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A B S T R A C T

Samples containing low-copy numbers of DNA are routinely encountered in casework. The signal acquired from
these sample types can be difficult to interpret as they do not always contain all of the genotypic information
from each contributor, where the loss of genetic information is associated with sampling and detection effects.
The present work focuses on developing a validation scheme to aid in mitigating the effects of the latter. We
establish a scheme designed to simultaneously improve signal resolution and detection rates without costly
large-scale experimental validation studies by applying a combined simulation and experimental based ap-
proach. Specifically, we parameterize an in silico DNA pipeline with experimental data acquired from the la-
boratory and use this to evaluate multifarious scenarios in a cost-effective manner. Metrics such as signal1copy-to-
noise resolution, false positive and false negative signal detection rates are used to select tenable laboratory
parameters that result in high-fidelity signal in the single-copy regime. We demonstrate that the metrics acquired
from simulation are consistent with experimental data obtained from two capillary electrophoresis platforms and
various injection parameters. Once good resolution is obtained, analytical thresholds can be determined using
detection error tradeoff analysis, if necessary. Decreasing the limit of detection of the forensic process to one
copy of DNA is a powerful mechanism by which to increase the information content on minor components of a
mixture, which is particularly important for probabilistic system inference. If the forensic pipeline is engineered
such that high-fidelity electropherogram signal is obtained, then the likelihood ratio (LR) of a true contributor
increases and the probability that the LR of a randomly chosen person is greater than one decreases. This is,
potentially, the first step towards standardization of the analytical pipeline across operational laboratories.

1. Introduction

Samples containing low-copy numbers of DNA are routinely en-
countered in casework and are challenging to interpret because of the
inherent complexity associated with determining contributing geno-
types. Interpretation of DNA evidence is often carried out within the
likelihood ratio (LR) framework, which assesses the weight of evidence
by comparing the probability of observing the data under two different
hypotheses. In the forensic context, the hypotheses compare the prob-
ability of observing the evidence, E, given that a specific person of in-
terest was a contributor, H1, versus the probability of evidence given
that an unknown person contributed, H2, and is expressed as

=LR E H
E H

Pr( )
Pr( )

1

2 (1)

In recent years, a number of probabilistic genotyping systems have
been developed [1–7] and perform this computation, where E is pre-
sumed to consist of information obtained through the amplification and
electrophoresis of a set of forensically relevant short tandem repeats
(STRs). This evidence contains information related to the length of the
amplified fragments as well as the number of DNA target molecules
amplified as measured by an electropherogram (EPG), wherein each
peak in the EPG may originate from any combination of three sources:
1) true allele; 2) instrument noise; and 3) artefact. Previous work has
demonstrated that the level of detail incorporated into probabilistic
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models used for inference can substantially impact interpretation
[8–10].

Core to any inference is, of course, the quality and information
content of the EPG. Consequently, many strategies to improve EPG
information content have been evaluated. They include the application
of enhanced injection parameters [11], additional PCR cycles [11,12],
upgraded amplification chemistries [13], purification of post-PCR
product [14], and more sensitive instrumentation [15]. These strategies
all result in an increase in signal with respect to the target number of
DNA molecules, which we call α; this is the sensitivity of the process.

We utilize the recommendations set forth by the International Union
of Pure and Applied Chemistry in distinguishing ‘sensitivity’ from the
terms ‘analytical threshold’, ‘limit of detection (LOD)’ and ‘signal-to-
noise resolution’. Here, sensitivity is defined as

⎜ ⎟= ⎛
⎝

⎞
⎠

α dS
dTc (2)

where α is the slope of the tangent at nominal amplicon quantity Tc of
an analytical curve, which is constant if the curve is linear.
Consequently, a method may be extremely sensitive (i.e. large change in
signal with quantity), but baseline noise may also be high leading to
poor signal-to-noise resolution and a relatively large LOD. For discus-
sions on sensitivity, LOD and signal-to-noise we refer the readers to
[16–20].

In general, valuable EPG information can be garnered by lowering
the LOD, or the number of molecules that can be detected. Along with
improving sensitivity, another relatively simple way to accomplish this
is to decrease the signal threshold (ST) at which signal detection is
demarcated [21]. The extreme version of this is to set ST to the lowest
possible level allowed by the analytical process and evaluate the signal
in its entirety [22,23]. The ST that is implemented into casework is
often referred to as the analytical threshold (AT), and we reserve AT for
that purpose.

There is an inherent relationship between α, ST and the information
content contained in the evidence E. Even in cases where no ST is ap-
plied, the sensitivity of the laboratory process, which is dependent upon
parameters such as PCR cycle number and injection conditions, de-
termines the amount of information available for import into inference
systems. Thus, development of a tenable DNA validation system that
informs laboratories of α and ST effects on the information content
contained in E is warranted.

If no DNA target molecules are present at the start of amplification,
then the signal is due to random noise or artefact. If one or a few target
copies of a given allele are present then, depending on the laboratory
conditions and sensitivity of the process, allele signal may be difficult to
distinguish from noise. Alternatively, low-level signal may fall below
some pre-defined ST. In general, current practice relies upon the ap-
plication of a ST to the EPG signal, S, such that the probability of the
signal observed due to noise surpasses that of ST does not exceed a given
γ [24],

> = ≤=S S T γPr( | 0) .T c 0 (3)

Here, Tc = 0 is the number of DNA copies present at the start of am-
plification and γ can be any value defined by the laboratory. It may be
based on the post-analysis interpretation scheme where a larger risk of
detecting signal in the absence of target copies may be tolerated if a
probabilistic system that models noise is utilized, while a small γ may
be appropriate in cases where binary or manual interpretation techni-
ques prevail.

