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Optimal Control of a Three-Body Hinge-Barge Wave
Energy Device Using Pseudospectral Methods

Francesco Paparella and John V. Ringwood, Senior Member, IEEE

Abstract—This paper shows the potential of optimal control for
enhancing the power capture for a three-body hinge-barge wave
energy converter (WEC). It is the first documented application
of a coordinated control strategy for a hinge-barge WEC, where
power is converted at the joints between both the fore and aft
pontoons, and the central barge section. Two separate optimal
control formulations, based on different model representations, are
evaluated and are shown to considerably outperform an optimal
constant damping control strategy.

Index Terms—Model-based control, multi-body wave energy
converters (WECs), pseudo-spectral (PS) methods.

I. INTRODUCTION

H INGE-BARGE wave energy converters (WECs) are ar-
ticulated floating structures that extract energy carried by

the waves. The hinge-barge device is composed by a number of
rectangular bodies interconnected by hinges, and it is consid-
ered to be an attenuator device since it operates longitudinally
to the direction to the incoming wave. The relative pitch motion
between each pair of bodies is used to drive a Power Take Off
(PTO) system. Examples of hinge-barge WECs include the Mc-
Cabe Wave Pump [1] and the SeaPower Platform [2]. Another
example of an articulated WEC is the Pelamis WEC which is
composed by multiple cylindrical section linked by hinged joints
[3]. For the Pelamis WEC, the control of the power absorbed at
each joint axis is realized considering the inputs from all axes.
Therefore, the real-time control of all forces is realized with
respect to the entire machine response. However, little detail on
the control strategies for the Pelamis WEC is provided in the
available literature. In [4], a hinged five-body WEC consisting
of a circular center floater hinged to four smaller spherical buoys
is considered. The relative rotation between the central body and
each buoy is used to drive a PTO, and the absorbed energy is
maximized for both regular and irregular waves. For regular
waves, the optimal velocities and control forces are computed
at each frequency of the incident wave for both passive and
active control. The optimization of the damping coefficients of
passive PTOs is also considered for the regular wave case. For
irregular waves, only the optimization of frequency independent
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damping coefficients of passive PTOs is considered for waves
represented by different realizations of the JONSWAP spec-
trum. In this paper, both passive and active controllers, which
computes the optimal profile of velocities and control forces of
the PTOs, is considered for both regular and irregular waves.

For the optimal control of WECs, the model predictive con-
trol (MPC) strategy has been adopted in [5]. More recently, an
optimal causal control that does not require predictions of the
future velocities of the WEC is proposed in [6]. The objective of
this paper is to asses the value of optimal control with pseudo-
spectral (PS) methods applied to a three-body hinge-barge wave
energy device. The control is based on the model of the device,
and it takes into account the hydrodynamic and kinematic in-
teractions between the bodies. The PTO loads at the joints are
controlled in a coordinated way, so that the total energy extracted
by the device is maximized. In this paper, only the steady-state
solution to the optimal control problem is considered, therefore
the transient response of the device is neglected. An PS optimal
controller that also considers the transient effects can also be
employed [7].

Optimal control of the hinge-barge device is realized using PS
methods, which are a subset of the class of techniques used for
the discretisation of integral and partial differential equations
known as mean weighted residuals [8], [9]. In [10], PS methods
are applied for the optimal control of WECs. PS methods are
used to transform the optimal control problem of the hinge-barge
device into a finite dimensional optimization problem which can
be nonconvex for both passive and active control.

The remainder of the paper is organized as follows: In
Section II, the dynamic model of a three-body hinge-barge de-
vice is derived while, in Section III, PS methods are applied to
solve the optimal control of a three-body hinge-barge device.
In Section IV, PS methods are compared to a standard optimal
controller for both monochromatic and polychromatic waves
while, in Section V, a method to convexify the optimization
problem obtained with PS methods is presented. Finally, overall
conclusions are drawn in Section VI.

