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Abstract Most wave energy converters (WECs) are descri-
bed by linear mathematical models, based on the main
assumption of small amplitudes of motion. Notwithstanding
the computational convenience, linear models can become
inaccurate when large motions occur. On the other hand,
nonlinear models are often time consuming to simulate,
while model-based controllers require system dynamic mod-
els which can execute in real time. Therefore, this paper
proposes a computationally efficient representation of non-
linear static and dynamic Froude–Krylov forces, valid for
any heaving axisymmetric point absorber. Nonlinearities are
increased by nonuniformWEC cross sectional area and large
displacements induced by energy maximising control strate-
gies, which prevent the device from behaving as a wave
follower. Results also show that the power production assess-
ment realized through a linearmodel can be overly optimistic
and control parameters calculations should also reflect the
true nonlinear nature of the WEC model.

Keywords Wave energy · Axisymmetric point absorber ·
Linear potential theory · Nonlinear Froude–Krylov force ·
Latching control

1 Introduction

In wave energy applications, the accuracy of the mathemat-
ical model of a wave energy device is crucial to simulate the
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correct motion and to determine a reliable power production
assessment, as well as to design model-based controllers,
which depend, either explicitly or implicitly, on the math-
ematical model of the system to determine the control
parameters. Usually, the model is linear and based on Cum-
mins equation (Cummins 1962), with hydrodynamic para-
meters calculated using boundary element methods (BEMs).
Notwithstanding the simplicity and the computational con-
venience of a linear model, the hypotheses under which the
linear model is valid are quite restrictive, in particular the
assumption of small motion.

Indeed, the purpose of a wave energy converter (WEC) is
to exaggerate the motion to maximize the power production.
As a result, nonlinearities become important and linear mod-
els become relatively inaccurate. Several studies have shown
significant differences between linear models and experi-
mental tank tests (Babarit et al. 2009), fully nonlinear models
like CFD (Giorgi and Ringwood 2016a), or partially nonlin-
ear models (Merigaud et al. 2012).

While the computational effort usually increases consider-
ably with the number of nonlinearities included in the model,
the gain in accuracy depends on the relevance of each non-
linear effect on the particular device (Peñalba et al. 2015a).
For the heaving point absorber in Fig. 2, the most rele-
vant nonlinear component of the hydrodynamic force is the
Froude–Krylov (FK) force (Merigaud et al. 2012), which is
the integration of the incident pressure over the wetted sur-
face.

While, in the linear approach, the FK force is com-
puted over the constant mean wetted surface, in a nonlinear
approach the pressure is integrated over the instantaneous
wetted surface, which requires a significant additional com-
putational effort, since it implies the usageof either a veryfine
mesh (Babarit et al. 2009) or an automatic remeshing routine
of the surface (Gilloteaux 2007). These nonlinear solutions
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return accurate results but at a computational price too high
to be compatible with the real-time simulation required by
model-based controllers. This paper proposes a computa-
tionally efficient algebraic calculation of the nonlinear FK
force valid for axisymmetric heaving point absorbers. Note
that such devices normally satisfy the condition of rotational
symmetry and the algebraic equations derived here can be
applied both to single and multi-body devices, when the
hydrodynamic interaction between bodies does not deform
the incident wave significantly.

A purely algebraic calculation of nonlinear Froude–
Krylov forces is achievable for axisymmetric point absorbers
constrained to move in heave only, as the WAVESTAR
device (Hansen andKramer 2011), or for axisymmetric point
absorbers operating mainly in waves long with respect to the
device diameter, as the pitch motion is negligible. In case
of combined heave and pitch motion, no algebraic solution
exists and the FK integral has to be solved numerically.

The focus of the paper is onWECs operating in the power
production region, using a model-based control system to
maximise power capture. The vast majority of waves in the
power production region are linear, though significant nonlin-
earWEC dynamics may be excited. In contrast, many studies
(Henry et al. 2013; Rafiee and Dias 2013) utilise (compu-
tationally complex) nonlinear WEC simulations to assess
the impact of extreme waves, usually using computational
fluid dynamics (CFD) (Agamloh et al. 2008) or smooth parti-
cle hydrodynamics (SPH) (Omidvar et al. 2012). This paper
targets nonlinear wave–body interactions caused by linear
waves in the power production region only. Therefore, the
paper does not purport to address the area ofWECdevice sur-
vivability or extreme loading because such sporadic events,
which are not significant for the power production assess-
ment, cannot be described by linear wave theory.

This paper implements and compares three differentmeth-
ods:

(a) A linear hydrodynamic model,
(b) A nonlinear Froude–Krylov model, using a remeshing

routine to compute the instantaneous wetted surface,
(c) A nonlinear Froude–Krylov model, using the algebraic

solution of the Froude–Krylov force integral.