With the advent of probabilistic genotyping, large signal thresholds
that reduce the risk of noise detection to negligible levels may not be
desirable since there is a tradeoff between the false detection of noise
and allele dropout. There are two main reasons for allele dropout: 1)
detection effects [21]; and 2) sampling effects [25–27]. The former
occurs when DNA target molecules are successfully amplified but there

are too few amplicons produced to yield fluorescent signal that exceeds
baseline levels. The latter arises when the DNA molecule is not avail-
able for amplification. This may occur when the DNA template is
fragmented or when the DNA target molecule did not survive the pre-
PCR steps and, as a result, is not present in the amplification tube. From
a signal detection perspective, the risk of false non-detection of true
signal, as defined in [24], is slightly modified for forensic DNA detec-
tion purposes such that we focus on defining the probability of signal
not exceeding ST when one copy of amplifiable DNA is present at the
start of amplification,

< = ≤=S S T βPr( 1)T c 0 (4)

Therefore, the ST is the level at which the target substance is de-
cidedly considered to be part, or not part, of E. Note that although Eq.
(4) is related to the probability of allele dropout, it is not equivalent to
it. Previous work has demonstrated that detection of a single DNA
molecule is possible [28] as long as the sensitivity is modified to a
degree that ensures allelic signal surpasses the pre-defined ST [11].

Historically, forensic DNA detection has relied upon the im-
plementation of an AT that minimizes γ [29]. As with the authors of
[30], we distinguish allele drop-in from noise detection, focusing on the
signal detection problem in an attempt to design a full laboratory
procedure that will lead to good signal-to-noise resolution and an LOD
of one copy of DNA. Despite its unexpected nature, allele drop-in is,
therefore, categorized as allele signal rather than noise and an AT de-
signed to detect most allele signal will, by definition, also detect allele
drop-in. As such, allele drop-in and the propensity of the laboratory to
observe drop-in ought to be considered at the interpretation stage. With
the implementation of probabilistic genotyping programmes [1,5] there
has been renewed interest in re-evaluating the practice of minimizing γ
in favor of utilizing lower thresholds [10]. Despite this, we emphasize
that evaluating the tradeoff between the false non-detection of alleles
and the false detection of noise without first considering sensitivity and
signal-to-noise resolution would inevitably lead to large overall signal
detection error rates.

Recently a stochastic model of EPG generation encompassing all
aspects of the entire forensic DNA laboratory process, from quantifi-
cation to peak detection, was described [31], where it was shown that
good signal to noise resolution was readily achieved by the application
of slight modifications to the laboratory conditions under which the
DNA samples are processed. We extend that work here by developing a
validation strategy to determine an optimized AT for the forensic DNA
process. This AT is established by careful evaluation of the false de-
tection rates only after good noise to signal1copy (i.e., RFU signal ob-
tained from 1 copy of amplifiable DNA) resolution is acquired. To de-
termine the laboratory parameters that result in a sensitivity, α, that
produces adequate resolution, we generate simulated capillary elec-
trophoresis (CE) signal from Tc=0 = 1 and Tc=0 = 0 copies of DNA via
the stochastic model described in [31]. For each laboratory condition,
we compute the false positive and false negative detection rates for
various ST values for the large synthesized dataset to acquire a good
approximation of the detection error rates. The PCR cycle number, in-
jection parameters and ST that minimize the false positive and negative
detection rates while still maintaining a reasonable dynamic range (i.e.,
large mass range of DNA that can be analyzed before the detector is
saturated) are chosen as the validated laboratory process. If appro-
priate, the AT may be conditioned on the false positive rate.

We evaluate the validation protocol and confirm that it is applicable
across two CE platforms resulting in signal detection capabilities that
are at the single-copy level, regardless of instrument. We confirm that
the optimized ST values acquired from simulation coincide with those
obtained from experimental samples and show the utility of this vali-
dation procedure by demonstrating that improving the information
content through optimized detection strategies aids probabilistic in-
terpretation. That is, we show that high-fidelity EPGs garnered from 1-,
2- and 3-person samples result in fewer LRs favoring the prosecution’s
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hypothesis when the defense’s hypothesis is true and establish that
there is an increase in the LR for true minor contributors to these
samples. Further, we demonstrate that high-fidelity EPGs from two CE
platforms produce consistent summary statistics.

2. Methods

2.1. Experimental data generation in the multi- and single- copy regimes

Ninety-five single source profiles of known genotype were obtained
by extracting DNA from whole blood or proficiency test samples pur-
chased from various manufacturers using phenol/chloroform purifica-
tion and alcohol precipitation. The extracts were quantified using
Quantifiler® Duo (Life Technologies, Carlsbad, CA) on the Applied
Biosystems® 7500 (Applied Biosystems, Foster City, CA) using the
manufacturer’s recommended thermal cycling protocol and a validated,
universal calibration curve [32]. The experimental data were used for
two purposes: 1) to parameterize the model (Sec. 2.3); and 2) to eval-
uate the false negative and positive rates for a set of experimental data
in the single-copy regime (Sec. 2.4). The data used to parameterize the
model were not also used to evaluate it. Seven low template target
amounts (0.25, 0.125, 0.063, 0.047, 0.031, 0.016, 0.008 ng) were
amplified at 29 cycles using the AmpFlSTR® Identifiler® Plus kit (Ap-
plied Biosystems®, Foster City, CA). Fragment separation was performed
on an ABI 3130 Genetic Analyzer (Applied Biosystems®, Foster City, CA)
using a 3 kilovolt (kV) injection for 5, 10, and 20 s and on an ABI 3500
Genetic Analyzer (Applied Biosystems®, Foster City, CA) using a 1.2 kV
injection for 5, 15, and 25 s. The EPGs were analyzed in GeneMapper®

ID-X (Applied Biosystems®, Foster City, CA) using the Local Southern
Method with an AT of 1 RFU. Pull-up, complex pull-up, and – A arte-
facts were filtered using CleanIt, a visual basic script that examines the
intensity and position of the suspected artefact peak against the in-
tensity and position of the peak of interest (http://sites.bu.edu/
grgicak/software/). Pull-up was defined as a peak which appears in
the same position (± 0.3 bp) as the peak-of-interest in another dye
channel and has a peak height of ≤6% of the peak-of-interest. Complex
pull-up was defined as a peak with a plateau-like shape located between
two adjacent peaks-of-interest in a different dye channel and less than
6% of those peaks-of-interest; – A was defined as a peak one bp shorter
(± 0.3 bp) than the peak of interest. There were no height restrictions
for – A artefacts. Spikes or peaks of large RFU value that were present in
multiple dye channels at the same bp, were manually filtered. The data
were exported as .csv files and used for downstream analysis and in-
terpretation.

