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Abstract: This paper considers the remote state estimation in a cyber-physical system (CPS)
using multiple sensors. The measurements of each sensor are transmitted to a remote estimator
over a shared channel, where simultaneous transmissions from other sensors are regarded
as interference signals. In such a competitive environment, each sensor needs to choose its
transmission power for sending data packets taking into account of other sensors’ behavior.
To model this interactive decision-making process among the sensors, we introduce a multi-
player non-cooperative game framework. To overcome the inefficiency arising from the Nash
equilibrium (NE) solution, we propose a correlation policy, along with the notion of correlation
equilibrium (CE). An analytical comparison of the game value between the NE and the CE
is provided, with/without the power expenditure constraints for each sensor. Also, numerical

simulations demonstrate the comparison results.
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1. INTRODUCTION

Cyber-physical systems (CPSs), which combine the tradi-
tional control system with information and communication
technologies, can provide great improvements in the sys-
tem performance, see Kim and Kumar (2012). Although
the incorporation of communication networks although
provides stability and efficiency for physical systems, un-
fortunately raises a number of technical challenges in the
control system design. For example, when we consider
remote state estimation using multiple sensors, if the
communication bandwidth is limited and cannot allow all
sensors to transmit data, then simultaneous data trans-
mission will lead to signal interference which will further
lead to packet drop and hence deteriorate the estimation
performance. There are several representative methods for
interference management in communication theory, such
as code division multiple access (CDMA), see Tse and
Viswanath (2005). However, there lack efficient approaches
to cope with the multi-access issue in the remote state
estimation. Another factor to consider is the limited sensor
energy budget. As most sensor nodes use on-board batter-
ies, which are difficult to replace or recharge, the energy for
sensing, computation and transmission is restricted. Moti-
vated by this, a considerable amount of literature has been
published on sensor transmission scheduling to achieve
accurate estimation under limited energy constraints, e.g.,
Shi et al. (2011). However, many of them focus on the one-
sensor case and model the sensor scheduling as a Markov
decision problem (MDP). The problem becomes difficult
when taking multiple sensors into account. In this work,
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we provide quantitative analysis of transmission compe-
tition over a shared channel for remote estimation under
abundant energy and limited energy,respectively.

In communication theory, the traditional way to solve the
competition problem is to model it as a non-cooperative
game (see Machado and Tekinay (2008); Sengupta et al.
(2010)). Precisely, the sensors are treated as selfish players
aiming at maximizing their utilities such as their own
throughput or certain thresholds of signal-to-noise-ratio,
and the Nash equilibrium (NE) concept provides the
optimal strategy for each player. Different from these
preliminary works, our work focuses on dynamic systems
and considers the state estimation performance. Since the
sensors have different time-varying objective functions,
more thorough analysis of the NE solution is required,
as demonstrated in Li et al. (2014). Unfortunately, the
obtained NE in Li et al. (2014) leads to an inefficient
outcome, called “tragedy of the commons”. To overcome
these limitations, we introduce the notion of correlated
equilibrium (CE), along with a correlation mechanism, and
analyze its impact on the state estimation performance.

As proposed by Aumann (1974), the CE is a generalization
of the NE concept to capture the strategic correlation
opportunities that the players face. More importantly, it
allows an increase in all players’ profits simultaneously.
The definition of CE includes an arbitrator who can send
(private or public) signals to the players. Remarkably,
this arbitrator requires no intelligence or any knowledge
of the system, which is different from centralized man-
agement (where everyone obeys some rules provided by
the mediator). Therefore, the generated signal does not
depend on the system states; for example, see Han (2012),

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.489



3830

the surrounding weather conditions or the thermal noises
for communication channels. Unlike the cooperative game,
each player is self-enforced to comply with the outcome
suggested by the mediator, rather than being restricted by
a contract. In conclusion, the CE concept not only provides
a tractable solution for this competition problem, but also
may bring more benefits to each player than the NE.

By the employment of the CE concept, we investigate
the optimal transmission strategies for the sensors in a
large-scale CPS with shared public resources. Compared
with the previous work by Li et al. (2014), not only is
the performance difference between CE and NE studied,
but the respective power constraint for each sensor is also
considered. The main contributions of our current work
are summarized as follows:

(1) We provide a general game-theoretic framework for
remote state estimation in a multi-access system, where
the sensors compete over access to the same channel for
packet transmission.