The linear, remeshing and algebraic approaches are used
to simulate the motion of a heaving sphere with centroid at
the still water level under linear monochromatic waves, to
highlight the nonlinearities deriving only from the FK force
at each individual wave frequency. The chosen geometry is a
sphere, which has a cross-sectional area (CSA) which varies
with the instantaneous draft of the device, which is likely
to emphasize the nonlinearity of the FK force. To maximize
the power production in each sea state, latching control has
been implemented. Latching is a discrete controller that locks

the device motion at its extrema for an appropriate latch-
ing duration so that the amplitude of motion is exaggerated
(Budal et al. 1979). As a consequence, the wetted surface
experiences greater changes, exaggerating the relevance of
nonlinearities. The performance of methods (a), (b) and (c)
(linear, remeshing nonlinear Froude–Krylov and algebraic
nonlinear Froude–Krylov) is compared in terms of amplitude
ofmotion, optimal control parameters, power production and
computational time.

The reminder of the paper is organized as follows: Sect. 2
presents the theoretical background on which the modelling
approaches described in Sect. 3 are based. Section 4 presents,
in detail, the algebraic solution of the nonlinear FK force
integral. A case study is analyzed in Sect. 5 and results are
given in Sect. 6. Some conclusions and final remarks are
presented in Sect. 7.

2 Theoretical background

The fluid is assumed inviscid and the incident flow irrota-
tional and incompressible. The right-handed inertial refer-
ence frame is centered at the hydrostatic equilibrium position
of the body, which is coincident with the gravity center. New-
ton’s second law can be used to describe the system dynamics
as follows:

mξ̈(t) = Fg −
∫∫

S(t)

P(t) n dS + FPTO(t) (1)

where m is the mass of the body, ξ = (x, y, z) the general
displacement of the body from its hydrostatic equilibrium
position, Fg the gravity force, S the submerged surface, P
the pressure, n a vector normal to the surface and FPTO the
power take-off force.

The pressure P can be derived from the incident flow
applying Bernoulli’s equation:

P(t) = −ρgz(t) − ρ
∂φ(t)

∂t
− ρ

|∇φ(t)|2
2

(2)

where ρ is the water density, g the acceleration of gravity,
Pst = −ρgz, hydrostatic pressure and φ the potential flow,
which can be decomposed as the sum of the undisturbed
incident flow potential φI, the diffraction potential φD and
the radiation potential φR:

φ(t) = φI + φD + φR (3)

Combining Eqs. (1–3), different forces can be defined:

– FFKst is the static Froude–Krylov force, given as the bal-
ance between the gravity force and theArchimedes force:
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FFKst (t) = Fg −
∫∫

S(t)

Pst (t) n dS (4)

– FFKdy is the dynamic Froude–Krylov force:

FFKdy (t) = −
∫∫

S(t)

Pdy(t) n dS (5)

where Pdy = −ρ
∂φI
∂t − ρ

|∇φI |2
2 the dynamic pressure.

– FD is the diffraction force:

FD(t) = −
∫∫

S(t)

PD(t) n dS (6)

where PD = −ρ
∂φD
∂t − ρ

|∇φD |2
2 the diffraction pressure.

– FR is the radiation force:

FR(t) = −
∫∫

S(t)

PR(t) n dS (7)

where PR = −ρ
∂φR
∂t − ρ

|∇φR |2
2 the diffraction pressure.

The time-dependance annotation will be omitted for
brevity hereafter. Using Eqs. (4–7), (1) can be rewritten as:

mξ̈ = FFKst + FFKdy + FD + FR + FPT O (8)

Note that, since the fluid is assumed to be inviscid, no
viscous force appears in (8). However, a viscous term could
be added in (8), for example using the Morrison equation
(Morison et al. 1950):

Fvis = −1

2
ρ Cd Ad |V − V0| (V − V0) (9)

where Cd is the drag coefficient, Ad is the characteristic sur-
face, V is the velocity of the floater and V0 is the undisturbed
flow velocity.

3 Modelling approaches

The formulation proposed in Sect. 2 presents some sources
of nonlinearities: Bernoulli’s Eq. (2) has quadratic terms,
the incident potential flow can be nonlinear and the wet-
ted surface may vary in time. While the quadratic terms in
(2) are assumed negligible and only linear waves are con-
sidered, the wetted surface is modelled as either constant
or variable, leading respectively to a linear or nonlinear
representation of Froude–Krylov forces, resulting in linear
and nonlinear Froude–Krylov hydrodynamic models. Radi-
ation and diffraction forces are assumed to be linear in both

models: Falnes (2002) shows that diffraction is negligible
when the device dimension is considerably smaller than the
wave length. Likewise, Clement and Ferrant (1988) show
that radiation nonlinearities are negligible for floating bod-
ies small compared to the wavelength.Merigaud et al. (2012)
implemented both nonlinear Froude–Krylov and nonlinear
radiation and diffraction forces for a heaving point absorber,
showing that the response of the device is mainly affected
by nonlinear FK forces, while nonlinear radiation and dif-
fraction forces have minor effects on the system dynamics.
Furthermore, Gilloteaux (2007) and Guerinel et al. (2013)
use real tank experiments, with the SEAREV device and
the WAVESTAR device respectively, to validate a nonlinear
Froude–Krylov model with linear radiation and diffraction
term, showing a significant improvement with respect to
a fully-linear model and good agreement with the experi-
mental measurement. Similar results are obtained by Giorgi
and Ringwood (2016b), who compare a nonlinear Froude–
Krylov model which includes a viscous term with a fully
nonlinear CFD model.