2.2. Description of the model in RESOLVIt

The computational tool RESOLVIt carries out the simulation of a
large number of artificial EPGs by in silico execution of a laboratory’s
amplification and electrophoresis protocols according to the SEEIt
model specified in Ref. [31]. Each simulation begins with the random
sampling of two different alleles at every locus. This effectively forces
all contributors during simulation to be heterozygous thus avoiding
complications that arise from assigning total RFU level (signal plus
noise) to each allele in a homozygous sample. Since the objective of this
work is to investigate the ability of a laboratory protocol to distinguish
signal1copy from noise, dropout that stems from sampling effects is ig-
nored and the number of copies of an allele that undergo amplification
is forced to be 1; thus, Tc=0 = 1 for every allele. The PCR process is
simulated for the chosen number of cycles via a multitype Galton-
Watson process, as detailed in [31]. That is, at each cycle, each am-
plicon of an allele is successfully copied with a probability corre-
sponding to the amplification efficiency, and if copied it gives rise to
stutter with a given stutter slippage probability, whereupon the stutter
amplicons are then amplified at later rounds of PCR. After the last PCR
cycle, we simulate the CE process, converting amplicons into

fluorescence and adding instrument noise.
Noise is a stochastic instrument artifact where spurious additional

fluorescent data points appear in the EPG. If several noise points occur
within a fluorescence bin that contains no allele or stutter signal, the
combined effect can be such that peak detection software declares what
we call a noise peak. For a given experimental data set created from
known genotypes, the empirical probability of a noise peak occurrence,
PN, can be readily evaluated. With Si being the fluorescent peak height
in non-allele, non-stutter position ∈ …i b{1, , }, as determined by the
peak detection software, and x being the smallest peak threshold that
can be set in the peak detection software, then PN is the fraction of bins
where a peak is declared due to noise:

∑= ≥
=

P
b

χ S x1 ( ),N i

b
i1 (5)

where χ is the indicator function taking the value 1 if the condition is
true and 0 if it is false.

An empirical study employing GeneMapper IDx with x= 1 RFU for
several large-scale data sets [33] has reported that the fraction, PN, of
non-allele, non-stutter bins that are labeled as peaks is ca. 15%. That
paper also reports that given a noise peak is observed, the conditional
distribution of the peak height in RFU is well described by a lognor-
mally distributed random variable. The EPG simulation model we em-
ploy here, and in the model described in [31], describes the post-peak
detection processed signal. Thus following those studies, the occurrence
of each noise peak is modeled as an independent random variable that
with probability 1-PN is zero and with probability PN it is lognormally
distributed with mean μnoise and variance σnoise

2 . As the likelihood of
noise-peak occurrence, PN, and the distribution of their peak heights
when they do occur, as determined by μnoise and variance σnoise

2 , depend
on the peak declaration software used as well as that software’s para-
meterization, they are user-defined quantities in the RESOLVIt tool.

The CE sensitivity parameter, α, is estimated from experimental data
for every locus by summing the peak height corresponding to signal and
stutter at a locus from experimental samples of known genotype and
determining the linear function of the nominal amplicon number versus
peak height [31]. This enables the calculation of the total fluorescence,
corresponding to signal plus noise plus stutter, at every allele position
based on the number of amplicons present after amplification.

After the completion of this step, we obtain information about the
peak heights of 2X alleles at every locus, where X is the number of EPGs
simulated. In order to understand the false positive detection rate, an
equal number (2X) of noise alleles are randomly simulated at every
locus and their heights are sampled from a lognormal distribution. The
mean and standard deviation of the lognormal distribution are derived
for every locus by modeling the mean and standard deviation of noise
peaks from a large number of experimental known samples as a linear
function of the nominal amplicon number.

Since the simulated peaks are of known origin (allele or noise), the
false positive detection rate (proportion of noise peaks that fall above
ST) and the false negative detection rate (proportion of allele peaks that
fall below ST) are calculated for a range of ST values. This information
enables a forensic laboratory performing validation to investigate the
impact on the two error rates with (increasing or decreasing) ST. The ST
that meets the laboratories operational requirements is selected as the
AT utilized in casework. The AT implemented in operations can be
chosen such that it corresponds to the lowest false positive rate or the
lowest false negative rate or both. Further, the computational system
described herein allows for fast exploration of values for laboratory
parameters, such as the number of PCR cycles and injection time that
enhance the discernment of signal from noise. For reference, simulation
of 10,000 profiles takes ∼25 min on a 1.9 GHz Intel® Xeon® processor
with 4 GB RAM.
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2.3. Parameterization of the model using laboratory data

The model is parameterized by utilizing a set of laboratory data
generated with the methods described in Sec. 2.1. Supplemental Table
S1 details the sensitivity, α, determined for 5 (Lab 1), 10 (Lab 2) or 20 s
(Lab 3) 3 kV ABI 3130 Genetic Analysis injection settings and for the
25 s (Lab 4) 1.2 kV injection settings for the ABI 3500 Genetic Analysis
platform, as described in [31]. In brief, signal intensity was plotted
against the nominal amplicon number to obtain the estimated rise in
signal per amplicon. The nominal amplicon number at cycle, c, is ap-
proximated assuming a PCR efficiency, Eff, of 0.96 [31] and the fol-
lowing equation

= + −N N (1 Eff)c
c

0
2 (6)

where Nc is the number of amplicons produced at cycle c, N0 is the
target, or initial, amplicon number, and c is the cycle number.

Though stutter is not directly evaluated when determining signal-to-
noise resolution, stutter production during PCR is expected to affect the
number of allele amplicons produced. Slippage that occurs in early PCR
cycles leads to lower numbers of full-allele amplicons. Thus we include
stuttering in our model and utilize the stutter slippage probabilities
shown in Supplemental Table S2. Specifically, stutter probabilities were
estimated by comparison of the stutter ratios obtained through simu-
lation and the ratios previously obtained [13]. The average stutter ra-
tios obtained through simulation and the estimated stutter ratios pro-
vided by the manufacturer is found in Supplemental Table S2.

