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Receding Horizon Pseudospectral Control for
Energy Maximization With Application

to Wave Energy Devices
Romain Genest and John V. Ringwood, Senior Member, IEEE

Abstract— This paper addresses the issue of real-time control
for applications, subject to physical constraints, involving an
energy maximization objective. Typical application areas include
renewable energy systems where, in spite of the fact that the
raw energy resource is free, the capital and operational costs
associated with the energy conversion process are not. In addition,
economic energy delivery can only be achieved if the conversion
device is operated efficiently. Previous approaches to this problem
include model predictive control (MPC), but the computational
cost associated with MPC can be high. Pseudospectral solutions
show considerable promise in achieving a good balance between
performance and computation, but currently available solutions
deal with fixed-period optimization. In this paper, a receding
horizon real-time pseudospectral control is developed, based
on half-range Chebyshev Fourier basis functions, which can
accurately represent harmonic signals in the application domain,
while also efficiently dealing with the signal truncation effects
associated with a receding horizon formulation. An application
example, based on a wave energy converter, is used to illustrate
the new control algorithm.

Index Terms— Optimal control, pseudospectral method,
receding horizon, wave energy.

I. INTRODUCTION

THE problem addressed in this paper is a real-time
receding horizon control design for constrained control

problems where the performance function is an energy
function. Such problems are becoming common in renewable
energy systems, such as wave energy [1], tidal stream
energy [2], wind energy [3], or combination of renewable
energies [4], where the resource is ostensibly free, but the
capital and maintenance costs are not [5]. Renewable energy
costs [6] are still in excess of many conventional energy
sources such as fossil fuels and, as a result, many jurisdictions
offer favorable feed-in tariffs to encourage their development.
However, such uneconomic feed-in tariffs are likely to
diminish with time in order to preserve moderate energy
prices as increasing amounts of renewable energy becomes
available. In addition, the intermittency of renewable energy
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sources increases the cost of renewables to the transmission
system operator, compared with dispatchable conventional
sources.

One of the key technological contributors to reducing
the cost of renewable energy is control systems
technology [7]–[9]. With a fixed level of capital investment,
it is imperative that maximum energy is converted by the
renewable energy converter, mindful of the need to keep the
system operating within safe constraints. While MPC and
other control strategies have been applied to wind turbines,
the development of control strategies for tidal turbines and
wave energy devices is at a relatively early stage. In addition,
the high computational requirements of MPC can make
real-time implementation challenging.

Control algorithms based on spectral methods offer an inter-
esting alternative to MPC, as they can be used to solve optimal
control problems under constraints using a specific parame-
terization of the solution [10]. Spectral methods have shown
promise in computational aspects, offering the possibility of
scaling in complexity/performance by changing the number of
approximating basis functions. However, to date, only single
period pseudospectral solutions have been presented in the
renewable energy field [11], [12]. Recent studies have shown
the utility of developing a receding horizon control to solve
optimal control problem in real time such as [13] and [14].
This paper proposes an application of pseudospectral methods
for receding horizon real-time control, based on half-range
Chebyshev-Fourier (HRCF) basis functions, introduced
in [15].

HRCF are particularly well suited to problems where the
system variables are described by harmonic functions, permit-
ting the determination of both the transient and steady-state
components of the optimal trajectory, and allowing real-time
application. Furthermore, HRCF functions, giving a Fourier
extension for nonperiodic signals, are especially suited for the
wave energy field, since wave elevation and fluid–structure
interaction forces are all well described using Fourier analysis.
Solar and wind energies involve state and control variables that
could be well described using HRCF functions; despite their
stochastic behavior, external forces are often low-pass filtered
and exhibit an oscillatory behavior. This method does not
require the use of cutoff functions, such as employed in [16],
to generate periodic functions for a direct Fourier analysis and
does not suffer from the Gibbs phenomenon while generating
a Fourier series. As a case study, this paper demonstrates
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a worked example for solving a wave energy control problem
for a particular type of wave energy converter (WEC).