3.1 Linear model

The linear approach assumes a small amplitude and steep-
ness of the wave, thus the potential problem is linearized and
solved around the equilibrium position of the device. Under
the linear assumption, the mean wetted surface SM is used
and Eq. (8) becomes:

mξ̈ = −KH ξ︸ ︷︷ ︸
FFKst

−
∫ ∞

−∞
Kex (t − τ) η(τ ) dτ

︸ ︷︷ ︸
Fex=FFKdy+FD

−μ∞ξ̈ −
∫ ∞

−∞
KR(t − τ) ξ̇(τ ) dτ

︸ ︷︷ ︸
FR

−FPT O (10)

where:

– FFKst is described by the hydrostatic stiffness KH ;
– Fex is represented by the convolution product between
the excitation impulse-response function (IRF) Kex and
the free-surface elevation η;

– FR is represented by the added mass μ∞ and the con-
volution product between the radiation IRF KR and
the velocity ξ̇ , based on Cummins equation (Cummins
1962);

The added mass and the impulse response functions are
calculated by the time domain BEM software ACHIL3D
(Babarit 2010). The radiation convolution, which is com-
putationally expensive to compute directly, is replaced by its
state space representation (Taghipour et al. 2007).
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3.2 Nonlinear Froude–Krylov force model

While the linearmodel uses the constantmeanwetted surface
SM , the nonlinear FK model computes the Froude–Krylov
forces considering the exact instantaneous wetted surface
S(t), namely integrating the fluid pressure over the actual
submerged portion of the body, as itmoves through thewater:

FFK = FFKst + FFKdy = Fg −
∫∫

S(t)

(Pst + Pdy) n dS

(11)

Note that both static and dynamic Froude–Krylov forces
depend on the instantaneous wetted surface, which depends
both on the incident wave elevation and the displacement of
the body. The remaining force components of (8) are com-
puted linearly: the radiation force is described by Cummins
equation as in (10) while the diffraction force is represented
by the convolution product between the diffraction impulse-
response function K7 and the free surface elevation η:

FD = −
∫ ∞

−∞
K7(t − τ) η(τ ) dτ (12)

Note that, while in the linear model the diffraction force is
computed togetherwith the dynamicFroude–Krylov force by
means of the excitation IRF Kex , in the nonlinear FK model
the diffraction force is calculated independently through the
diffraction IRF K7.

For a general geometry of the device, the computation of
the integral in (11) is performed by discretizing the surface
of the body with a finite mesh and summing up the forces
generated by the pressure acting on the area of each plane
panel. At each time step, as the body moves, an automatic
(computationally expensive) routine re-meshes the partially
submerged panels around the free surface and updates the
instantaneous wetted surface. A detailed description of the
remeshing routing can be found in Gilloteaux (2007).

In contrast, this paper shows an algebraic solution to the
pressure integral in (11), valid for any axisymmetric geom-
etry subject to deep water linear waves, achieving the same
results of the remeshing routine but with a considerable com-
putational saving, as will be shown in Sect. 6. The details of
the pressure integral calculations are provided in Sect. 4.

4 Algebraic solution

The algebraic calculation of the integral in (11) requires the
explicit definition of the pressure P , the infinitesimal surface
element n dS and the limits of integration. The pressure is
obtained applying Airy’s wave theory for deep water waves:

P(x, z, t) = ρgaeχ z cos (ωt − χx) − ρgz (13)

where x is the direction of wave propagation, z is the vertical
direction (positive upwards), a is the wave amplitude, χ the
wave number and ω the wave frequency.

The solution of the pressure integral is presented for two
different types of axisymmetric devices: Sect. 4.1 consid-
ers point absorbers constrained to heave only, for which an
algebraic solution is attainable, while Sect. 4.2 presents the
formulation for point absorbers moving in both heave and
pitch directions, for which a numerical solution of the inte-
gral is required.

