
1238 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

A Lossless Network for Data Acquisition
Grzegorz Jereczek, Giovanna Lehmann Miotto, David Malone, and Miroslaw Walukiewicz

on behalf of ATLAS Trigger and Data Acquisition

Abstract— The bursty many-to-one communication pattern,
typical for data acquisition systems, is particularly demanding
for commodity TCP/IP and Ethernet technologies. We expand the
study of lossless switching in software running on commercial off-
the-shelf servers, using the ATLAS experiment as a case study.
In this paper, we extend the popular software switch, Open
vSwitch, with a dedicated, throughput-oriented buffering mech-
anism for data acquisition. We compare the performance under
heavy congestion on typical Ethernet switches to a commodity
server acting as a switch. Our results indicate that software
switches with large buffers perform significantly better. Next,
we evaluate the scalability of the system when building a larger
topology of interconnected software switches, exploiting the
integration with software-defined networking technologies. We
build an IP-only leaf-spine network consisting of eight software
switches running on distinct physical servers as a demonstrator.

Index Terms— Computer network management, data acqui-
sition, Ethernet networks, packet loss, packet switching,
software-defined networking (SDN), TCP/IP.

I. INTRODUCTION

ATLAS [1] is a general-purpose particle detector designed
to study particle collisions at the Large Hadron

Collider (LHC) at CERN. One of the key components of
ATLAS, and other large experiments, is the data acquisi-
tion (DAQ) network. It collects the outputs from all the
instruments to facilitate reconstruction of a physical process.
Many-to-one communication is the typical pattern for these
systems, and it is at the source of a network congestion prob-
lem. The latter will become more severe for future upgrades
of the detectors at the LHC. Will commodity TCP/IP and
Ethernet technologies in their current form still be able to
effectively adapt to the bursty traffic without losing packets
knowing the scarcity of buffers in the traditional networking
hardware? This concern can be alleviated. There are reasons
to evaluate software switching on commercial off-the-shelf
servers to provide reliable transport in congested conditions.
The flexibility of design in software, performance of modern
computer platforms, and buffering capabilities constrained
solely by the amount of DRAM memory are a strong basis on

Manuscript received June 22, 2016; revised January 17, 2017; accepted
March 11, 2017. Date of publication March 20, 2017; date of current version
June 26, 2017. This work was supported by a Marie Curie Early European
Industrial Doctorates Fellowship of the European Community’s Seventh
Framework Programme under Contract PITN-GA-2012-316596-ICEDIP.

G. Jereczek is with CERN, CH-1211 Geneva 23, Switzerland, and also with
Maynooth University, Maynooth, Ireland (e-mail: grzegorz.jereczek@cern.ch).

G. Lehmann Miotto is with CERN, CH-1211 Geneva 23, Switzerland.
D. Malone is with Maynooth University, Maynooth, Co Kildare, Ireland.
M. Walukiewicz is with Intel Corporation, 80-298 Gdańsk, Poland.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNS.2017.2682182

which to build a DAQ network. Furthermore, this is possible
with commodity technologies. Hence, we have started our
work on lossless software switching in [2] and now we extend
the study.

In this paper, we show that building a high-bandwidth
lossless network for DAQ based on software switches is
feasible, and they are a viable solution for future small-
and large-scale systems based on commodity TCP/IP and
Ethernet. Our results indicate that software switches with large
buffers perform significantly better than some typical switches
under heavy congestion. In our evaluation, in Section IV-C,
a server with twelve 10 Gb/s Ethernet interfaces acting as a
prototype switch reaches its maximum bandwidth of 120 Gb/s.
It completely avoids throughput degradation, while hardware
switches reach no more than 85% of the requested load under
similar conditions. We also show how a number of software
switches can be interconnected to build terabit networks. We
highlight aspects such as bandwidth scaling, management, and
load balancing. In this context, we discuss the usability of
software-defined networking (SDN) technologies to centrally
manage and optimize a data acquisition network.

We continue to use ATLAS as a case study. Its DAQ
network, having demanding traffic characteristics, is a good
environment to evaluate candidate technologies. The conclu-
sions are, however, not limited to ATLAS. They apply to other
networks susceptible to the problems arising from the many-
to-one pattern as well as other data acquisition systems.

This paper is structured as follows. Section II gives an
overview of DAQ networks and the incast congestion problem,
followed by a brief introduction to software switching and
SDN. Section II concludes with related work. We discuss our
extensions to Open vSwitch (OvS) in Section III and analyze
single switch performance in an all-to-all incast scenario
in Section IV. Scaling to larger topologies with centralized
control is presented in Section V. We conclude our work
in Section VI.

II. BACKGROUND AND MOTIVATION

A. DAQ Networks and Many-to-One Communication

In LHC nomenclature, particle collisions inside a detector
are referred to as events. Their physical “fingerprints” are
recorded by the detector, which is the data source for the DAQ
system. Different event fragments corresponding to an event
are usually buffered on multiple readout units (commodity
PCs in ATLAS), which constitute the readout system (ROS).
The DAQ network connects the data sources, being the ROS,
to the data sinks, being a computer farm which builds,1

1Event building is the physical transfer of event data to one location.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

JERECZEK et al.: LOSSLESS NETWORK FOR DATA ACQUISITION 1239

Fig. 1. (a) Many-to-one communication in a data acquisition network. Data
originating from the experiment’s instruments are sent over a network to data
collectors. Only one collector is drawn for clarity. Depending on the size of
an experiment, hundreds and thousands of independent collectors are used in
a large filtering farm (HLT). (b) Proposed buffering mechanism providing a
dedicated queue for each data collector.

processes, and filters the events [high-level trigger (HLT)].
Every HLT node requests fragments of a particular event from
the ROS (pull architecture).2 A number of independent worker
processes run on a single filtering node working on different
events depending on the number of available CPU cores.
However, there is only one process [data collection manager
(DCM)] per node that handles all the communication on behalf
of the processing units.