II. DYNAMIC MODEL OF A THREE-BODY

HINGE-BARGE DEVICE

This section describes the dynamic model of a three-body
hinge-barge device originally derived in [11]. In Fig. 1, the
device is represented together with the global frame Xg ,Zg ,
while a body frame is assigned to each body composing the
device. The damping plate connected to body 2 aims to reduce
the vertical motion of body 2, increasing the pitch motions
of body 1 and 3. The analysis of the motion of the devices
is restricted to the two dimensional plane X − Z. The total
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Fig. 1. Three-body hinge-barge device where Xg Zg represents the global
frame, and a local frame is assigned to each body composing the device.

number of independent degrees of freedom of the system in
Fig. 1 is four: The heave displacement z2 of body 2, and the
pitch angles θ1 , θ2 and θ3 of bodies 1, 2 and 3, respectively.

The linear dynamic model of the device can be derived with
two different formulations: the differential and algebraic equa-
tions (DAEs) formulation and the ordinary differential equations
(ODEs) formulation. In the DAE formulation, the model is de-
scribed as a set of differential equations for the generalized
coordinates of the unconstrained system and the constraints are
described by algebraic equations. In the ODE formulation, the
constraint equations are no longer described explicitly, but rather
embedded into a set of differential equations for the indepen-
dent degrees of freedom of the system only. Both formulations
are retained in this paper, since different control solutions are
obtained depending on which formulation is used to describe
the dynamics of the device.

A. DAE Formulation

In this section, the DAE formulation is applied in order to
obtain the equations of motion for a three-body hinge-barge
device. The linearized equations of motion are given as follows
[11]:

q̇ = v (1)

Mv̇ + Bviscv + CT
z λ = −Gq − M∞v̇ + · · · −

∫ t

−∞
Krad

× (t − τ)v, dτ + fwave + fPTO (2)

C(z) = 0 (3)

where z is the vector of generalized positions expressed in the
body frame of each body:

z = [z1 z2 z3 ]T = [zb
i,b1

θ1 zb
i,b2

θ2 zb
i,b3

θ3 ]T (4)

where zb
i,bk

and θk are the heave displacement and pitch angle of
body k, respectively, with k = 1, 2, 3. The vector v represents
the generalized velocities expressed in the body frame of each
body, while the vector q represents the generalized positions
expressed in the global frame.

The rigid-body inertia matrix M in equation (2) is a block
matrix where each block Mbk is given as

Mbk =
[

mk 0
0 Iyy ,k + mkh2

g ,k

]
(5)

where k = 1, 2, 3, mk is the mass of body k, Iyy ,k is the moment
of inertia of body k around the y-axis and hg,k is the distance of
the center of mass of body k from point Obk along the z-axis.
The rigid-body inertia matrix Mbk does not contain off-diagonal
terms since that the body coordinate frame of each body is a
principal axis coordinate system, and the vector defining the
position of the centre of gravity with respect to the origin of the
body frame is defined as follows:

rbk
g =

[
0 0 − hg,k

]T
. (6)

The term Bvisc in equation (2) represents the viscous matrix.
The hydrodynamic loads G, M∞, Krad and fwave in equation
(2) are obtained by means of the boundary element software
WAMIT [12]. The vector of PTO forces fPTO in equation (2) is
given by the forces due to the PTO systems connecting body 2
to bodies 1 and 3. As shown in Fig. 1, each PTO is modeled as
a linear dash-pot system. The vector of loads, due to the PTO
systems acting on the device, is given as follows:

fPTO = −
[
0 −Fs1a 0 Fs1a − Fs2a 0 Fs2a

]T
(7)

where

Fs1 = c1 l̇1 (8)

Fs2 = c2 l̇2 (9)

where ci , li , with i = 1, 2, are the damping coefficients and
length of the dash-pot system connecting body 2 to body 1 and
3, respectively. The parameter a represents the vertical distance
between the line of action of the PTO force and the center-line
of the device.

Now, the constraint equations C(z) in equation (3) are de-
rived. The constraint equations introduced by the hinge between
bodies 2 and 3 linearized around the equilibrium position are
given as follows:

Ri
b(θ2)

([
0

zb
i,b2

]
+

[
−l3
0

])
−Ri

b(θ3)
([

0
zb
i,b3

]
+

[
l4
0

])
=0

(10)

where l3 and l4 are the distances of the hinge from Ob2 and
Ob3 , respectively. The constraint equations introduced by the
hinge between bodies 1 and 2 linearized around the equilibrium
position are given as follows:

Ri
b(θ1)

([
0

zb
i,b1

]
+

[
−l1
0

])
−Ri

b(θ2)
([

0
zb
i,b2

]
+

[
l2
0

])
=0

(11)

where l1 and l2 are the distances of the hinge from Ob1 and Ob2 ,
respectively. The linearized rotation matrices Ri

b are given as
follows:

Ri
b(θk ) =

[
1 −θk

θk 1

]
(12)

with k = 1, 2, 3. The constraints in equation (10) force the
global position of the hinge defined by the coordinates of body
2 to be equal to the global position of the hinge defined by
the coordinates of body 3. Similar considerations can be made
for the constraints in equation (11). The matrix of the partial
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derivatives of constraint equations (10) and (11) computed with
respect to the generalized positions and linearized around the
equilibrium position, is given as follows:

Cz =
[

0 0 1 −l3 −1 −l4
1 −l1 −1 −l2 0 0

]
. (13)

B. ODE Formulation

The ODE formulation is now applied to obtain the equations
of motion of a three-body hinge-barge device. The vector of
independent velocities of the device is

vs =
[
θ̇1 żb

i,b2
θ̇2 θ̇3

]T

. (14)

Given the matrix Cz from equation (13), the transformation
matrix P used to express the relation between the vector of
generalized velocities and independent velocities is given as
follows:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

l1 1 l2 0
1 0 0 0
0 1 0 0
0 0 1 0
0 1 −l3 −l4
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

Using P, the equations of motion of the device expressed
with respect to the independent degrees of freedom are given as
follows:

q̇s = vs (16)

Ms v̇s + (Bs +Bvisc,s)vs = −Gsqs − M∞,s v̇s + · · ·

−
∫ t

−∞
Krad,s(t − τ)vs , dτ + fwave,s + fPTO ,s (17)

where

Ms = PT MP (18)

Bs = PT BP + PT MṖ + PT M∞Ṗ (19)

Bvisc,s = PT BviscP (20)

Gs = PT GP (21)

M∞,s = PT M∞P (22)

Krad,s = PT KradP (23)

fwave,s = PT fwave (24)

fPTO ,s = PT fPTO . (25)

III. PS OPTIMAL WEC CONTROL

This section describes the direct transcription of the opti-
mal control problem for a three-body hinge barge device [10].
For a generic WEC control problem, the vector of PTO forces
in equation (2) is considered to be fPTO = Fpu, where Fp is
the configuration matrix and u is the vector of control vari-
ables [10]. The configuration matrix Fp is used in order to

combine, in different ways, the manipulated inputs. Therefore,
the configuration matrix Fp depends on the PTO structure
used. For the case of a three-body hinge-barge device, Fp is
given as

Fp =
[

0 1 0 −1 0 0
0 0 0 −1 0 1

]T

(26)

and the vector of control variables is considered to be
u = [τ1 τ2 ]T , where τ1 is the torque applied by the PTO con-
necting body 2 and 1, while τ2 is the torque applied by the PTO
connecting body 2 and 3. In contrast to the PTOs considered in
Section II-A, the torque applied by each PTO is independent of
the relative pitch velocity between the connected bodies.

The average power absorbed by the PTOs, over the time
interval [0, T ], is given as

J =
1
T

∫ T

0
vT Fpudt. (27)

The optimal control problem consists of computing the vector
of PTO torques that maximize the cost function in equation (27),
subject to the equations of motion (1)–(3) and (16) and (17),
for the DAE and ODE formulations, respectively. Additional
constraints on the applied torques and relative pitch velocity
between the bodies can be considered in the optimal control
formulation.

For the discretization of the control problem, positions and
velocities that appear in the equations of motion obtained for
the DAE and ODE formulations, and the control torques, can
be approximated with a linear combination of basis func-
tions. Given the periodic nature of the variables associated
with the problem, zero mean trigonometric polynomials (trun-
cated Fourier series) represent a sensible choice for the ap-
proximation of positions, velocities and control torques. There-
fore, the ith components of the position and velocity vectors,
and the pth components of the control vector, are given as
follows:

qi(t) ≈ qM
i (t) =

M∑
k=1

xq,c
i,k cos (kω0t) + xq,s

i,k sin(kω0t)

= Φ(t)x̂q
i (28)

vi(t) ≈ vM
i (t) =

M∑
k=1

xv,c
i,k cos(kω0t) + xv,s

i,k sin(kω0t)

= Φ(t)x̂v
i (29)

τp(t) ≈ τM
p (t) =

M∑
k=1

uc
p,k cos(kω0t) + us

p,k sin(kω0t)