4.1 Heaving point absorber

As shown in Fig. 1, the geometry is assumed axisymmetric
with a fixed vertical axis, so it is possible to describe its
surface in parametric cylindrical coordinates:

⎧⎪⎨
⎪⎩
x(σ, θ) = f (σ ) cos θ

y(σ, θ) = f (σ ) sin θ,

z(σ, θ) = σ

θ ∈ [0, 2π)∧σ ∈ [σ1, σ2] (14)

Table 1 shows some examples of profiles of revolution
f (σ ) using the cylindrical coordinates in (14).
Considering the canonical basis given by the radial and

tangent unit vectors, eσ and eθ respectively, the infinitesimal
surface element dS becomes:

n dS = n ‖eσ × eθ‖ dσdθ = n f (σ )

√
f ′(σ )2 + 1 dσdθ

(15)

Finally, the point absorber is constrained to move only
in heave (along the unit vector k of the z-axis), therefore,
only the vertical component Pz of the pressure is taken into
account:

Pz = P ·〈n ,k〉 =
〈

eσ × eθ

‖eσ × eθ‖ ,k
〉

= P · f ′(σ )√
f ′(σ )2 + 1

(16)

Combining Eqs. (13–16) with (11), the magnitude of the
Froude–Krylov force in the vertical direction becomes:

FFKz =
∫ 2π

0

∫ σ2

σ1

P(x(σ, θ), z(σ, θ), t) f ′(σ ) f (σ )dσdθ

=
∫ 2π

0

∫ σ2

σ1

(ρgaeχσ cos (ωt−χ f (σ ) cos θ)−ρgσ)

× f ′(σ ) f (σ )dσdθ (17)

Referring again to Fig. 1, with h0 the draft at equilibrium,
zd(t) the vertical displacement of the body and η(t) the free
surface elevation of the undisturbed incident flow at x = 0,
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Fig. 1 Axisymmetric heaving
device with generic profile
f (σ ): the figure on the left
shows the rest position, with the
center of gravity at the still
water level (SWL) and draft h0;
the figure on the right shows the
free surface elevation η and the
device displacement zd after a
time t∗. The pressure is
integrated over the surface
between σ1 and σ2

the instantaneous wetted surface is defined by the following
limits of integration:

{
σ1 = zd(t) − h0
σ2 = η(t)

(18)

The expression for the pressure in (13) is still not directly
integrable because of the x dependance in the argument of
the cosine. Two solutions are available:

– The long wave approximation, which assumes that the
wave length λ is considerably longer than the character-
istic dimension of the device, so the dependance of the
pressure on x is neglected, or

– A McLaurin expansion of the cosine term.

In Sect. 6.1 it will be shown that, while both methods
are accurate for long waves, only the McLaurin expansion
method (using just three terms of the expansion) is able to
return accurate results in every sea state.

The integral in (17) can be solved for any profile f (σ )

defined either as a polynomial function of order zero (cylin-
der), order one (cone) or any higher order, as an arc of a
circumference (portion of a sphere) or as an exponential.
Table 1 summarizes the results for a variety of common
geometries under the long wave approximation.

4.2 Heaving-pitching point absorber

In this section a two degree of freedom axisymmetric device
is considered, where both heave and pitch motions are
allowed.Alongwith the translational force in (11), a resulting
torque acts on the body:

TFK = −
∫∫

S(t)

(Pst + Pdy) n × r dS (19)

where r is the vector representing the distance from the
center of gravity.

Since the body is pitching, the axis of revolution symmetry
must rotate as well. Therefore, the cylindrical coordinates of
(14) have to be multiplied by the following rotation matrix:

Rδ =
⎡
⎣ cos δ 0 sin δ

0 1 0
− sin δ 0 cos δ

⎤
⎦ (20)

where δ is the pitching angle.
Using pitching cylindrical coordinates, the integrals for

heave force in (11) and pitch torque in (19) have no gen-
eral algebraic solution for axisymmetric point absorbers and
a numerical approach is required. Notwithstanding an alge-
braic solution is not achievable, the numerical integration is a
viable option since it is likely to bemore computationally effi-
cient than a remeshing routine approach. Nevertheless, this
paper aims to deal onlywith algebraic solution of the Froude–
Krylov integral, therefore, purely heaving point absorbers are
considered, using the formulation of Sect. 4.1.

It is worth of notice that a purely pitching prismatic device
is suitable to have an algebraic solution for the Froude–
Krylov torque. Giorgi and Ringwood (2016c) compare the
relevance of nonlinear Froude–Krylov forces, as well as vis-
cous drag, for a heaving point absorber and a bottom-hinged
oscillating flap device.

5 Case study

The relevance of nonlinear Froude–Krylov forces, hence
the difference between the linear and nonlinear FK model,
becomes important when the instantaneous wetted surface
significantly differs from themeanwetted surface. Twomajor
conditions for this situation follow:
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Table 1 Solution of the integral of the vertical component of static and dynamic pressure under the long wave approximation for axisymmetric
devices with different profiles of revolution: vertical line (cylinder), oblique line (cone), arc of circumference (sphere) and exponential profile

Vertical line Oblique line Arc of circumference Exponential profile

f (σ ) = R f (σ ) = m(σ − zd ) + q f (σ ) = √
R2 − (σ − zd )2 f (σ ) = AeB(σ−zd )

