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Summary 

House dust mites are major causative agents in the pathogenesis of allergy. Their 

proximity with human habitats, association with development of allergenic diseases, 

and resistance to physical and chemical control measures; make them some of the most 

medically important mites. Understanding of house dust mites has been hampered by 

a lack of genomic sequence data and limited to a discrete number of proteins. The 

work presented here is a detailed characterisation of the European house dust mite, 

Dermatophagoides pteronyssinus airmid strain, at the genomic and proteomic level. 

Genomic sequencing and assembly resulted in a high-quality assembly of 70.76 Mb 

in size with 96.86% coverage. A comprehensive bioinformatic and proteomic 

examination was conducted on the 12,530 predicted proteins, validating the expression 

of 4,002. A small group of D. pteronyssinus airmid proteins showed significant 

homology to known allergens from other species. A large scale comparative proteomic 

investigation of the mite body and spent growth medium allowed for: (i) qualitative 

assessment of allergen localisation and (ii) the identification of numerous enzymes 

that may be involved in key physiological activities. The characterisation of protein 

extracts from house dust also identified a substantial number of uncharacterised D. 

pteronyssinus proteins in addition to known and putative allergens. The genes 

encoding novel β-1,3 glucanases were identified within a trigene cluster in D. 

pteronyssinus airmid. Recombinant protein expression, biochemical and proteomic 

analysis revealed Glu1 and Glu2 to exhibit hydrolytic activity toward β-1,3 glucans 

and have increased expression in the mite body and excretome of D. pteronyssinus in 

response to yeast diet. Further proteomic and enzymatic analysis correlated glucanase 

activity in house dust with presence of Glu1 and Glu2. These findings provide 

evidence that active β-1,3 glucanases are expressed and excreted in the faeces of D. 

pteronyssinus in response to fungal diet, in both the laboratory and the wild-type 

environment.  
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Preface 

This thesis is presented in a “Thesis by Published Works” format, comprising of two 

peer reviewed publications and one manuscript currently under peer review. A review 

of relevant literature is presented in Chapter 1 and concludes with a discussion of 

knowledge deficiencies and aims of the research presented. The first results chapter, 

Chapter 2, comprises of a short publication followed by supplementary materials, 

methods and results, describing the methodology used to successfully sequence the D. 

pteronyssinus airmid genome. Chapter 3 is a large publication, it extensively describes 

the predicted proteome, allergenome and proteome of laboratory-reared D. 

pteronyssinus airmid with reference to the proteome of wildtype D. pteronyssinus. 

Published versions of these manuscripts are available in appendix 3. Chapter 4 forms 

a submitted publication, describing the discovery and recombinant expression of a 

trigene cluster coding for putative β-1,3 glucanases that may have a role in the 

digestion of fungi. This thesis concludes with a general discussion, Chapter 5, in which 

the research presented in chapters 2 - 4 is summarised and discussed in the context of 

its contribution to the field of house dust mite biology and allergy.  

Throughout this work a distinction will be made between “D. pteronyssinus” the 

species and “D. pteronyssinus airmid” the strain used in this study. D. pteronyssinus 

will be used in terms of a general discussion relating to the species and D. 

pteronyssinus airmid when describing proteins or genes identified from extracts 

derived directly from the airmid strain of D. pteronyssinus.  
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1.0 Introduction 

1.1 House Dust Mite Phylogeny 

The term house dust mite (HDM) typically refers to the most common house dust (HD) 

dwelling pyroglyphid mites associated with allergy: Dermatophagoides pteronyssinus, 

Dermatophagoides farinae and Euroglyphus maynei; however, other mites associated 

with household dusts are also known to cause allergy and are of significant medical and 

economical importance (Colloff, 2009). HDM belong to the Acari suborder Astigmata, 

containing more than 6,100 species from free-living and parasitic lineages. Their unusual 

evolutionary history has been used to demonstrate the reversible evolution of parasitism 

(Klimov & O’Connor, 2013). HDMs appear to have evolved from an avian parasite 

ancestor, which in turn had evolved from a free-living ancestor (Klimov & O’Connor, 

2013). Some entomologists suggest this free-living ancestor was a mycophagous mite 

that originally inhabited soil, but transitioned into birds’ nests, thus explaining the 

continued ability of several synanthropic mite species to digest fungi (O'Connor, 1979). 

Phylogenetic studies indicate that the closest parasitic relatives to Dermatophagoides 

spp. are bird parasites from the Onychalges spp. and the sheep scab mite Psoroptes ovis 

(Klimov & O’Connor, 2013). Morphological studies have placed D. pteronyssinus and 

D. farinae into the same genus, however recent phylogenetic studies have observed that 

D. pteronyssinus and E. maynei appear more closely related to each other than to D. 

farinae (Klimov et al., 2015, Cui et al., 2010).  

The D. pteronyssinus life cycle, duration from egg to adult, is variable depending on the 

hygro-thermal conditions in which the mites are grown, ranging between 15 and 122 days 

(Arlian et al., 1990). A typical life cycle for D. pteronyssinus is illustrated in Figure 1.1 

A & B, showing the development of an egg to adult under controlled laboratory growth 

conditions of 23oC and 75% relative humidity (RH). Larvae emerge from eggs after 

approximately 8 days, they have three pairs of legs and measure 170 µm in length. The 

other three life stages have four pairs of legs and can be most easily differentiated by 

their size. Upon reaching maturity, adults live for about one month, making the entire life 

span of D. pteronyssinus between 4 - 6 weeks (Colloff, 2009). Adult females are larger, 

measuring 350 µm in length and weighing 5.8 µg, compared to males which are typically 
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270 µm in length and weigh 3.48 µg (Arlian et al., 1990, Colloff, 2009). The male to 

female sex ratio of pyroglyphids is typically 1:1, this is assumed to also be the case for 

D. pteronyssinus (Colloff, 2009).  
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Figure 1.1 D. pteronyssinus physical characteristics and life cycle. A. Microscope 

image of D. pteronyssinus airmid with visible setae. B. Depiction of the five stages of D. 

pteronyssinus life cycle at 23oC and 75% RH. Data: Arlian et al. (1990). Image: adapted 

from Colloff (2009). 

