
A proposed design for an audio processing
system

VICTOR E. P. LAZZARINI

Núcleo de Música Contemporânea, Departamento de Artes, Universidade Estadual de Londrina, Cx. Postal 6001,
86051-970 Londrina Pr, Brazil
E-mail: Victor.Lazzarini@lda.palm.com.br

The MUSIC N-family of sound compilers offers a flexible employed by musicians willing to practise computer
but complex set of tools for computer music composition. music, but with little understanding of programming.
These packages are, in a general sense, difficult to grasp by It can be shown by tracing the steps taken in the pro-
the beginner. Their design is also based on an outdated cess of synthesising sounds using a sound compiler.
paradigm of scores and orchestras. New alternatives to such The first step when dealing with such packages is to
systems are a current necessity. This paper presents the

define a code for the signal flow of the instrumentsoftware Audio Workshop as a proposed design for a sound
used in the synthesis or processing. This is done usingsynthesis and processing system. This program has been
the proper syntax of the particular ‘language’ beingdeveloped for the Win32 platform, offering many synthesis
employed. In Csound, the most popular of such sys-and processing options in a simpler and intuitive way. The
tems, the syntax includes several kinds of program-paper describes the elements of the program and discusses

its design and applications. ming statements, variables and constants of three
different rates, opcodes and function generators
(Pope 1993). A simple sinewave instrument defi-1. THE MUSIC N-FAMILY OF AUDIO
nition, including the orchestra header, written usingPROCESSING SYSTEMS: TWO
Csound syntax would be:DIFFICULTIES

sr=44100
Systems for sound synthesis and processing, such as kr=100
Music V (Matthews 1969), Cmusic (Moore 1990) and ksmps=441
Csound (Vercoe 1992), are basic tools of computer nchnls=1
music practice. They provide the means for the
creation of sounds that is part of the activity of the instr 1
composer involved with electroacoustic music. Most

a1 oscil p4, p5, 1of these systems were developed from a family of
audio processing programs that are situated at the out a1
basis of the evolution of computer music (Dodge and

endinJerse 1985). This family dates back to 1957 with the
MUSIC I program, written by Max Matthews (Man- In order to make this ‘instrument’ synthesise a sine-
ning 1993). These packages are usually called sound wave of some arbitrary frequency and amplitude, a
compilers, because they involve processes that are score would have to be defined in a separate file. This
similar to the coding and compilation of a program. is an example of a Csound score code that uses the
They inherited many design features of the first pack- above to create a one-second 440 Hz sinewave sound:
ages, the most notable being the interface with the
user and the orchestra–score paradigm. Although f 1 0 1024 10 1
they are a very powerful means of sound manipu- i 1 0 1 10000 440
lation, these packages pose two primary difficulties.

The third step is to save the code in two separate filesThe first is the effort an inexperienced user, for
(orchestra and score). To compile the sound, whichinstance a composer introducing himself to computer
will be written in a soundfile, a Csound commandmusic, has to put into the process to achieve some
line should be employed:results. The second is that the orchestra–score para-

digm is somewhat outdated and misleading, with csound sine.orc sine.sco -W -osine.wav
respect to a broader view of music brought on by the
electroacoustic practice. The designing, coding and compiling of such an

instrument require prior knowledge of several con-The initial difficulty with the MUSIC N-family of
sound synthesis ‘languages’ is presented when cepts on the part of the user. For an inexperienced

Organised Sound 3(1): 77–84 1998 Cambridge University Press. Printed in the United Kingdom.

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

78 Victor E. P. Lazzarini

user, the results of the example above could be directed to introduce computer music practice to non-
initiated composers and students was the motivationdeceivingly uninteresting, considering the effort that

he puts into the process. A situation arises where the behind the initial versions of the program. As there
was little point to research that led to a sound com-computer music novice has to understand concepts

that are not necessarily musical in order to carry out piler clone, a new design was put to the test. Using a
graphic interface to provide the outer shell and thehisyher first software synthesis experiments. The

whole process involves some problems of computer communication with the user, the program provides
a platform where the beginner can work in a moreprogramming that are sometimes difficult to grasp by

the inexperienced user. These problems could be intuitive way.
The design of Audio Workshop is directed to theintroduced (or not at all) to the musician at a later

time in the development of hisyher electroacoustic treatment of sounds (and not notes), stored in sound-
files, as the basic elements of computer music prac-and computer music practice. To the novice, though,

it seems that the contact with the production and tice. The elementary unity manipulated by the
program is the soundfile, either as a product of directmanipulation of sounds is of primary importance.