II. GENERIC CONTROL PROBLEM DESCRIPTION

AND SOLUTION OUTLINE

A. Problem Specification

The optimal control solution for renewable energy devices
typically entails an energy production maximization over a
given time horizon and under dynamical constraints dictating
the allowable system behavior. Consideration of physical lim-
itations are also essential in the design of a realistic control
algorithm and imply additional inequality constraints in the
problem formulation. The cost function is defined by (2)
and depends on the state and control functions, respectively,
x and u of the considered system. The time horizon under
which the absorbed energy is maximized is [t0, t0 + T ], where
t0 ∈ R

+ corresponds to the initial time and T ∈ R
+ is

the prediction time horizon. This prediction time horizon
corresponds to the time window where the energy resource
can be forecasted with an acceptable accuracy for use in
a pseudospectral optimal control problem formulation. The
interval [t0, t0 + T ] is mapped, for simplicity, into [−1, 1],
using the following affine transformation:

τ = 2

T
(t − t0) − 1 (1)

where t ∈ [t0, t0 + T ] and τ ∈ [−1, 1]. We consider
the following finite-horizon and constrained optimal control
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max J =
∫ 1

−1
F(x(τ ), u(τ ), τ )dτ

s.t. ẋ(τ ) = f(x, u, τ ), τ ∈ [−1, 1]
x(−1) = x0
H(x, u) ≤ 0, τ ∈ [−1, 1]

(2)

where F corresponds to the absorbed power, H corresponds to
inequality constraints, and f represents the device dynamics.

B. Control Solution Outline

1) Pseudospectral Method: The method of weighted resid-
ual (MWR) is widely used in various engineering applications
to solve boundary value or eigenvalue problems [17] by
expressing the approximated solution in a finite subspace of a
Hilbert space. The MWR can also be used for optimal control
problems involving the minimization, or maximization, of a
particular cost function while insuring that the state and control
variables respect a specific system of dynamical equations and
inequality constraints [18]. The MWR derives an approximate
solution for optimal control problems, insuring equality
and inequality constraints by annulment of the residuals.
Projections of the residuals on a finite-dimensional space,
spanned by a particular set of orthogonal functions, called
trial functions, are cancelled. Unlike MPC, which effectively
uses local zero-order holder (ZOH) functions to approximate
the optimal solution, spectral methods are generally based on
global functions defined over the complete control horizon.
Various basis functions can be chosen to obtain an approxima-
tion of the optimal solution, and the choice of a particular basis

is discussed in Section II-B2. The choice of trial functions
dictates the type of spectral method use, for example, the
Galerkin method [19], or collocation methods [20].

The cost function minimization, or maximization, is
realized using nonlinear programming methods [21], such
as sequential quadratic program algorithms, leading to
interesting computational aspects since the solution is sought
in a finite-dimensional vector space.

2) Function Approximation: Pseudospectral methods are
based on an approximation of the state and control variables
into an N-D vector space E generated by an orthogonal
basis of real functions B = {φ1, . . . , φN }. This approximation
is usually realized using interpolation methods or truncated
generalized Fourier series. Control and state variables are
commonly rewritten as

xi � x N
i =

N∑

k=1

φk xik = �Xi (3)

u � uN =
N∑

k=1

φkuk = �U (4)

with � = [φ1, . . . , φN ], Xi = [xi1, . . . , xi N ]T , and
U = [u1, . . . , uN ]T . A wide variety of basis functions can
be used to approximate the state and control variables and the
choice of a particular orthogonal base is mainly dictated by
the specific requirements of the control problem.

Orthogonal wavelets are a large family of functions used for
a wide variety of applications. For instance, Haar wavelets can
be employed to solve nonlinear optimal control problems [22],
Legendre wavelets constitute appropriate candidates for
pseudospectral method basis sets for the resolution of
various boundary value problems [23], and other wavelet
families, such as Morlet wavelet, are widely used in signal
processing in diversified domains [24]. Orthogonal wavelet
bases are typically generated through a scaling and shifting
process leading to a significant number of derived basis
functions.

Truncated Fourier series give satisfying approximations
for relatively smooth functions and have been employed in
pseudospectral optimal control, including in the wave energy
field [11]. Fourier approximations are particularly well adapted
to wave signal approximations and constitute a good first
choice for pseudospectral resolution. For finite-time horizon
control, the Fourier basis requires periodicity of the approx-
imated functions in order to avoid the Gibbs phenomenon
on the boundaries. Since the Fourier basis generates only
periodic functions, different boundary values of the approx-
imated functions lead to discontinuities and higher frequency
harmonics are needed to obtain a correct approximation.
A solution has been proposed in [16] to avoid such disconti-
nuities by adding a buffer polynomial to construct an extended
periodic function after which a standard Fourier pseudospectral
method is applied.