Cylinder f (σ ) R

2π∫
0

σ 2∫
σ1

Pstzdσdθ −πR2ρgσ1

2π∫
0

σ 2∫
σ1

Pdyzdσdθ πR2ρgaeχσ1 cosωt

Cone f (σ ) m(σ − zd ) + q

2π∫
0

σ 2∫
σ1

Pstzdσdθ −2πρgm
[
m σ 3

3 + (q − mzd )
σ 2

2

]σ2

σ1

2π∫
0

σ 2∫
σ1

Pdyzdσdθ − 2π
χ

ρgam2 cosωt
[
(
q
m − 1

χ
− zd + σ)eχσ

]σ2

σ1

Sphere f (σ )
√
R2 − (σ − zd )2

2π∫
0

σ 2∫
σ1

Pstzdσdθ −2πρg
[

σ 3

3 + zd
σ 2

2

]σ2

σ1

2π∫
0

σ 2∫
σ1

Pdyzdσdθ − 2π
χ

ρga cosωt
[
(zd + 1

χ
− σ)eχσ

]σ2

σ1

Exponential profile f (σ ) AeB(σ−zd )

2π∫
0

σ 2∫
σ1

Pstzdσdθ −πρgA2
[
(σ − zd − 1

2B )e2B(σ−zd )
]σ2
σ1

2π∫
0

σ 2∫
σ1

Pdyzdσdθ 2πρg A2B
2B+χ

ae−2Bzd cosωt
[
e(2B+χ)σ

]σ2
σ1

(a) The device has a nonuniform cross sectional area (CSA)
and

(b) the device does not behave as awave follower, namely its
displacement zd is significantly different from the wave
surface elevation η.

Note that condition (b) results in significant variations in
wetted surface of the WEC. Therefore, as shown in Fig. 2,
the device is chosen to be a sphere of 2.5 m radius, with
the gravity center G coincident with the geometric center
and a natural period of 3.17 s. The dimension of the sphere is
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Fig. 2 Case study: spherical
device (radius R = 2.5 m, 3.17 s
natural period Tn) constrained to
heave with PTO linear damper
and latching mechanism, subject
to deep water linear waves

chosen to be comparable with common existing wave energy
converters likeWAVESTAR (Hansen andKramer 2011). The
device is constrained to heave only and is tethered to the
seabed with a linear damper acting as PTO, in combination
with a latching mechanism.

To focus only on nonlinearities relative to FK forces,
linear waves based on Airy’s theory are used, assuming a
small steepness Hw/λ (Mehaute 1976), defined as the ratio
between the wave height Hw and wave length λ. The waves
are chosen to be monochromatic to analyze the response of
the device at each different frequency independently, with
wave periods Tw chosen to cover the common sea states
experienced by a point absorber wave energy device in deep
water conditions (Hansen and Kramer 2011). Since FK non-
linearities are caused by changes in the instantaneous wetted
surface, which depends on the intersection between the free
surface elevation and the body position, the higher the wave
steepness, the higher the relevance of FK nonlinearities.
Therefore, three different wave steepness indices are consid-
ered (0.006, 0.012 and 0.018), where the highest steepness
allowed in linear wave theory (Mehaute 1976) generates the
most significant nonlinear response. Moreover, the compar-
ison is carried on at constant steepness for different wave
periods to have the same (scaled) wave profile and, con-
sequently, a fair comparison. The resulting sea states are
summarised in Table 2.

The main objective of a WEC is to maximize the energy
captured by the PTO system. Considering the force-to-
velocity model of a WEC, in the frequency domain, and for
a linear system, Falnes (2002) obtains

V (ω)

Fex (ω) + FPT O(ω)
= 1

Zi (ω)
, (21)

where Zi (ω) is the intrinsic impedance of the system, V (ω)

is the device velocity, Fex (ω) is the wave excitation force
and FPT O(ω) is the control force. The condition for optimal
energy absorption is derived by Falnes (2002) and referred to
as complex conjugate control, since the external impedance
added by the PTO is required to be the complex conjugate of
the intrinsic impedance:

ZPT O(ω) = Z∗
i (ω) (22)

Accomplishing the condition in (22) is equivalent to real-
izing an optimal velocity profile as

V opt (ω) = Fex (ω)

2Ri (ω)
, (23)

where Ri = 1/2(Zi + Z∗
i ) is the real part of Zi . As a con-

sequence, Ri is a real function, so the velocity profile is in
phase with the excitation force. Therefore, the optimal com-
plex conjugate control imposes a condition over both the
amplitude and the phase of the velocity. A simpler approach
is followed by a phase-only control strategy, such as latching,
which pursues only the phase matching between the veloc-
ity and the exciting force, without considering the amplitude.
Latching is a discrete example of phase control, meaning that
an on/off PTO force is applied, usually bymeans of a braking
system, to eliminate any phase shift between the velocity and
the incoming wave excitation force.