 

A

B
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1.2 Hygrothermal Requirements  

The level of HDM contamination between residences varies enormously. The abiotic 

factors facilitating large populations in individual homes are not fully understood, 

however hygrothermal conditions are thought to be a significant factor (De Boer et al., 

1998, Arlian, 1992). Water availability in the form of RH is critical in dictating duration 

of the HDM life cycle, fecundity, survival, feeding and allergen production (Arlian et al., 

1998, Colloff, 1992).  

HDMs are typically composed of 75% water by weight, they actively acquire moisture 

by extracting water from the air (Arlian, 1992). However, with a large surface area to 

volume ratio they also lose water rapidly when humidity is low. In the laboratory, to 

ensure optimal growth and avoid water loss, HDMs must be maintained above a set RH, 

however cultures exposed to sub-optimal RH have shown long-term survival (Ghazy & 

Suzuki, 2014, Arlian, 1992). The protonymph stage is highly resistant to desiccation, 

surviving several months at 0% RH (Arlian, 1992). It has been shown that short increases 

in RH can substantially promote survival. D. pteronyssinus held below 10% RH showed 

substantially higher rates of survival when transiently exposed to high humidity (90% 

RH; 1.5 hours), increasing exposure to three hours was sufficient for them to reproduce 

(deBoer & Kuller, 1997).  

This is relevant for understanding HDM population growth within the fluctuating 

hygrothermal conditions of the home (Crowther et al., 2006, Cunningham, 1998). Recent 

advances in house construction, insulation and central heating have resulted in warmer, 

drier homes, that may be less favourable to HDM colonisation (Hart & Whitehead, 1990, 

Crowther et al., 2006). However, humidity within the home is not constant, as domestic 

activities such as cooking and bathing result in temporary humidity increases, therefore 

average indoor RH is a poor indicator of HDM survival or growth (De Boer et al., 1998, 

Niven et al., 1999). Although D. pteronyssinus can be killed by extended exposure to 

low RH, reduction of RH in the home does not always lead to a reduction in mite numbers 

or levels of allergen (Hyndman et al., 2000, Niven et al., 1999). It is evident from these 

studies that HDMs possess mechanisms to resist and tolerate periods of desiccation. The 
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ability of mites to withstand periods of environmental extremes is key to their continued 

persistence in the home (Colloff et al., 1992, Calderón et al., 2015).  

Desiccation resistance and cold/freeze tolerance are intrinsically linked. Invertebrate 

studies have shown both extremes to elicit the same protective biochemical responses. 

Both stresses cause: changes to pH and osmolarity of cellular fluids, decreased volume 

of haemolymph and in extreme cases lead to cell shrinkage and ultimately death 

(Worland & Block, 2003). The mechanisms by which the animal responds to such 

stresses are equally similar, requiring osmo-protection, stabilisation of proteins and 

membrane structure. Prior exposure to desiccation has been shown to offer protection 

against cold and vice versa (Worland & Block, 2003, Sinclair et al., 2013). This may 

explain why HDMs can survive sub-zero temperatures without prior acclimation. 

Clinicians frequently recommend freezing soft toys and pillows etc, at regular intervals 

to kill HDMs and reduce allergens (Arlian & Platts-Mills, 2001). However, freezing only 

reduces the number of live HDMs, with an average of 17 HDMs per toy surviving (Chang 

et al., 2011).  

Molecular and biochemical studies of desiccation tolerant organisms have revealed the 

Late Embryogenesis Abundant Proteins (LEAPs) play a key role in their survival. LEAPs 

were first identified and are best described in plants, however recent studies have 

identified LEA-like genes in nematodes and arthropods (Kikawada et al., 2006, Solomon 

et al., 2000, Browne et al., 2004). Clear and consistent classification of LEAPs into 

classes is lacking; to date, eight sub-families have been described in the Pfam database, 

however inconsistencies still exist (Hunault & Jaspard, 2010).  

Accurate in silico prediction of LEAPs in arthropods is hampered as only a handful of 

LEAPs have been described in arthropods (Hand et al., 2011). Despite this, utilising 

known LEAPs to search for homologous proteins in other organisms may identify 

proteins involved in desiccation and freeze resistance (Du et al., 2013). 
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1.3 HDM Allergy 

Atopy is the tendency to produce IgE antibodies in response to ordinary exposure to 

allergens, it is heavily influenced by genetics, however defined genetic diagnostic criteria 

are lacking (Asher et al., 2012). The atopic diseases most associated with HDM allergy 

are Atopic dermatitis (Eczema), Allergic Rhinitis and Asthma (Sanchez-Borges et al., 

2017). It is difficult to discuss one of these atopic diseases without drawing information 

from the others. Atopic individuals have a propensity towards allergenic diseases, 

frequently suffering from multiple diseases, this is referred to as the atopic march. The 

atopic march typically begins in infancy with Atopic Dermatitis (AD), then progressing 

to Allergic Rhinitis (AR) and Asthma in childhood (Bantz et al., 2014). A study of 100 

patients with AD, revealed that the majority (76%) also had Asthma and/or AR, while 

39% had all three diseases (Banerjee et al., 2015).  

1.3.1 Atopic Dermatitis 

Most AD patients have elevated IgE against HDM allergens, sensitisation accompanies 

early signs of AD but is not causative of AD (Sanchez-Borges et al., 2017). AD is an 

inflammatory skin condition associated with skin barrier dysfunction, often as a result of 

a filaggrin mutation (Brown, 2016). Filaggrin is expressed in keratinocytes and functions 

to maintain skin barrier pH, hydration and antimicrobial protection. In particular, it 

inhibits HDM phospholipase A2. Without filaggrin, HDM phospholipase A2 generates 

antigenic neolipids, which activate T-cells causing inflammation (Jarrett et al., 2016). 

AD skin lesions contain T-cells that recognise Der p 1, this proteolytic allergen has been 

demonstrated to also disrupt skin barrier function (Sanchez-Borges et al., 2017). 

Moreover, higher numbers of HDMs are recovered from the skin scrapings of patients 

with AD compared to healthy individuals, indicating a transdermal route of allergen 

exposure (Teplitsky et al., 2008). We spend approximately eight hours per day in bed, 

with our skin in direct contact with bedding materials. In HDM sensitised patients, 

particularly those with AD, bedding and clothing provide a means for HDMs to come 

into direct contact with the skin and cause transdermal sensitisation (Teplitsky et al., 

2008, Clarke et al., 2015a, Tovey et al., 1995). 
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Distinct patterns of HDM sensitisation are seen for patients who have AD symptoms only 

compared to those with respiratory symptoms only. Of the 10 D. pteronyssinus allergens 

examined, AD patients bound Der p 10, 11, 14 and 18 with higher frequency (2.5 – 10 

times) than patients with respiratory symptoms only (Banerjee et al., 2015). This study 

serves to highlight that the type of allergens a patient reacts to is altered by exposure 

route, with AD patients being transdermally exposed to different repertoire of allergens 

than patients with respiratory symptoms who are exposed via inhalation. 