= Φ(t)ûp (30)

where i = 1, . . . , 6N and i = 1, . . . , n for the DAE and ODE
formulations, respectively, and p = 1, 2. The parameter M is
the order of expansion for the positions, velocities and control
torques. The vector of the coefficients x̂q

i , x̂v
i and ûp of the

approximated components of the position, velocity and control
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vectors, are given as follows:

x̂q
i =

[
xq,c

i,1 xq,s
i,1 .. xq,c

i,M xq,s
i,M

]T

(31)

x̂v
i =

[
xv,c

i,1 xv,s
i,1 .. xv,c

i,M xv,s
i,M

]T

(32)

ûp =
[
uc

p,1 us
p,1 .. uc

p,Nu
us

p,M

]T
(33)

while the basis function vector Φ(t) is given as follows:

Φ(t) = [cos (ω0t) sin (ω0t) .. cos (Mω0t) sin (Mω0t)]
T

(34)
where ω0 = 2π/T is the fundamental frequency. Given
the linear nature of the model, the frequencies associ-
ated with the system variables (forces, displacements and
velocities) are consistent with the frequencies in the exci-
tation signal i.e. no harmonics or subharmonics are pro-
duced. By substituting the approximated velocities and con-
trol torques defined in equations (29) and (30), respec-
tively, into the expression for the absorbed power defined in
equation (27), the approximated average absorbed power is
given as

JM =
1
T

∫ T

0
Φ(t)T XV FpUT Φ(t)dt

=
1
2

(
ûT

1 (x̂v
2 − x̂v

4 ) + ûT
2 (x̂v

6 − x̂v
4 )

)
(35)

where

XV = [ x̂v
1 , . . . , x̂v

n ] (36)

U = [ û1 û2 ]. (37)

Equation (35) is a quadratic cost function in the expansion
coefficients of the control torques and velocities. The derivatives
of the ith components of the position and velocity vector are,
respectively,

q̇M
i (t) = Φ̇(t)T x̂q

i = Φ(t)T Dφ x̂
q
i (38)

v̇M
i (t) = Φ̇(t)T x̂v

i = Φ(t)T Dφ x̂v
i (39)

where Dφ ∈ R2M ×2M is a block diagonal matrix, with the kth
block (k = 1, . . . ,M ) given as follows:

Dφ,k =
[

0 kω0
−kω0 0

]
. (40)

Regarding the DAE formulation, substituting the approxi-
mated states (28), (29) and their time derivatives (38), (39) into
the equations of motion (1)–(3) yields the following equations

of motion in residual form:

rq
i (t) = Φ(t)Dφ x̂

q
i −

6N∑
p=1

Ji,pΦ(t)x̂v
p (41)

rv
i (t)=

6N∑
p=1

Mi,pΦ(t)Dφ x̂v
p +

6N∑
p=1

Bi,pΦ(t)x̂v
p +

6N∑
p=1

Gi,pΦ(t)x̂q
p

+
6N∑
p=1

∫ t

−∞
Krad i , p

(t − τ)Φ(τ)x̂v
pdτ +

m∑
p=1

CT
qi , p

×Φ(t)x̂λ
p(t)−fwave,i(t)−

2∑
p=1

Fpi , p
Φ(t)ûp (42)

rC
j (t) = Cj (q, t) (43)

where i = 1, . . . , 6N , j = 1, . . . ,m, and Ji,p , Mi,p , Bi,p , Gi,p ,
Krad i , p

, CT
qi , p p

and Fpi , p
are the elements of the matrices J(Θ),

M, B, G, Krad , CT
q and Fp respectively. Regarding the ODE

formulation, substituting the approximated states (28), (29) and
their time derivatives (38), (39) into the equations of motion (16)
and (17), yields the following equations of motion in residual
form:

rq
i (t) = Φ(t)Dφ x̂

q
i − Φ(t)x̂v

i (44)

rv
i (t) =

n∑
p=1

Msi , p
Φ(t)Dφ x̂v

p (t) +
n∑

p=1

Bsi , p
Φ(t)x̂v

p

+
n∑

p=1

Gsi , p
Φ(t)x̂q

p +
n∑

p=1

∫ t

−∞
Krad,si , p

(t − τ)