Therefore, it must be offered in a more immediate synthesis or as an input and output of a signal pro-
cessing operation. The soundfile is treated as a virtualfashion, without the necessity of being acquainted

with a particular sound compilier syntax. tape cutting that would be used in the compositional
process.The paradigm of a list of statements that controls

coded instruments was installed by the MUSIC N- The functionality of Audio Workshop is divided
into two main areas: synthesis and processing (modi-family of programs. The structures of their syntax

favour their use in a more traditional way, where fication), which are accessed by the respective menus
or toolbar buttons. The user can experiment separ-orchestras of instruments play notes assigned to them

by a score. Composers are often biased to create ately with different sound synthesis strategies, and
then process the sound stored in soundfiles. Immedi-music that is note-oriented in nature when dealing

with such systems. Instead of encouraging a new ately after the synthesis or processing is done, the
user can view the resulting waveform and listen to thepractice, on a new medium, they model themselves

after the tradition of concert music. The paradigm sound created (figure 1). The steps taken in a typical
user action are much simpler, when compared to theof sound compilers is outdated, with respect to the

development of a broader conception of music, use of a sound compiler, as shown before.
Audio Workshop has been successfully used as abrought on by electroacoustic practice. Sound com-

pilers offer, nevertheless, some flexibility to accom- means of teaching Music Technology to noninitiated
musicians (Lazzarini 1997). The emphasis on its usemodate different uses. Composers often look for

ways to use these programs in a more creative man- as a training and introductory tool has been the main
concern of the development process. Nevertheless,ner, sometimes subversive to their original design.

It would be interesting, when considering some the program can be useful for experienced users,
offering good processing capabilities in a neat andideas for the design of a sound processing system,

to bear in mind these two difficulties. A flexible and fast package, as will be shown.
powerful, yet intuitive and simple, tool for computer
music is a real necessity for composers of electroac- 3. PROGRAM DESCRIPTION
oustic music (Caesar 1997). The tool would have,

Audio Workshop is being developed for the Win32among other characteristics, more immediate access
platform in C++ under Microsoft Visual C++, andto the manipulation of sounds and a better user

interface. It would also be designed in such a way
that the user would be encouraged to create music
free from the determinism of the orchestra–score
paradigm. Such a program would provide a smoother
contact with sound synthesis and processing than the
more complex sound compilers, as well as act as an
introduction to their use.

2. A PROPOSED DESIGN: AUDIO
WORKSHOP

In consideration of these questions, Audio Workshop
(Lazzarini 1997), a sound synthesis and processing
program, is proposed as an example of an alternative
design. The necessity for the development of tools Figure 1. Typical user steps in Audio Workshop.

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Design for an audio processing system 79

it uses the MFC class library to supply some of the shown in their default configuration, with some items
disabled. This is the simplest of their forms. In theuser interface features. The program is organised into

three main sections, which are: synthesis, processing case of the wavetableyFM dialogue, all the envelopes
and frequency modulation are switched off, causingand soundfile utilities. There are two main synthesis

and fifteen processing options available. The the system to behave like a single oscillator with fixed
frequency and amplitude. As the user gets acquaintedsoundfile utilities include waveform display, playback

controls and properties display. A help file is avail- with the synthesis processes, heyshe will be incorpor-
ating other features. Envelopes, modulation, panningable. The program reads and writes 16-bit RIFF-

Wave format soundfiles (Pope and Van Rossum and noise generation can be switched on or off by
means of check boxes.1995), the most common audio format for the

Windows-PC platform. A proprietary parameters file The signal flow of the wavetableyFM synthesizer
is shown in figure 3. The diagram shows the defaultis also read and written by the program, storing para-

metrical information for the synthesis routines. configuration of the dialogue box, with all the check-
boxes, represented by the switches, unchecked. ForAll the synthesis and processing functions are

accessed via menu commands which display dialogue the functions stored in the tables (f1 and f2 in the
diagram), the user can optionally have saw, square orboxes. These contain fields which correspond to par-

ameters which will supply the processing routines. buzz (pulse) waveshapes, with up to 99 harmonics
(care must be taken to avoid aliasing). For each par-The soundfile field is common to all dialogue boxes,

where the user will supply the names of the output ameter in the diagram there is a corresponding dia-
logue box item for the user to fill in. Other dialogueand input (when applicable) files of audio data. An

example of a dialogue box of the processing section box items not included in the diagram are soundfile
name, duration, sample rate and panning control (inis shown in figure 2. In this case, the user has to select

the type of filter, fill in the fields reserved to input the case of stereo soundfiles). Amplitudes are given
in dB, and frequency in Hz.and output soundfiles, gain, centre frequency envel-

ope and bandwidth (if necessary). As described The size of the table used is 16,384 and a trunc-
ation method is used by the oscillator to read thebefore, the program will generate a new (filtered)

soundfile and display its waveform. The same action values stored in the table. Interpolating oscillators
will be available in the near future. Nevertheless, thewill be required to use any of the other processing

and synthesis options. quality of the truncating oscillator output has been
musically satisfactory, both for simple and FM syn-
thesis. The time-lapse figures for synthesis (table 1)