Lagrange polynomials are commonly used in Legendre
methods [25], Chebyshev methods [26], or more generally in
Jacobi methods [27] to interpolate or approximate the control
and state variables. A certain amount of precaution has to be
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Fig. 1. Approximation of a nonperiodic function using different sets of
functions. (a) Approximation errors for various orthgonal function sets.
(b) Approximation of the function f using various orthogonal function sets.

taken in the choice of the collocation points in order to avoid
the Runge phenomenon [28] during the interpolation.

In sustainable energy, particularly for WECs optimal control
problems, Fourier-type bases seem to be a straightforward
choice, since the wave elevation, excitation force, and radiation
force are usually well described via Fourier analysis. However,
real-time control and finite-time control horizons require
approximations of nonperiodic functions in order to simulate
both the transient and steady-state responses of the device.
A combination of the real-time and finite-time horizon require-
ments suggests a basis employing HRCF functions, originally
defined in [15] and presented in more detail in Section III.

By a way of example, Fig. 1 shows a comparison between
the approximations of a nonperiodic function defined on
[−1, 1] using different sets of basis functions. As an illustrative
example, the approximated function presented in Fig. 1 is a
sum of NS sine functions with random amplitudes, phases,
and periods uniformly distributed between, respectively, the
following intervals [0, 1], [0, 2π], and [0.5, 2]; NS is arbitrar-
ily set to 103. Fig. 1(a) shows the approximation obtained
with 25 functions such as ZOH functions or Haar wavelets,
truncated Fourier series, Legendre polynomials, and HRCF
functions. Legendre polynomials and HRCF functions give

Fig. 2. Block diagram of the control algorithm.

almost identical results, and the differences between the initial
function and their truncated generalized Fourier series are
indistinguishable. However, truncated Fourier series and ZOH
functions do not provide such a satisfactory approximation
for the example in Fig. 1. Using Fourier series to approximate
nonperiodic functions leads to boundary discontinuities and
the emergence of the Gibbs phenomenon. Haar wavelets or
ZOH functions both need a large number of basis functions to
attain the same level of polynomial or HRCF approximation
error. As a result, a large number of ZOH functions have to
be utilized, increasing the computational time for an optimal
control problem using a standard MPC algorithm such as [29].

3) Solution Route Outline: The method proposed in this
paper comprises a hierarchically organized upper and lower
loop, which, respectively, generate and track a reference
trajectory as shown in Fig. 2. The upper loop determines
the reference trajectory using a pseudospectral method with
HRCF basis functions solved by a nonlinear programming
method, such as sequential quadratic programming (SQP)
algorithm [30] implemented in MATLAB via the fmincon
function. The lower loop facilitates tracking of the reference
trajectory in real time. Trajectory generation is updated at a
regular interval Ts and tracked using a standard backstepping
method [31]. The complete structure of the control algorithm
is presented in Fig. 2.

The remainder of this paper is organized as follows. Based
on [15], [32], and [33], the definition and application of
the HRCF basis for pseudospectral methods is presented in
Section III. A direct application of the control algorithm for a
WEC is presented in IV. Pseudospectral method using HRCF
functions applied to a generic WEC with 1 DOF is presented
in Sections IV-A and IV-B, while the backstepping method
used for the lower loop, to track the reference trajectory, is
described in Section IV-C. Finally, the results are given in
Section IV-E for a particular WEC controlled in real time
under constraints and subject to irregular waves.

III. HALF-RANGE CHEBYSHEV FOURIER FUNCTIONS

A. Half-Range Chebyshev Polynomials

HRCF functions were introduced in 2010 [15] offering a
new alternative in the approximation of nonperiodic functions.
An orthogonal basis for nonperiodic functions is determined
based on half-range Chebyshev polynomials of the first and
the second kind. Half-range Chebyshev polynomials of the
first and the second kind of order k, T h

k and Uh
k , respectively,

are orthogonal with lower order monomials with respect to
the weights 1/(1 − y2)1/2, for the first kind, and (1 − y2)1/2,
for the second kind, on the interval [0, 1]. Definitions of
T h

k and Uh
k are given in [32] based on [15].
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Fig. 3. Half-range Chebyshev polynomials of the first and the second kind.

Definition 1: Let T h
k (y) be the unique normalized sequence

of orthogonal polynomials satisfying
∫ 1

0
T h

k (y)yl 1
√

1 − y2
dy = 0, l = 0, . . . , k − 1 (5)

4

π

∫ 1

0
T h

k (y)2 1
√

1 − y2
dy = 1. (6)

The set {T h
k (y)}∞k=0 is a set of half-range Chebyshev polyno-

mials of the first kind.
Definition 2: Let Uh

k (y) be the unique normalized sequence
of orthogonal polynomials satisfying

∫ 1

0
Uh

k (y)yl
√

1 − y2dy = 0, l = 0, . . . , k − 1 (7)

4

π

∫ 1

0
Uh

k (y)2
√

1 − y2dy = 1. (8)

The set {Uh
k (y)}∞k=0 is a set of half-range Chebyshev polyno-

mials of the second kind. Half-range Chebyshev polynomials
of the first and second kind are shown in Fig. 3.