As reported in [33] we set the probability of non-zero noise peaks,
PN, to 0.15 (see Supplemental methods for an example) and the average
and standard deviation of the non-zero noise peaks were estimated from
examining 643 single-source samples amplified at targets ranging from
0.25 to 0.008 ng of DNA. Supplemental Table S3 reports the noise
parameters used during simulation.

2.4. Detection error tradeoff analysis

Consistency between synthetic and experimental peak intensity had
been previously confirmed [31]. Data from four distinct laboratory
setups were used to create simulated emulations, Lab 1-4. ST values,
ranging from 1 to 50 RFU in 5 RFU increments, were used to compute
the detection error tradeoff (DET) rates for simulated data obtained for
simulations Lab 1, 2, and 3, corresponding to the 3130 platform. For
simulation Lab 4, corresponding to the more sensitive 3500 platform, ST
values ranging from 1 to 105 RFU in 5 RFU increments were used. False
positive detection error rates were determined by counting the number
of noise peaks with heights larger than ST and dividing by the number
of non-zero noise peaks. False negative rates were estimated by de-
termining the proportion of signal obtained from one copy of DNA that
fell below ST.

DET analysis was also performed on experimental data from 95
single-source samples of known genotype with target mass of 0.008 ng.
In the case of experimental samples, we could not confirm the number
of template copies that generated the signal. Thus, for experimental
data the signal was categorized in two ways: 1) as signal falling in noise
positions; and 2) as signal falling in allele positions. The range of ST
values was the same as for the corresponding simulated setting. The
false positive rate was determined by counting the number of peaks in
noise position that exceeded ST divided by the total number of non-zero
noise peaks in noise position. The false negative rate was determined by
counting the number of peaks in allele position, based on the known
genotype, that fell below ST and dividing by the expected number of
alleles. Only heterozygous loci were used to determine false positive
and negative rates from experimental samples.

2.5. Impact of signal resolution and detection on the LR for a true
contributor and on the probability that LR> 1 for a non-contributor

We examined both single source and mixture samples to investigate
the effects of information content and detection errors on the LR, and
on the proportion of LRs that exceeds one when one million random
genotypes are tested in lieu of a known contributor. We utilized the
previously published probabilistic model CEESIt [6] to determine these
quantities. Briefly, CEESIt is built on a continuous mixture interpreta-
tion model that incorporates noise, stutter, stochastic PCR effects as
well as random contributor levels. Let E denote the evidence, i.e. the
sample’s electropherogram. Let H1(g) denote the hypothesis that E
arises from a contributor with genotype g in conjunction with a fixed
number k ≥ 0 of unknown contributors whose genotypes are selected
randomly with given frequencies. Let H2 denote the hypothesis that all
k + 1 contributors have genotypes selected at random with those given
frequencies. Define the likelihood ratio for a specific genotype g to be

=LR g
E H g

E H
( )

Pr( ( ))
Pr( )

1

2 (7)

With s denoting a suspect’s genotype and G denoting a randomly se-
lected genotype, CEESIt computes approximations to LR s( ) and to the
distribution of the random variable LR G( ). It achieves this by com-
puting an approximation of E H gPr( | ( ))1 , E H gPr( |̂ ( ))1 , through Monte
Carlo sampling (see Ref. [6] for details). In addition, CEESIt generates a
large number, n, of hypotheses H2,1, H2,2, …, H2,n where the genotypes
of all k + 1 contributors are randomly chosen independently according
to their frequencies in the population, excluding the genotype s. For
each hypothesis H2,i, it computes an approximation of E HPr( | )i2, ,

E HPr( | ˆ )i2, , through Monte Carlo Sampling. It then approximates
E HPr( | )2 as

∑= = + − =
=

E H E H s G s G s
n

E HPr( |̂ ) Pr( |̂ ( ))Pr( ) (1 Pr( )) 1 Pr( | ˆ ).
i

n
i2 1 1 2,

(8)

CEESIt reports the approximate likelihood ratio for the suspect,
= E H s E HLR(s) Pr( |̂ ( ))/Pr( |̂ )1 2 and the Monte Carlo approximation to

the distribution of LR G( ) obtained by E H E HPr( | ˆ )/Pr( |̂ )i2, 2 for i = 1… n.
The single source samples were created as described in Sec 2.1,

while a subset of the single source extracts were mixed to contain two
or three contributors. The mixture ratios ranged from one part of the
minor contributor to 19 parts of the other contributor(s) and DNA total
target masses ranged from 0.008 from 0.5 ng. To test the impact of
detection, we focus on samples where the minor contributor constituted
between one and 20 cells’ worth of DNA. A list of the mixtures and the
mass of the minor contributors tested in CEESIt are available in
Supplemental Table S4.

3. Results

3.1. Simulation as a means of developing highly resolved EPG signal

Synthesizing forensic EPGs with an in silico model of the entire
forensic pipeline allows the evaluation of each signal component, such
as noise and allele, in an efficient manner without the use of costly
resources. This is desirable for laboratories interested in determining
laboratory conditions that lead to high fidelity EPG signal, or EPG
signal with minimal levels of dropout. One way to minimize dropout is
to implement a post-PCR laboratory procedure designed to minimize
detection error. If allele dropout and noise detection are carefully
considered during validation, then unnecessary signal loss can be
avoided. To do this effectively, good signal-to-noise resolution when
Tc=0 = 1 and Tc=0 = 0 is required.