(2) In the absence of power restrictions, we analyze the
existence and uniqueness of NE for this game. At the
NE, each sensor transmits with its maximum energy level.
Moreover, the CE is proved to be equivalent to the NE.
(3) With energy limitations, we formulate the problem
as a constrained game and provide the closed-form NE.
Moreover, after proposing an easy-to-implement correla-
tion mechanism, we obtain the explicit representation of
the CE. By comparison, the CE is preferable to the NE
for this game.

The remainder of the paper is organized as follows. Mathe-
matical models of the system are described in Section 2. In
Section 3, we introduce the multi-player non-cooperative
game and give the definition of CE. Section 4 demon-
strates the main theoretical results with/without power
constraints. The correlation policy is also introduced in
Section 4, and the simulation results are shown in Section
5. Some concluding remarks are given in the end.

Notations: 7 is the set of non-negative integers. N is the
set of positive integers. k € Z is the time index. R" is
the n dimensional Euclidean space. S7 is the set of n by n
positive semi-definite matrices. When X € S, it is written
as X > 0. X >Y if X —Y € ST. E[] is the expectation
of a random variable and Tr(-) is the trace of a matrix.
For functions f, f1, fa : ST — S%, f1 o f2 is defined as
frof2(X) £ fi(f2(X)). 1(-) is the indicator function. A(:)
represents a set of probability measures and “w.p.” means
with probability. We omit the proofs for Theorem 4.1,
4.2 and Appendix A due to limited space, and interested
readers are referred to Ding et al. (2017).

2. PROBLEM SETUP

As depicted in Fig. 1, the state information of different
processes is sent to the remote estimator through one
shared channel, and essential components of the overall
system structure will be introduced in this section.

2.1 Local Kalman Filter
Consider the following network system containing one

remote estimator and N sensors, which separately monitor
different linear systems:
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Fig. 1. System Architecture.
xl(k—kl):Ale(k)—l-w,(k;), (1)
yi(k) = Cizi(k) +vi(k), i € {1,...,N},  (2)

where at time k, the state vector of the system measured
by sensor i is x;(k) € R™, and the obtained noisy mea-
surement is y; (k) € R™v. For each process ¢ € {1,...,N},
the process noise w;(k) € R™ and the measurement
noise v;(k) € R™v are zero-mean ii.d. Gaussian ran-
dom variables with E[w;(k)w;(j)] = Qi (Qi > 0),
Elvi(k)vi(j)'] = ok Ri (R > 0), and Elw;(k)vi(5)] =
0 Vj, k. The initial state x;(0) is a zero-mean Gaussian
random vector with covariance X;(0) > 0, and it is un-
correlated with w;(k) and v;(k). The time-invariant pair
(A;,C;) is assumed to be detectable and (A;,+/@Q;) is
stabilizable.

In Fig. 1, by running a Kalman filter locally, sensor ¢
can compute the optimal estimate of the correspond-
ing state x;(k) based on the collected measurements
{yi(1),...,yi(k)}. The obtained minimum mean-squared
error (MMSE) estimate of the process state is given by
5 (k) = Elz;(k)|yi(1),...,y:(k)]. The corresponding esti-
mation error covariance is denoted as: Pf(k) = E[(x;(k) —
(k) (xi(k) — 23(K)) |yi(1),...,y:(k)]. These terms are
computed recursively following the standard Kalman fil-
ter equations. The iteration starts from Z7(0) = 0 and
P#(0) = %,(0). For notational simplicity, we define the
Lyapunov and Riccati operators h;(-) and g;(-) : 8 — S
as hi(X) £ A XA} + Qi §i(X) £ X — XCJ[C;XCf +
R;]7'C;X. Suppose that the time-invariant pair (4, C) is
detectable and (A4, 1/Q) is stabilizable, the estimation error
covariance P7 (k) converges exponentially to a unique fixed
point P; of h;og; according to Anderson and Moore (1979).
For brevity, we ignore the transient periods and assume
that the Kalman filter at the sensor has entered steady
state; i.e.,

Pk =P, k> 1 3)

As mentioned in Shi et al. (2011), the steady-state error
covariance P; has the following property.