×Φ(τ)x̂v
pdτ−fwave,si

(t)−
2∑

p=1

Fp,si , k
Φ(t)ûp (45)

where i = 1, . . . , n, and Msi , p
, Bsi , p

, Gsi , p
, Krad,si , p

and
Fp,si , k

are the elements of the matrices Ms , Bs , Gs , Krad,s

and Fp,s respectively. PS methods are used to compute the co-
efficients x̂q

i , x̂v
i and ûp that minimize the residuals (41)–(43)

and (44) and (45) for the DAE and ODE formulations, respec-
tively [13]. The PS methods force the residuals of the equations
of motion to be zero at a certain number of points in time tk ,
called nodes. If the number of nodes is Nc , then a nonlinear sys-
tem of (2 × 6N + m) × Nc and 2 × n × Nc equations is solved
for the DAE and ODE formulations, respectively. The number
of nodes depends on multiple factors, including the order of the
expansion M [14].

The optimal control problem defined by the maximization
of the cost function (27), subject to the dynamic constraints
(1)–(3) and (16) and (17) for the DAE and ODE formulations,
respectively, is transformed into a finite dimensional optimiza-
tion problem with cost function (35), and dynamic constraints
(41)–(43) and (44) and (45) for the DAE and ODE formulations,
respectively. Additional inequality constraints on the applied
PTO torques and relative pitch velocity between the bodies can
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Fig. 2. Comparison between the average power given by the tank data, dy-
namic model, optimal linear damping control, PS ODE and DAE passive control
and PS active control for different frequencies of a regular wave of amplitude
A = 2 cm.

also be considered in the optimization problems:

g(x̂q
i , x̂

v
i , ûp) ≤ 0 (46)

with i = 1, . . . , 6N and i = 1, . . . , n for the DAE and ODE
formulations, respectively, and p = 1, 2.

IV. RESULTS

A specific three-body hinge-barge device was tested in a wave
tank using facilities of the U.S. Naval Academy, Annapolis [15].
The dimensions of the barges are as follows:

1) body 1: length = 0.68 m, width = 0.4 m and height =
0.1 m

2) body 2: length = 0.28 m, width = 0.4 m and height =
0.15 m

3) body 3: length = 1 m, width = 0.4 m and height = 0.1 m.
The dynamic model for the device is identified and validated

in [11].

A. Regular Waves

The power dissipated by the PTO systems was recorded for a
series of regular wave tests performed for a range of frequencies
ω from 3.14 rad/s to 7.54 rad/s and direction of the waves along
the longitudinal direction of the device. In Fig. 2, the dynamic
model shows a good agreement with the tank data in terms of
average absorbed power.

An alternative strategy to PS methods for the control of the
device is to consider a linear model in the frequency domain,
and compute the optimal damping coefficients of the PTOs that
maximizes the energy absorption at each frequency of the in-
coming wave [16]. In Fig. 2, the average power given by the
dynamic model with optimal linear damping coefficients for
the PTOs is shown. In the optimization of the damping coeffi-
cients, constraints on the applied PTO torques and relative pitch
velocity between bodies are considered.

Next, a passive controller (i.e. only positive power flow from
the device) is computed with PS methods, where the torques
applied by the PTOs are independent of the relative pitch veloc-
ity between the bodies. In Fig. 2, the average absorbed power

with a passive controller computed with both DAE and ODE
formulations is shown. An active-set algorithm [17] is used
for the computation of the PS passive control for both DAE
and ODE formulations. As Fig. 2 shows, for both the DAE and
ODE formulations, PS passive control significantly outperforms
a control strategy based on optimal linear damping coefficients
at each frequency of the incoming wave.

For the PS passive control, the average power with the ODE
formulation is different from the average power with the DAE
formulation. While PS methods gives the same solution to the
dynamics of the hinge-barge device [11] for both ODE and DAE
formulation, the solution to the optimal passive control problem
depends on the formulation used to describe the dynamics of the
device. In fact, for the simulation of the linear model of the de-
vice with no control applied, the equations of motion in residual
form can be rearranged as system of equations where the un-
known variables are the expansion coefficients. The number of
equations and variables of the system is the same for both DAE
and ODE formulations, and its solution is unique provided that
the system of equations is nonsingular. For the optimal control
of the device, the cost function considered in equation (35) is
nonconvex quadratic and, furthermore, for the passive control,
the condition of passivity introduces a nonconvex quadratic in-
equality constraint in the optimization problem [4]. Therefore,
the optimal passive control problem can be considered as a non-
convex Quadratically Constrained Quadratic Program [18] and,
therefore, a globally optimal solution cannot be guaranteed for
both DAE and ODE formulations.