B. Solution to the Approximation Function Problem

One way to obtain the Fourier series of any nonperiodic
function f ∈ L2[−1,1] is to extend f to a periodic function g
defined in a larger interval in this case [−2, 2]. Determination
of the Fourier extension of f can be stated as an optimization
problem.

Problem 1: Let Gn be the space of four-periodic functions
of the form

g ∈ Gn : g(τ ) = a0

2
+

n∑

k=1

ak cos
π

2
kτ · · · + bk sin

π

2
kτ.

(9)

The Fourier extension of f to the interval [−2, 2] is the
solution to the optimization problem

gn := arg min
g∈Gn

|| f − g||L2[−1,1]
. (10)

Huybrechs [15] proved the existence and uniqueness of
the solution of problem 1 based on orthogonal polynomials
called HRCF polynomials. Two sets {T h

k (cos(π/2)τ )}n
k=0 and

{Uh
k (cos(π/2)τ ) sin(π/2)τ }n−1

k=0 are introduced, constituting an
orthonormal basis for, respectively, the (n+1)- and n-D spaces
spanned by the four-periodic, respectively, cosine and sine
functions. The exact solution of problem 1 is thus directly
found by an orthogonal projection of f , as expressed in the
following:

gn(τ ) =
n∑

k=0

akT h
k

(
cos

π

2
τ
)

. . .

+
n−1∑

k=0

bkUh
k

(
cos

π

2
τ
)

sin
π

2
τ (11)

where

ak =
∫ 1

−1
f (τ )T h

k

(
cos

π

2
τ
)

dτ (12)

and

bk =
∫ 1

−1
f (τ )Uh

k

(
cos

π

2
τ
)

sin
π

2
τdτ. (13)

As was shown in [32], the sets of basis functions
{T h

k (cos(π/2)τ )}n
k=0 and {Uh

k (cos(π/2)τ ) sin(π/2)τ }n−1
k=0 can

be employed in the resolution of a nonperiodic boundary value
problem using pseudospectral methods.

C. Computation With Half-Range Chebyshev Polynomials

1) Differentiation Matrix: Based on the HRCF functions,
Orel and Perne [33] developed in an efficient calculation of the
derivatives of truncated HRCF series. Let gn be the truncated
HRCF series of a function f ∈ L2[−1,1], so that

f (τ ) � gn(τ ) =
n∑

k=0

akT h
k

(
cos

π

2
τ
)

. . .

+
n−1∑

k=0

bkUn
k

(
cos

π

2
τ
)

sin
π

2
τ. (14)

The derivative of gn is then defined by the following:
dgn

dτ
=

n∑

k=0

a′
kT h

k

(
cos

π

2
τ
)

. . .

+
n−1∑

k=0

b′
kUn

k

(
cos

π

2
τ
)

sin
π

2
τ. (15)

In matrix form, D ∈ R
(2n+1)×(2n+1), defined in [33], is

such tha f′ = Df, where f = [a0, . . . , an, b0, . . . , bn−1]T and
f′ = [a′

0, . . . , a′
n, b′

0, . . . , b′
n−1]. The differentiation matrix D

is written in the following form:
D = π

2

(
0 H1

H2 0

)

(16)
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where the matrices H1 ∈ R
(n+1)×n and H2 ∈ R

n×(n+1) are
not expanded here for brevity; the reader may refer directly
to [33] for a more complete exposition.

2) Function Multiplication: In the same manner,
Orel and Perne [33] present a matrix formulation to determine
the truncated series coefficients of the product pn = gn.hn

of truncated series of an arbitrary function f ∈ L2[−1,1]
and a known function h ∈ L2[−1,1]. In matrix form, a
matrix F ∈ R

(2n+1)×(2n+1) is defined such that p = Ff,
where p = [a′

0, . . . , a′
n, b′

0, . . . , b′
n−1]T and f = [a0, . . . ,

an, b0, . . . , bn−1]T , with

F =
(

G1 G2
G3 G4

)

(17)

where the matrix G1 ∈ R
(n+1)×(n+1), G2 ∈ R

(n+1)×n ,
G3 ∈ R

n×(n+1), and G4 ∈ R
n×n are functions of the

coefficients of the truncated series gn that approximates the
known function h and are defined in [33].