Therefore, a latching control system is implemented to
maximize the power capture of the WEC in each sea state.
Moreover, especially at frequencies far from resonance, the
control system prevents the device behaving like a wave
follower, exaggerating the amplitude of motion and, conse-
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Table 2 Sea states: linear
monochromatic deep water
waves according to Airy’s
theory

Wave periods (s) Tw 3 4 5 6 7 8 9 10

Normalized wave lengths, λ/D 2.8 5.0 7.8 11.2 15.4 20.0 25.2 31.2

Wave heights (m), Hw

For Hw/λ = 0.006 0.08 0.15 0.23 0.34 0.46 0.60 0.76 0.94

For Hw/λ = 0.012 0.17 0.30 0.47 0.67 0.92 1.20 1.52 1.87

For Hw/λ = 0.018 0.25 0.44 0.69 1 1.36 1.78 2.25 2.78

Wave lengths have been normalized with respect to the buoy diameter D = 5 m

Fig. 3 Latching calculations to
put velocity and excitation force
in phase. Latching instants at
extrema of position P0 and
−P0: t1, t3 and t5; latching
duration: TL ; unlatching
instants: t2, t4 and t6

quently, FK nonlinearities (Peñalba et al. 2015b). Latching
control is a common solution for point absorbers thanks to its
straightforward implementation in a real device and its good
performance (Budal et al. 1979; Babarit and Clément 2006).

The objective of power absorption maximization in a lin-
ear system is achieved by having the device velocity in phase
with the excitation force. Referring to Fig. 3, the device is
locked at times t1, t3 and t5 at the extrema of displacement,
namely when the velocity is zero, and released at times t2, t4
and t6 after a latched duration TL .

The control parameters are the PTO damping coefficient
BPT O and the latching duration TL which, in a linear case
with monochromatic waves, is optimally calculated (Ring-
wood and Butler 2004) as:

TL = t5 − t1
2

− (t5 − t4) = Tw

2
− Td

2
= Tw

2
− Tn

2
√
1 − ζ 2

(24)

where the damped natural period Td is determined by the
natural period Tn and the total damping ratio ζ of the
systemwhich, in turns, depends on the sum of the frequency-
dependent radiation damping and PTO damping.

In the nonlinear FK model, since the cross sectional area
is changing during the motion, the hydrostatic stiffness and,

consequently, the damped natural period are not constant.
Moreover, it has already been shown that, even in the lin-
ear case, an algebraic solution to the power optimization
problem of both BPT O and TL is not possible (Nolan et al.
2005) (Babarit et al. 2004). Therefore, the optimal couple of
control parameters TL and BPT O that maximizes the power
output is calculated iteratively for each sea state. Since the
optimization procedure uses the results of the nonlinear FK
model simulations, such a latching control strategy effec-
tively becomes a nonlinear model-based control.

6 Results

6.1 Validation of the Froude–Krylov force calculation

It is first necessary to evaluate the correctness of the alge-
braic results of the pressure integral in (11). The static part
of the FK integral can be validated against an alternative
method to calculate the nonlinear static FK force, which can
be expressed as a nonlinear stiffness depending on the vol-
ume Vwet of the instantaneous wetted surface. As expected,
the two methods return exactly the same results.

On the other hand, the static FK force calculated with the
remeshing routine approach is slightly smaller (about 2%).
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Table 3 Percentage difference
between the algebraic dynamic
Froude–Krylov force using
either the long wave or the
McLaurin approximation and
the remeshing routine approach

Steepness 0.006 0.012 0.018 0.006 0.012 0.018

Tw (s) λ/D Long wave approximation (%) McLaurin approximation (%)

3 2.8 19.7 20.0 20.3 0.9 1.2 1.4

4 5.0 10.7 11.0 11.2 1.3 1.4 1.5

5 7.8 5.7 5.9 5.9 1.6 1.5 1.5

6 11.2 3.5 3.6 3.6 1.7 1.7 1.7

7 15.4 2.5 2.6 2.8 1.6 1.7 1.8

8 20.0 2.1 2.2 2.4 1.8 1.9 2.1

9 25.2 1.9 2.1 2.3 1.8 2.0 2.2

10 31.2 1.8 2.0 2.2 1.8 2.0 2.2

The main reason of the difference is the actual geometry
simulated: while the algebraic solution is based on an ideal
sphere, the remeshing routinemodel is based on a discretized
geometry, which rounds down the wetted surface and, conse-
quently, Vwet . In fact, the nonlinear stiffness approach, based
on the same discretized geometry, returns a better agreement
with the remeshing approach. While the non-ideal geometry
approximation is assessable only for the static part, it affects
both the static and the dynamic FK forces.

The algebraic dynamic FK force can be calculated either
using the long wave approximation or the McLaurin expan-
sion, as discussed in Sect. 4.Within the expansion, all the sine
terms integrate to zero, so only the cosine terms contribute
to the algebraic solution. Using only the first three terms (i.e.
the long wave approximation plus other two terms of the
expansion), an acceptable accuracy is achieved for all the
sea states in Table 2, including the shortest wave. While the
algebraic solution of the dynamic FK force using the long
wave approximation is shown in Table 1, Eq. (25) shows
the algebraic solution of the dynamic FK integral of (17),
using the first three terms of the McLaurin approximation
(Table 3).