In DAQ, reliability and performance are equally important.
On the one hand, losses in event data imply incomplete
reconstruction of the physical process, and, in effect, oversight
or disqualification of potential discoveries. On the other hand,
the systems need to perform well at very high rates. These
two requirements are often difficult to achieve in parallel
because of the many-to-one communication traffic pattern,
often accompanied by high burstiness [3]. These conditions
lead to incast congestion—a problem that is present also in
the IT industry, especially in datacenter networks [4]. It occurs
when multiple nodes respond with data synchronously to a
single requester, as shown in Fig. 1(a). It has been observed
that these responses, although not very large on average, suffer
from a high packet loss rate [5]. The scale of the problem
increases with the number of responders, i.e., the size of the
ROS in the case of DAQ networks.

This incast pattern is particularly demanding for Ethernet
switches and TCP/IP-based communication. The switch ports
connected to data collectors are oversubscribed by the data sent
from many readout units. Switches with insufficient buffers
must drop some or most of the packets. The problem is
systematic, so the built-in TCP retransmission mechanisms are
not a solution [3]. They ensure reliability but with a cost in
performance. In an ideal situation, the network should adapt
to the traffic and avoid congestion before it happens. One
way of achieving this is to provide enough buffering space
within the network to accommodate traffic spikes and bursts

2Pull architecture means that the destinations request data from the readout
units. In contrast, in the push architecture, the sources send the data whenever
they are ready [3].

without the need for discarding data [6]. Large experiments,
like those of the LHC, apply traffic shaping in order to cope
with the inherent instantaneous oversubscription, but they still
require particularly large packet buffers. For example, there are
∼100 ROS nodes with 4x10GbE links and ∼2000 HLT nodes
with 1xGbE link to the network. Only expensive, high-end
switches or routers can be taken into consideration for use [3],
but they cannot be regarded as commodity. Furthermore, the
current trend in the industry is to provide devices with smaller
buffers [7] and not with deeper ones as the scaling needs of
the experiments would require. The lack of buffering is the
main obstacle in the use of a simple push architecture in data
acquisition [3], [8].

B. Software Switching and SDN

With recent advances in commodity networking, a potential
solution to our problem is to design a data acquisition network
mixing switches with servers that themselves act as networking
devices—software switches. A modern server with multiple
Ethernet ports connected over the PCI Express (PCIe) bus
gives the opportunity to provide large buffering capabilities
(constrained solely by the amount of DRAM memory) to
accommodate the many-to-one data bursts and to perform
flexible optimizations tailored to the DAQ traffic patterns.
In [2], we showed that a specialized switch can indeed operate
without packet loss while maintaining high throughput and
avoiding incast congestion. This was without any controls
on the injected traffic, beyond that arising naturally in a
DAQ application. This prototype software switch provided
120 Gb/s bandwidth. It was based on a dedicated application
using the DPDK framework [9] for fast packet processing in
software. In this paper, we extend OvS [10] with a similar
DAQ-oriented buffering mechanism and compare its perfor-
mance with traditional top of rack (ToR) switches. OvS is
a production quality virtual switch with built-in support for
DPDK, which provides features and protocol support typical
for conventional switches. The OpenFlow (OF) protocol [11]
and OvS Database (OVSDB) protocol [12] are also supported,
which we use to enable the centralized network control and
optimization.

Depending on the size of a DAQ system, multiple intercon-
nected software switches are required to provide full connec-
tivity. Today, the classical architecture with two deep-buffered
large routers at the core of the network is used to interconnect
approximately 2000 nodes in the ATLAS experiment [8].
In this paper, we study a topology based on specialized
software switches, possibly combined with traditional ToR
switches with small buffers as an alternative for the current
architecture.

No less important than throughput are aspects such as
administration, configuration, fault tolerance, and load bal-
ancing. The SDN paradigm [13] opens a completely new
perspective for building, managing, and optimizing networks.
In SDN, the networking control and forwarding planes are
physically decoupled and the network intelligence is central-
ized in an SDN controller, which has a global view of the
entire network. This controller is responsible for maintaining
all of the network paths and programming each device in the

1240 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

network [14]. OF (originally proposed in [15]) and OVSDB
are used for communication between the controller and the
devices. This concept contrasts with traditional networks using
distributed control planes, in which network devices are com-
prised of both a data plane, being a switch fabric connecting
ports and a control plane that is the brain of a device,
implementing various protocols [14]. This SDN controller
could be integrated with an existing DAQ control framework
of an experiment. We demonstrate in this paper how the entire
solution based on SDN, TCP/IP protocol stack, and packet
processing in software can be optimized as a whole to provide
the maximum performance of a DAQ network.

C. Related Work

The majority of approaches to incast congestion focus on
control of the packet injection rate so as not to overwhelm
buffers in the network [6], [8], [16]–[18]. All of them have
means to improve, to some extent at least, the performance
of DAQ and other incast-sensitive networks. However, these
mechanisms, flow control in particular, do not work well
in DAQ systems characterized by constant instantaneous
overload unless the network is significantly overprovisioned,
because they are designed to absorb fluctuations only [3]. Our
approach differs in that there is no rate control required on the
sender side, because there is enough buffering, which leads to
both optimal operation and simplification of the entire system.