Previous studies have demonstrated that the noise component is
different between colour-channels, loci and template mass, suggesting
that locus-specific noise parameters ought to be determined for each kit
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and target mass [29,33]. Many sources of variation within the labora-
tory process exist and sources that introduce considerable changes in
sensitivity would impact a simulation-based approach. Although pre-
vious studies have suggested that variation in signal due to the most
common laboratory changes, such as capillary and kit lot modifications,
have a negligible impact on the final signal compared to amplification
effects [34], good practice dictates that the dataset used to para-
meterize RESOLVIt include data acquired over an extended time period,
and chosen to allow ordinary factors that affect the result [35]. Sub-
stantive changes to the detector or light source require, at a minimum,
performance checks to confirm that signal thresholds are still applic-
able. Within this work, we define noise as signal which is not easily
characterized as either allele or artefact, and so it can encompass non-

reproducible uncharacterized amplification products as well as instru-
ment noise. Fig. 1 displays the histograms of the peak heights for
20,000 simulations when Tc=0 = 0 and 20,000 simulations when
Tc=0 = 1 using model parameterizations for Lab 1 as summarized in
Supplemental Tables S1–S3 for representative blue, green, yellow and
red fluorescently tagged loci. Consistent with previously published ex-
perimental findings [29,33], we observe that the noise shifts right and
widens as the color channel transitions from blue to red. In contrast, the
peak height distributions for one target copy shifts left as the colour
channels transition from blue to red. Notably, the peak height dis-
tribution obtained when one copy of DNA is amplified cannot be easily
described by a simple distribution class. For example, the allele signal
in Fig. 1C and D are of particular interest since we observe a complex
distribution of peak heights that range from 1 to 28 RFU. Upon in-
vestigation, we find that the right-tails, which are pronounced in the
yellow and red loci, are the result of additive noise contributing to the
allele signal while the left tails are the result of missed amplifications in
the first cycles of PCR. A high degree of overlap is observed between the
noise and allele distributions when simulating the manufacturer re-
commended laboratory procedure (i.e., Lab 1) [36].

In an effort to diminish the degree of overlap between noise and
signal1copy, peak heights for 20,000 simulations when Tc=0 = 0 and
20,000 simulations when Tc=0 = 1 using model parameterizations for
Lab 2, as summarized in Supplemental Tables S1, S2 and S3, were
captured. Histograms for representative blue, green, yellow and red
fluorescently tagged loci are displayed in Supplemental Fig. S1. Despite
the complex signal spectra observed throughout the simulations, two
informative outcomes emerge: 1) good signal to noise resolution can be
obtained for all loci using common forensic DNA processes; and 2) a
substantial level of signal overlap between noise and allele is caused by
early stuttering events and PCR inefficiencies. To acquire a measure of
the distance between our noise and single-copy signal distributions, we
utilize the Bhattacharyya coefficient (BC) [37], defined as

∑=
=

BC N A
i

b
i i1 (9)

where b is the number of RFU partitions, or bins, of size 1 RFU here,
considered and Ni and Ai are the frequency of noise and allele, re-
spectively. Non-overlapping distributions result in a BC of 0, while
complete overlap results in BC’s of 1. The BC results are summarized in
Table 1.

DET curves for the four representative loci of simulations using
sensitivities listed in Supplemental Table S1 are depicted in Fig. 2. DET
plots are graphical representations of the error rates for binary classi-
fication systems. For the purposes of allele detection, we plot the false
positive rate against the false negative rate at various ST values in orderFig. 1. Frequency of allele (black) and noise (white) simulated signal obtained when one

copy of DNA is amplified at 29 cycles and separated using the sensitivities found under
Lab 1 (Table 1) for representative loci from each colour channel: A) D8S1179, B)
D3S1358, C) D19S433 and D) D5S818 loci The modes of the peak height of noise and
signal are provided. Most of the noise measurement peaks are zero; thus, the noise fre-
quencies have been normalized and exclusively consider the non-zero noise measurement
values.

Table 1
BC values for each locus for data simulated to mimic one copy of DNA amplified for 29
cycles and injected for 5 s, 10 s or 20 s at 3 kV on the ABI3130 Genetic Analyzer or for
25 s at 1.2 kV on the 3500 Genetic Analyzer. Bin size = 1 RFU.

Locus Dye Lab 1 Lab 2 Lab 3 Lab 4

D8S1179 B 0.2233 0.0566 0.0039 0.0493
D21S11 B 0.5119 0.1710 0.0528 0.0723
D7S820 B 0.3053 0.0796 0.0135 0.0716
CSF1PO B 0.4878 0.1662 0.0212 0.0111
D3S1358 G 0.2862 0.0686 0.0057 0.0298
TH01 G 0.2577 0.0690 0.0033 0.0341
D13S317 G 0.3975 0.1241 0.0208 0.0200
D16S539 G 0.2822 0.0671 0.0032 0.0308
D2S1338 G 0.3657 0.0977 0.0167 0.0276
D19S433 Y 0.5253 0.1305 0.0086 0.1282
vWA Y 0.7020 0.2436 0.0390 0.1380
TPOX Y 0.8240 0.2951 0.0540 0.0953
D18S51 Y 0.8672 0.3578 0.1041 0.1299
D5S818 R 0.7835 0.2904 0.0539 0.2867
FGA R 0.8732 0.3965 0.0902 0.4412
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to evaluate the separation of signal from noise and one DNA molecule.
If perfect noise and signal resolution is achieved, such that BC = 0, then
there exists an ST that will yield false negative and false positive rates of
zero. If small false detection rates are obtained at a given ST, then this
value ought to be considered as the operational AT of the laboratory
since it affords strong protection against noise detection while mini-
mizing allele dropout. Table 2 summarizes the AT that results in the
lowest overall error rate for each locus, with the total error (sum of false
positive and false negative rates) in parentheses. Supplemental Table S6
summarizes the false positive and negative rates obtained at various ST
values for Lab 2 simulated data for all loci. As predicted from visual
inspection of the histograms the red and yellow channels result in the
largest error rates. Interestingly, we observe that the commonly em-
ployed AT of 50 RFU results in total error rates that are substantive;
these are driven by the high allele dropout rates associated with such

large signal thresholds.
An AT of 30 RFU has recently been suggested as a possible signal

threshold with which to analyze EPGs [10], but these data suggest that
an AT of 30 RFU coupled with these laboratory conditions (i.e., 3130
Genetic analyzer; 10 s/3 kV injection; 29 cycles; Identifiler® Plus kit)
would result in significant levels of dropout due to detection effects.
Thus, these true signals would be excluded from interpretation resulting
in lower information contents. Given that a number of probabilistic
genotyping systems have been designed to interpret noise [6,23], the
traditional practice of utilizing a large signal thresholds in an effort to
reduce the risk of noise detection requires re-evaluation. For Lab 2 si-
mulations, the false detection rate was as high as 0.1201 for the FGA
locus and the BC ranged from 0.0566 to 0.3965. This large false de-
tection error may be considered too high for certain downstream in-
terpretation systems. As such, obtaining fuller signal to noise resolution
by injecting the sample for twice as long, or increasing the cycle
number to 30 will likely result in an overall decrease in detection er-
rors.