1.3.2 Asthma 

Asthma is characterised by chronic airway inflammation, episodes of wheezing, 

breathlessness, chest tightness and coughing (Sanchez-Borges et al., 2017). Ireland has 

the fourth highest prevalence of asthma in the world, estimated at 10% the population 

and recent statistics indicates the prevalence is increasing (NHQRS, 2017). The Asthma 

Society Ireland estimate that one person every week dies in Ireland as a result of asthma, 

in the UK this is as much as 1,200 per year (BLF, 2016). The economic burden of asthma 

is immense, accounting for up to 2% of total healthcare expenditure in developed 

countries (Asher et al., 2012).  

The mechanisms underlying the pathophysiology of asthma are complex, however it is 

now widely accepted that the airway epithelium plays a central role in orchestrating the 

physiological manifestations of asthma (Chanez & Bourdin, 2008). Asthmatic episodes 

are triggered by bronchoprovocation by common allergens, which are bound by IgE, 

triggering degranulation of mast cells. Immunomodulatory molecules released during 

degranulation results in airway narrowing, mucus secretion and infiltration of immune 

cells (Holgate, 2013). A key feature is the disruption of the bronchial epithelium, this 

allows the entry of the proinflammatory allergens that illicit local immune response and 

inflammation (Figure 1.2). Several major HDM allergens, including Der p 1, have been 

shown to directly disrupt the airway epithelium (Wang, 2013, Gregory & Lloyd, 2011). 

It is estimated that adults inhale 0.8 mg of dust every day and children as much as 2 mg 

(NIVM, 2008). This is clinically relevant if the dust is heavily HDM infested, as Der p 1 

content in bronchoalveolar lavage fluid of asthmatic patients has been demonstrated to 
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correlate with concentrations in the environment (Ferguson & Broide, 1995). It is not 

surprising therefore that IgE hyperresponsiveness to HDM allergens is one of the most 

important asthma associated phenotypes and a risk factor for other allergenic diseases 

(Sanchez-Borges et al., 2017). The prevalence of HDM sensitisation in asthmatics is 

enormous, estimated at 85% (Custovic et al., 1996). 
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1.3.3 Allergic Rhinitis 

Asthma and AR are common co-morbid diseases with overlapping symptoms, 42% of 

asthmatics also have AR (Steppuhn et al., 2013). AR is associated with nasal mucosa 

inflammation resulting in symptoms of nasal congestion, sneezing, and itching of the 

eyes (Rowland-Seymour, 2010). As with other atopic diseases, HDM sensitisation is 

prevalent in patients with AR, estimated at 50-90% of AR patients, and of these 50-80% 

are polysensitised to HDM and non-HDM allergens (Sanchez-Borges et al., 2017).  

 

Figure 1.2 Illustration of endobronchial biopsy comparing normal physiology to 

that seen in asthma. Asthmatic bronchia depicts bronchial hypersecretion resulting 

in increased luminal mucus. Fragile epithelium showing loss of mechanical and 

biochemical barrier exposing the basement membrane which becomes enlarged and 

densified. Infiltration of immune cells (mast cells, eosinophils, neutrophils, 

lymphocytes and monocytes) into underlying tissues. Taken from Chanez & Burdin, 

2008. 
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1.3.4 Allergen Exposure and Sensitisation 

There is clear evidence for a bell-shaped dose response curve for sensitisation to HDM 

allergens, with high and low concentrations being protective (Sanchez-Borges et al., 

2017). Repeated exposure is associated with sensitisation and progression to asthma in 

susceptible individuals. However avoidance of allergens in infancy appears to only delay 

allergy onset rather than prevent it (Boner et al., 2002). In 1989, The First International 

Workshop on Indoor Allergens and Asthma was held, here it was agreed by international 

experts that allergen levels of ≥2 μg Der p 1 per gram of dust are sufficient to induce 

sensitisation, while levels of ≥10 μg Der p 1 per gram are seen as a risk factor for the 

development of acute asthma (Platts-Mills et al., 1989). 

1.3.5 Storage Mite Allergy 

Aside from HDMs, other allergenic mites are found within household dust, these are 

typically referred to as storage mites due to their association with stored products 

(Colloff, 2009). Storage mites with listed allergens in WHO/USIS are as follows: Acarus 

siro (Aca s; n = 1), Blomia tropicalis (Blo t; n = 14), Glycyphagus domesticus (Gly d; n 

= 1), Lepidoglyphus destructor (Lep d; n = 5), Tyrophagus putrescentiae (Tyr p; n = 8) 

and Chortoglyphus arcuatus (Cho a; n = 1). These mites are significant elicitors of 

occupational allergy for farm, warehouse and granary workers, however in the home their 

role in allergy is poorly understood (Colloff, 2009). All the above-mentioned storage 

mites have been identified in household dusts, though in lower numbers compared to 

HDMs (Wraith et al., 1979, Boquete et al., 2006, Clarke et al., 2016). While certainly 

present in HD, storage mites do not dominate this habitat, their allergenicity (excluding 

occupational illness) is not a result of their high abundance or allergen producing ability, 

but most likely a result of cross-reactivity with HDMs. A study examining co-

sensitisation to HDM and storage mites found 88% of D. pteronyssinus/D. farinae 

allergic patients had skin prick positive results to one or more storage mite (A. siro, L. 

destructor & T. putrescentiae) and 73% were allergic to all three storage mites used in 

the study (Vidal et al., 1997).  
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1.4 House Dust Mite Habitats 

1.4.1 Geographical Distribution of House Dust Mites 

Collectively, D. pteronyssinus, D. farinae, and E. maynei account for 90% of all HD 

dwelling Acari (Arlian et al., 1992). HDMs are found in most homes globally, a few 

countries have a species bias based on their hygrothermal tolerances (Colloff, 2009). 

Australia, New Zealand and England tend toward D. pteronyssinus domination, while 

most of South Korea, U.S.A and Italy have D. farinae biased populations. Many countries 

have a regional species bias, but most exhibit mixed populations of HDM species 

(Thomas, 2010). 

