

denotes the index of the selected flow path from source sp

to terminal t. As illustrated in Section IV, the constraints of
f in (6) and (8) for Problem 1 can be taken into account by
choosing nt

p ∈ {1, · · · , N t
p}, for all p ∈ Pt and t ∈ T . The

constraints in (3) and (7) (or equivalently (14)) can be replaced
by the constraint of n in (17) for the path-based CSP. Variables
{βijk(n)} and {xij,p(n)} can be determined for given n via
(18), (20), (10) and (11). Thus, the last constraint in (12) of
Problem 1 can be replaced by the constraint of n for the path-
based CSP in (21). Therefore, we can write the clause for nt

p

as follows:

φn,t
p (n) =

{
1, if (17) and (21) hold

0, otherwise
, p ∈ Pt, t ∈ T .

(23)

We thus have the following proposition.

3448 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Algorithm 3 Path-Based CFL
1: For all p ∈ Pt and t ∈ T , obtain all the flow paths from source

sp to terminal t, using DFS.
2: For all p ∈ Pt and t ∈ T , source sp initializes qt

p(n) = 1
Nt

p
for

all n ∈ {1, . . . , N t
p}.

3: loop
4: For all p ∈ Pt and t ∈ T , source sp realizes a random

variable, selecting nt
p = n with probability qt

p(n), where n ∈
{1, . . . , N t

p}, and sends signaling packet (p, t, nt
p) over edge

(sp, j) ∈ Lt
p(n

t
p) to node j. Once node j receives signaling

packet (p, t, nt
p) over edge (i, j) ∈ Lt

p(n
t
p), it forwards this

signaling packet to node k over edge (j, k) ∈ Lt
p(n

t
p).

5: For all (i, j) ∈ E , if edge (i, j) receives signaling packets
{(p, t, nt

p) : p ∈ Pt} to terminal t ∈ T from more than one
source in {sp : p ∈ Pt}, it sends NAK back to each of these
sources along its selected path nt

p.
6: For all p ∈ Pt, t ∈ T and (i, j) ∈ E , set f t

ij,p(nt
p) according

to (18).
7: For all (k, i), (i, j) ∈ E , set βkij(n) according to (20).
8: Based on β(n), (10) and (11), determine x(n) in topological

order.
9: Every terminal t ∈ T checks (21). For all i ∈ It and p �∈ Pt,

if (21) is unsatisfied, terminal t sends NAK back to source sp

(along any path to source sp), and sends NAK back to each of
the sources in Pt (along its selected path).

10: for p ∈ Pt and t ∈ T do
11: if source sp receives no NAKs then

12: set qt
p(n) =

�
1, if n = nt

p

0, otherwise
13: else

14: set qt
p(n) =

�
(1 − b)qt

p(n) + a
Nt

p−1+ a
b
, if n = nt

p

(1 − b)qt
p(n) + b

Nt
p−1+ a

b
, otherwise

,

where a, b ∈ (0, 1] are design parameters.
15: end if
16: end for
17: end loop

Algorithm 4 Path-Based Distributed Algorithm
1: l = 1 and U1 = +∞.
2: loop
3: Run the path-based CFL in Algorithm 3 to the path-based CSP

corresponding to Problem 1. Let nl denote the feasible solution
obtained by Algorithm 3 and let Ūl denote the corresponding
network cost.

4: if Ūl < Ul then
5: set Ul+1 = Ūl, n∗ = nl, and l = l + 1.
6: end if
7: end loop

Proposition 1 (Path-based CSP): The path-based CSP with
variables n (nt

p ∈ {1, · · · , N t
p}) and clauses (23) has consid-

ered all the constraints in Problem 1.
Now, we present a path-based distributed probabilistic

algorithm, i.e., Algorithm 3, to obtain a feasible solution to
the path-based CSP using CFL [31, Algorithm 1]. Based on
the convergence result of CFL [31, Corollary 2], we know
that Algorithm 3 can find a feasible solution to Problem 1
in almost surely finite time. Fig. 3 illustrates the convergence
of Algorithm 3. From Fig. 3, we can see that Algorithm 3
converges to a feasible solution (i.e., the feasible solution
illustrated in Fig. 1 (a)) to Problem 1 for the network in Fig. 1
quite quickly (within 35 iterations). This feasible solution

Fig. 3. Convergence of the path-based CFL in Algorithm 3 for Problem 1
of the network in Fig. 1. a = 1 and b = 0.01. These convergence curves are
for one realization of the random Algorithm 3. (a) Flow path from source s1

to terminal t1. (b) Flow path from source s1 to terminal t2. (c) Flow path
from source s2 to terminal t2. (d) Flow path from source s1 to terminal t3.
(e) Flow path from source s2 to terminal t3 .

corresponds to flow paths 1−3−8, 1−3−4−6−7, 2−5−7,
1 − 3 − 9 − 10 and 2 − 5 − 4 − 6 − 10. The network cost of
this feasible solution is 11.