In this paper, we argue that this alternative approach for
many-to-one communication networks, large network buffers
in commodity servers, can be considered as a cost-effective,
flexible, and scalable solution. The main building blocks
of our proposal are software packet processing and SDN.
We evaluate this approach in the demanding all-to-all incast
scenario as opposed to all-to-one scenario used in most of
the available literature. Review of the literature related to
fast packet processing on commodity servers as well as the
preliminary discussion of the applicability of this approach in
DAQ is available in our previous paper [2].

Details of the architecture of the ATLAS data acquisition
system are discussed in [19] and [8]. Characteristics of the
DAQ traffic patterns on, for example, the LHCb experiment
at CERN can be found in [20]. An example of an InfiniBand-
based DAQ network is the CMS experiment [21].

III. AN OvS-BASED LOSSLESS SWITCH FOR DAQ

In [2], we proved that a DPDK switching application with
dedicated queuing mechanisms running on a commodity server
is a viable option in data acquisition for providing lossless
operation under heavy incast congestion. In this section, we
explore whether the same can be achieved with OvS and the
OF and OVSDB protocols.

A. Design

The core of the idea behind the lossless software switch,
which we proposed in [2], can be summarized in three points:

1) the use of the DRAM memory as a large packet
buffer;

2) a queuing mechanism in which a dedicated, large-
enough queue is allocated in the switch to every single
data collector [see Fig. 1(a)];

3) a mechanism that maps the packets destined to a
particular data collector into its queue.

In our original design in [2], all of these items were imple-
mented in a dedicated switching application using the DPDK
framework.

1) Traffic Distribution: Our extension to OvS differs in
that the DCM-to-queue mapping mechanism is moved to
an external network controller. To achieve this, we added a
new port type to the virtual switch—a daqring port, which
represents a single queue, that is implemented as a DPDK
ring, similar to the study of [2]. Because each of these queues
is visible as a logical port in OvS, the network controller can
decide which packets should be moved to the daqrings, where
they are temporarily buffered, instead of directly switching
them to the standard egress ports.

The controller uses OVSDB to instruct the switches to create
a single daqring device for every DCM that is identified in the
system. Then, it installs a set of OF rules on the switches so
that they are programmed to move specific packets from the
ingress ports to appropriate daqrings and later to dequeue them
to the egress ports. In the simplest case, if a single DCM is
identifiable by its IP address, two OF rules for every DCM
are enough on every switch.

1) If the packet’s destination IP address matches the one of
the DCM, output the packet to the corresponding daqring
port.

2) If the packet is received from a daqring port, output the
packet to the egress port.

The second rule must have a higher priority than the first
one to avoid trapping the packets in a loop. These rules can be
adjusted at the controller to match the architecture of the given
DAQ system. For example, for our evaluation, in the following
section, we are emulating multiple DCMs on a single host, so
the destination IP address is not the unique ID of a DCM
anymore. We are using, therefore, a set of rules based on the
4-tuple (source/destination IP, source/destination TCP port) for
every ROS-to-DCM flow. We will explain the algorithm that is
used by the controller to assign the egress port for the parallel
spine-leaf topology with multipath in Section V.

2) Fairness: Fairness across the DCMs is guaranteed by
polling the daqrings in a round-robin fashion. Rate limitation
on the daqrings can be enabled by limiting the number of
packets that are polled in a single polling cycle (controllable
with OVSDB).

3) Alternative Approach: OF version 1.0.0 [11] already
allows the creation of quality-of-service (QoS) queues and
their assignment to ports in the switch. Potentially our daqrings
could be implemented using those QoS queues, so there would
be no need to create separate logical ports. However, we
decided not to use this approach at this time because of the
specific design of the DPDK devices in OvS. The implemen-
tation of the new daqring port did not require any signif-
icant modifications to the OvS architecture. We would not
expect any significant difference in performance, because the

JERECZEK et al.: LOSSLESS NETWORK FOR DATA ACQUISITION 1241

underlying mechanisms to move the packets between the
internal queues would remain the same.

B. Implementation

We added 725 and removed 11 lines of code in five files
of the OvS release 2.4.0 (with DPDK 2.0.0) to implement the
daqring device and optimize the switch for high throughput.
For the SDN controller, we used the OpenDaylight project
release Lithium [22]. We used the REST API [23] and
Python [24] to automate the installation of the ROS–DCM
flows on the switch.

Some optimizations to the OvS code were required to reach
the full performance in our DAQ scenario (for details on
OvS’s design, see [25]). The critical modifications included
the following.

1) Increased the number of hardware packet descriptors per
network port and larger memory pool to buffer packets.

2) GCC optimization level increased from O2 to O3.
3) Modification to the OvS flow caching mechanism—

exact match cache (EMC). By default, any change in
the TCP flags of the packets in a particular ROS–DCM
flow was causing a modification of the entry in the
EMC. In the case of ATLAS DAQ, each last packet
from an ROS response is marked with the TCP PUSH
flag, causing systematic EMC updates. Since there were
no OF rules using TCP flags, we removed the flag from
the cache key, as such rules are not normally needed in
DAQ networks.

4) Removal of an intermediate OvS software transmit
queue in the DPDK device. Instead, the packet descrip-
tors are put directly into the hardware queues of the net-
work cards. Since the software queues were all allocated
on a single CPU, costly copy operations were needed
to move packet descriptors between these queues and
the port hardware queues connected with PCIe to other
CPU sockets.