Lemma 2.1. For 0 < t; < tg, the following inequality
holds:

Tr[P;] < Tr[hi' (Py)] < Tr[hi? (Pi)]. (4)
2.2 Communication Model

As demonstrated in Fig. 1, the sensor ¢ will transmit the
local estimate (k) as a packet to the remote estimator
through a single channel, which may be occupied by
other sensors. In this multi-access system, we assume
that the shared channel has independent Additive White
Gaussian Noise (AWGN). By modeling the signals of
other sensors as interfering noises, the channel quality,
as measured by the signal-to-noise-ratio (SNR) in point-
to-point communication, is closely related to the revised
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signal-to-interference-and-noise-ratio (SINR), see Tse and
Viswanath (2005). For sensor i € {1,..., N}, its SINR is

defined as:

vi(k) =L hl,al,(k) 5 =L 4(11(/6) 27 (5)

>z hjaj(k) + o G_i(k)+o

in which a;(k) > 0 and a;(k) > 0 correspond to the
transmission power taken by sensor i and sensor j, re-
spectively. For simplicity, we define ¢;(k) £ h;a;(k) and
G_i(k) = Z;'V:l,j;éi qj(k). The extra term ., hja;(k) in
the denominator of (5) is due to the interference from the
other sensors, and o2 is the channel noise. The parameter
h; € (0,1),Vi € {1,..., N} is the channel gain from sensor
i to the remote estimator, and L is the spreading gain
of the communication system. These channel parameters
are assumed to be time-invariant.Moreover, they can be
acquired by the sensors, as the sensors can access the
channel state information (CSI) using pilot-aided channel
estimation techniques.

To characterize the packet-dropout for sensor ¢, we in-
troduce the notation symbol error rate (SER) and adopt
a general function to represent the relationship between
SER and SINR: SER; = f(v;), Vi € {1,---,N}, where
f(-) depends on the channel characteristic and the mod-
ulation schemes. As investigated by Loyka et al. (2010),
the error probability function f(-) is strictly concave and
decreasing in ~; at low SINRs. Here, we consider an erasure
channel that the packet will be dropped if it contains
any error (in general, the symbol error can be detected
by the channel coding method). Therefore, the simulta-
neous transmissions of this system are characterized by
independent Bernoulli processes, denoted by n;(k). Let
n:(k) = 0 denotes the loss of packet &{(k), and n;(k) =1
otherwise. Hence, we have Pr(n;(k) =1) =1— f(y), Vi €
{1,---, N}. Note that, the arrival of packet &{ (k) not only
depends on the transmission power of sensor %, but also is
affected by the behaviors of the other sensors.

2.3 Remote State Estimation

Let #;(k) denote the MMSE estimate of the process
x;(k) generated by the remote estimator, with the error
covariance matrix P;(k). Similar to Shi et al. (2011), the
estimationd; (k) is denoted by &;(k) = n;(k)z5 (k) + (1 —
n;(k))A;Z;(k — 1). Similarly, the simple recursion of the
error covariance P;(k) is

Pi(k) £ E[(zi(k) — &5(k)) (zi (k) — &:(k))’]
=ni(k)Pi + (1 = ni(k))hi(Pi(k — 1)), (6)
where P; stands for the steady-state error covariance

defined in (3). For each sensor, we define a random variable
7:(k) € Z as the holding time:

Ti(k) =k — doax {1 m,(1) = 1}, (7)

which represents the intervals between the present moment
k and the most recent time when the data packet 7 (k)
arrives successfully. Without loss of generality, for all
i € {1,---,N}, we assume that the initial packets Z7(0)
are received by the estimator, and hence 7;(0) = 0.

Note that, the equivalent relationship between the holding
time and the estimation error covariance at the remote
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estimator is P;(k) = hiﬂ(k) (P;). Furthermore, the iteration
of the holding time is 7 (k + 1) = (1 — n;(k))(7: (k) + 1).