Relying on Algorithm 3, we present a path-based dis-
tributed probabilistic algorithm, Algorithm 4, to obtain the
optimal solution to Problem 1 among multiple feasible solu-
tions obtained by Algorithm 3.10 In Step 4 of the first loop
of Algorithm 3, any feasible solution can be selected with
a positive probability, and Algorithm 3 can find a feasible
solution in almost surely finite time for any initial selection.
In addition, Algorithm 3 is repeatedly run in Algorithm 4.
Thus, Algorithm 4 is able to explore all the possible feasible
solutions. Therefore, we can conclude that Ul → U∗({Pt})
almost surely as l → ∞, where Ul denotes the minimum

10In Step 3 of Algorithm 4, the path-based CFL is run for a sufficiently
long time. Step 6 of Algorithm 4 can be implemented with a master node
obtaining the network cost of the path-based CFL from all nodes or with all
nodes computing the average network cost of the path-based CFL locally via
a gossip algorithm.

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3449

Fig. 4. Network costs of the path-based CFLs in Algorithm 4 for Problem 1 of
the network in Fig. 1. Each blue dot represents the network cost of a feasible
solution obtained by the path-based CFL in each iteration of Algorithm 4.
While the red curve represents the minimum network cost obtained by
Algorithm 4 within a certain number of iterations. The blue dots and red
curve are for one realization of the random Algorithm 4.

network cost obtained by the first l path-based CFLs. Fig. 4
illustrates the convergence of Algorithm 4. From Fig. 4,
we can see that Algorithm 4 obtains the optimal network
cost 11 to Problem 1 for the network in Fig. 1 quite quickly
(within 5 iterations).

C. Edge-Based Probabilistic Distributed Algorithm

In this part, we develop an edge-based probabilistic dis-
tributed algorithm to solve Problem 1, using recent results
in [31]. Compared with the path-based distributed algorithm
in Section V-C, this edge-based distributed algorithm does not
require any path information.

Obtaining a feasible solution to Problem 1 can be directly
treated as a CSP [31]. Specifically, zij , (i, j) ∈ E , f t

ij,p, (i, j) ∈
E , p ∈ Pt, t ∈ T , xij,p, (i, j) ∈ E , p ∈ P , βkij , (k, i), (i, j) ∈
E and {0, 1} can be treated as the (scalar) variables and the
finite set of the CSP. Constraints (7)-(12) can be treated as the
clauses of the CSP. While CSPs are in general NP-complete,
several centralized CSP solvers (see references in [31]) and
the distributed CSP solver proposed in [31] can be applied to
solve this (naïve) CSP. However, the direct application of the
distributed CSP solver in [31] leads to high complexity owing
to the large constraint set. In this part, by exploring the features
of the constraints in Problem 1, we obtain a different CSP and
present a probabilistic distributed solution with a significantly
reduced number of clauses.

First, we construct a new problem, which we show to be
a CSP. This new problem is better suited than the original
problem to being treated using a probabilistic distributed algo-
rithm based on the distributed CSP solver presented in [31].
Combining (3) and (7), we have an equivalent constraint purely
in terms of f , i.e., (14). In addition, from (11), we have an
equivalent constraint purely in terms of x, i.e.,

∃ βkij ∈ {0, 1} ∀k ∈ Ii, s.t. xij = ∨k∈Iiβkijxki,

(i, j) ∈ E , i �∈ S. (24)

Therefore, we can solve only for variables f and x in a
distributed way, as z can be obtained directly from feasible
f by choosing zij = maxt∈T

∑
p∈Pt

f t
ij,p according to (3)

and (7), and β can be obtained from feasible x by (10)
and (11). We group all the local variables for each edge
(i, j) ∈ E and introduce the vector variable (fij ,xij) ∈
Yij , where fij �

(
f t
ij

)

t∈T , f t
ij �

(
f t

ij,p

)

p∈Pt
and Yij �

{(fij ,xij) : (4), (6), (9), (10), (12), (14)}. We also write Yij =
{yij,1, · · · ,yij,Yij}, where Yij = |Yij |. We now consider a

new CSP, different from the naïve one that would be directly
obtained from Problem 1. We treat (fij ,xij) and Yij as the
(vector) variable and the finite set for edge (i, j) of the CSP.
We write the clauses for {(fij ,xij)} as follows:

φf
i (fi) =

{
1, if (8) holds ∀p ∈ Pt, t ∈ T
0, otherwise,

i ∈ V (25)

φx
ij (xij , {xki : k ∈ Ii})

=

{
1, if (24) holds
0, otherwise,

(i, j) ∈ E , i �∈ S, (26)

where fi � (fik)k∈Oi,k∈Ii
. Note that the local constraints

in (4), (6), (9), (10), (12) and (14) (i.e., (3) and (7)) are
considered in the finite set Yij of the CSP with respect to each
edge (i, j) ∈ E . On the other hand, the non-local constraints
in (8) and (24) are considered in clauses φf

i in (25) and φx
ij

in (26), respectively. We thus have the following proposition.
Proposition 2 (Edge-based CSP): The edge-based CSP

with (vector) variables (fij ,xij) ∈ Yij , (i, j) ∈ E and clauses
(25) and (26) has considered all the constraints in Problem 1.