3) Convolution Product: The convolution product between
an arbitrary causal function f ∈ L2(R) and a known causal
function h ∈ L2(R) is defined by the following:

( f ∗ h)(t) =
∫ t

0
f (s).h(t − s)ds ∀t ∈ R

+. (18)

Convolution products can occur in dynamical equations
describing physical systems and an illustration is given in
the chosen WEC application in Section IV where the fluid–
structure interaction force, more specifically the radiation
force, involves a convolution product with the radiation
kernel function and the velocity of the floating body. The
determination of the radiation force is generally achieved
using various approximation methods, generally leading to
a state-space model of the convolution product [34]. For
example, Prony’s method [35] approximates the radiation
kernel function by a sum of complex exponentials, creating
new state variables with their respective partial differential
equations. Using such approximations will result in the
unwelcome increase in the dimension of the function f(x, u),
taking into account new radiation state variables.

In this paper, a direct approximation of the radiation kernel
function is achieved using the HRCF functions. The coeffi-
cients of the truncated HRCF series of the convolution product
c = [a′

0, . . . , a′
n, b′

0, . . . , b′
n−1]T between an arbitrary function

f ∈ L2[−1,1] and the known kernel function is given by

c = Pf (19)

where f = [a0, . . . , an, b0, . . . , bn−1]T is the vector of
coefficients of the truncated HRCF series of f , and
P ∈ R

(2n+1)×(2n+1) is the convolution matrix depending
on the kernel function of the convolution product. A direct
application on hydrodynamic radiation convolution product is
presented in Appendix.

IV. WAVE ENERGY DEVICE CASE

Since wave energy is struggling to become economical,
due to high capital and operational costs and significant
safety and durability requirements, adding device intelligence

via embedded computing to boost the power production for a
relatively small marginal cost constitutes a sensible approach.
High-performance control of WECs can be instrumental in
making wave energy harvesting economic [36]. A direct
application is presented for energy production maximization
of a specific flap-type WEC.

A wide variety of WEC devices have been designed and
tested in recent years [37], based on bottom-referenced or
self-reacting principle, in order to recover energy from the
waves. Dynamical equations are used to describe the behavior
of WECs in real sea conditions for either single or multibody
devices and most of the studies, including this paper, are based
on linearized fluid–structure interaction.

Optimal control of WEC requires knowledge of future
values of the excitation force generated by the fluid onto the
device’s hull [38] and potentially requires the use of predic-
tive algorithms [39]. The loss in the accuracy of predictive
algorithms limits the prediction window for practical real-time
usage [39]. Thus, updates have to be made to calculate future
values of the wave excitation force experienced by the device’s
hull. A limited prediction horizon leads to a receding horizon
type of control and implies a relatively short computation
time, suggesting the choice of pseudospectral methods for the
efficient calculation of the optimal reference trajectory.

Various wave energy control algorithms have been devel-
oped from simple philosophies, such as latching [40], linear
damping, or reactive control [41], to more complex ones, such
as MPC [42]. MPC gives promising results, since it allows
high-performance levels to be reached while considering
physical constraints, but suffers from significant computational
demands. The real-time implementation of a model predictive
controller for a WEC remains a complex and critical issue.

Real-time wave energy control algorithms deal with nonpe-
riodic signals, since the prediction horizon is limited, and wave
surface elevation, fluid–structure interaction forces, and body
motion are usually described using spectral forms. The choice
of HRCF functions appears to fit all the requirements needed
to solve the WEC optimal control problem with pseudospectral
method.

Furthermore, the exponential rate of convergence of the
Fourier series of the extended periodic function has been
already demonstrated [15] and offers a better rate of con-
vergence than extensions realized with the use of cutoff
functions [16].

A. WEC Model

For clarity, in this paper, we consider a WEC with only
1 DOF. The fluid is assumed to be inviscid and the flow incom-
pressible, allowing the use of potential theory to determine
fluid–structure interactions. The body displacement and the
amplitude of the wave field are considered small enough to
use linearized potential theory, leading to a linear equation of
motion of the device, or Cummin’s equation [43], defined by

(I + I∞)ẍ +
∫ t

0
K (t − s)ẋ(s)ds + Sh x = Fex + Fc (20)

where x, ẋ, and ẍ are the body displacement and its first
and second derivatives, Fc is the control force, I is the mass



34 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2017

or inertia of the body (depending on the type of degree of
freedom considered), I∞ corresponds to the infinite frequency
added mass, or inertia, of the device, K is the kernel func-
tion for the radiation convolution product used to determine
radiation forces from the velocity of the body, Sh is the
linearized hydrostatic stiffness, and Fex corresponds to the
wave excitation force, or Froude–Krylov force, experienced
by the device. Recent control approaches for nonlinear WEC
models based on pseudospectral method is presented in [44].