2.4 Problem of Interest

In our work, every sensor competes for public communi-
cation resources to obtain an accurate estimation perfor-
mance, which can be formulated as a game with multiple
self-interested players. Alternatively, it can be modeled
as a constrained game with the consideration of power
limitations. The best response for each player is the NE in
a traditional manner. Differently, in this work we consider
the notion of CE and investigate whether the coordination
(CE) mechanism, compared to the NE, can bring extra
benefits to each player simultaneously.

3. MULTI-SENSOR TRANSMISSION GAME
8.1 Game theoretic framework

The multi-player game, denoted by G, is characterized by
a triplet < Z, A,U > where

Players: T = {1,---,N} is the set of players, in which
i € T represents sensor i. As a necessary condition for
the equilibrium analysis, we assume that all sensors are
rational.

Actions: A = {A;,i € I} illustrates the set of actions
for each player i. For simplicity, we consider the trans-
mission action sets with discrete energy levels, i.e., A; =
{egl),...,egmi)} for player i. Let a;(k) € A; denote the
transmission action (or pure strategy) taken by player 4
at time k. The mixed strategy for each player, denoted by
si(k) € A(A;),i € {1,---, N}, is aprobability distribution
over the pure action space A;. That is, player i, following
strategy profile s;(k), may take the transmission power
egl),l e{1,...,m;} w.p. s;(a;(k) = egl)) 1 at time k. More-
over, define a(k) = {a1(k), a2(k),...,an(k)} as the joint
action played by the overall players. Alternatively, a(k) =
{a;(k),a_;(k)}, in which a_;(k) represents the joint action
excluding player 4. Similarly, the joint strategy profiles
are represented by s(k) = {s1(k),s2(k),...,sn(k)} =
{si(k),s—i(k)}.

Utility: U = {u;,7 € T} is the utility set and u; represents
the utility function for player ¢ with u; : A — R. As
discussed previously, each sensor focuses on improving
its respective estimation accuracy, measured by the esti-
mation error covariance. Hence, based on (6) the utility
function for player ¢ is characterized by 2

ui(a) & ~Tr{E[P;(k)]} = f(vi)ei — TH{E[Ps]},  (8)
in which ¢; 2 Tr{E[P; — o] (P;)]} is independent of ~;,
and ¢; < 0 is derived from Lemma 2.1. Next, we define
the expected utility function of player ¢ in a slight abuse

of notation u;(-). Under the joint strategy profile s, the
benefit obtained by player i is

1 Here, we abuse the notation s;(a;(k)) to represent one element of
vector s;(k).

2 TIn the rest of this paper, we will omit the variable k of 7;(k), vi(k),
a;(k), si(k) and ¢;(k) when the underlying time index k is obvious
from the context; otherwise, it will be indicated.
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ui(s) 2 Z Pr(als)u;(a), (9)
acA
in which Pr(als) is the probability over the joint action a
under strategy s.

3.2 Equilibrium and Coordination

In our current game, player ¢ is subject to maximize
selfishly its utility at time k, i.e.,

Problem 3.1. For any player i € Z,

Z si(a;) = 1.

a; €EA;

max u;(s) s.t.
seA(Ad) i(s)

One common solution concept is defined as follows:

Definition 3.2. (Nash Equilibrium). In this multi-player
one-stage game with finite action space, the strategy pro-
file s%NF = {sPNF . sxVF} is a Nash equilibrium if
no player can benefit from changing strategies while the
others keep their own equilibrium strategy unchanged; i.e.,
for any player i € Z, u;(s = s*VE) > w;([s; = s,5_; =
©NET) Ws € A(A;). The respective optimal utility value
* NE

i

S
for each player is denoted by u

Regarding the non-cooperation among the overall players,
the NE assumes that players choose actions independently,
ie., Pr(als) = J[,c7 si(a;) in (9). However, it is possible
to extend the sets of strategies available to the players
by allowing them to correlate their choices. Motivated
by that, a more general concept than NE, called the
correlated equilibrium (CE), is proposed. In CE, the
players can receive recommendations on what to play
from an omniscient mediator. To be specific, at time k,
the imagined mediator samples an N-tuple joint action
a = {a1,...,any} as a mode of play w.p. s(a), and the
recommended action for player i is a; = a. Player ¢ may
accept the recommendation or may use a meta-strategy,
denoted by a transition t(a;) : A; — A;, when it is
suggested to play a;. At a CE, no such meta-strategy would
improve each player’s expected utility if the others are
assumed to play according to the recommendation. Hence,
we have the following definition.