We repeated the simulations, therefore, using the sensitivities listed
under column Lab 3 in Supplemental Table S1, emulating 29-cycle
Identifiler® Plus amplification with a 20 s/3 kV injection on an ABI
3130 platform. Fig. 3 shows histograms of the signal obtained for four
representative blue, green, yellow and red loci. Supplemental Table S7
summarizes the false positive and negative rates for all loci across all ST
values. As shown in Table 1, the BC value decreased from a maximum
of 0.3965 for Lab 2 to a maximum of 0.1041 for Lab 3 simulations,
indicating a higher degree of separation between noise and allele signal.
Error rates ranging from 0.0016 to 0.0255 indicated the noise detection
and allele dropout is greatly diminished by increasing injection time
from 5 s to 10 s to 20 s. Fig. 4 plots log of total error, or sum of false
negatives and false positives, against the log BC for each locus in all
four simulations. Lab 1 results in relatively high BC values and rela-
tively high error rates. A correlation between BC and total error rate is
observed as error increases as the degree of overlap between the noise
and allele distributions increases (Fig. 4).

3.2. Improved 3500 genetic analyzer sensitivity does not necessarily
improve signal resolution

Fragment analysis of STRs is accomplished using CE and there has
recently been a transition from the 3130 to the 3500 Genetic Analyzer
within forensic operational environments. Prior to implementation of a
new platform, the instrument must be validated for forensic purposes
[38]. At this stage, the dynamic range, sensitivities and other pertinent

Fig. 2. Detection Error Tradeoff (DET) analysis of signal obtained through simulation of
one copy of DNA amplified at 29 cycles and separated for each condition summarized in
Supplemental Tables S1–S3 for representative loci from each colour channel: A) D8S1179,
B) D3S1358, C) D19S433 and D) D5S818 loci. The optimum signal threshold where the
total error (sum of false positive and negative rates) is minimized is labeled.

Table 2
Analytical threshold in which error is minimized for data simulated to mimic one cell’s
worth of DNA amplified for 29 cycles and injected for 5, 10 or 20 s at 3 kV on the ABI
3130 Genetic Analyzer or for 25 s at 1.2 kV on the ABI 3500 Genetic Analyzer. Error is
shown in parentheses. Supplemental Tables S5–S8 detail the false negative, false positive,
and total error rates for each locus for Labs 1–4 simulated data.

Locus Dye Lab 1 Lab 2 Lab 3 Lab 4

D8S1179 B 10 (0.1553) 10 (0.0107) 10 (0.0023) 35 (0.0157)
D21S11 B 5 (0.3234) 10 (0.0532) 15 (0.0203) 25 (0.0237)
D7S820 B 5 (0.1023) 5 (0.0395) 10 (0.0032) 20 (0.0208)
CSF1PO B 5 (0.2701) 10 (0.0662) 15 (0.0135) 15 (0.0025)
D3S1358 G 10 (0.1578) 10 (0.0158) 15 (0.0058) 45 (0.0081)
TH01 G 10 (0.0991) 10 (0.0166) 15 (0.0016) 45 (0.0095)
D13S317 G 10 (0.1728) 10 (0.0461) 15 (0.0068) 30 (0.0043)
D16S539 G 10 (0.2088) 10 (0.0145) 10 (0.0029) 35 (0.0076)
D2S1338 G 10 (0.2520) 10 (0.0258) 15 (0.0097) 30 (0.0047)
D19S433 Y 10 (0.3343) 10 (0.0335) 15 (0.0045) 45 (0.0395)
vWA Y 10 (0.3861) 15 (0.0979) 15 (0.0093) 45 (0.0438)
TPOX Y 10 (0.8980) 10 (0.1354) 15 (0.0126) 35 (0.0203)
D18S51 Y 5 (0.9061) 10 (0.1512) 15 (0.0235) 30 (0.0371)
D5S818 R 10 (0.6430) 15 (0.1368) 15 (0.0174) 50 (0.1019)
FGA R 5 (0.9173) 10 (0.1856) 15 (0.0255) 45 (0.1652)
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analytical metrics, including the minimum signal thresholds are eval-
uated [39]. Validation studies of the new capillary platform have shown
that, in general, it is more sensitive than its 3130 counterpart [15,39].
To evaluate if this increase in sensitivity impacts the signal-to-noise
resolution, we simulated signal from noise and single DNA molecules
using the parameters, summarized in column Lab 4 of Table 1, which
were inferred from the noise and signal obtained from samples injected
for 25 s and 1.2 kV on this laboratory’s 3500 platform. Fig. 5 demon-
strates the signal obtained when Tc=0 = 0 and Tc=0 = 1. Like the 3130
data, the 3500 noise becomes larger and more varied as the colour
channels transition from blue to red. Further, we again observe that
single copy DNA signal has both a right- and left- tail. Upon evaluation,
the corresponding BC’s (Table 1) signify that Lab 4 conditions result in
marginal improvements to resolution over Lab 2 conditions for the

majority of loci. Specifically, the largest total error rate (Table 2) for the
3500, Lab 4, simulations is 0.1652 (at ST = 45). The ST that resulted in
the lowest total error rate ranged from 25 to 50 RFU, depending on the
locus. An ST of 55, however, was required if a false positive rate of
≤0.01 was desired (Supplemental Table S8). Improved resolution and
lower total error rates are achievable with the 3500 platform via small
laboratory modifications, such as increased injection voltages or, al-
ternatively, the addition of one cycle to the amplification may be ap-
propriate.