From (20) and using the affine transformation g : [−1, 1] →
[t0, t0 + T ], τ 
→ (T/2)(τ + 1) + t0, we define the scaled
excitation force fex = Fex ◦ g, the kernel function of the
radiation convolution product k = K ◦ g, position x1 = x ◦ g,
velocity x2 = ẋ ◦ g, and control force u = Fc ◦ g, leading to
the following system of differential:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ2 = T

2

(

fex + u · · · −
∫ τ

g−1(0)
k(τ −s + g−1(0))x2(s)ds . . .

−Sh x1

)

/(I + I∞)

ẋ1 = T

2
x2

(21)

where g−1(0) = −1 − 2t0/T is the antecedent of 0 from the
affine transformation g. The system of differential (21) defines
the equality constraints in the optimal control problem (2),
specifying the function f of the state variable x = [x1, x2]T

and the control variable u via the following equation:

ẋ =
[

ẋ1
ẋ2

]

= f(x, u, τ ), τ ∈ [−1, 1]. (22)

Practical limitations are considered on the body motion,
control force, and power output to ensure feasibility of the
control and the safety and durability of the WEC in real sea
conditions. For all τ ∈ [−1, 1]

⎧
⎨

⎩

|x1(τ )| ≤ Xmax
|x2(τ )| ≤ Vmax
|u(τ )| ≤ Umax

(23)

where Xmax, Vmax, and Umax are real positive constants
corresponding to position, velocity, and control force
limitations determined in advance to ensure feasibility and
safety. Inequality constraints are rewritten in a matrix form
using approximation functions, and ∀τ ∈ [−1, 1]

H(x, u) =
([

�(τ)
−�(τ)

]

⊗ I3

)

X −
[

1
1

]

⊗ Xmax ≤ 0 (24)

where X = [X T
1 , X T

2 , U T ]T represents the projections of
the state and control variables, Xmax = [Xmax, Vmax, Umax]T

represents position, velocity, and control force limitations,
I3 is the 3-D identity matrix, and ⊗ denotes the Kronecker
product. Equation (24) specifies the linear function H from
the optimal control formulation in (2).

Finally, the cost function, representing the absorbed energy,
is written using the approximation functions in the following
form:

J = −
∫ 1

−1
U T �T (τ )�(τ)X2dt . (25)

The cost function J represents the recovered energy by the
control through the control force u determined by integrat-
ing instantaneous absorbed power over the control horizon.
In the case of orthonormal approximation functions, with
respect to the inner product 〈φi , φ j 〉 = ∫ 1

−1 φi (τ )φ j (τ )dt , the
cost function described in (25) is simplified into the form
J = −U T X2.

B. Cancellation of the Residuals

Replacing state variable derivatives terms and convolution
terms coming from the determination of the radiation force in
the expression of f from (21), one can express the two residual
terms r1 and r2 as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r1(τ ) = �(τ)

(
2(I + I∞)

T
DX2 + P X2 · · · + Sh X1 − U

)

− fex(τ ) + c0(τ )

r2(τ ) = �(τ)

(

X2 − 2

T
DX1

)

.

(26)

Trial functions used by pseudospectral methods are Dirac
distributions, leading to the cancellation of residual terms at
particular instants, or collocation points. The interval [−1, 1]
is covered by N + 1 (corresponding to 2n + 1) collocation
points τi , i.e., Chebyshev points of the second kind

τi = − cos

(
π i

N

)

, i = 0, 1, . . . , N. (27)

The cancellation of the first residual term r1 at the col-
location points leads to N + 1 equations. The cancellation
of the second residual term r2 can be simplified, leading to
N + 1 equations linking the velocity and position projection
vectors X1 and X2, as

{
r1(τi ) = 0, i = 0, 1, . . . , N

X2 − 2

T
DX1 = 0.

(28)

This leads to 2N +2 dynamical equations determining, for a
given projection vector U of the control variable u, the 2N +2
variables composed of the N + 1 components of X1 and X2.