An active controller is also computed with PS methods, where
the flow of power is considered to be bi-directional, so that power
from the grid can be injected into the device. In Fig. 2, the av-
erage absorbed power with an active controller is shown. An
active-set algorithm is again used for the computation of the PS
active control, for both DAE and ODE formulations. As Fig. 2
shows, in contrast to the optimal passive problem, the solution
to the optimal active control problem does not depend on the for-
mulation used to describe the dynamics of the device. Although
the cost function in equation (35) is nonconvex quadratic, the
active-set algorithm is able to find the global optimal solution to
the active control problem. It is important to highlight that the
solution for the PS active control, computed with an interior-
point algorithm [19], depends on the formulation adopted to
describe the dynamics of the device. As Fig. 2 shows, the PS
active control does not show a significant improvement in term
of average power with respect to the PS DAE and ODE passive
control. For a certain range of frequencies, from 4.5 rad/s to
5.5 rad/s, the average power computed by the PS active and
passive control is identical, with no benefit in the use of reac-
tive power within the constraints on forces and velocities. The
small increase in the average power achievable with PS active
control at other frequencies results from the active controller
being better able to exploit the operational space using reac-
tive power. If the constraints are relaxed, then the increases in
the average power computed with PS active control with re-
spect to the PS DAE and ODE passive control will be more
significant.
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Fig. 3. Time domain comparison of the power absorbed by the hinge-barge
device with optimal linear damping control, PS ODE and DAE passive control
and PS active control for a polychromatic wave made using JONSWAP spec-
trum with a significant wave height Hs = 15 cm and significant period T =
1.276 s.

B. Irregular Waves

In Fig. 3, a comparison between the average power absorbed
with the optimal linear damping control, PS ODE and DAE
passive control, and PS active control is shown for a polychro-
matic wave over a time horizon of 20 s. The polychromatic
wave is from a JONSWAP spectrum with a significant wave
height Hs = 15 cm and significant period T = 1.276 s. While
the PS active and passive control maximize the average absorbed
power over the entire time horizon, the coefficients of dash-pot
systems of the optimal linear damping control are set equal to
their optimal values at the peak frequency of the spectrum of the
incoming wave. An interior-point algorithm is used for the com-
putation of the solution of both PS passive and active control,
since the computational time required by an active-set algorithm
is excessive. As shown in Fig. 3, the PS passive control outper-
forms the active control since the interior-point algorithm is not
able to compute the global optimal solution of the PS active
control.

V. INTRODUCTION OF CONTROL WEIGHTING

This section describes a method to obtain a convex cost func-
tion for the optimal PS control problem. The following alterna-
tive cost function to equation (27) is considered

J =
1
T

∫ T

0

(
vT Fpu − ruT u

)
dt (47)

where r is a weighting parameter. The cost function in equation
(47) is composed of the sum of two terms: The average power
absorbed by the PTOs and the squared norm of the control vector
weighted by the parameter r. The parameter r can be physically
interpreted as a weight on extreme (squared) values of the con-
trol force u and also serves to help to convexify the performance
function in equation (47). By substituting the approximated ve-
locities and control torques, defined in equations (29) and (30),
respectively, into equation (47), the following cost function is

Fig. 4. Minimum and maximum eigenvalue of the matrix H computed for
different values of the weighting parameter r

Fig. 5. Comparison between the average power given by the tank data, dy-
namic model, optimal linear damping control, PS passive control and PS active
control with convex cost function for different frequencies of a regular wave of
amplitude A = 2 cm.

obtained

JM =
1
T

∫ T

0
Φ(t)T

(
XV FpUT + rUUT

)
Φ(t)dt

=
1
2

(
ûT

1 (x̂v
2−x̂v

4 )+ûT
2 (x̂v

6−x̂v
4 )−r( ûT

1 û1 +ûT
2 û2)

)

=
1
2
xT Hx (48)

which is a quadratic cost function in the expansion coefficients
of the control torques, positions and velocities. The quadratic
function in equation (48) is convex if the matrix H is positive
semidefinite, i.e. its eigenvalues are all nonnegative [18]. In
Fig. 4, the minimum and maximum eigenvalue of the matrix H
are plotted for different values of the weighting parameter r. As
shown in Fig. 4, the minimum eigenvalue become nonnegative
approximately for values of r greater than 10.