3.3. Simulated versus experimental data

In cases where signal thresholds and noise drop-in rates for case-
work are derived using simulation, demonstrable consistency between
simulated and experimental data is a necessity. We provide in
Supplemental Tables S9–S12 and Fig. 6 the DET results from experi-
mental data generated using the 3130 and the 3500 platforms. As with
the simulated data, the lowest error rate for the 3130 platform occurred
when a 20 s injection was coupled with locus specific ST’s of 5 RFU to
20 RFU (Supplemental Table S11). The lowest signal error rates were
obtained at ST’s between 15 and 50 RFU for the 3500 platforms (Sup-
plemental Table S12). These signal thresholds are consistent with those
derived through simulation. One notable difference, however, is the
discrepancy between the total error rates between simulated and ex-
perimental data. In short, total overall error rates, regardless of ST, for
the experimental data are significantly larger than those obtained
during simulation, as expected, as stochastic sampling events are
known to occur during pre-PCR processing [11,26]. Unlike simulation,
where we were able to set the copy number to Tc=0 = 1, experimental
data is produced by taking an aliquot of liquid (Valiquot) from a total
extract volume (Vtot) containing a total, T, of DNA molecules of an al-
lele. Assuming that the sample is well mixed, a copy of each individual
allele is randomly selected independently with probability Valiquot/Vtot.
This results in the total initial copies of the allele, Tc=0, that shall un-
dergo amplification being captured by a binomial random variable

⎜ ⎟∼ ⎛
⎝

⎞
⎠

= V
T Binomial T

V
, .

tot
c

aliquot
0

(10)

In this study, V
V

aliquot

tot
was ca. 7.8μL

100μL
, or 0.078 and the total number of DNA

Fig. 3. Frequency of allele (black) and noise (white) simulated signal obtained when one
copy of DNA is amplified at 29 cycles and separated using the sensitivities found under
Lab 3 (Supplemental Table S1) for representative loci from each colour channel: A)
D8S1179, B) D3S1358, C) D19S433 and D) D5S818 loci. The noise frequencies have been
normalized and exclusively consider the non-zero noise measurement values.

Fig. 4. The lognormal (base 10) BC value against the lognormal (base 10) total error (sum
of false positive and false negatives rates) based upon signal simulated for each CE
condition listed in Table 1.
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molecules, T, was ⎡

⎣
⎢

⎤

⎦
⎥·99μL

0.001

0.0063
cell

ng
μL
ng , or 16 DNA molecules. Thus, the

probability of obtaining Tc=0=0 is

= =Pr(Binomial(16, 0.078) 0) 0.27 (11)

This represents the expected probability of dropout due to sampling
effects and is in line with the proportion of times alleles were not de-
tected when ST = 10 RFU or 45 RFU for the 3130 and 3500 platforms,
respectively.

3.4. Impact of information content on low-template probabilistic
interpretation

We evaluated the impact of information content on interpretation
by exploring the effects of signal thresholds and injection time on the
LR of a contributor and on the proportion of LRs greater than 1 for the
randomly sampled non-contributors, which we denote

∑
> = = >

+ − = >
=

LR G G s χ E H s E H

n
G s χ E H E H

Pr( ( )ˆ 1) Pr( ) (Pr( |̂ )( ) Pr( |̂ ))
1 (1 Pr( )) (Pr( | ˆ ) Pr( |̂ ))

i

n
i

1 2

1 2, 2

(12)

where χ denotes the indicator function, which takes the value 1 if the

Fig. 5. Frequency of allele (black) and noise (white) simulated signal obtained when one
copy of DNA is amplified at 29 cycles and separated using the sensitivities found under
Lab 4 (Supplemental Table S1) for representative loci from each colour channel: A)
D8S1179, B) D3S1358, C) D19S433 and D) D5S818 loci. The modes of peak height of
noise and signal are provided. The noise frequencies have been normalized and ex-
clusively consider the non-zero noise measurement values.

Fig. 6. Detection Error Tradeoff (DET) analysis of signal obtained when 95 samples of
known genotype with a target mass of 0.0078 ng were amplified at 29 cycles and sepa-
rated using a 5, 10, or 20 s 3 kV injection on an ABI 3130 Genetic Analyzer and a 25 s
1.2 kV on an ABI 3500 Genetic Analyzer for representative loci from each colour channel:
A) D8S1179, B) D3S1358, C) D19S433 and D) D5S818 loci. The optimum signal threshold
where the total error (sum of false positive and negative rates) is minimized is labeled.
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condition in braces is true and zero otherwise. If the information con-
tent is substantial, and of high quality, then one assumes that the LR for
a known contributor will be large and the probability that the like-
lihood ratio for a non-contributor is greater than one will be small. To

evaluate the impact of signal content on these summary statistics we
plot >LR GPr( ( )ˆ 1) when using an AT of 50 RFU and data generated from
a 5 s injection of 1-, 2- and 3-person samples on a 3130 Genetic
Analyzer against >LR GPr( ( )ˆ 1) when the same samples were analyzed

Fig. 7. Parallel plots of >LR GPr( ( )ˆ 1) for experimental 1-, 2- and 3-person samples a) injected for 5 s on the 3130 platform coupled with an AT of 50 RFU and injected for 20 s on the 3130
platform coupled with an optimized AT of 15 and 20 for the blue/green and yellow/red channels, respectively and b) injected for 20 s on the 3130 platform coupled with ATs of 15 (blue/
green) and 20 (yellow/red) versus the same samples injected for 25 s on the 3500 platform coupled with ATs 25 (blue), 40 (green/yellow) and 45 (red). All samples were amplified with
the Identifiler® Plus set of loci using 29 PCR cycles.
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using an AT of 15 RFU (Blue and Green channels) or 20 RFU (Yellow
and Red channels) and a 20 s injection (Fig. 7a). We note that the 5 s
injection time is the manufacturer’s recommendation [36]. When cou-
pled with an AT of 50 RFU the detection error rates for the re-
commended laboratory settings were one due to high levels of drop-out
when in the single-copy regime. In contrast, the 20 s injection time
coupled with an AT of 15/20 RFU corresponded to detection error rates
that did not exceed 0.07 (Supplemental Tables S5 and S7). As antici-
pated, maximizing information content by utilizing EPGs generated
with laboratory conditions that result in good allele-to-noise resolution
and reasonable signal thresholds significantly reduces the probability
that a non-contributor results in a LR > 1. Fig. 8a also demonstrates
that less EPG data utilized during interpretation results in low LRs for
the true minor contributors.