FMc
FKdyz

=
∫ 2π

0

∫ σ2

σ1

(ρgaeχσ (cosωt+χ f (σ ) cos θ sinωt

−χ f (σ ) cos θ2

2
cosωt) f ′(σ ) f (σ )dσdθ

= −2π

χ
ρga cosωt

[
eχσ

(
zd + 1

χ
− σ

)]σ2

σ1

−π

2
χρga cosωt

[
eχσ

(
zd R

2 − z3d + R2−3z2d
χ

−6zd
χ2 − 6

χ3

)]σ2

σ1

−π

2
χρga cosωt

[
eχσ

(
σ

(
3z2d−R2+ 6zd

χ

+ 6

χ2

)
− σ 2

(
3zd + 3

χ

)
+ σ 3

)]σ2

σ1

(25)

where the notation is the same as that used for the spherical
profile defined in Table 1.

Table 3 shows the percentage difference between the
dynamic FK force calculated using the two algebraic meth-
ods and the remeshing routine approach. As for the static
FK force, the dynamic force is always smaller in the
remeshed approach, mainly because of the discretized geom-
etry approximation. For long waves, the two algebraic
methods are significantly overlapping and the small dif-
ference with the remeshing approach is mainly due to the
geometry approximation. Conversely, when short waves are
considered, only the McLaurin method is effective. Finally,
in addition to a dependence on the wave length, the relative
error slightly increases when the wave steepness increases.

6.2 Results

Section 6.1 shows that, geometry approximation apart, the
results of the algebraic approach are essentially the same as
the remeshing routine approach. Nevertheless, Table 4 shows
that the computational time of the algebraic nonlinear model
is similar to the linear model, while the remeshing routine is
several times slower.

Hereafter, referring to Table 2, only the highest wave
steepness (0.018) is considered to compute the response of
the device, since it generates the most significant nonlinear
behaviour. The difference in amplitude of motion between
the linear and nonlinear FK model is analyzed through the
response amplitude operator (RAO). Figure 4a shows that,

Table 4 Normalized computational time of each nonlinear FK model
to linear model

Normalized computational time

Algebraic method

Long wave approximation 1.35

McLaurin approximation 1.65

Remeshing method 5.15
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Fig. 4 Response amplitude operator (RAO) of linear and nonlinear
model without control (a) and with control (b)

without the controller, the responses are very similar. In fact,
the motion of the device is amplified at frequencies close to
resonance, but the corresponding wave heights are small. On
the other hand, bigger waves occur at frequencies far from
resonance, when the device acts like a wave follower. In both
cases, the variation of instantaneouswetted surface is limited,
therefore, nonlinearities have little relevance.

In contrast, latching control increases the relative motion
between the device and the wave, enhancing the influence
of nonlinearities. Consequently, as shown by the RAO in
Fig. 4b, the linear model significantly overestimates the
response of the device at large periods when the wave height
is bigger.

Comparing Fig. 4a, b, it is evident that the impact of non-
linear FK forces is enhanced by the controller since, as shown
in Fig. 5, they magnifies the amplitude of the motion with
respect to the free surface elevation and, as a consequence,
the change in instantaneous wetted surface. Without con-
trol, the linear and nonlinear models significantly overlap,
since the relative displacement is small. Conversely, when
the controller is applied, the relative displacement is aug-
mented and the linear model diverges from the nonlinear.
Nevertheless, the finite geometry of the floater imposes a
physical limit, since a relative displacement larger than the
draft wouldmean that the body is completely out of thewater.
In such a situation, all hydrodynamic forces should be null,
so the body is pulled back into the water by the gravity force.
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Fig. 5 Maximum relative displacement between the vertical displace-
ment of the floater and the free surface elevation for linear and nonlinear
model under uncontrolled and controlled conditions. The physical limit
represents the relative displacement equal to the draft

On the contrary, all hydrodynamic forces in the linear model
are computed with respect to the mean wetted surface, which
is, therefore, unrealistic when large motions occur. However,
the nonlinear FK model takes into account the instantaneous
wetted surface, giving realistic FK forces, while the diffrac-
tion force is calculated as in the linear model. As a result,
the linear model crosses the physical threshold (relative dis-
placement greater then the draft) and becomes unrealistic for
a wave much smaller than for the nonlinear FK model.