Although optimization level 2 can be seen as generally
applicable, the other modifications are specific to a narrower
set of throughput-oriented applications. Therefore, we decided
not to send the patches to the maintainers.

To achieve the highest performance of our switch, we
follow the DPDK recommendations, especially with regard
to nonuniform memory access (NUMA)-aware object allo-
cation in memory and the use of huge page tables. The
send and receive operations are performed by multiple CPU
cores, which are configured, where possible, to match the
NUMA-node of the corresponding network interface.

IV. EVALUATION

We evaluate our implementation of the lossless OvS-based
software switch with a small-scale DAQ setup using the
ATLAS DAQ software in emulation mode. We use the same
configuration as in [2] to allow comparison with the perfor-
mance of our first prototype.

A. Evaluation Setup

The device under test (DuT) is a server running a single
instance of the lossless OvS-based software switch on

Fig. 2. Hardware topology of a server being used as a network switch.
IMC stands for the integrated memory controller, whereas IIO is the integrated
I/O module. Six dual-port network interface cards (NIC) provide a total
bandwidth of 120 Gbps.

Fig. 3. Emulated data taking configuration for the performance evaluation
of the software switch in the all-to-all incast scenario.

64-bit Fedora 20, kernel version 3.18.7–100. We use one of the
server boards based on the Intel C602 chipset, S2600GZ [26],
with two Intel Xeon EP-2680 eight-core CPUs. A total of
128 GiB DDR3 memory is available (64 GiB per CPU socket).
We equipped the platform with six dual-port 10GbE cards
(Intel 82599 Ethernet controller [27]) providing a total band-
width of 120 Gbps (Fig. 2).

For traffic generation, we use the ATLAS DAQ/HLT soft-
ware in emulation mode running on twelve hosts connected
with unshared 10GbE link directly to the DuT (Fig. 3). The
ROS subsystem generates dummy data, while the DCMs
request the fake events from the ROS. No event processing is
performed on the nodes and so the network subsystem, which
in this case is solely the DuT, can be analyzed in isolation
from other factors, such as processing latency. We emulate
12 DCMs and a single ROS application on every host to create
a demanding all-to-all incast scenario. Each ROS provides a
single event fragment of size 128 KiB. Total event size is
1.5 MiB. A single DCM does not request another event before
it receives all fragments of the previous event from all available
ROSs. All tests are performed with an MTU of 1500 B (for
details of MTU choice, refer to [2]).

Data collection latency of a single event is understood as
the timespan between sending the first request to the ROS
and receiving the last fragment from the ROS. Goodput is
commonly referred to as the application-level throughput—
the raw event data bandwidth excluding all protocol overheads
(Ethernet, TCP/IP, ATLAS protocol).

In this evaluation, we disable dynamic TCP congestion
control in all ROS hosts and instead use a static sender
congestion window [4]. The window is set to a very large value

1242 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

Fig. 4. (a) Goodput and (b) latency distribution in all-to-all incast scenario
with modified OvS.

so that each ROS is not rate-limited by TCP, further increasing
the incast effect. This allows us to evaluate the performance of
our prototype without the influence of congestion control and
test in the best DAQ scenario, pushing simply all the available
data on to the wire. In other words, there is no traffic injection
control, and specialist optimizations discussed in our earlier
study [4] are not in place for the experiments in this paper.

Values for latency, throughput, and bandwidth are averages
over approximately 120 s in all cases.

B. Achievable Goodput and Latency

Fig. 4 gives the comparison of the performance (goodput
and latency) between the DPDK DAQ-dedicated application
from [2] and the OvS with our optimizations:

1) OvS + sw_tx_queue: OvS without daqrings, and with
the default OvS software tx-queue. Reaches only 30.6%.

2) OvS + daqrings-EMC_fix: OvS with daqrings and all
optimizations, except the one for the EMC. Reaches
98.3%, with at least ten CPU cores.

3) OvS+daqrings+ Pause+gcc_02: OvS with daqrings
and all optimizations but also with IEEE 802.3× pause
frame [28] and the default GCC optimization level.
Reaches 98.8% but requires twelve CPU cores. Pause
frames eliminate packet drops for lower core counts but
increase the mean latency [plot on the left-hand side
in Fig. 4(b)].

4) OvS. OvS with all optimizations but without daqrings.
Reaches 97.6% of the theoretical goodput. No perfor-
mance degradation, even with only four CPU cores.

5) OvS + daqrings: OvS with daqrings and all optimiza-
tions. Reaches 98.6% of the theoretical goodput. There is
significant performance degradation for fewer than eight
CPU cores.

6) Ded. DPDK app: Reaches 98.4% of the theoretical
goodput. There is significant performance degradation
when using fewer than six CPU cores.

In OvS + sw_tx_queue and OvS + daqrings-EMC_fix, a
significant number of data transfers suffer from TCP timeouts
with collection latency exceeding 200 ms (for four CPU cores),
which indicates packet drops. For all other cases, no timeouts
are observed, and the latency distribution does not exhibit sig-
nificant jitter. In the case of 14 CPU cores, the median latency
is similar for all configurations except OvS + sw_tx_queue.
When using only four CPU cores, the median increases for
OvS + daqrings, and even more so for OvS + daqrings +
Pause + gcc_02.