Note that the number of (vector) variables (E) and the num-
ber of clauses (≤ V +E−P) of the new CSP are much smaller
than the number of (scalar) variables (≤ (1+D+P +TP)E)
and the number of clauses (≤ (1+T +TP)E+TPV +TPD)
of the naïve CSP directly obtained from Problem 1. Thus,
the complexity for solving the new CSP using the distributed
CSP solver in [31] is much lower than that for solving the
naïve CSP using the distributed CSP solver in [31].

Next, we construct the clause partition. The set of clauses
in which variable (fij ,xij) participates is

Φij =
{

φf
i , φf

j

}
∪

{
φx

ij , φ
x
jk : i �∈ S, k ∈ Oj

}
, (i, j) ∈ E .

(27)

Then, the focus can be on the satisfaction of each variable
(fij ,xij), i.e., the satisfaction of each set of clauses Φij . Now,
the new CSP can be solved using the distributed iterative
CFL algorithm [31, Algorithm 1]. Specifically, each edge
(i, j) ∈ E realizes a random variable selecting (fij ,xij).
Allow message passing on (fij ,xij) between adjacent nodes
to evaluate the related clauses. Based on whether the clauses
in (27) are satisfied or not, the distribution of the random
variable of each edge (i, j) ∈ E is updated. The details are
summarized in Algorithm 5, which obtains a feasible solution
to the edge-based CSP using CFL [31, Algorithm 1]. Based
on the convergence result of CFL [31, Corollary 2], we know
that Algorithm 5 can find a feasible solution to Problem 1
in almost surely finite time. Fig. 5 illustrates the convergence
of Algorithm 5. From Fig. 5, we can see that Algorithm 5
converges to a feasible solution to Problem 1 for the network
in Fig. 1 within 5000 iterations. This feasible solution is the
same as the one shown in Fig. 3, with network cost 11.

Relying on Algorithm 5, we present an edge-based
distributed probabilistic algorithm, Algorithm 6, to solve
Problem 1.11 As for Algorithm 4, we can conclude that

11Note that Step 3 and Step 6 of Algorithm 6 can be implemented in similar
ways to those in Algorithm 4.

3450 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 5. Convergence of the edge-based CFL in Algorithm 5 for Problem 1
of the network in Fig. 1. a = 1 and b = 0.01. Note that for each edge,
the “Correct Event” indicates the variable taking the value which corresponds
to the feasible solution obtained by the edge-based CFL. These convergence
curves are for one realization of the random Algorithm 5. (a) Variable
(f25, x25) for edge (2, 5). (b) Variable (f57, x57) for edge (5, 7). (c) Variable
(f67, x67) for edge (6, 7).

Algorithm 5 Edge-Based CFL

1: For all (i, j) ∈ E , edge (i, j) initializes qij(y) = 1
Yij

for all
y ∈ Yij .

2: loop
3: For all (i, j) ∈ E , edge (i, j) realizes a random variable,

selecting (fij ,xij) = y with probability qij(y), where y ∈ Yij .
4: for (i, j) ∈ E do
5: Each edge (i, j) evaluates all the clauses in Φij .
6: if all clauses in Φij are satisfied then

7: set qij(y) =

�
1, if y = (fij , xij)

0, otherwise
8: else

9: set qij(y) =

�
(1 − b)qij(y)+ a

Yij−1+a/b
, y = (fij ,xij)

(1 − b)qij(y)+ b
Yij−1+a/b

, otherwise
,

where a, b ∈ (0, 1] are design parameters.
10: end if
11: end for
12: end loop

by Algorithm 6, we have Ul → U∗({Pt}) almost surely
as l → ∞, where Ul denotes the smallest network cost
obtained by the first l edge-based CFLs. Fig. 6 illustrates the
convergence of Algorithm 6. From Fig. 6, we can see that
Algorithm 6 obtains the optimal network cost 11 to Problem 1
for the network in Fig. 1 quite quickly (within 5 iterations).

D. Comparison

In this part, we compare the path-based and edge-
based distributed algorithms. In obtaining a feasible solu-
tion to Problem 1, the path-based CFL, i.e., Algorithm 3

Fig. 6. Network costs of the edge-based CFLs in Algorithm 6 for Problem 1
of the network in Fig. 7. Each blue dot represents the network cost of
a feasible solution obtained by the edge-based CFL in each iteration of
Algorithm 6. While the red curve represents the minimum network cost
obtained by Algorithm 6 within a certain number of iterations. The blue dots
and red curve are for one realization of the random Algorithm 6.