The first comprehensive analysis of mite species in Irish homes found that of the 19 

different mite species identified, D. pteronyssinus was the principal mite present. It was 

found in 59% of all samples. E. maynei was identified in only 5% of Irish HD samples 

and only 1% of samples contained D. farinae (Clarke et al., 2016).  

1.4.2 Microhabitats 

HDMs are found in areas of the home that are used most frequently and where shed skin 

tends to accumulate, such as mattresses, carpets, pillows, bed clothes and soft toys 

(Nagakura et al., 1996, Arlian, 1975, Arlian et al., 1992, Mitchell et al., 1969).  

The type of bedding material used in the home may be a factor in determining the size of 

HDM populations. One study showed feather pillows to harbour fewer HDMs than 

synthetic ones, possibly due to the encasing of feather pillows restricting HDMs entering 

the filling (Rains et al., 1999). Foam mattresses may harbour up to eight times more 

HDM faeces than spring mattresses (Schei et al., 2002). Similar studies contradicted this, 

finding the converse or no difference (Mills et al., 2002, van den Bemt et al., 2006). 

These contradictory findings highlight the need for more studies which implement 

standardised methodologies to quantify HDM presence in the home and further the 

understanding of HDM habitat requirements.  
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1.5 House Dust Mite Digestion and Diet 

1.5.1 House Dust Mite Digestive Physiology 

HDMs ingest food using chelicerae, a pair of appendages that allow food to be pushed 

into the mouth. Food is then passed from the mouth, through the pharynx, where it is 

mixed with saliva before passing into the cuticle lined oesophagus which links the 

pharynx to the anterior midgut, the site of nutrient utilisation (Figure 1.3A). Here in the 

anterior midgut, cells bud off from the gut lumen and are thought to burst open releasing 

digestive enzymes (Figure 1.3B). The food then moves to the posterior midgut where it 

enters the peritrophic envelope, which is thought to be formed by components secreted 

by secretory cells of the anterior midgut. Here in the posterior midgut, the food bolus 

swells in mass and the sleeve-like peritrophic envelope is released from the gut 

epithelium and floats free (Figure 1.3A). More digestive enzymes enter the envelope and 

digest food; water and small digested fragments pass out of the peritrophic envelope, 

leaving behind undigested material. The peritrophic envelope then moves to the hindgut, 

where it contracts, changes colour and becomes the faecal particle that is then excreted 

by the mite into the surrounding dust. It is because of this faecal particle, that HDMs are 

prolific elicitors of allergy, these faecal particles are abundant in many potent digestive 

enzymes (Colloff, 2009).   



Chapter 1: Introduction 

13 

 

 

 

 

1.5.2 Composition of House Dust 

HD is an amalgamation of particulate matter derived from both abiotic and biotic 

components present within the home and the homes’ surroundings (Rintala et al., 2012). 

This complex and highly variable matrix is composed of skin and hair from occupant and 

pets, fabric fibres, insect fragments, construction material, food particles, soil and plant 

material (Colloff, 2009). It is not an inert matrix, it provides ample nutrition to facilitate 

growth of diverse and highly variable fungal, bacterial and insect communities (Korpi et 

al., 1997, Dannemiller et al., 2017, Clarke et al., 2016, Barberan et al., 2015).  

 

Figure 1.3 Illustrations of HDM digestive physiology. Adapted from Colloff, 

2009. A. Illustration of D. pteronyssnius with simplified depiction of digestive 

system B. magnified view of budding digestive cells of the anterior midgut.  
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It is pragmatic to think of HD as a highly complex and variable ecosystem that is heavily 

influenced by the homes’ occupants, unique features (heating, ventilation, age etc) and 

its geographical location (Barberan et al., 2015, Wu & Lewis, 2013). Combined exposure 

to the numerous components mentioned above could have the potential to exacerbate 

allergy and contribute to the complex disease pathophysiology observed in atopic 

individuals (Gregory & Lloyd, 2011). How these allergenic components interact with 

each other in the dust ecosystem or act upon the immune system is largely unknown; 

research into this topic may explain why studies which focus on eliminating a single 

allergen source show limited success (Gøtzsche & Johansen, 2008). Moreover, the 

objective characterisation of allergenic components present in HD is lacking and was 

featured as one of the “unmet needs in mite allergy research” in the 2017 international 

consensus (ICON) report on the clinical consequences of mite hypersensitivity (Sanchez-

Borges et al., 2017). 

1.5.3 House Dust Mite Diet 

In the laboratory, D. pteronyssinus have been grown on diverse culture media including 

various combinations of wheat bran, wheat flour, dog food, rodent chow, ground porcine 

liver, dried egg powder, yeast, defatted skin scales and fish food (Andersen, 1991, Hubert 

et al., 2016, Eraso et al., 1997, Arlian & Morgan, 2015, Hart et al., 2007). The ability of 

HDMs to grow on diverse nutrient sources within the laboratory indicates they can utilise 

similar nutrient sources in a wildtype setting. Moreover, their inability to move to new 

habitats in search of more favourable food would suggest it is advantageous for HDM to 

be trophic generalists, feeding on a variety of organic debris and microbes associated 

with their human proximity habitats (Colloff, 2009).  

The diet of HDMs in the home is largely unknown and much of what is described in the 

literature dates back to observations made by early researchers (Colloff, 2009). In 1973, 

Van Bronswwijk examined the alimentary canal of 147 D. pteronyssinus specimens 

recovered from mattress and floor dust, observing pollen, fungal mycelia and spores, 

bacteria and plant fibres in the gut contents. Other similar studies have identified skin, 

cuticle fragments and insect fragments from HDM gut contents (Colloff, 2009).  



Chapter 1: Introduction 

15 

 

There have been no laboratory studies to date that have extensively studied the mite 

carrying capacity of HD (Colloff, 2009). Given the high degree of HD composition 

variability, it is difficult to generate a model that is applicable to all homes. What little 

we know about the nutritional value of HD for HDMs survival, stems from a handful of 

studies (Colloff, 2009). It is evident that the protein content of HD is an important factor 

in determining the carrying capacity, as protein content below 110 mg/gram dust was 

found to be insufficient to HDM populations (Koren & Eckhardt, 1995).  

The HD itself or as a consequence of being a microbial reservoir, is nutritionally 

sufficient to support large HDM numbers, some researchers report as many as 318 HDMs 

in just 100 mg of dust (Hart & Whitehead, 1990, Platts-Mills et al., 1986). 