3.1. The synthesis section
show a better than realtime performance of the syn-
thesizer, which makes possible the implementation ofThe synthesis section provides two main options for

sound creation: wavetableyFM and additive syn- realtime synthesis. There are plans to add realtime
processing to the program in forthcoming versions.thesis. The synthesise menu calls the appropriate par-

ameter dialogue boxes for either type of synthesis. The envelope generators are of the four-stage
ADSR type, where the release period is calculatedWhen displayed for the first time, the boxes are

Figure 2. Butterworth filter dialogue box.

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

80 Victor E. P. Lazzarini

Figure 3. The signal flow of the wavetableyFM synthesizer function.

backwards from the end of the file. They are more user sets the global attributes such as soundfile name,
duration, sampling rate and overall amplitude.flexible than the LINEN (Dodge and Jerse 1985)

envelope generators offered by the sound compilers. The frequency and amplitude of each individual
A check box switches on the rand generator, which is oscillator is controlled by a four-stage envelope. In
a simple yet efficient noise generator, with amplitude order to scale the individual component amplitudes,
envelope control. The panning control is switched on the output of each oscillator is multiplied by
by the stereo button, with which the user can apply

Aoverally(Aosc 1CAosc 2C· · ·CAosc N),a time-varying pan on the synthesised sound.
The additive synthesis routine employs up to

where Aoverall is the overall amplitude and Aosc N istwenty-five parallel oscillators with sinusoidal output,
the individual oscillator amplitude. This mechanismeach with time-varying amplitude and envelope. The
provides better control over the synthesis process,interface with the user is via a property-page style
avoiding clipping distortion. The time lapse figureswindow, a tabbed dialogue box with a number of
for additive synthesis show a better than realtime per-pages. An additional setup dialogue box can be
formance for six components and an acceptable per-invoked when the user wishes to change the number
formance for more components. Some strategies toof oscillators employed. The program will then dis-

play the additive synthesis window with the specified improve the computational efficiency of the additive
number of components. Each oscillator has its corre- synthesis routines are currently being studied.
sponding page, where the user can set its amplitude Given that both the additive and the wavetabley
and frequency values. There is also a page where the FM synthesis functions employ a great number of

parameters, a suggestion was made to create some
means of storing and retrieving these parameters. The

Table 1. Time-lapse figures for 10-second 44.1 kHz soundfiles
save command, of the synthesise menu, saves all thesynthesised by the program on a 166 MHz Pentium computer.
current parameter data supplied to both synthesisSimple oscillator Mono FM Stereo FM
functions in a binary file. When retrieving this data,synthesis without with all

(fixed freq.yfixed amp.) envelopes envelopes there are two commands, one for additive parameters
2.04 s 2.53 s 5.66 s and the other for wavetableyFM parameters. They

load the specified parameters into the program and
display the respective synthesis window. There are

Table 2. Time-lapse figures for 10-second 44.1 kHz mono sound- plans to implement converters to transform the
files created by the additive synthesis routine on a 166 MHz Pen- binary parameter files into meaningful ASCII texttium computer.

information so that users could manipulate the syn-
6 oscillators 12 oscillators 25 oscillators

thesis data in a text editor. The program would then
8.9 s 15.5 s 30.0 s convert this information back into binary form. This

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Design for an audio processing system 81

Table 3. Time-lapse figures for some processing routines appliedwould be useful for additive synthesis, because of the
to a 10-second 44.1 kHz mono input soundfile on a 166 MHzsheer number of parameters involved. Pentium computer.