Algorithm 6 Edge-Based Distributed Algorithm
1: l = 1 and U1 = +∞.
2: loop
3: Run the edge-based CFL in Algorithm 5 to the edge-based CSP

corresponding to Problem 1. Let {(fij,l,xij,l) : (i, j) ∈ E}
denote the feasible solution obtained by Algorithm 5 and let Ūl

denote the corresponding network cost.
4: if Ūl < Ul then
5: set Ul+1 = Ūl, (f∗ij ,x

∗
ij) = (fij,l,xij,l) for all (i, j) ∈ E ,

and l = l + 1.
6: end if
7: end loop

and the edge-based CFL, i.e., Algorithm 5 both base on
CFL [31, Algorithm 1]. The convergence result of CFL
[31, Corollary 2] guarantees that Algorithm 3 and Algorithm 5
both converge to feasible solutions to Problem 1 almost surely
in finite time. However, Algorithm 3 converges much faster
and has much lower complexity than Algorithm 5 in our
simulations. This is expected, as Algorithm 3 solves a path-
based CSP, while Algorithm 5 solves an edge-based CSP. The
number of variables and the number of possible values for each
variable for the path-based CSP are much smaller than those
for the edge-based CSP. The difference in the convergence
rates of Algorithm 3 and Algorithm 5 can be seen by compar-
ing Fig. 3 and Fig. 5. On the other hand, Algorithm 3 requires
more local information than Algorithm 5. In particular,
Algorithm 3 requires all the nodes on one path from a source
node to a terminal node to be aware of their neighboring nodes
on the path (not all the nodes on the path). Algorithm 5 instead
only requires each node to be aware of its neighboring nodes.

In obtaining an optimal solution to Problem 1 among mul-
tiple feasible solutions, the path-based distributed algorithm,
i.e., Algorithm 4 and the edge-based distributed algorithm,
i.e., Algorithm 6 base on the path-based CFL, i.e., Algorithm 3
and the edge-based CFL, i.e., Algorithm 5, respectively, in
the same way. Therefore, Algorithm 4 and Algorithm 6
share similar properties. To summarize, Algorithm 4 and
Algorithm 6 both converge to optimal solutions to Problem 1
almost surely; Algorithm 4 converges much faster and has
much lower complexity than Algorithm 6; Algorithm 4
requires more local information than Algorithm 6. This can
be illustrated in Fig. 4 and Fig. 6.

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3451

Fig. 7. Sprint backbone network topology [33]. S = {8, 11} and
T ⊆ {2, 3, 4, 6, 9}. The edge costs are: 20 for edges (10, 5) and (10, 6),
10 for edge (9, 4), and 1 for all the other edges.

TABLE I

AVERAGE OPTIMAL NETWORK COST OF THE NETWORK IN FIG. 7

VI. NUMERICAL ILLUSTRATION

In this section, we numerically illustrate the performance
of the proposed optimal solutions to Problems 1 and 2 using
mixing only with the two-step mixing approach in [24] and
optimal routing for general connections of integer flows.

In the simulation, we consider the Sprint backbone net-
work [33] as illustrated in Fig. 7. We choose sources
S = {8, 11} and terminals T ⊆ {2, 3, 4, 6, 9}. The edge
directions are chosen to permit connections and help illustrate
network coding gain. The green edges have edge cost 1, while
the blue edges have edge cost 10 or 20. The edge costs
are chosen to make the network coding advantage exist at
least for some connection requests [28]. Note that network
coding gain takes effect only if transmitting coded information
requires a lower network cost than routing. We consider
1000 random realizations of demand sets. For each realization,
a pair or triplet of terminals (i.e., T = 2, 3) are selected from
{2, 3, 4, 6, 9} uniformly at random, and each selected terminal
randomly, uniformly, independently demands a source out of
the two sources in S = {8, 11}. In addition, each selected
terminal randomly chooses to demand the other source or not
according to a Bernoulli distribution with probability q− 1 of
selecting a second source, where q ∈ [1, 2]. Thus, q represents
the expected number of sources selected by each terminal
(i.e., Pt). Note that q = 2 indicates multicast, and q = 1 results
in unicast connections. In this way, general connections are
randomly generated with q controlling the average size of the
intersections of the demand sets by different terminals.

A. Network Cost

Table I illustrates the average optimal network cost (aver-
aged over 1000 random realizations) for different q and T .
Note that the optimal network costs of Problems 1 and 2
are obtained by the centralized algorithm, i.e., Algorithm 1.