The results show that the optimized OvS delivers near max-
imum performance because of the large buffering capabilities.
Using daqrings, performance increases further slightly. We
predict that this difference will increase for larger topologies,
which we will discuss in Section V. Daqrings also offer users
better flexibility to provide fairness across data collectors and
exploit rate/burst control to eliminate packet drops if, for
example, subsequent network stages do not provide enough
buffers (see Section V-C). OvS+daqrings requires, however,
more CPU cores than pure optimized OvS because of the
additional port send/receive operations associated with the
extra daqring devices. Note, there is only a small performance
penalty for lower core counts, when compared to the dedi-
cated DPDK software switch. For optimal core counts, the
performance remains similar.

C. Comparison With ToR Switches

We continue our evaluation by comparing the DAQ-
optimized OvS with two 10GbE ToR switches (shallow
buffers) from different vendors in the same all-to-all incast
scenario (the DuT in Fig. 3 acts as one of the ToRs). The
results in Fig. 5(a) show that the ToR switches with the
default TCP Cubic congestion control algorithm reach less
than 20% of the theoretical goodput. We do not provide
results without congestion control in this case, because the
system became unstable. TCP timeouts are clearly visible in
the latency distribution in Fig. 5(b) with substantial numbers of
event collection latencies exceeding 200 ms. Enabling Ethernet
pause frame (and disabling TCP congestion control again)
significantly improves performance, but they still reach only
64% and 85% compared to nearly 100% achieved by OvS.
Timeouts are avoided, but the latencies are still significantly
higher than those of the OvS. The increased latency for OvS
at the higher load of 99% is expected and caused by the
volume of data flowing through the switch. It is not seen for
the ToRs, since they do not offer the same load and saturate at
lower values.

JERECZEK et al.: LOSSLESS NETWORK FOR DATA ACQUISITION 1243

Fig. 5. Performance comparison of DAQ-optimized OvS with two ToR
switches in all-to-all incast scenario. Achieved load in (a) and latency
distribution in (b). -CC means that TCP congestion control is not used.

Fig. 6. Average per port power consumption in all-to-all incast scenario with
DAQ-optimized OvS for various CPU frequencies. In all cases, goodput is at
least 95% of the theoretical maximum.

D. Energy Consumption

Fig. 6 gives an estimate for power consumption of the
server used as a replacement for the conventional switch. We
compared the maximum power per port. The values for the
ToRs (the same switches as in the previous evaluation) were
taken from their data sheets, whereas the ones for OvS are
plotted for different CPU frequencies and CPU core counts and
correspond to full achievable load (at least 95% in all cases).

Fig. 7. Goodput in all-to-all incast scenario, if some of the unused CPU cores
are used to run the STREAM benchmark.

Although the server running OvS provides better performance,
the power consumption is higher, especially when compared
with ToR A. The situation can be improved in two ways. First,
we use continuous polling of all the OvS ports for incoming
packets. This could be improved by reducing the number
of empty polling cycles and, in effect, reducing the power
consumption. Also, low-power CPUs could be considered,
if providing enough performance. Second, remaining unused
CPU cores could be used to perform different tasks, e.g.,
event filtering or experiment readout, optimizing the utilization
of the entire system. We provide an initial evaluation in the
following section.

E. Use of the Remaining Cores

Our results from the previous sections indicate that there
is always a specific number of CPU cores that can guarantee
a desired load that our switch sustains. Hence, there is the
possibility to use the remaining cores to perform other jobs,
provided that they do not degrade the switching performance.

The obvious resource, which could be the source of
this negative interaction, is the memory. To emulate a
situation in which this interference occurs, we ran STREAM
benchmark [29] on some of the unused cores. This benchmark
measures sustainable memory bandwidth, thus stressing the
memory subsystem. We did not focus on the results of
the benchmark themselves, but we observed the impact on
the goodput of our evaluation setup. The results are presented
in Fig. 7. It is clear that switching performance is affected,
particularly if the STREAM array size (used to perform
operations defined in the benchmark) exceeds the threshold
of a few megabytes. The degree of the degradation depends
on the number of cores and their CPU-socket allocation.
For a real application, careful analysis and tuning would be
required to guarantee the desired level of performance.

V. LOSSLESS NETWORK FOR DAQ

The results presented in the previous section are based on
a small-scale prototype with 12 10GbE ports. Bandwidth-
wise the offered performance is already comparable with the
requirements of ATLAS in the first data acquisition period
five years ago. Nevertheless, a DAQ network requires large

1244 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

port density for full connectivity between the ROS and filtering
farm. In ATLAS, it is currently provided by the classical archi-
tecture with two large routers at the core of the network [8].
In this section, we investigate whether this classical topology
could be replaced by a number of interconnected software
switches. This architecture will have to sustain throughput that
will be two or more orders of magnitude larger for the future
upgrades of the experiments of the LHC. We also study other
important aspects such as management and load balancing.

A. Parallel Spine-Leaf Topology

Instead of combining hundreds of ports in a single core
device, we evaluate the concept of the spine-leaf topology,
popular in datacenters [30]. It is built with a large number of
devices but of a lower port density. In the context of DAQ,
spine-leaf has been evaluated by the ALICE experiment [31].
The authors emphasized good scalability and lower vulnerabil-
ity of the network. In this architecture, the core of the network
is distributed over several spine switches. It is possible to use
the same ToR switches both in spine and leaf layers. In our
case, we focus on building the topology with the proposed
lossless software switches or a combination of software and
ToR switches to overcome the incast congestion problem. The
former is used to build a lossless spine-leaf network and the
latter connect, with slower links, the leaf layer to the end-
nodes. Lossless operation and high performance are achieved
by using traffic shaping at daqrings. In addition, pause frames
can be used to absorb temporal fluctuations, other than incast
congestion. In general, with appropriate traffic shaping at the
software switches in the leaf layer, the spine layer could be
built with ToR switches to improve port density.

