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Abstract 

Development of collaborative, perception driven autonomous systems requires the ability for collaborators to 

compute a rich, shared representation of the environment, and their place in it, in real-time. Using this shared 

representation, collaborators can communicate geometric, semantic and dynamic information about the 

environment across frames of reference to one another. Existing state-of-the art dense mapping systems provide 

a good starting point for developing a collaborative mapping system, however, no system currently covers 

collaborative mapping directly. In this paper, we introduce our approach to dense collaborative mapping, offering 

an introduction to the problem, a discussion of the key challenges involved in developing such a system and an 

analysis of preliminary results. 

Keywords: Dense, SLAM, Reconstruction, Mapping, Collaborative. 

1 Introduction 

The aim of dense visual simultaneous localisation and mapping (VSLAM) is to recover a dense 

reconstruction of a scene from a freely moving visual sensor. This is achieved through the continued 

fusion of measurements into a single representation, whilst simultaneously tracking the motion of the 

sensor, all in real-time. The state-of-the-art in the field includes a multitude of systems offering large-

scale, high-precision mapping and tracking capabilities [Dai et al., 2017, Whelan et al., 2015, Kerl et 

al., 2013, Whelan et al., 2014, Newcombe et al., 2011, Engel et al., 2014]. To date all of these dense 

SLAM systems have focused on single sensor mapping. In this paper we report on initial work to 

address the wider problem of collaborative, multi-sensor mapping and tracking which is essential to 

many robotics and augmented reality applications such as human robot interaction (HRI), cooperative 

robotics and multi-session mapping. Historically, collaborative mapping has been a recurring theme in 

the SLAM literature [Saeedi et al., 2016], though the concept has yet to be extended to the more 

contemporary setting of dense visual SLAM. 

  This paper reports on first results of in-progress research to extend the Elastic Fusion (EF) 

single sensor dense mapping system to allow for multi-sensor collaborative mapping and tracking using 

RGBD sensors. The contributions of the paper are: (i) a discussion of the challenges involved in 

extending EF to allow for full multi-sensor collaborative mapping, (ii) a description of our proposed 

multi-sensor EF framework and the components implemented to date; and (iii) a qualitative comparison 

between multi and single sensor EF. 

  The remainder of the paper is structured as follows. Section 2 provides a brief summary of the 

elements of the EF algorithm pertinent to understanding our proposed extensions. Section 3 discusses 

the challenges and proposed solutions to allow this extension, and provides details of the subset of the 

solutions that we have implemented to date. Section 4 presents the multi-sensor dense mapping 

capabilities of the current system, and provdes an initial comparison of its outputs to single-sensor EF. 

Finally, in Section 5 we give concluding remarks and discuss future research directions. 
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Figure 1: A three sensor collaborative mapping session in our system. All sensors started with the 

same initial pose but proceeded along independent trajectories 

2 Background 

In this section we give an overview of the EF dense mapping system, although the reader will find a 

more comprehensive treatment in [Whelan et al., 2015]. EF takes a point-based fusion approach to 

dense mapping. As an RGBD sensor traverses an environment its measurements are fused into a single 

model, internally represented by an unstructured list of surface elements (surfels),M. Each surfel in M 

is an estimate of a discrete point on the underlying continuous surface contained in the environment 

being mapped. M is split along temporal lines into two distinct sublists; Θ, containing active surfels that 

have been observed recently, and Φ, containing inactive surfels that have not been observed in a period 

of time δt. 

  At each time step, the global pose of the sensor, Pt ∈ SE3, at time t is estimated by aligning the 

active model-predicted surface, derived from Θ using Pt−1, to the surface contained in the latest sensor 

frame at time t. This alignment yields a transformation that is applied to Pt−1 to give  Pt. Once Ptis 

resolved the latest frame can be fused into Θ, and thus into M. 

Assuming that a global loop closure has not occured at the current time step, a local loop closure 

between Θ and Φ is sought, reactivating inactive surfels and maintaining local surface consistency. 

Local loops are closed by performing a surface registration between the portion of Θ in view of Pt to 

the portion of Φ in the same view. 

  Occassionally, the sensor drifts too far for the estimated model to be corrected by the local loop 

closure mechanism. To solve this problem a randomised fern-encoding database containing 

discriminative views of the scene is maintained. The database is searched for a view matching the 

current active model-predicted view. If a matching view is found then a global loop closure is 

determined by solving a model-to-model surface registration between the surfaces underlaid within the 

matching views, akin to local loop closure. 

  In the case that either a local or a global loop closure is achieved the model is non-rigidly 

deformed by applying a space deforming graph to M [Whelan et al., 2015]. 