We can observe that the average optimal network costs of all
the schemes increase with increases of q or T , i.e., the increase
of network load. The average network costs of the optimal
solutions to Problems 1 and 2 are lower than the optimal
routing, with average cost reductions up to 28% and 36%,
respectively. The average cost reductions are due to the net-
work coding gain exploited by Problems 1 and 2. Specifically,
edge (10, 7) can serve as the coding edge for the butterfly
subnetwork consisting of nodes 6, 7, 8, 9, 10 and 11, and edges
(7, 4) and (4, 1) can serve as the coding edge for the butterfly
subnetwork consisting of nodes 1, 2, 3, 4, 6, 7 and 9, in the
Sprint backbone network in Fig. 7. The network coding gain
increases as q or T increases. This is because, using network
coding, edges can be used more efficiently in the case of high
network load.

In addition, the average network costs of the optimal solu-
tions to Problems 1 and 2 are lower than the two-step mixing
approach, with average cost reductions up to 7% and 26%,
respectively. The average cost reductions are due to the extra
network coding gain (achieved through mixing) exploited
by Problems 1 and 2. Specifically, given the demand sets
of all the terminals, mixing or not in the two-step mixing
approach (determined in the first step, separately from the sec-
ond flow rate control step) is restricted by all the physical
paths, while mixing or not in Problems 1 and 2 (determined
jointly with flow rate control) is only restricted by the actual
paths that each flow will take, which is also illustrated
in the example in Fig. 1. Note that the average network
cost of Problem 1 is lower than the two-step mixing when
T = 3. The average cost reductions of the optimal solutions
to Problems 1 and 2 increase as T increases, as there are more
physical paths to terminals restricting network coding (mixing)
in the two-step mixing approach.

On the other hand, the average network cost of the optimal
solution to Problem 2 is lower than that of the optimal solution
to Problem 1, with average cost reduction up to 24%, illus-
trating the consequence of Lemma 1. For a given T , the per-
formance gain of Problem 2 over Problem 1 decreases as q
increases, since the difference between the feasibility regions
of the two problems reduces with the increase of q. Note that
when q = 2 (i.e., multicast), the two problems (feasibility
regions) are the same. However, for a given q, the performance
gain of Problem 2 over Problem 1 increases as T increases,
since the difference between the feasibility regions of the two
problems increases with the increase of T .

B. Convergence

We illustrate the convergence performance of the path-
based and edge-based distributed algorithms. Consider s1 = 8,
s2 = 11, t1 = 2, t2 = 6, P1 = {1, 2}, P2 = {2}
and P = {1, 2}. In this case, the optimal network costs of
Problem 2, Problem 1, the two-step mixing approach and
routing are 10, 28, 28, 28, respectively. The optimal network
mixing solution to Problem 2 is achieved through the demand
set expansion, i.e., P̄1 = P̄2 = P = {1, 2}. The expanded
demand set corresponds to multicast, where the network
coding gain is achieved. The optimal mixing (coding) solutions

3452 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 8. Convergence of the path-based CFL in Algorithm 3 for the problem
considered in Section VI-B for the network in Fig. 7. a = 0.05 and
b = 0.009. These convergence curves are for one realization of the random
Algorithm 3. (a) Flow path from (source) node 8 to (terminal) node 2. (b) Flow
path from (source) node 11 to (terminal) node 2. (c) Flow path from (source)
node 8 to (terminal) node 6. (d) Flow path from (source) node 11 to (terminal)
node 6.

with cost 10 corresponds to flow paths 8− 10− 7− 4− 1−2,
11− 10− 7− 9− 2 (11− 9− 2), 8− 6 and 11− 10− 7− 6.
There is no network mixing (coding) solution to Problem 1
and the two-step mixing approach. There are three optimal
routing solutions of cost 28, which are also optimal (feasible
but non-coding) solutions for Problem 1 and the two-step
mixing approach. The first one corresponds to flow paths
8− 10− 5− 1− 2, 11− 10− 7− 9− 2 and 11− 10− 7− 6.
The second one corresponds to flow paths 8−10−7−4−1−2,
11−9−2 and 11−10−6. The third one corresponds to flow
paths 8 − 10 − 5 − 1 − 2, 11 − 9 − 2 and 11 − 10 − 7 − 6.
In the following, we illustrate the convergence for the path-
based and edge-based distributed algorithms for a subproblem
of Problem 2 at the optimal demand set expansion P̄1 =
P̄2 = P = {1, 2} (which is also an instance of Problem 1),
respectively.

1) Path-Based Probabilistic Distributed Algorithm: Fig. 8
illustrates the convergence of Algorithm 3 (i.e., Step 3
in Algorithm 4). From Fig. 8, we can see that Algorithm 3
converges to a feasible solution to the considered problem
quite quickly (within 25 iterations). This feasible solution

Fig. 9. Network costs of Algorithm 4 for the problem considered
in Section VI-B for the network in Fig. 7. The blue dots and red curve are
for one realization of the random Algorithm 4.