When designing the topology, we need to consider the fact
that, in general, the readout nodes can have multiple links to
the network.3 We follow a similar approach as in the datacenter
fabric designed by Facebook [32], [33]. The basic network
unit, a pod, is in our case a subset of ROS nodes (R) and
filtering racks (H). A single filtering rack is a ToR switch that
connects multiple servers. Each server runs a data collector and
the multiple event filtering processes like in the normal DAQ
system. The pod’s nodes are connected to multiple switches—
leaf switches. Each pod’s switch connects to an independent
plane—spine-leaf plane. The pods are interconnected in every
plane by an independent spine-leaf plane. We refer to this
topology as parallel spine-leaf topology, because the planes
provide independent connectivity. The ROS nodes and HLT
ToRs can connect to a number of planes depending on the
number of available uplinks and bandwidth requirements. An
example of this topology with three pods, six ROSs, three
filtering racks in a pod, and four planes is shown in Fig. 8.

B. Bandwidth Scaling

From the viewpoint of a DAQ system, it is important to
estimate the offered bandwidth of the proposed topology.
Normally, the bisection bandwidth of a given network is
given as an indicator, but in our case, we can calculate the

3In the present ATLAS DAQ network, ROS PCs are directly connected to
the core with four 10GbE links [8].

Fig. 8. DAQ network in the parallel spine-leaf topology.

Fig. 9. Method for load balancing by assigning a particular plane and spine
switch for all flows belonging to a DCM.

maximum bandwidth of this topology for the traffic pattern
typical for DAQ. For this purpose, we need to exploit the
multiple network paths that are available between ROSs and
DCMs. Traditional approaches include link aggregation groups
(LAG, IEEE802.3ad [28]) and equal-cost multipath (ECMP,
IEEE802.1Qbp [34]) that use hashing to distribute packets
across available links. In our proposal, however, we can profit
from the fact that we possess the knowledge about the entire
network and the specific traffic pattern. We can use the SDN
controller and the OF protocol to monitor and optimally dis-
tribute the traffic across available paths. In addition, constant
monitoring of the path status can be implemented and used to
provide fault tolerance. In the case of failure, ROS–DCM flows
can be redistributed. Because the number of paths between
readout and collectors is large, a single link failure or even
switch failure should not introduce any significant performance
degradation.

The most obvious approach to optimize the network is to
assign all flows of a particular DCM to use a single plane
and a single spine switch in that plane. An example is given
in Fig. 9. A DCM in the second HLT rack in pod 3 is assigned
to spine switch 1 in plane 4. All flows from ROS to this DCM
are programmed in such a way that all packets go first to the

JERECZEK et al.: LOSSLESS NETWORK FOR DATA ACQUISITION 1245

leaf switches in plane 4 and then to spine switch 1 in the
same plane. They finally reach the destination pod 3 and HLT
rack 2, where this DCM is located. All DCMs can be then
spread across all available planes and spine switches, so the
traffic is equally distributed. This is under the assumption that
all the links have the same bandwidth, and all the nodes are
symmetrically connected to every plane.

In the following, we will derive the theoretical bandwidth
of the DAQ network under these assumptions. This approach
can be considered as an example of the waterfilling algorithm,
well known in communication [35]. The DAQ bandwidth can
be optimized by assigning flows to particular paths depending
on the available capacity.

The total DAQ bandwidth can be calculated as follows:
BDAQ = n p · nH · nR · BRH (1)

with n p is the number of planes, nH is the total number of
HLT racks, nR is the total number of readout nodes, and BRH
is the bandwidth of a single ROS-to-HLT flow. Bandwidth of
this single flow is limited by the bandwidth of the leaf-to-HLT,
ROS-to-leaf, or leaf-to-spine link

BRD = min

(
b

nR
,

b

nH
, BRHinterpod

)
. (2)

The base bandwidth of a single link is denoted with b. For the
flows traversing the spine layer, the bandwidth is limited by
the total number of flows that use the same plane. Note that
flows from ROSs in the same pod as a DCM do not traverse
the spine layer

BRHinterpod = b · nS

nRpod · nHpod · (npod − 1)
(3)

with nS as the number of spine switches in a plane, nRpod as
the number of readout nodes in a pod, nHpod as the number
of HLT racks in a pod, and npod denoting the total number of
pods. The total number of ROSs and HLTs can be written as

nR = nRpod · npod, nH = nHpod · npod. (4)

These simple equations can give a quick estimate of the
offered DAQ bandwidth for various configurations. An exam-
ple for a DAQ system with 100 readout nodes, 28 HLT racks,
and 10 Gbps of base link bandwidth is given in Fig. 10.
This design allows for flexible adjustment of the network to
the requirements by changing the number of spine switches,
planes, or even the number of nodes in a pod.

C. Evaluation

To evaluate the potential usage of the proposed design
in building a centrally managed DAQ network with DAQ-
optimized OvSs, we prepared an IP-only parallel leaf-spine
network consisting of eight software switches running on
separate physical servers [Fig. 11(b)]. The servers acting as
switches follow the same specification as in Section IV. Note,
our edge hosts in this testbed use PCIe gen1. Consequently,
we know in advance that we will not be able to reach the
network capacity. However, we will be able to use this as an
opportunity to show the advantage of daqrings to shape traffic
to suit limited edge devices.