C. Trajectory Tracking

Various control algorithms, such as PID [45], sliding
control [46], or backstepping control [47], can be used to real-
ize the tracking of the reference trajectory. For the WEC case
study, the chosen lower control loop is based on a backstepping
method and is described in the present section. The variables
x1 and x2 refer, respectively, to the position and the velocity of
the device, and the reference position and velocity trajectories
are denoted, respectively, by x1,ref and x2,ref. x1,ref and x2,ref
are supposed to be known and determined previously by the
upper control loop.

Let us define the function V1 depending on the error
e1 = x1 − x1,ref, as

V1 = 1

2
e2

1. (29)
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Fig. 4. Geometrical specification of the flap-type wave energy device.

In order for V1 to be Lyapunov stable, we define the desired
velocity ẋd = x2,ref − τ1e1 and the function V2, as

V2 = V1 + 1

2
e2

2 (30)

where e2 = x2 − x2,ref. The derivative of V2 is

V̇2 = −τ1e2
2 + e2(e1 + ẋ2 − ẍd). (31)

Replacing the expression for the acceleration ẍ from
Cummin’s equation (20) in the derivative function V2,
we obtain

V̇2 = −τ1e2
1 + e2

×
(

e1 + 1

I + I∞
(Fex + Fc · · · − K ∗ x2 − Sh x1) − ẍd

)

(32)

where ∗ denotes the convolution product. In order for V2 to be
Lyapunov stable, the control force u has to be of the following
form:
Fc = −(I + I∞)(e1 − ẍd + τ2e2) − Fex + Sh x1 + K ∗ x2.

(33)

D. Specification of the WEC Model
and Parameter Specification

The control algorithm is tested on a flap-type WEC and
its geometry is shown in Fig. 4. This generic WEC is based
on the same working principle as the Oyster developed by
Aquamarine Power Ltd [48], recovering wave energy from the
oscillatory surge motion of a bottom-hinged vertical panel.

The density of the sea water is fixed at ρwater = 1025 kg/m3.
The geometric characteristics are W = 30 m, T = 1 m,
and h = H = 15 m, the body density being assumed to be
uniform and equal to ρbody = ρwater/8. The total mass of the
device is given by m = ρbody × W × T × L ≈ 58 × 103 kg.
The device inertia along the x-axis, expressed at the center
of gravity, is IG = m(T 2 + H 2)/12 and is expressed at
the center of the pivot linkage I = IG + m(H/2)2. The
infinite frequency asymptote of the added inertia of the device,

Fig. 5. Kernel function of the convolution product used to determine the
radiation force.

Fig. 6. Typical convergence curve of the SQP algorithm.

I∞ = 2.5 × 108 kgm2, and the kernel function K of the
convolution product used to model the radiation force are
both determined using the potential code Aquaplus [49],
with K presented in Fig. 5.

Irregular incident waves are considered, and the elevation
of the free surface is determined using a Bretschneider spec-
trum [50], with a bandwidth of 2 × 10−2 Hz to 5 × 10−1 Hz
and a frequency step d f = 5 × 10−3 Hz. The excitation
force is determined using the Boundary Element Method
code Aquaplus [49], based on the free surface elevation with
randomly selected phases for the sinusoidal wave components.

The linear model is simulated in real time using a
Runge–Kutta method with a time step of �t = 10−2 s.
The prediction horizon, under which the optimization process
is done, is chosen as T = 15 s. The number of basis
functions used to approximate the solution is N + 1 = 15.
The SQP algorithm is run for a maximum of 15 iterations,
leading to an acceptable ratio between convergence quality
and computational time, as shown in Fig. 6.

E. Results

The results are presented for a significant wave height
of Hs = 1 m and a peak wave period of Tw = 8 s,
using a Bretschneider wave model (see Section IV-D). The
computational time to solve one optimal control problem over
the finite prediction horizon is less than 0.6 s for the complete
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Fig. 7. Optimal trajectories (red solid line) and actual trajectories of the device
under control (black dashed line). (a) Velocity, (b) position, and (c) control
force for a 250-s simulation.