  Surface registrations in EF are performed using a local alignment technique. An objective 

function is defined over both geometric and photometric constraints between the two surfaces, 

parameterised by Tk, the kth estimate of the transformation T ∈ SE3 that aligns them. This objective 

defines an error surface, E, with respect to T. Through iterative non-linear least-squares, using Gauss-

Newton optimisation and a three-level coarse-to-fine pyramid scheme, the objective is minimized by 

updating Tk in a direction of descent along E, yielding increasingly refined approximations of
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3 Extending ElasticFusion for Multi-Sensor SLAM 

In extending EF to permit collaborative mapping we identify two distinct phases of processing for any 

given input stream. This distinction arises from the fact that in collaborative mapping there is, in general, 

no common frame of reference to begin with, and hence each sensor’s initial pose is unknown relative 

to the other sensors. Therefore, at the outset, the system assumes that each sensor is positioned at the 

origin of a frame of reference that is independent to that of other sensors. During this initial phase each 

sensor input is essentially processed via an independent EF mapping pipeline. As mapping progresses 

the aim is for global inter-sensor loop closures to occur, thereby providing the necessary transformations 

between the sensor submaps. These transformations permit alignment of submaps into a common frame 

of reference which makes it possible to perform multi-sensor fusion into a single global map. In order 

to concentrate on the development required for this second phase of processing, in this paper we 

constrain our multi-sensor datasets such that each sensor starts with the same initial pose. Thus from 

the outset we assume a single global map with multiple independently moving sensors. Therefore, our 

system to date, deals with the post-alignment stage of collaborative mapping. 

  Hence, we take a phased approach to extending EF, where in the first phase of the extension 

we assume datasets that are constrained in the manner described above. Multiple sensors can then fuse 

measurements into, and track against, a common global surfel map. Our representation for multiple 

sensor mapping is a tuple of the form <M,{Pit}> for surfel map M and sensor poses{Pit}, where 

eachPit∈SE3represents the pose of sensor I at time t. Local surface consistency is maintained in the same 

manner as discussed in Section 2 with the exception that the active region of M contains the surfels in 

M that are active with respect to at least one sensor. For detecting global loop closures all sensors keep 

a common fern encoding database, loops can then be detected and closed in the same way as was 

described in Section 2. 

  Following this, we will concentrate on seperating out the sensor’s temporal windows such that 

each sensor defines its own active and inactive map regions. Having one active region for all sensors 

leads to inefficient view predictions and temporal incoherence, preventing sensors from closing local 

loops in certain situations. For example when two sensors following independent trajectories intersect, 

with each sensor transitioning to a portion of the map that the other has kept active, no local loop 

closures will occur. Once the temporal windows have been separated multi-sensor mapping and tracking 

can then continue as before. To maintain separate temporal windows for each sensor we introduce the 

concept of a context. A context is a triple of the form <Θit, Φit, Pit>, where Θit ⊂ M and Φit ⊂ M represent 

the regions of M that are active and inactive w.r.t sensor I at time t. As before Pit ∈ SE3 represents the 

pose of sensor I at time t. Thus collaborative mapping can be represented as a tuple of the form <M, 

{ζi}>, for surfel map M and contexts {ζi}. 

  In the final phase of extension we will focus on removing the constraint that each sensor must 

start with the same initial pose. Thus, initially each sensor will be associated with its own frame of 

reference denoted by Fi = <Mi, {ζij}> for surfel map Mi and contexts {ζij}. By solving the global alignment 

problem between maps, frames of reference can be merged, and so, as mapping proceedes and inter-

map loop closures occur, our representation will tend towards a single global map. 

4 Experiments 

In this section we report the first results of our approach. In the absence of ground-truth multi-sensor 

VSLAM datasets we use single-sensor EF to generate scene reconstructions and sensor poses. We then 

measure the deviation between these reconstructions and pose estimates and those outputted by our 

system as we incrementally increase the number of sensors collaboratively mapping. All experiments 

were run on a machine with an NVidia GeForce GTX 1080 ti GPU, 11GB of GDDR5 VRAM, an 8 

core Intel i7-7700K CPU running at4.20GHz and 16GB of DDR4 system memory. 
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We give a qualitative comparison between our system and EF using a custom lab dataset. The 

dataset consists of four sequences through the same scene. Each sequence was captured with an ASUS 

Xtion pro live depth sensor running at30hz. The initial pose of the sensor is the same across all 

sequences. The first sequence is used in conjunction with single-sensor EF to compute a reconstruction 

of the scene. We also use single-sensor EF to compute sensor poses for the other three sequences. Then, 

we compare the single-sensor reconstruction and sensor poses to those computed by our system under 

the different permutations of the other three sequences collaboratively mapping and tracking. Table 1 

summarises this data. The reader is encouraged to watch the accompanying video for a clearer 

visualisation of both this dataset and dense collaborative mapping in general 

(https://youtu.be/qYNpP_5Vp7I). 

Table 1: The first row gives the numbers of the sequences being used in the collaboration. The second 

row gives the per collaboration mean distance from each point to the nearest point in the single-sensor 

reconstruction. In the last row we give the per sequence ATE RMSE for each collaboration.  

5 Discussion 

We have reported on our initial work on a dense collaborative mapping system, demonstrating its 

capabilities through a comparative analysis with EF. In future work we will focus on improving the 

temporal coherence of our system and increasing its generality. To address the former issue, each sensor 

will define its own active map region, allowing us to maintain local surface consistency even in cases 

where sensors enter each others active regions. To address the latter issue we plan to leverage a global 

alignment technique, fast global registration [Zhou et al., 2016], to align sensor specific maps into a 

single global map on the fly. An important aspect of future work will be the creation of synthetic ground-

truth datasets, allowing us to measure the performance of our system. 
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