Epidemiological studies estimate that 100 mites per gram of house dust correspond with 

2 µg of Der p 1, and 500 mites with 10 µg (Platts-Mills et al., 1986). Based upon these 

estimations it is not difficult to understand how relatively few D. pteronyssinus can 

produce hazardous levels of allergens. 

It is important to bear in mind that the composition of HD may alter allergen production, 

as laboratory studies show that different diets alter protein and allergen production 

(Avula-Poola et al., 2012, Casset et al., 2012, Vidal-Quist et al., 2017). Studies utilising 

single allergens from a limited number of species, for measurement of HDM presence 

may not provide an accurate reflection of HDM contamination or allergen exposure. This 

issue was highlighted as an “unmet need in mite allergy research”. Development of 

objective methods and high-throughput strategies to identify allergens and species 

present in HD is needed to better understand the pathogenesis of allergic diseases 

(Sanchez-Borges et al., 2017). 

1.5.4 Microbial Content of House Dust 

Much like HDMs, fungi and bacteria flourish in warm humid environments. 

Traditionally, studies have used ergosterol, β-1,3 glucan and extracellular 

polysaccharides for quantification of fungal content in homes (Miller & Young, 1997, 

Douwes et al., 1997, Karvonen et al., 2014). Endotoxin is the most commonly used 
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biomarker for assessing bacterial content of HD (Taubel et al., 2009). However, recent 

advancements in high-throughput DNA sequencing has enabled the detailed 

characterisation of microbiomes to the species level (Kong, 2011, Wu & Lewis, 2013). 

Such analysis has also been extended to cataloguing microbial species within homes.  

1.5.5 Fungi Present in Homes 

In HD from floors and mattresses the fungal species frequently identified by high-

throughput DNA sequencing, to be of high abundance are: Aspergillus spp. 

Cladosporium spp., Penicillium spp. and Alternaria spp. (Kaarakainen et al., 2009, Sousa 

et al., 2014, Rintala et al., 2012). The most comprehensive HD study to date included 

over 1,100 paired indoor-outdoor dust samples from across the continental US, 

identifying over 38,000 fungal taxa (Grantham et al., 2015). Fungal taxa in dust samples 

was so geographically predictable they were a reliable means of pinpointing the sample 

location to a few hundred kilometres (Grantham et al., 2015). Despite the 

biogeographical predictability of fungal taxa, the researchers were still able to identify 

subsets of taxa (1.1% of those identified) consistently found within the home, these 

included Aspergillus, Penicillium, Alternaria and Fusarium spp.  

1.5.6 Mycophagy 

There is no evidence to suggest that fungi are indigenous gut inhabitants of D. 

pteronyssinus (Hay et al., 1992), therefore the presence of fungi in the HDM gut is due 

to ingestion either intentionally or unintentionally. If HDMs consume fungi as a 

nutritional source, mycophagy, they may have the ability to digest some species and not 

others. Naegele et al. (2013) observed that when offered a diet of six different molds, D. 

farinae preferably consumed Alternaria alternata, Cladosporium sphaerospermum and 

Wallemia sebi over other species. Aspergillus and Penicillium spp. spores have been 

isolated from the gut of laboratory-reared D. pteronyssinus and successfully cultured, 

indicating the spores were undamaged after digestion (VanBronswijk & Sinha, 1973). A 

recent study demonstrated that D. pteronyssinus is better suited to nutritionally exploit 
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fungi than D. farinae, and preferentially seek out Aspergillus jensenii and Saccharomyces 

cerevisiae to consume (Molva et al., 2019).  

The small size of HDMs make it logistically impossible to dissect them and distinguish 

between the gut lumen and fat body. Therefore presence of an enzyme in faeces is used 

as an indicator of a digestive function (Erban & Hubert, 2008). One avenue to explore 

the hypothesis of mycophagy is to examine the expression and localisation of the 

enzymes capable of digesting essential fungal components. In order to feed on fungi, a 

mite must possess the enzymatic arsenal to degrade the microbe’s cell wall and digest 

the cell contents (Erban & Hubert, 2012). A typical fungal cell wall is a multilayer 

structure composed of a chitin layer located next to the cell membrane, linked to a β-1,3- 

and β-1,6-glucan layer via β-1,4-linkages, followed by an outermost layer of 

mannoproteins. β-glucans form 50-60% of the fungal cell wall with β-1,3 contributing 

65-90% of the β-glucan content (Fesel & Zuccaro, 2016). Effective disruption of fungal 

cell walls requires the combined actions of β-1,3-1,6 glucanases, chitinases and proteases 

(Schiavone et al., 2014). Arthropods utilise chitinases for cuticle remodelling, therefore, 

the presence of chitinases in itself does not indicate mycophagy; rather the location of 

the enzyme is key to its function. Glyco hydrolase activity has been observed in 

laboratory reared D. pteronyssinus (Martinez et al., 1999). Such enzyme activity may be 

related to immune defence or digestive activities, the latter being indicated if the enzyme 

is present in faeces (Pauchet et al., 2009, Erban & Hubert, 2008).  

1.5.7 Other Digestive Activities 

It is evident that HDMs possess the enzymatic arsenal to digest a wide variety of 

substances, as demonstrated by the diverse culture media used in laboratory settings to 

culture HDMs (Andersen, 1991, Hubert et al., 2016, Eraso et al., 1997, Arlian & Morgan, 

2015, Hart et al., 2007). Enzymes produced by HDMs are altered depending on the diet 

on which they are reared. For example, a diet high in protein increased production of 

allergens Der p 1 and Der p 4, as well as increasing elastase and chymotrypsin enzyme 

activities. Whereas a lipid rich diet (15.4%) increased Der p 14 allergen production, 
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trypsin, chymotrypsin, elastase, glutathione-S-transferase and endo-chitinase enzyme 

activities (Vidal-Quist et al., 2017).  

Spent culture medium (SM) and whole mite body extracts (MB) from D. farinae reared 

on a mixture of fish food and wheat, were demonstrated to have hydrolytic activity 

against wheat, potato, rice and corn starches, as well as amylopectin, maltase, dextrin and 

sucrase (Erban et al., 2009). Digestive enzyme activities reported for D. pteronyssinus 

include 33 distinct digestive enzyme activities from HDMs reared on a variety of diets 

(Colloff, 2009). Casset et al. (2012) examined numerous commercially available 

diagnostic and therapeutic HDM extracts, finding many were lacking important allergens 

and some had several fold variations in Der p 1 to Der p 2 ratios (Casset et al., 2012). 