Fig. 7b plots >LR GPr( ( )ˆ 1) when the same amplified work products
were injected into the 3130 and 3500 Genetic Analyzers for 20 and
25 s. The LRs obtained for the known first minor contributor of the
mixtures when H1 is true are plotted in Fig. 8b. The ATs were set to 15/
20 for the 3130 instrument and to 25(Blue)/40(Green, Yellow)/45(Red)
for the 3500 instrument. These ATs were chosen based on the DET
analysis described above and result in similar error rates for both
platforms. Further, the injection parameters were chosen because they
afforded similar, and good, signal-to-noise resolution for each

instrument. Figs. 7 b and 8 b demonstrate that the summary statistics
are similar between platforms, indicating that laboratory parameters
that are chosen based upon an evaluation of signal error detection rates
result in consistent interpretation across platforms.

4. Discussion

For any analytical bio-assay, the ultimate performance benchmarks
are accuracy and reliability within the established dynamic range. One
way to assess the limits of DNA testing is by evaluating the probability
of dropout. Allele dropout rates are influenced by four factors: 1) the
absence of the DNA target during amplification; 2) too few DNA frag-
ment molecules produced during amplification to surpass signal de-
tection levels; 3) CE settings that result in insufficient sensitivities; and
4) high detection thresholds. To alleviate instances of dropout occur-
ring from the first factor, improved front end processing techniques are
required. In contrast, allele dropout due to detection effects may be
controlled by applying optimized post-PCR processes such that suffi-
cient numbers of amplicons are produced and injected. If signal from a
single copy of DNA is sufficiently large as to surpass noise levels, then
optimized signal detection thresholds may be applied in a manner that
will mitigate both the false detection of noise and allele dropout. In
addition, processes that favor examination of the entire signal may be
deemed appropriate.

In this study, the detection of approximately one copy of DNA was
examined. Previous studies have demonstrated that baseline is affected
by the target quantity of DNA [29,33]. As a consequence, the ability to
resolve signal from a single copy of DNA from noise in the presence of a
major contributor would also be of value. The validation scheme pre-
sented herein is a generalized method and may easily be applied to test
such scenarios. As an example, Supplemental Table S13 details the false
negative, false positive, and total error rates for simulated noise data
that correspond to the amplification of 0.25 ng of DNA coupled with the
allele signal corresponding to one copy of DNA. The noise simulated
assuming a larger (i.e., 0.25 ng) target mass corresponds to an increase
in total error rates and corresponds well with experimental data. Sup-
plemental Table S14 depicts the false negative, false positive, and total
error rates for noise garnered from samples amplified at a target mass of
0.25 ng and allele signal garnered from samples amplified at a target
mass of 0.008 ng.

To apply signal detection thresholds effectively a cost-effective
method, based on simulation, that allows the laboratory to evaluate
many scenarios without incorporating significant enhancement proce-
dures must be established. The data presented herein suggests that this
validation scheme would consist of simulating data under numerous
laboratory scenarios when DNA is absent (Tc=0 = 0) and is present at
the single copy (Tc=0 = 1) level. The simulated data are evaluated to
confirm that good signal-to-noise resolution is obtained. Once optimal
laboratory conditions are chosen, DET analysis can be utilized as a
means to determine the ST that results in minimal total detection errors.
If necessary, the detection threshold, or AT, can be conditioned on the
noise detection rate. This approach is an effective means to establish
good post-PCR laboratory practices, regardless of platform. It is also an
effective way to compare injection conditions between platforms.

If optimized laboratory conditions are implemented, the limit of
detection for the forensic DNA process is one target molecule of DNA
and the dropout and noise detection rates can be well characterized for
downstream probabilistic interpretation. We show that decreasing the
LOD of the forensic process to one copy is a powerful mechanism by
which to increase the information content introduced into probabilistic
systems in a consistent manner. This work introduces a validation
scheme that can be used to simultaneously improve signal resolution
and detection rates for both true and noise signal without costly large-
scale studies by applying a simulation and experimental based ap-
proach to validation.

Fig. 8. Scatter plot of LRs for the true minor contributor of experimental (*) 1-, (○) 2- and
(●) 3-person samples A) injected for 5 s on the 3130 platform coupled with an AT of 50
RFU versus those injected for 20 s on the 3130 platform coupled with an optimized AT of
15 and 20 for the blue/green and yellow/red channels, respectively and B) samples in-
jected for 25 s on the 3500 platform with ATs of 25/40/45 versus the optimized 3130
parameters. All samples were amplified with the Identifiler® Plus set of loci using 29 PCR
cycles. The x=y line is also shown.
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5. Conclusion

We modified a previously developed full mechanistic model of the
forensic laboratory process for purposes of forensic validation.
Production of a full DNA pipeline with the objective of recovering all
signal results in positive interpretation effects. Specifically, we show
that if the forensic pipeline is engineered such that high-fidelity EPG
signal is obtained then the LR for a true contributor is, in general, larger
and the probability that the LR determined for a non-contributor is
greater than one is reduced, and therefore positively affected. We also
show this validation scheme provides a means to ensure conformity in
interpretation, regardless of platform. One of the primary features of
the system proposed in the present paper is its flexibility to test mul-
tifarious scenarios in a matter of minutes. As a result, any concern about
imprecision in an input model parameters, such as those defining the
frequency of occurrence of noise peaks, can be readily alleviated by
performing sensitivity analysis for a range of values describing that
uncertainty. Thus this, potentially, is the first step towards standardi-
zation of the post-PCR validation process across laboratories.
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