Butterworth Filterbank Pitch
3.2. The processing section All-pass (low-pass) Envelope (10 filters) Reson shifter

1.97 s 3.73 s 2.09 s 4.94 s 2.86 s 1.64 sThe routines implemented for soundfile processing
can be divided into four main groups: amplitude
transformation, mixing and panning, channel extrac- with coefficients set to give a Butterworth response.
tion and interleaving, filtering and delay lines. The The resonator is presented as a stand-alone filter,
first group is composed of seven options: envelope, with time-variable centre frequency and as a compo-
mixer, spliceycrossfade, loop, reverse and pitch nent in a bank of parallel filters. The filterbank can
shifter. The second has channel extraction, interleave employ up to ten of these resonators, with individual
and panning routines. The filtering functions are: frequency, half-power bandwidth and gain. The reson
filterbank, reson and Butterworth filters. The delay option opens a dialogue box with bandwidth, gain
group has all-pass and comb filters, flanger and a and centre frequency envelope controls. The
general multidelay. Butterworth filter is a design that has a maximally

The envelope shaper applies a four-stage envelope flat pass-band (Dodge and Jerse 1985), and is offered
to an input soundfile. It works by normalising the in four options: low-, high-, band-pass and band-
input and applying the chosen shape to it. The par- reject. It has controls for centre frequency, gain and
ameters prompted by the dialogue box are the envel- bandwidth, as shown in figure 1.
ope breakpoints and the respective amplitudes in dB. The all-pass and comb routines are fixed delay
The envelope shaper can be easily used in consecutive configurations that can be used to simulate complex
passes, for optimum attenuation or boost of selected reverberation. The comb filter is a simple recirculat-
sections. The program overwrites input soundfiles, so ing delay line, with feedback gain control, which is a
that consecutive processing can be done without the simple multiplier. This configuration colours the
use of additional storage, if the user so wishes. The input sound, as it boosts certain frequencies and
simple mixer works with two input soundfiles, each attenuates others, in a shape resembling the teeth of
with separate gain control (in dB). Two soundfiles a comb. In contrast to it, the all-pass filter passes equ-
can also be spliced together by the program, with ally all the frequencies, in its steady state. It has a
user-defined crossfade time. Looping is done by somewhat more complex configuration, shown in
selecting a section of the soundfile to be repeated a figure 4. The delay function works with a user-speci-
number of times, with each repetition being consecu- fied number of delay lines, whose delay times are
tively spliced after the initial portion of the soundfile. integer multiples of the first delay. Its output is simi-
A reversing option that writes a soundfile backwards lar to that of a multitap delay. A variable delay,
is available. To complete this group of processing implemented using linear interpolation, is at the cen-
routines, the pitch shifter transposes the soundfile a tre of the flanger routine, which can simulate Doppler
specified interval (expressed as a multiplier), as in a effects and a number of flanging effects.
varispeed tape control. This function uses linear The computational efficiency of the processing
interpolation for nonintegral sample indexes, routines is satisfactory. The time lapse figures for
resulting in a satisfactory output. some of them are shown in table 3. As with some of

The channel utilities are offered mainly as a means the synthesis functions, there are plans to add real-
of converting multichannel files to be processed by time capability to some of the processing units, as the
routines that accept only mono files. The extract program performance is compatible.
option extracts multichannel files with up to four
channels, and the program can interleave two mono 3.3. Soundfile utilities
files into a stereo one. The pan routine moves the

Complementing its functionality, soundfile waveforminput soundfile between two stereo channels, accord-
display and playback are performed by the program.ing to the time breakpoints and positions specified in
After synthesis or processing, the output soundfilethe corresponding dialogue box.
waveform is displayed and the user can play back theThe filters offered by the program are of two main
sound using the controls situated at the bottom of thedesigns: two-pole general-purpose IIR resonator, of
program main window. These include playypause,the form
stop, forward and rewind. The play button serves

y(n)Ga0x(n)Ab1y(nA1)Ab2y(nA2), either as play, pause or resume. The stop button
returns the current play position to the beginning ofand the recursive filter
the file and the rewind and forward buttons move

y(n)Ga0x(n)Ca1x(nA1)
the position 100 ms backwards or forwards. A third
button opens a dialogue box for the user to specify aCa2x(nA2)Ab1y(nA1)Ab2y(nA2),

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

82 Victor E. P. Lazzarini

Figure 4. Audio Workshop delay units.

soundfile to be opened by the program. The program The fact that the audio and control paths of Audio
Workshop are hard-wired, although simplifying itswill then display the chosen file, and the user can use

the playback buttons to perform it. use, limits the synthesis possibilities of the program.
Therefore, Audio Workshop is not designed for tasksThe drawing routine plots the soundfile with a

user-specified zoom factor. It was implemented as a where the power of a sound compiler (such as
Csound) would be more suitable. Nevertheless, thesecondary thread, so that it does not monopolise the

program resources. When the invoked synthesis or integration of the graphic interface, playback capa-
bilities and processing functions makes the packageprocessing routine is over, the program starts a

second thread that performs the drawing and returns an easy to use, fast and reliable tool for straight-
forward synthesis and transformation.control immediately. The user does not need to wait

for the drawing of the waveform to finish in order to Audio Workshop has been used by music students
attending the Music Technology course at the Univ-play back the soundfile or to access the program

menus. As drawing a waveform can be a slow pro- ersidade Estadual de Londrina, Brazil. The students
in general had little or no previous knowledge ofcess, this is a very important feature of the design of