Fig. 10. Average minimum network costs of the path-based CFLs in
Algorithm 4 for the problem considered in Section VI-B for the network
in Fig. 7 over 1000 instances. The red curve here represents the average of
the red curves in Fig. 9 over 1000 instances.

corresponds to flow paths 8 − 10 − 7 − 4 − 1 − 2,
11 − 10 − 7 − 9 − 2, 8 − 10 − 7 − 6 and 11 − 10 − 6. The
network cost of this feasible solution is 10, i.e., the optimal
network cost to the considered problem. Fig. 9 illustrates the
convergence of Algorithm 4 for one instance. We can see that
there exist multiple feasible mixing solutions to the considered
problem, which are of different network costs, and running
Algorithm 3 for multiple times can result in different feasible
solutions. Thus, the minimum network cost may decrease
as the number of iterations increases. Algorithm 4 obtains
the optimal network cost 10 to the considered problem quite
quickly (within 100 iterations). Fig. 10 illustrates the average
convergence of Algorithm 4 over 1000 instances. We can see
that on average, within 100 iterations, the minimum network
cost under Algorithm 4 converges to 10, which is the optimal
network cost to the considered problem obtained by the
centralized algorithm in Algorithm 1.

2) Edge-Based Probabilistic Distributed Algorithm: Fig. 11
illustrates the convergence of Algorithm 5 (i.e., Step 3
in Algorithm 6). From Fig. 11, we can see that Algorithm 5
converges to a feasible solution to the considered problem
within 8000 iterations. This feasible solution is the same as
the one shown in Fig. 8, with network cost 10. By comparing
Fig. 11 with Fig. 8, we can see that Algorithm 5 converges
much more slowly than Algorithm 3. Fig. 12 illustrates the
convergence of Algorithm 6. We can see that there exist for the
considered problem, multiple feasible mixing solutions which
have different network costs, and running Algorithm 5 for
multiple times can result in different feasible solutions. Thus,
the minimum network cost may decrease as the number of
iterations increases. Algorithm 6 obtains the optimal network
cost 10 to the considered problem within 100 iterations.
Fig. 13 illustrates the average convergence of Algorithm 6

CUI et al.: LINEAR NETWORK CODE CONSTRUCTION FOR GENERAL INTEGER CONNECTIONS 3453

Fig. 11. Convergence of the edge-based CFL in Algorithm 5 for the
problem considered in Section VI-B for the network in Fig. 7. a = 1 and
b = 0.01. Note that for each edge, the “Correct Event” indicates the variable
taking the value which corresponds to the feasible solution obtained by the
edge-based CFL. These convergence curves are for one realization of the
random Algorithm 5. (a) Variable (f810, x810) for edge (8, 10). (b) Variable
(f1110, x1110) for edge (11, 10). (c) Variable (f12,x12) for edge (1, 2).

Fig. 12. Network costs of Algorithm 6 for the problem considered
in Section VI-B for the network in Fig. 7. The blue dots and red curve are
for one realization of the random Algorithm 6.

Fig. 13. Average minimum network costs of the edge-based CFLs in
Algorithm 6 for the problem considered in Section VI-B for the network
in Fig. 7 over 1000 instances. The red curve here represents the average of
the red curves in Fig. 12 over 1000 instances.

over 1000 instances. We can see that on average, within
300 iterations, the minimum network cost under Algorithm 6
converges to 10, which is the optimal network cost to
the considered problem obtained by the centralized algo-
rithm in Algorithm 1. By comparing Fig. 13 with Fig. 10,

we can see that Algorithm 6 converges much more slowly
than Algorithm 4.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce linear network mixing coeffi-
cients for code constructions of general integer connections.
For such code constructions, we pose the problem of cost
minimization for the subgraph involved in the coding solution,
and relate this minimization to a path-based CSP and an edge-
based CSP, respectively. We present a path-based probabilistic
distributed algorithm and an edge-based probabilistic distrib-
uted algorithm with almost sure convergence in finite time
by applying CFL. Our approach allows fairly general coding
across flows, guarantees no greater cost than routing, and
demonstrates a possible distributed implementation. Numerical
results illustrate the performance improvement of our approach
over existing methods.

This paper opens up several directions for future
research. For instance, the proposed optimization-based linear
network code construction for general integer connections can
be extended to design route finding protocols of superior
performance for general connections. In addition, a possible
direction for future research is to design dynamic approaches
not only to build new subgraphs, but also to update them as
they evolve, so as to reflect changes in topologies for varying
networks, as occur in such settings as peer-to-peer (P2P) net-
works. Another interesting extension of the proposed approach
to content-centric cache-enabled networks is to incorporate
cache placement (which creates new sources) into the cost
minimization for the subgraph involved in the coding solution
in this work. Finally, the proposed approach for wireline
networks can also be generalized to wireless networks by
considering hyper edges to model broadcast links.