The relative comparison between linear and nonlinear
models strongly depends on the device geometry; in the case
of the sphere, the nonlinear FK forces are smaller than the
linear FK forces because the area of the intersection between
the instantaneous wetted surface and the free surface eleva-
tion is always smaller than the CSA at the still water level. If
a cylinder was considered, nonlinear and linear forces would
be the same (Peñalba et al. 2015b). Conversely, if the CSA
increases as the device moves away from the mean position,
the nonlinear FK forces would be larger than the linear. Nev-
ertheless, to the best of knowledge of the authors, all existing
point absorbers have decreasing diameter with draft and the
vast majority are either spheres or cylinders. In general, if the
area increases with draft, the normal to the surface will be
upwards; eventually the normal must change sign and point
downwards as the draft increases. The consequence is that the
Froude–Krylov forces on the surface would partially cancel
out, generating a small resulting force on the device. Clearly
such a situation is not suitable for a wave energy converter,
since the main objective is to excite the body rather than
stabilize it.

For each sea state, the optimal latching control parameters
BPT O and TL are defined iteratively, thanks to the low com-
putational cost of both models. Figure 6 shows an example
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Fig. 7 Optimal profiles of PTO damping coefficients BPT O for linear
and nonlinear models

of the power graph used to identify the point of maximum
power.

The resulting optimal profiles of the control parame-
ters for each sea state are presented in Figs. 7 and 8. In
the linear model, the progressive reduction of the optimal
damping as Tw increases depends on the reduction of the radi-
ation damping term of the sphere at low frequencies (Falnes
2002).Conversely, the optimal BPT O for the nonlinearmodel
increases. As a consequence, the damped natural period Td
of the nonlinear model is longer and the optimal latching
duration is shorter; Fig. 8 presents the algebraic optimum for
the nonlinear model (dash-dot red line), computed using (24)
with the optimal BPT O of Fig. 7. Nevertheless, the natural
period Tn used in (24) is accurate only for small amplitudes
ofmotion, since it is calculated from themean cross sectional
area.On theother hand, the variations in instantaneouswetted
surface considered in the nonlinear model result in a longer
natural period and, consequently, shorter optimal latching
duration (solid red line).
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Fig. 8 Optimal profiles of latching durations TL for linear and nonlin-
ear models. The algebraic optimum for the nonlinear model refers to
the application of (24) with the optimal damping in Fig. 7
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Fig. 9 Optimal power extracted using linear and nonlinear models

Figure 9 shows the mean power extracted using the
optimal control parameters. Consistent with the RAO of
Fig. 4b, the linear model overestimates the motion of the
wave energy device, leading to an overly optimistic power
production assessment.

7 Conclusions

Previous work (Merigaud et al. 2012; Peñalba et al. 2015b)
showed that nonlinear Froude–Krylov forces are likely to
be the dominant source of nonlinearities for heaving point
absorbers with nonuniform cross sectional area under con-
trolled conditions. This paper proposes an algebraic formula-
tion for nonlinear static and dynamic FK forces valid for any
axisymmetric heaving wave energy converter. An alternative
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method using a remeshing of the surface is used to validate
the algebraic approach; despite a considerable computational
saving, the nonlinear FK forces are computed with the same
accuracy.

From the comparison between linear and algebraic non-
linear model applied to a spherical point absorber subject to
linear regular waves, the following conclusions are drawn:

– Nonlinear FK forces are relevant only when the instanta-
neous wetted surface experiences substantial variations.
Under latching control conditions, the amplitude of
motion is exaggerated and the behavior as a wave fol-
lower prevented. Likewise, other control philosophies
(apart from latching) might exaggerate the body motion
relative to the free surface elevation, causing significant
changes in the nonlinear FK forces (Bacelli and Ring-
wood 2015).

– Nonlinearities affect the choice of optimal latching con-
trol parameters: the required PTO damping coefficient
BPT O is considerably higher than in the linear model.
Furthermore, the damped natural period is longer, due
to both the higher damping and the changing of the
instantaneous cross sectional area, so the optimal latching
duration TL is smaller.

– The linear model leads to an overly optimistic power pro-
duction assessment.

The study carried out in this paper focuses on monochro-
matic sea states to understand the behavior of the system at
each single frequency. Nevertheless, a further step toward
a more realistic situation will be to include panchromatic
waves. In the power production region for WECs, the vast
majority of waves are linear, so the total pressure of an
irregular sea state can be calculated as the superposition
of regular components. Then, the instantaneous wetted sur-
face is determined by the irregular free surface elevation and
the displacement of the device. The higher the number of
frequency components, the higher the computational effort
required in the algebraic calculation of nonlinear FK forces.
Dependingon the ratio of thewavelength to the device dimen-
sion, either the long wave approximation or the McLaurin
expansion is chosen for each wave component to invest the
least computational effort to satisfy a certain accuracy target.
However, the computational saving of the algebraic method
compared to the remeshing approach, may not scale up in
the same way for polychromatic waves. The computational
time of the remeshing approach is mainly influenced by the
remeshing routine used to determine the instantaneous wet-
ted surface, which requires the same computational effort
both in regular and irregular sea states, while the computa-
tional effort of the algebraic method increases (linearly) with
the number of wave frequencies.
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