These studies highlight the enormous variability in protein production by HDMs grown 

on different media. Characterising alterations in enzyme production can be difficult, 

relying on substrate assays or measurement of allergens for which there are ELISAs 

(Vidal-Quist et al., 2017). Proteomics offers an alternative method to study enzymes and 

has the ability to quantify alterations in the production of hundreds of enzymes. 

1.6 House Dust Mite Allergens 

1.6.1 Allergen Databases and Allergen Nomenclature 

Several public allergen databases are available which allow researchers to report the 

discovery of a new allergen. However, there are inconsistencies between these databases 

in the naming and official recognition of reported allergens.  

The most extensive list of allergens/variants is held by Allergenome.org which lists 314 

“mite” allergens/variants, 92 for D. pteronyssinus and 99 for D. farinae, the remaining 

are from various mite species (www.allergenome.org). Allergens included in this 

database are reported in scientific publications and reviewed by database administrators. 

Sequences for the allergen entries can be found in the protein sequence repository 

UniProt.  
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Allergenonline database, curated by University of Nebraska Lincoln, hosts full protein 

sequences for 2,129 allergen entries, of the 251 “mite” entries, 76 are for D. pteronyssinus 

and 88 for D. farinae. The allergens are listed, along with the protein sequence data and 

a brief description of allergenicity assessment (www.Allergenonline.org).  

The official site for systematic allergen nomenclature and reporting is approved and 

maintained by the World Health Organisation and International Union of Immunological 

Societies Allergen Nomenclature Sub-committee (WHO/IUIS). This Database lists 92 

mite allergens/variants, 23 allergens for D. pteronyssinus and 32 from D. farinae 

(Accessed: 30/04/2019). A key feature of inclusion in the WHO/IUIS database is that the 

allergen must satisfy strict criteria for biochemical and immunological characterisation. 

These criteria are set out by the WHO/IUIS material and are summarised in Table 1.1 

(Chapman, 2008).   
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Table 1.1 Criteria for Inclusion in the WHO/IUIS Nomenclature 

The molecular and structural properties should be clearly and unambiguously 

defined, including  

• Purification of the allergen protein to homogeneity. 

• Determination of molecular weight, pI, and carbohydrate composition. 

• Determination of nucleotide and/or amino acid sequence.  

• Production of monospecific or monoclonal antibodies to the allergen.  

The importance of the allergen in causing IgE responses should be defined by; 

• Comparing the prevalence of serum IgE antibodies in large population(s) of 

allergic patients. Ideally, at least 50 or more patients should be tested.  

• Demonstrating biological activity, e.g., by skin testing or histamine release 

assay. 

•  Investigating whether depletion of the allergen from an allergic extract (e.g., by 

immunoabsorption) reduces IgE-binding activity.  

• Demonstrating, where possible, that recombinant allergens have comparable IgE 

antibody-binding activity to the natural allergen. 

Taken from Chapman (2008). 

 

 

1.6.2 Allergen Families 

The structure and function of a protein has important implications for allergenicity, most 

allergenic proteins are limited to just 2% of protein families (Radauer et al., 2008). A 

comprehensive categorisation of allergens into allergen families (AllFams) was 

undertaken by Radauer et al. (2008) from which an online database was created. This 

AllFam database classifies allergens deposited into Allergenonline and WHO/IUIS 
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databases into AllFams based upon structure. The database gives details for 959 allergens 

belonging to 151 AllFams (Radauer, 2017).  

1.6.3 Mite Group Allergens 

The majority of mite allergens identified to date have been assigned to groups (Group 1-

36) in accordance with their order of discovery (Thomas, 2015). The term “group” is 

used to describe structurally related allergens from different species within a genus or 

closely related genera, these typically exhibit 40 - 90% protein identity (Chapman, 2008). 

Much confusion still persists as to the identity of some more recently discovered 

allergens, with different research groups designating distinctly different proteins to the 

same mite allergen grouping (Rider et al., 2017). To avoid any ambiguity, the work 

presented throughout this thesis will refer to allergen nomenclature used by the 

WHO/IUIS committee.  

1.6.4 Allergen Isoforms and Isoallergens 

Allergens frequently exhibit strong homology, and to aid in clarity and in understanding 

the relationships between allergens, the WHO/IUIS Allergen Nomenclature defined 

terms, Isoallergens and Isoforms will be used throughout this thesis. Isoallergens are 

homologous allergens (> 67% identity) from the same organism, that are similar in size 

and function to one another. Isoforms (variants) are a sub-category of Isoallergens, 

exhibiting greater than 90% identity, but typically differing by only a few amino acids. 

Isoforms are defined with numeral suffixes following the allergen group number (Pomés 

et al., 2018). Several HDM allergens have geographical isoforms, observed to emerge in 

isolated HDM populations (Thomas, 2015). For example, the major D. pteronyssinus 

allergen Der p 1 is listed as having two Isoallergens and 22 Isoforms, these isoforms are 

designated Der p 1.0101 through Der p 1.0124 (WHO/IUIS). 
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1.6.5 Immuno-Reactivity and Biochemical Activity of Mite Group Allergens 

Scientific publications detailing the immunological effects and pathways elicited by 

HDM allergens are innumerable and reviewing these in depth is beyond the scope of this 

thesis. Instead I will briefly discuss each D. pteronyssinus mite group allergen (MGA) in 

the context of its biochemical characteristics and briefly summarise its immunological 

importance. Where information is lacking for a D. pteronyssinus MGA, I will discuss the 

equivalent MGA present in D. farinae.  

Immuno-reactivity to MGAs is hierarchical, with some MGA being considered major 

allergens, if they bind a large proportion of the anti-HDM IgE in patient serum. This 

relative immunoreactivity may stem from their abundance, aerobiology, stability in the 

environment or enzymatic potency (Thomas et al., 2010, Wan et al., 1999). A summary 

of MGAs is outlined in Table 1.2, representing the most up to date information in 

WHO/ISUS and supplemented with information regarding immunological hierarchy 

where known. Allergenicity for the purpose of this thesis is simplified to allow 

generalised insight into the importance of the MGA, thus allergenicity is described in 

two ways: (i) reactivity and (ii) potency.  