Fig. 8. Optimal trajectories (red solid line) and actual trajectories of the device
under control (black dashed line). (a) Position under constraints (horizontal
dotted lines) and (b) control force under constraints (horizontal dotted lines)
for a 250-s simulation.

simulation horizon, allowing its real-time application. Fig. 7
shows the optimal trajectory for the position and velocity of
the device, and the optimal control force, while the black
dashed curves represent the results from the real-time receding
horizon control algorithm described in Section IV. The optimal
trajectory can be theoretically calculated from the exact can-
cellation of the reactive terms in the equation of motion (20)

Fig. 9. Optimal trajectory (red solid line) and actual trajectories of the
device under control (black dashed and dotted lines). (a) Absorbed power
and (b) energy for a 250-s simulation.

by the optimal control force, i.e., stiffness, mass, and added
mass terms [41]. In the optimal case, the device is brought into
resonance for all frequencies and thus a small variation of the
control force can induce large displacement differences. The
velocity and control force determined using the pseudospectral
method are seen to be close to the optimal solution from
Fig. 7. However, some differences between the optimal and
calculated position of the WEC, due to restoring force terms,
are also evident. Nevertheless, the differences between the
optimal trajectory and the actual position of the device under
control do not significantly affect energy absorption, since the
variations are of lower frequency than the wave excitation, and
relate to (stored) potential energy that is not directly involved
in the energy absorption. Fig. 8 illustrates the ability of the
control algorithm to handle path constraints.

Fig. 9 presents the optimal absorbed power and the maximal
energy absorbed by the WEC, and under control. Despite vari-
ations from the optimal trajectory, specifically for the position
and the control force, the control gives a large absorption
rate, and the total efficiency reaches 98.2% (excluding the
initial transient), meaning that almost all the available energy
is recovered.

V. CONCLUSION

The application of pseudospectral methods for the real-time
receding horizon energy maximization problem requires the
careful choice of a basis function that can cater for both
transient and steady-state response components. In particular,
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to approximate nonperiodic functions, specific adjustments
need to be made, for example, using cutoff functions to ensure
periodicity. HRCF functions complement Fourier analysis and
satisfy the nonperiodicity requirement without introducing
bias, via the direct transformation of the input variable,
and some additional computation, since HRCF functions are
directly implementable in the pseudospectral approach.

The method described in this paper is adjustable in compu-
tational complexity in order to match real-time requirements.
The number of basis functions employed and the number of
iterations in the optimization process constitute variables that
have to be adapted to the control hardware limitations. The
number of basis functions corresponds to the dimension of
the space where the optimization algorithm searches for a
solution; hence, the computational time can be reduced if
the solution depends only on few variables. Pseudospectral
methods present a pragmatic approach to solve optimal control
problems and allow path limitations that ensure safety and
durability of the WEC to be taken into account.

The solution developed in this paper suits renewable energy
systems, where the objective is to maximize converted energy,
subject to the retention of stability and adherence to physical
system constraints. In particular, the HRCF basis function set
is well suited to the wave energy control problem, where
the excitation force and system variables are well modeled
using harmonic signals. The example case study shows that the
developed real-time controller can achieve energy capture rates
approaching the theoretical optimum for a flap-type WEC.

APPENDIX

CONVOLUTION PRODUCT

Cummins’ equation (20) involves the determination of a
convolution product in order to estimate part of the radiation
force acting on the device hull. The convolution product
between the scaled velocity x2 of the device and the scaled
radiation kernel function k is split into two terms c0 and c

L(τ ) =
∫ τ

g−1(0)
k(τ − s + g−1(0))x2(s)ds

= c0(τ ) + c(τ ) (34)

where
⎧
⎪⎪⎨

⎪⎪⎩

c0(τ ) =
∫ −1

g−1(0)
k(τ − s + g−1(0))x2(s)ds

c(τ ) =
∫ τ

−1
k(τ − s + g−1(0))x2(s)ds.

(35)

For s ∈ [g−1(0),−1], x2 corresponds to past values of the
velocity and is thus known. The first part of the convolution
product c0 is directly computed based on past velocity values.
Replacing the state variable x2 in the second term c, by its
HRCF truncated series, defined in the following, we get:

x2(τ ) =
N∑

k=0

φk(τ )x2k = �(t)X2 (36)

and

c(τ ) =
N∑

k=0

ck(τ )x2k (37)

with

ck(τ ) =
∫ τ

−1
k(τ − s + g−1(0))φk(s)ds. (38)

The orthogonal projection of ck over each basis function φ j

is pkj and defined by the following:

pkj =
∫ 1

−1
ck(τ )φ j (τ )dτ. (39)

Finally, the matrix P = [pkj ]k, j is used to define the
radiation force, so that

L(τ ) = c0(τ ) +
N∑

k=0

N∑

j=0

φ j (t)pkj x2k (40)

= c0(τ ) + �(τ)P X2. (41)

The expression for the convolution term is replaced in the
expression of the equality constraints (21), i.e., inside the
function f .
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