Definition 3.3. (Correlated Equilibrium). For this game

G, a strategy profile s©“F is a correlated equilibrium if
and only if

Z Pr(a_; =a |a; = a,s*°F)
a~eA_;

{ui(fai = a,a_; = a™]) —ui([t(a),a_; =a"])} = 0,
for all players, all a € A; s.t. Pr(a; = als*“F) > 0,
and all transitions t(a) € A;. We denote by u:’CE the
corresponding optimal utility value for each player.

(10)

The CE concept can deal with some drawbacks of the
original NE concept. One of the advantages of CE is
that it can be computed in polynomial time (via a linear
programming); whereas, the respective complexity for NE
computation (finding its fixed point completely) is known
as an NP-hard problem, see Nisan et al. (2007). More
importantly, at a CE, multiple self-interested players may
achieve higher rewards by coordinating their actions than
they could at an NE. The comparison between NE and CE
is analyzed rigorously in the following section.
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4. MAIN RESULTS

In this section, we discuss the equilibrium solution for
this game under two different cases: with or without
energy constrains. The specific representations and the
comparison between NE and CE are also provided.

4.1 Without Energy Constraints

First, we consider the existence and uniqueness of NE for
Prob. 3.1, and provide the complete NE solution in the
following theorem.

Theorem 4.1. The multi-player non-cooperative game G
admits a unique NE, which has the property that all
players transmit at its corresponding maximum power
level; i.e.,

*,NE(a_) _ { 17 if a; = €£m1)7
: ) =

¢ 0, others. viel.

S

(11)

Recall that, a CE is a joint distribution over actions from
which no agent is motivated to deviate unilaterally. The
following theorem demonstrates the uniqueness of the CE
solution, and captures the relationship between CE and
NE for the game G.

Theorem 4.2. The multi-player game G has a unique CE,
denoted by s*“F_ and it is equivalent to the NE.

4.2 With Energy Constraint

As discussed previously, the optimal response for each
player is to transmit the estimation packet constantly at
its maximum power level. Nevertheless, such inefficient
situation is less achievable, especially in a practical CPS,
as the energy for sensor transmission is restricted. Here,
we provide different constraints on the expected power
consumption for each sensor, and provide the constrained
game as follows:

Problem 4.3. For each player i € Z,

max  u;(s 12
e i) (12)
s.t. Z s(a) =1, Ela;|s;] = Z si(a;)a; < ef*™*.
acA a; €A,
Moreover, a strict power constraint is considered: el(-l) <

(mi)

max
e < ey

For the NE solution, we have the following result.

Theorem 4.4. The constrained game (i.e., Prob. 4.3) has a
unique mixed strategy NE with its specific representation
given in (13).

Proof. Let s*NE = {sPNF % NEL denote the op-
timal strategy profile. For player 4, given the optimal

. NE NE _x,NE
strategies of others s™;'~, we have u;(s]" s, ") =
o
)

[ 1P —q
, !
maXs; e A(A;) ui(si? S*7NE) = mMaXs; Zzl Si(ai = ez(' ))uz

—1

; : 0 a _ ) oy N
in which u;” = u;(a; =¢;",8%;) =3 . ca , [[im1 jzi

l — N *
3;(aj)ui(e§),a ) < Yaea, iz juisi(aj)uila; =
egl ),a_) = ugl ), and in which I’ € {{ +1,...,m;}. Note
that maximum utility is achieved when the equality in (12)
holds. Next, we rewrite the energy constraint in (12) by
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o 8 (eg )) We can obtain
RONEN

replacing si(el(-l)) with 1 —

that Y7, dlsi(el(.l)) =1, in which d; £ m >0,V e

{2,...,m;} is a constant, and maxs ul(s;,s* NE) =
N

maxs, ()—i—z 7u [dlsl( )] According to prop-

u<l)7u(.1> uu )7u(.1>

erty (2) in the Appendix, we have 0 < — o < g
in which I' € {l +1,.
solution is obtained When dmlsl(e(m‘)) = 1, and the for-
mulation of NE for this constrained game is: for all players,