REFERENCES

[1] R. Koetter and M. Médard, “Beyond routing: An algebraic approach
to network coding,” in Proc. 21st Annu. Joint Conf. IEEE Comput.
Commun. Soc., vol. 1. Oct. 2002, pp. 122–130.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[4] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow,” in Proc. Int. Symp. Inf. Theory (ISIT),
Sep. 2005, pp. 264–267.

[5] S. El Rouayheb, A. Sprintson, and C. Georghiades, “A new construction
method for networks from matroids,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2009, pp. 2872–2876.

[6] Q. Sun, S. T. Ho, and S.-Y. R. Li, “On network matroids and linear
network codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2008,
pp. 1833–1837.

[7] R. Dougherty, C. Freiling, and K. Zeger, “Matroidal networks,” in
Proc. 45th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2007, pp. 409–416.

[8] A. Kim and M. Médard, “Scalar-linear solvability of matroidal networks
associated with representable matroids,” in Proc. 6th Int. Symp. Turbo
Codes Iterative Inf. Process. (ISTC), Sep. 2010, pp. 452–456.

[9] X. Yan, R. W. Yeung, and Z. Zhang, “The capacity region for multi-
source multi-sink network coding,” in Proc. IEEE Int. Symp. Inf. Theory,
Nice, France, Jun. 2007, pp. 116–120.

[10] T. Chan, A. Grant, and D. Pfluger, “Truncation technique for charac-
terizing linear polymatroids,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6364–6378, Oct. 2011.

3454 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

[11] V. T. Muralidharan and B. S. Rajan, “Linear index coding and
representable discrete polymatroids,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2014, pp. 486–490.

[12] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and non-
Shannon information inequalities,” IEEE Trans. Inf. Theory, vol. 53,
no. 6, pp. 1949–1969, Jun. 2007.

[13] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3187–3195, Jul. 2010.

[14] A. Salimi, M. Médard, and S. Cui, “On the representability of integer
polymatroids: Applications in linear code construction,” in Proc. 53rd
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Monticello,
IL, USA, Sep. 2015, pp. 504–508.

[15] W. Zeng, V. R. Cadambe, and M. Médard, “An edge reduction lemma
for linear network coding and an application to two-unicast networks,” in
Proc. 50th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2012, pp. 509–516.

[16] C.-C. Wang and N. Shroff, “Pairwise intersession network coding
on directed networks,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3879–3900, Aug. 2010.

[17] S. U. Kamath, D. N. C. Tse, and V. Anantharam, “Generalized network
sharing outer bound and the two-unicast problem,” in Proc. Int. Symp.
Netw. Coding (NetCod), Jul. 2011, pp. 1–6.

[18] S. Kamath, V. Anantharam, D. Tse, and C.-C. Wang, “The
two-unicast problem,” IEEE Trans. Inf. Theory, to be published,
doi: 10.1109/TIT.2016.2628797.

[19] W. Zeng, V. Cadambe, and M. Médard, “A recursive coding algorithm
for two-unicast-Z networks,” in Proc. IEEE Inf. Theory Workshop (ITW),
Nov. 2014, pp. 526–530.

[20] C. Meng et al., “Precoding-based network alignment for three unicast
sessions,” IEEE Trans. Inf. Theory, vol. 61, no. 1, pp. 426–451,
Jan. 2015.

[21] H. Maleki, V. R. Cadambe, and S. A. Jafar. (2012). “Index
coding—An interference alignment perspective.” [Online]. Available:
https://arxiv.org/abs/1205.1483

[22] C. Li, S. Weber, and J. M. Walsh, “On multi-source networks: Enu-
meration, rate region computation, and hierarchy,” CoRR, Apr. 2015.
[Online]. Available: https://arxiv.org/abs/1704.01891

[23] D. S. Lun et al., “Minimum-cost multicast over coded packet net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2608–2623,
Jun. 2006.

[24] D. S. Lun, M. Médard, T. Ho, and R. Koetter, “Network coding with
a cost criterion,” in Proc. Int. Symp. Inf. Theory Appl. (ISITA), 2004,
pp. 1232–1237.

[25] Y. Wu, “On constructive multi-source network coding,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2006, pp. 1349–1353.

[26] D. Traskov, N. Ratnakar, D. Lun, R. Koetter, and M. Médard, “Network
coding for multiple unicasts: An approach based on linear opti-
mization,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2006,
pp. 1758–1762.

[27] A. Khreishah, C.-C. Wang, and N. B. Shroff, “Optimization based
rate control for communication networks with inter-session network
coding,” in Proc. IEEE 27th Conf. Comput. Commun. (INFOCOM),
Apr. 2008, pp. 81–85.

[28] M. Kim, M. Médard, U.-M. O’Reilly, and D. Traskov, “An evolutionary
approach to inter-session network coding,” in Proc. IEEE INFOCOM,
Apr. 2009, pp. 450–458.