Reactivity refers to the percentage of mite allergic patients that have significant reactions 

to a specific MGA. Further information regarding the various methodologies used (Skin 

prick test, Immunoblot, ELISA etc) in determining this reactivity can be retrieved from 

WHO/IUIS. IgE reactivity is an important consideration, as IgE mediated cellular 

reactions are triggered by trace amounts of allergen (Aalberse, 2000).  

The potency of an MGA is discussed in terms of IgE titer, the amount of anti-HDM IgE 

directed against the specific MGA. This has significant implications for the severity of 

symptoms elicited upon allergen exposure (Rolinck-Werninghaus et al., 2008). 
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1.6.6 Enzymatic Mite Group Allergens 

Within HD a wide range of enzyme activities have been reported including trypsin, 

chymotrypsin, glucoamylase, chitinase, cellulase, lipase, elastase, lysozyme and alkaline 

phosphatase. Enzymatic activity is a common feature of allergens, of the 151 AllFams, 

60 have known or predicted enzyme activities (Radauer, 2017). Of the 34 D. 

pteronyssinus/D. farinae MGAs 14 have known or predicted enzyme activity (Table 1.2).  

1.6.7 Protease Allergens 

Protease MGAs (Der p 1, 3, 6 and 9) are cystine/serine proteases with trypsin, 

chymotrypsin or collagenase activities (Table 2). The first identified and best described 

is Der p 1, a major allergen. Der p 1 has been demonstrated to break down epithelial 

barrier in skin and lungs, inactivate elastase inhibitors and stimulate innate immune cells 

to release large amounts of pro-inflammatory cytokines (Wang, 2013). In addition, the 

presence of Der p 1 can induce co-sensitisation to otherwise innocuous bystander 

molecules (Thomas, 2015). It is no wonder these potent immunostimulatory activities 

result in Der p 1 being a highly potent allergen, binding in excess of 75% of anti-D. 

pteronyssinus IgE (WHO/IUIS). Less studied are the serine proteases, Der p 3, 6 and 9. 

These minor potency allergens also disrupt epithelial tight junctions and induce 

production of proinflammatory cytokines (Gregory & Lloyd, 2011, Thomas, 2015). 
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Table 1.2 Biochemical Activity and Allergenicity of Mite Group Allergens 

Allergen 

group 
Allergen Biochemical name Biological activity Isoforms MW (KDa) Allergenicity Potency* 

1 Der p 1 Cysteine protease Proteolysis 24 24 >92%+ Major 

2 Der p 2 NPC2 family Lipid binding 15 15 >71%+ Major 

3 Der p 3 Trypsin Proteolysis 1 31 > 97%+ Minor 

4 Der p 4 Alpha amylase Glycoside hydrolase 1 60 >25% Mid 

5 Der p 5 
 

Hydrophobic binding 2 14 >31%+ Mid 

6 Der p 6 Chymotrypsin Proteolysis 1 25 >41%+ Minor 

7 Der p 7 Bactericidal permeability-

increasing like protein 

Lipid binding 
1 26, 30 & 31 >37%+ Mid 

8 Der p 8 Glutathione S-transferase 
 

1 27 40% Minor 

9 Der p 9 Collagenolytic serine protease Proteolysis 2 29 92%+ Minor 

10 Der p 10 Tropomyosin Structural Protein 1 36 5.60% Minor 

11 Der p 11 Paramyosin Structural Protein 1 103 >18% Minor 

13 Der p 13 Cytosolic Fatty Acid Binding 

Protein 

Lipid binding 
1 15 >6% 

Minor 

14 Der p 14 Apolipophorin Lipid binding protein 1 177 >65%a unknown 

15 Der p 15 Chitinase-like protein Chitinase 2  70%b Minor 

16 Der f 16 Gelsolin/villin 
 

 53 47% Minor 

17 Der f 17 Calcium binding protein 
 

 53 35% Minor 

18 Der p 18 Chitin-binding protein Glyco hydro family 18 1  63%b Minor 

20 Der p 20 Arginine kinase ATP: guanido 

phosphotransferase  
1  40%c Minor 

21 Der p 21 Group 5 Homologue 
 

1  26%d Mid 
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Allergen 

group 
Allergen Biochemical name Biological activity Isoforms MW (KDa) Allergenicity Potency* 

22 Der f 22 NPC2 family Lipid binding 1   Unknown 

23 Der p 23 Peritrophin-like protein domain  Chitin-binding 1 14 74% Major 

24 Der p 24 biquinol-cytochrome c 

reductase binding protein 

ubiquinol-cytochrome c 

reductase complex component 
1 13 >50% 

Unknown 

25 Der p 25 Triosphosphate isomerase Carbohydrate biosynthesis 1  >46% Unknown 

26 Der f 26 Myosin alkali light chain Structural Protein 1 18 >29% Unknown 

27 Der f 27 Serpin protease inhibitor 1 48 >34% Unknown 

28 Der f 28 Heat Shock Protein 
 

2 70 >68% Unknown 

29 Der f 29 Peptidyl-prolyl cis-trans 

isomerase (cyclophilin) 

folding of proteins 
1 16 >20% 

Unknown 

30 Der f 30 Ferritin Iron Storage 1 16 >60% Unknown 

31 Der f 31 Cofilin actin-binding protein 1 15 >30% Unknown 

32 Der f 32 Secreted inorganic 

pyrophosphatase 

 
1 35 >15% 

Unknown 

33 Der f 33 alpha-tubulin Structural Protein 1 52 >25% Unknown 

34 Der f 34 enamine/imine deaminase 
 

1 16 68% Unknown 

35 Der f 35 
  

1 14.4 51% Unknown 

36 Der p 36 
  

1 23 >42% Unknown 

37 Der p 37 Peritrophic like protein domain Predicted chitin binding 1 30 >19% Unknown 

38 Der p 38 Bacterial lytic enzyme 
 

1 15 >45% Unknown 

Data curated from WHO/ISUS database correct as of 01/05/2019. Allergenicity: Percentage of Mite Allergic patients that have significant reactions to this 

allergen. MW: Determined by SDS-PAGE. a: Data for Der f14 as no data available for Der p 14. b: Data from (O'Neil et al., 2006). c: Data from (Hales et 

al., 2006) d: Data from (Weghofer et al., 2008). * Taken from (Sanchez-Borges et al., 2017). + Allergens with immunostimulatory adjuvant effects 

(Sanchez-Borges et al., 2017). 
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1.6.8 Glycosyl hydrolase and Carbohydrate Binding Allergens 

The Gene Ontology (GO) term, Carbohydrate metabolic process, is one of the top GO 

terms associated with the highest number of allergens in AllFam (Radauer et al., 

2008), therefore it is not surprising that several MGAs fall into this category. 