Audio Workshop. Nevertheless, optimising the wave- computer music. During the course, they have been
practising the basics of software synthesis and signalform display is still a concern for the developing pro-

cess. The main program window, including a processing with a direct approach to compositional
applications. Their difficulties and successes havewaveform display, is shown in figure 5.

The user can also obtain some information on been taken into consideration, helping to shape the
development of the program. It is expected that somesoundfiles, such as duration, sample rate, channels

and size in bytes. This is done by the command students would employ Audio Workshop as a step-
ping stone on their learning process. After learningproperties in the info menu. The soundfile utilities give

the user a more interactive and immediate contact the basics, they would take up the use of more
complex systems.with the result of their work.

The lack of more advanced editing capabilities in
the program has led users to employ Audio Work-

4. APPLICATIONS
shop in conjunction with commercial soundfile edi-
tors. This is an underdeveloped area of the programAt a cost of some flexibility, the program offers a

simpler approach to sound synthesis and processing. that needs some attention. Although some graphical

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Design for an audio processing system 83

Figure 5. Audio Workshop main program window.

editing will be added to the program, Audio Work- is more intuitive and free of the orchestra–score para-
digm that prevails in the MUSIC N-family ofshop is not designed to be a soundfile editor, a task

which is already very well performed by commercial software. The program has been successfully used as
a learning tool for students being introduced to musicprograms. The association of editor programs with

Audio Workshop in the compositional process is technology. New functions will be added to Audio
Workshop in the future, including spectral analysissomething to be pursued, rather than avoided. The

program is designed to complement the functionality and resynthesis. These will be incorporated in a new
intuitive graphic interface, where the user will dealof the software already available.

Audio Workshop is not a finished tool. Some with the processes involved in metaphoric way.
The program is available for downloading fromimportant functions are yet to be added to the pro-

gram. Apart from graphical editing of soundfiles, fre- http:yywww.ccc.nottingham.ac.uky∼amxvlyobras.
html#softwarequency analysis, together with spectrum

manipulation and resynthesis, will complete the pro-
gram. They will give the user more powerful control

REFERENCESover sound manipulation. These functions, when
introduced into the program, will receive a graphic Caesar, R. 1997. Novas interfaces e a produção eletroacús-
interface, where the processes involved can be tica. In A. Arcela (ed.) Proc. of the IV Brazilian Symp.

on Computer Music. Brası́lia: CIC, Universidade dehandled in a metaphoric way. The design of this sec-
Brası́lia.tion of the program is not yet developed, but ideas

Dodge, C., and Jerse, T. 1985. Computer Music: Synthesis,are already being considered. The main concern is to
Composition and Performance. New York: Schirmerpresent the very complex world of spectrum manipu-
Books.lation in an intuitive manner.

Lazzarini, V. 1997. Audio Workshop, a program for audio
synthesis and processing. In A. Arcela (ed.) Proc. of the
IV Brazilian Symp. on Computer Music. Brası́lia: CIC,5. CONCLUSION
Universidade de Brası́lia.

At present, Audio Workshop provides quick access Manning, P. 1993. Electronic and Computer Music. Oxford:
to classic synthesis techniques and processing Oxford University Press.
routines. It provides a good alternative to sound Mathews, M. 1969. The Technology of Computer Music.

Cambridge, MA: MIT Press.compilers for basic computer music tasks. Its design

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

84 Victor E. P. Lazzarini

Moore, F. 1990. Elements of Computer Music. Englewood Pope, S. T., and Van Rossum, G. 1995. Machine Tongues
XV: three packages for software sound synthesis.Cliffs, NJ: Prentice-Hall.

Pope, S. T. 1993. Machine Tongues XVIII: a child’s garden Computer Music Journal 17(2): 23–54.
Vercoe, B. 1992. Csound, a Manual for the Audio Processingof sound file formats. Computer Music Journal 19(1):

25–63. System. Cambridge, MA: MIT Press.

https://doi.org/10.1017/S1355771898009194
Downloaded from https://www.cambridge.org/core. Maynooth University, on 21 Aug 2019 at 09:55:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1355771898009194
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