A. Regular Waves

In Fig. 5, a comparison between the average power absorbed
with the optimal linear damping control, PS passive and active
control is evaluated for each frequency of the regular incoming
wave. A convex cost function, defined as in equation (48) with
r = 10, is considered for both PS passive and active control. An
active-set algorithm is used for the computation of the solution
of both optimal passive and active control.
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Fig. 6. Time domain comparison of the power absorbed by the hinge-barge
device with optimal linear damping control, PS ODE and DAE passive control
and PS active control with convex cost function for a polychromatic wave made
using JONSWAP spectrum with a significant wave height Hs = 15 cm and
significant period T = 1.276 s.

As shown in Fig. 5, both PS passive and active control results
are not sensitive to the formulation used to describe the dy-
namics of the device. Although the PS passive control problem
is still not a convex optimization problem due to the passivity
condition, the active-set algorithm computes the same solution
for both DAE and ODE formulation and, therefore, the global
optimal solution is found. For the PS active control problem,
both interior-point and active-set algorithm do not depend on
the formulation used to describe the dynamics of the device,
since the optimization problem is convex.

B. Irregular Waves

In Fig. 6, a comparison between the average power absorbed
with the optimal linear damping control, PS ODE and DAE pas-
sive control, and PS active control with convex cost function is
shown for a polychromatic wave over a time horizon of 20 s.
The polychromatic wave is made using JONSWAP spectrum
with a significant wave height Hs = 15 cm and significant pe-
riod T = 1.276 s. An interior-point algorithm is used for the
computation of both PS passive and active controls. As shown
in Fig. 6, the PS active control, with a convex cost function,
delivers an average power which is greater or equal to the power
computed with a PS ODE and DAE passive control. From the
comparison between Fig. 3 and Fig. 6, it can be seen that the ad-
dition of an extra term of the control action in the cost function
yields an increase of the power achievable with a nonconvex
cost function for both passive and active control.

However, as shown in Fig. 7, the use of a convex cost func-
tion cannot guarantee an average power for the PS active control
which is greater than the average power for the PS passive con-
trol for all time horizons. Furthermore, for some particular time
horizons, the introduction of an extra term of the control ac-
tion in the cost function penalizes the average power achievable
with a nonconvex cost function. In conclusion, a trade-off value
for r that ensures the convexity of the cost function, without
degrading the absorbed power significantly, must be selected
appropriately. The value for r must be re-tuned as the spectral

Fig. 7. Average power computed with PS ODE and DAE passive control, PS
ODE and DAE active control with convex cost function for different time hori-
zons of the control problem for a polychromatic wave made using JONSWAP
spectrum.

content of the excitation force changes. This is consistent with
the use of MPC for wave energy conversion control problems
[20].

VI. CONCLUSION

This paper shows the benefits of PS optimal passive and
active control respect to a strategy based on optimal linear pas-
sive dampers for the maximization of the energy extracted by a
three-body hinge-barge device. In particular, for regular waves,
the average absorbed power with PS optimal control is approxi-
mately two times greater than the average absorbed power with
optimal linear passive dampers around the resonance of the de-
vice. For irregular waves, a similar increase of the average power
can be achieved with PS optimal control respect to optimal lin-
ear dampers. In terms of convexity properties of PS methods,
for regular waves, the use of a convex cost function gives an
unique solution to both the passive and active control problems
which are insensitive to the formulation used to describe the dy-
namics of the device. However, for irregular waves, the use of a
convex cost function does not provide unique solutions to both
passive and active control problems and, furthermore, the PS
active control cannot guarantee an average power greater than
the PS passive control for all the time horizons of the optimal
control problem. The results also demonstrate that there is little
advantage in using a active controller for a three-body hinge-
barge device, in terms of absorbed power. Given the marginal
benefits of having a reactive controller, considering a realistic
PTO efficiency [21], a further reduction of any benefit is ex-
pected. Also, the costs involved with the use of a bi-directional
PTO can exceed the small increment in the value of absorbed
power that can be achieved with a simpler passive PTO.
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