Fig. 10. Example for bandwidth scaling for a DAQ network in the parallel
leaf-spine topology.

We continue to use OvS optimizations described in
Section III-B. The OpenDaylight’s REST API is used to
distribute the flows across available paths with the algorithm
presented in Section V-B. All flows are based solely on
IP addresses and TCP port numbers, so the switches are
not using layer-2 MAC addresses to forward packets. ROSs
and DCMs run on separate physical hosts (12 total). Eight
DCMs run on each host to emulate a small HLT rack. Each
host connects to two planes, and an OvS instance is run
on every host so that the network controller can assign the
flows to the appropriate plane. In this way, the entire network
is programmed by the controller and the OVSDB and OF
protocols are the only protocols in use. The address resolution
protocol (ARP) is not needed, as every host is configured to
represent a distinct network (/32 addressing). This approach
differentiates us from the original design in [32], using tradi-
tional network protocols with ECMP routing and flow-based
hashing.

Figure 11(a) shows that the achieved goodput is far from
the theoretical values calculated using the equations derived
in V-B. The bandwidth is limited by PCIe gen1 bus used in
the hosts emulating ROS and HLT racks, which is not enough
for the dual-port 10GbE network interfaces. Furthermore, their
on-chip buffers are small, so they are easily overflown with
bursty many-to-one traffic. This situation resembles, to some
extent, the real-world ATLAS configuration. The ToR switches
have 10GbE uplinks to the core but only 1GbE to the edge
hosts.

This allows us to evaluate the use of per-daqring rate
limitation. For every daqring device, we use the OVSDB
protocol to limit the number of packets (burst size) than can
be dequeued from this ring in a single polling cycle as already
explained in Section III. Both the burst size and the polling
cycle can be tuned, as shown in Fig. 11(d). Careful fine-
tuning gives us the best combination of those values, which
eliminates packet drops (lossless operation) and maximizes
the goodput by adapting to the particular limitations of the
PCIe/NIC combination. We can now compare the performance
of various configurations [Fig. 11(a), (c)]:

1) 1-plane–1-spine: OvS with rate-limited daqrings reaches
theoretical goodput without any signs of TCP time-
outs in the latency distribution. Without rate-limitation,

1246 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

Fig. 11. Performance of the prototype parallel leaf-spine topology (d) in
many-to-many incast scenario. Achieved goodput in (a), latency distribution
in (c), and tuning of the rate-limited daqrings in (d). Theoretical maximum is
limited by the PCIe gen1 bandwidth and the on-chip memory of the network
cards at the end hosts.

timeouts occur, and goodput is significantly lower. The
same occurs for the configuration without daqrings but
with default TCP Cubic congestion control.

2) 2-planes–1-spine: The goodput of the OvS with rate-
limited daqrings is slightly higher than above but
lower than the theoretical value. The other configu-
rations perform similar to one plane because we are
still using only a single port of the dual-port inter-
face on every host, which is the bottleneck in this
configuration.

3) 2-planes–2-spines: Goodput of all configurations
improves. All possible paths through the network
are used. OvS with rate limitation gives the best
goodput (about 75% of the theoretical PCIe gen1
limit), and no packet drops are observed. Also, the data
collection latency is lower than with 1-plane–1-spine,
because the DCMs of the same HLT node are now
distributed across independent paths.

While limitations of our edge hosts prevent us from reaching
theoretical throughput limits, the results still confirm that our
design can optimize the performance of the entire network
and provide lossless operation, even when all event data are
simply pushed from the ROS. We also see that relying on the
default TCP Cubic, end-to-end congestion control results in
significantly lower performance.

Our main goal in this experiment was to demonstrate how
to build a centrally managed DAQ network using the OF and
OVSDB protocols to control and optimize the traffic. This
initial evaluation confirms that this approach is feasible.

VI. CONCLUSION

In this paper, we proposed a novel approach to build
and manage data acquisition networks based on commodity
TCP/IP and Ethernet technologies with the main objective
of providing lossless operation under incast congestion for
a known data collection configuration. The nearly limitless
memory of a software switch coupled with the flexibility of
a software network controller allows us to design a dedicated
server-based software switch with enormous packet buffers.
Taking advantage of the DAQ-optimized parallel spine-leaf
topology this software switch could be considered as a poten-
tial replacement for the expensive feature-rich core routers in
the future upgrades of the experiments at the LHC and other
DAQ systems.

First, we optimized the production quality OvS for
DAQ-specific traffic characteristics and implemented our own
queuing mechanism. We proved that saturation and lossless
operation can be reached on real hardware providing the total
bandwidth of 120 Gbps in the all-to-all incast scenario, where
traditional ToR switches perform poorly.

Second, we demonstrated that a potential topology of inter-
connected software switches can scale to higher bandwidths.
For this topology, we proposed and evaluated on real hardware
a method to manage and optimize the network using software-
defined technologies, OF and OVSDB. We showed that the
network can be centrally programmed using solely IP and TCP
addressing.

Thus, we have shown that this design can be a viable
solution for data acquisition networks. Nevertheless, there are
still some remaining questions. One relates to the achievable
port density. There are physical limits on the number of
network interfaces that can be installed on a single server,
and also the physical space available at an experiment’s
site is limited. Second, fault tolerance, including controller,
switch, and link failures, also requires detailed evaluation.
A further line of research could also include the study on
the fairness across data collectors, how service disciplines

JERECZEK et al.: LOSSLESS NETWORK FOR DATA ACQUISITION 1247

might impact latencies, and a generalized algorithm for load
balancing when link bandwidths across the farm are not
identical.