.,m;}. Apparently, the optimal

1 emax _ (1) (m)
(dmz) :ma ifa; =e; ",
* NE (a ) ! (m; )’L
s, i) = elmi) _ gmax
v -1 _ % i : )
1—(dml) —W, lfal—ei s
0, others.
(13)
The uniqueness of the NE is guaranteed by the optimal
solution of max w;(s;, s 7). [ ]

Note that at the NE, each player transmits the data packet
with the highest or lowest energy power, regardless of the
middle levels. Motivated by this, we propose the following
mechanism.

Definition 4.5. We define the set of correlation policies as
follows:

(1) Assume at each time k, all sensors can observe a
signal in the form of a random variable X (k), uniformly
distributed over the integers {1,..., N}.

(2) A correlated strategy of sensor i is described by two
numbers: «; € [0,1] and j; € [0,1].

(3) At time k, if X (k) = 4, then sensor ¢ is chosen to

(ma)

transmit a packet at the highest power e, *’ w.p. a; and at

1)

the lowest power e;’ w.p. (1 — ;). Otherwise it transmits

w.p. B; for the highest power egm") and w.p. (1 — ;) for
the lowest.

Next, we interpret the computation of the CE under this
correlated policy. To simplify the calculation and obtain
a closed-form formula of the CE, we assume that d,,, =
dm;,Vi # j for this constrained game. Recall that, the
CE concept, compared with the ordinary NE, can simul-
taneously improve the benefit of each player under this
competitive environment. The following theorem captures
this and provides a complete representation of the CE.

Theorem 4.6. This constrained game with d,,, = d,Vi €
7, admits the existence of a CE under the correlation
policy proposed in Def. 4.5. The corresponding parameter
is illustrated by (14). Moreover, the CE outcome of this
game is superior to the NE outcome for each player i € 7.

Proof. First, we discuss the expected utility for player
1 under this policy. By definition, if X (k) = 4, then
S’L(a’l) = { ("LL)}(az)az + ]1{ (1)}(041)(1 az) and fOI‘j 7’é
i,s5(a;) = ]1{ ) (a])ﬁ]—l—]l{e(l)}(a])(l B;). The expect-

( 2 5 Sl S—z—l])+

(1- ai)ui([egl),sl,s_i_l]), in which [ # j.Analogously, if
X (k) = I, the expected utility for sensor i is w;(s’) =

Biui (el (mi) s, 5_imt]) (1B ui([el”, s}, 5_4_1]), in which

ed utility for the sensor § is u;(s) = a;u;([e;
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sy(ay) IL{el(ml)}(al)al + 1{e§1>}(al)(1 — «ay). Next, we

consider the computation of the CE. Solving the con-
strained optimization problem, as well as finding the CE,
becomes rapidly intractable when the number of players
N increases. Here, we can restrict to the same strategy
(a*, %) being adopted by all players, and investigate if
a single player deviates from this strategy by using a
different strategy (o, ). If X (k) = i and player ¢ adopts
a meta-strategy characterized by «, then it obtains the

benefit Uy = -, . Pr(a_;la*, *)[af*u™ + a(l —
B)ui™! + (1= a)Bup™ + (1—a)(1 = f*)up"], in which,
for example, u;""™ £ ui([egml) el(m’) a_;_]) and ul 12

u;([e (1) el( ) ya_;—]). If X(k) =1 and g is used by player ¢,

then its U.tlhty is U/B = Z o Pr<a_Z l|a ’ﬁ*) [504* m’rn+

B — aX)u™ 4+ (1 - B)a%ulm + (1 =8)01 - a%u 11]
Then, the expected utility of player i by adopting (v, 8) is

Uy +(N—-1)Uz (1) + oy N— %
(e, f) = LA D5~ pr(a_,|a*, ) Yt (a

fﬁ*)uﬁJrc in which @ = u]*" — "' —u}™ +u;"' <0
is based on property (3) in the Appendlx7 and ¢ is a
constant. The equality (1) is derived by replacing a with
the expression Nd=! — (N — 1)3 (obtained by the energy
constraint). Hence, u;(«, 8) is an affine function in 8, and

the optimal 3 is

Nd'-1
rnaX(O, ﬁ), If o* > 6*,
ﬂ* = ) Ndfl_ N (14)
mln(l, m), If < /8*.