[29] Y. Cui, M. Médard, E. Yeh, D. Leith, and K. Duffy, “Optimization-based
linear network coding for general connections of continuous flows,”
in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., Jun. 2015,
pp. 4492–4498.

[30] Y. Cui et al., “A linear network code construction for general integer
connections based on the constraint satisfaction problem,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–7.

[31] K. R. Duffy, C. Bordenave, and D. J. Leith, “Decentralized constraint
satisfaction,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1298–1308,
Aug. 2013.

[32] Y. Cui et al., “A linear network code construction for general integer con-
nections based on the constraint satisfaction problem,” CoRR, Feb. 2015.
[Online]. Available: https://arxiv.org/abs/1502.06321

[33] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

Ying Cui (S’08–M’12) received the B.E. degree in electronic and information
engineering from Xi’an Jiao Tong University, China, in 2007, and the Ph.D.
degree in electronic and computer engineering from The Hong Kong Univer-
sity of Science and Technology, Hong Kong, in 2011. From 2012 to 2013,
she was a Post-Doctoral Research Associate with the Department of Electrical
and Computer Engineering, Northeastern University, Boston, MA, USA.
From 2013 to 2014, she was a Post-Doctoral Research Associate with the
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA. Since 2015, she has been an
Associate Professor with the Department of Electronic Engineering, Shanghai
Jiao Tong University, China. Her current research interests include cache-
enabled wireless networks, future Internet architecture, delay-sensitive cross-
layer control, and network coding. She was selected into China’s 1000 Plan
Program for Young Talents in 2013. She received the Best Paper Award at
the IEEE ICC, London, U.K., in 2015.

Muriel Médard (S’91–M’95–SM’02–F’08) is currently the Cecil H. Green
Professor of electrical engineering and computer science with the Department
of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA. Her research interests are in the areas
of network coding and reliable communications. She served on the Board
of Governors of the IEEE Information Theory Society, for which she was
President in 2012 and received that Society’s Aaron D. Wyner Distinguished
Service Award in 2017. She was a recipient of the 2013 MIT Graduate Student
Council EECS Mentor Award, the 2009 Communication Society and Informa-
tion Theory Society Joint Paper Award, the 2009 William R. Bennett Prize in
the Field of Communications Networking, the 2002 IEEE Leon K. Kirchmayer
Prize Paper Award, and several conference paper awards. She was also a
co-recipient of the MIT 2004 Harold E. Edgerton Faculty Achievement Award.
In 2007, she was named a Gilbreth Lecturer by the U.S. National Academy
of Engineering. She has served as an Editor of many IEEE publications, and
is currently the Editor-in-Chief of the IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS. She has served as a TPC Chair or General Chair for
several IEEE conferences.

Edmund Yeh (SM’12) received the B.S. degree (Hons.) in electrical engi-
neering with Phi Beta Kappa from Stanford University in 1994, the M.Phil.
degree in engineering from Cambridge University on the Winston Churchill
Scholarship in 1995, and the Ph.D. degree in electrical engineering and
computer science from the Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2001. He was an Assistant and an Associate Professor of
electrical engineering, computer science, and statistics with Yale University.
He is currently a Professor of electrical and computer engineering with
Northeastern University. He was a recipient of the Alexander von Humboldt
Research Fellowship, the Army Research Office Young Investigator Award,
the Winston Churchill Scholarship, the National Science Foundation and
Office of Naval Research Graduate Fellowships, the Barry M. Goldwater
Scholarship, the Frederick Emmons Terman Engineering Scholastic Award,
and the President’s Award for Academic Excellence (Stanford University).
He received the best paper awards at the IEEE International Conference
on Communications, London, U.K., in 2015, and at the IEEE International
Conference on Ubiquitous and Future Networks, Phuket, Thailand, in 2012.

Douglas Leith (M’02–SM’09) received the degree and Ph.D. degree from the
University of Glasgow in 1986 and 1989, respectively. In 2001, he moved to
Maynooth University, Maynooth, Ireland, and then in 2014 to Trinity College
Dublin to take up the Chair of computer systems with the School of Computer
Science and Statistics. His current research interests include wireless networks,
network congestion control, distributed optimization, and data privacy.

Fan Lai received the B.E. degree in computer science and engineering from
Shanghai Jiao Tong University, China, in 2017. He will pursue the Ph.D.
degree with the Department of Electric Engineering and Computer Science,
University of Michigan at Ann Arbor, Ann Arbor, MI, USA. His research
interests include datacenter networking and big data systems.

Ken R. Duffy received the B.A. (mod) and Ph.D. degrees in mathematics from
the Trinity College, Dublin. He is currently a Professor with the Hamilton
Institute, Maynooth University, Maynooth, Ireland. His primary research
interests are in probability and statistics, and their applications in science
and engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