REFERENCES

[1] The ATLAS Collaboration, “The ATLAS experiment at the CERN Large
Hadron Collider,” J. Instrum., vol. 3, no. 8, p. S08003, 2008.

[2] G. Jereczek, G. L. Miotto, D. Malone, and M. Walukiewicz, “A lossless
switch for data acquisition networks,” in Proc. IEEE LCN, Oct. 2015,
pp. 552–560.

[3] N. Neufeld, “LHC trigger & DAQ—An introductory overview,” in Proc.
IEEE-NPSS Real Time Conf., Jun. 2012, pp. 1–4.

[4] G. Jereczek, G. L. Miotto, and D. Malone, “Analogues between tuning
TCP for data acquisition and datacenter networks,” in Proc. IEEE ICC,
Jun. 2015, pp. 6062–6067.

[5] S. Varma, Internet Congestion Control. San Mateo, CA, USA:
Morgan Kaufmann, 2015.

[6] A. Phanishayee et al., “Measurement and analysis of TCP throughput
collapse in cluster-based storage systems,” in Proc. FAST, vol. 8, 2008,
pp. 1–14.

[7] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: Recent results and open problems,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 2, pp. 34–39, 2009.

[8] T. Colombo, “Data-flow performance optimisation on unreliable net-
works: The ATLAS data-acquisition case,” J. Phys., Conf. Ser., vol. 608,
no. 1, p. 012005, 2015.

[9] DPDK, accessed on Mar. 1, 2016. [Online]. Available: http://dpdk.org/
[10] Open vSwitch, accessed on Mar. 1, 2016. [Online]. Available:

http://openvswitch.org/
[11] OpenFlow Switch Specifications, accessed on Jun. 1, 2016.

[Online]. Available: https://www.opennetworking.org/sdn-resources/
technical-library#tech-spec

[12] B. Pfaff and B. Davie, The Open vSwitch Database Management Proto-
col, document RFC 7047, Internet Requests for Comments, Dec. 2013.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7047.txt

[13] Open Networking Foundation, accessed on Mar. 1, 2016. [Online].
Available: http://www.opennetworking.org/

[14] T. D. Nadeau and K. Gray, SDN: Software Defined Networks. Newton,
MA, USA: O’Reilly Media, Inc., 2013.

[15] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[16] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, “Schemes for fast transmis-
sion of flows in data center networks,” IEEE Commun. Surveys Tut.,
vol. 17, no. 3, pp. 1391–1422, 3rd Quart., 2015.

[17] Y. Zhang and N. Ansari, “On architecture design, congestion noti-
fication, TCP Incast and power consumption in data centers,” IEEE
Commun. Surveys Tut., vol. 15, no. 1, pp. 39–64, 1st Quart.,
2013.

[18] Y. Ren, Y. Zhao, P. Liu, K. Dou, and J. Li, “A survey on TCP
Incast in data center networks,” Int. J. Commun. Syst., vol. 27, no. 8,
pp. 1160–1172, 2012.

[19] W. P. Vazquez, “The ATLAS data acquisition system: From Run 1 to
Run 2,” Nucl. Phys. B, Proc. Suppl., vol. 273, pp. 939–944, 2015.

[20] G. Antichi et al., “Time structure analysis of the LHCb DAQ network,”
J. Phys., Conf. Ser., vol. 513, no. 6, p. 062009, 2014.

[21] T. Bawej et al., “Boosting event building performance using Infiniband
FDR for the CMS upgrade,” in Proc. TIPP, 2014, p. 190.

[22] The OpenDaylight Platform, accessed on Oct. 20, 2016. [Online].
Available: https://www.opendaylight.org/

[23] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, Inf. Comput. Sci., Univ.
California, Irvine, CA, USA, 2000.

[24] Python, accessed on Oct. 20, 2016. [Online]. Available:
https://www.python.org/

[25] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc. USENIX NSDI, 2015, pp. 117–130.

[26] Intel Server Board S2600GZ/GL Technical Product Specification Revi-
sion 1.1, Intel, Santa Clara, CA, USA, 2012.

[27] Intel 82599 10 GbE Controller Datasheet, Intel, Santa Clara, CA, USA,
Feb. 2015.

[28] IEEE Standard for Ethernet, IEEE Standard 802.3, 2012.
[29] J. D. McCalpin, “Sustainable memory bandwidth in current high per-

formance computers,” Silicon Graph. Inc., 1995.
[30] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine

datacenter fabrics,” in Proc. IEEE HOTI, Aug. 2013, pp. 71–74.
[31] F. Carena et al., “Preparing the ALICE DAQ upgrade,” J. Phys., Conf.

Ser., vol. 396, no. 1, p. 012050, 2012.
[32] A. Andreyev. Introducing Data Center Fabric, the Next-Generation

Facebook Data Center Network, accessed on Nov. 7, 2016.
[Online]. Available: https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric-the-next-generation-facebook-data-center
-network/

[33] G. Berger. Facebook Fabric Networking Deconstructed, accessed on
Nov. 7, 2016. [Online]. Available: http://firstclassfunc.com/facebook-
fabric-networking

[34] IEEE Standard for Bridging & Management, IEEE Standard 802.1Q,
2014.

[35] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family
of waterfilling solutions,” IEEE Trans. Signal Process., vol. 53, no. 2,
pp. 686–695, Feb. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