Last, we compare the CE outcome with that of the
NE. The NE is a special case of the CE, that is a* =
B* = s. From the previous discussion, we know that
argmaxg u; (e, 8) = * # s. Hence, we have the payoff
of the CE strictly greater than the payoff of the NE. W
Remark 1. In the absent of energy limitations, the best
response for each sensor is transmitting with the maximum
energy level, no matter what equilibrium it chooses. The
result is of common sense since the players’ utilities do
not involve the power expenditure items. However, when
taking the power restrictions into account, the correlation
mechanism displays its advantages over the NE. Intuitive-
ly, the existence of mediator in CE can coordinate the
players’ behaviors to alliterate these conflicts and achieve
better performance.

5. SIMULATION AND EXAMPLES

In this section, we will compare the NE outcome and
the CE outcome of the game-theoretic model using an
example. Here, we consider a multi-agent system with
three sensors and one remote estimator. The monitored
dynamic processes have respective system parameters,
demonstrated in Tab. 1. In addition, the error covariances
of the Gaussian noises are @; = R; = 0.8,Vi € {1,2,3}.
Some parameters of the communication channel are given
in Tab. 1. Moreover, e() = 0 (note that each sensor
may choose to stay mactlve), h; = 1,Vi € {1,2,3} and
L = 2. For the SER, we adopt the formula: f(y) =1 —

2Q(y/4y~1 — 1), where Q(z) = \/ﬂf exp( %)dy

By Theorem. 4.4 and Theorem. 4.6, we can obtain the
following two strategy profiles for the sensor to transmit
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Table 1. System Parameters

Process parameters Channel parameters
Process1 | A1 | 09 | C1 | 1 egml) 1 emax [ 5
Process 2 | Az | 0.8 | Cy | 1.1 eng) 0.8 | emax | 0.4

Process 3 | A3 | 0.7 | C3 | 1.2 (ms) 106 e | 0.3
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data packets:
(1) sNE : 5,(0) = s;(™)) = 0.5, Vi € {1,2,3]}.

cE . . (. (m)y _ J 0.75, if sensor ¢ is chosen;
(2) s tsile; ) = 0.25, others.

51(0) = 1 — s;(el™)).

(2

Via 100,000 Monte Carlo simulations, the comparison
(between sVF and s“F) results of state estimation error
covariance for sensors 1 and 2 are depicted in Fig. 2.
Furthermore, we represent the performance difference of
sensor 3 in Fig. 3. All comparison results illustrate the
analytical performance in Theorem. 4.6 and highlight the
superiority of the proposed coordination mechanism. Last,
but not least, comparing Fig. 2 and Fig. 3, the performance
difference between the NE and the CE decreases as the
energy constraint becomes stronger.
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6. CONCLUSION

We have investigated the remote estimation issue for a
multi-sensor system under the game-theoretic framework.
Motivated by the concept of Nash equilibrium in the
previous work, we analyzed the performance advantage
brought by the correlation policy. In the absence of power
constraints, the correlated equilibrium outcome is equal to
the NE outcome. However, the correlated policy improves
the estimation performance in the presence of power
constraints.
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Appendix A. PROPERTIES OF UTILITY FUNCTION

Consider the utility function u;(a;,a_;),Vi € {1,---, N},
defined in (8). We can obtain the following properties:
(1) Zuleea=s) > 0 if ; > 0.

(2) If ag > a1 > ag > 0, then wy,(a; = az) > wq,(a; =

A wi(ai,a_i)—u;(a;=ag,a_;)

a1), in which wg,(a;) £ pp—— and a_; is
given.
(3) If ag > a3 > 0 and a4 > a3 > 0, then

ui(ag, ag,a_;_1)—ui(az, as, ) —ui(ar, ag,-)+ui(ay, as,-) <
0, where a_;_; is given.