Carbohydrate degrading MGAs include the Glycosyl hydrolases (GH) α-amylase Der 

p 4 (GH13) and chitinase Der p 15 (GH18), the triosephosphate isomerase Der p 25 

and the bacteriolytic enzyme Der p 38 (Table 1.2). Der p 38 is one of the most recently 

recognised allergens, added to WHO/ISUS database in the latest revision 

(01/01/2019). Der p 18 and Der p 23 are structural proteins that form part of the 

chitinous peritrophic membrane that surrounds the faecal pellet (Weghofer et al., 

2013, Bolognesi et al., 2008, Resch et al., 2016). These proteins appear to have similar 

function and localisation but exhibit vastly different allergenicity. Der p 18 is a minor 

allergen, whereas Der p 23 is a major allergen of similar importance to Der p 1 and 

Der p 2 (Sanchez-Borges et al., 2017). Very little is known about newly identified Der 

p 37, it appears structurally similar to Der p 18 and Der p 23, containing a predicted 

peritrophic like protein domain (WHO/IUIS). 

1.6.9 Other Enzymes 

Other enzymatically active MGAs not discussed above are less studied but are 

members of well-defined allergen families. Der p 8 is among 13 glutathione-S-

transferases listed in AllFam. A similar number of allergenic ATP: guanido 

phosphotransferase are listed alongside Der p 20. In the past Der f 29 has been reported 

both as a cyclophilin (An et al., 2013) and profilin (Jiang et al., 2015). It is officially 

recognized by WHO/IUIS as a cyclophilin, comprising a separate AllFam to that of 

profilin. Der f 32 an inorganic pyrophosphatase (PPase) is one of two PPases listed in 

AllFam, the other is from Aedes aegypti (Aed a 7). Der f 34 is the only enamine/imine 

deaminase listed in AllFam but has been shown to be cross-reactive with A. fumigatus 

(Radauer, 2017, ElRamlawy et al., 2016). 
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1.6.10 Lipid-Binding Allergens 

Lipid binding proteins are frequently identified as allergens, more than 50% of major 

allergens identified, have known or predicted lipid-binding activity (Thomas et al., 

2005). Of the officially recognised MGAs, five have lipid-binding activity, Der p 2, 7, 

13, 14 and Der f 22 (Table 1.2). Der p 2 is considered a major D. pteronyssinus 

allergen, it has significant homology to MD-2, the LPS binding component of the 

TLR4 complex. The D. farinae homologue of Der p 2 (Der f 2), has been demonstrated 

to bind bacterial LPS and contains predicted TLR4 dimerization sites, suggesting it 

forms a TLR4-Der f 2-LPS complex (Ichikawa et al., 2009). Der p 13 was 

biochemically characterised as having lipid-binding activity resulting in the activation 

of TLR signalling pathways (Satitsuksanoa et al., 2016). The mechanisms of immune-

stimulation for these lipid-binding allergens are not fully understood. In the case of 

Der p 7, the folded protein has similarities to lipopolysaccharide binding protein 

(LPB), it has been shown to bind bacterial derived lipid ligands which subsequently 

bind to TLRs on immune cells. The allergenicity of Der p 14 and Der f 22 are 

unknown, but their ability to bind lipid ligands is thought to be the causation of their 

immunostimulatory adjuvant effects (Gregory & Lloyd, 2011).  

1.6.11 Structural Protein MGAs 

In the muscles of multicellular organisms, contraction is enabled by the sliding of actin 

and myosin filaments over one another (Barton & Buckingham, 1985). The D. 

pteronyssinus homolog of Der f 26, a myosin alkali light chain, is likely complexed 

with Der p 11 (Paramyosin) a myosin binding protein that typically constitutes the 

core of myosin filaments (Sonobe et al., 2016). Der p 10 Tropomyosin is an actin 

binding protein, while Der p 16 (Gelsolin) and Der f 31 (Cofilin) are actin remodelling 

proteins (Table 1.2). These proteins are found in close association with each other 

within the body of the HDM and therefore may have a similar route of allergen 

exposure. Der f 33 is an alpha-tubulin, a fundamental component of the cellular 

cytoskeleton (Nielsen et al., 2010). Der f 33 may be found in the faeces, as the 
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peritrophic membrane is formed by cells budding off the midgut epithelium (Colloff, 

2009).  

1.6.12 Other MGA 

MGAs 17, 27, 28 and 30 have been reported in D. farinae, however as yet these have 

not been directly identified as allergens in D. pteronyssinus (Table 1.2). Der f 17, a 

calcium binding protein, is a member of the broad AllFam group, EF-Hand Domain, 

which contains 74 recognised allergens and includes Myosin light chain allergens e.g. 

Der f 26. Serpin Der f 27, a putative serine protease inhibitor is listed in AllFam 

alongside only two other serpins from vastly different phyla, domestic chicken and 

wheat.  

Heat shock proteins (HSPs) are common allergens and tend to be highly conserved 

and constituently expressed in all nucleated cells. They are thought to play an 

important role in chaperoning antigens and other immunologically important 

molecules between immune cells (Yusuf et al., 2009). Three classes of HSPs are listed 

in AllFam HSP 20, HSP 70 (includes Der f 28) and HSP 90 (Table 1.2).  

Ferritin is an important physiological protein in all arthropods, just as it is in nearly all 

other organisms, serving as the universal storage and transport protein for dietary iron 

(Whiten et al., 2018). Der f 30 is the only allergenic ferratin officially recognised by 

WHO/ IUIS, its’ importance as an allergen is yet to be determined (Table 1.2). 

1.6.13 MGA with Unknown Function 

MGA not discussed above are of unknown function. These include homologous 

allergens Der p 5 and Der p 21, and newly reported allergens Der f 35 and Der p 36. 

Despite having unknown function, Der p 5 and Der p 21 are well recognised allergens 

of equal importance to Der p 4 and Der p 7 (Table 1.2). They are unique to mites, and 

show moderate homology (21%) and cross-reactivity (Thomas, 2015). The protein 
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sequences for Der f 35 and Der p 36 have not been made publicly available, therefore 

further discussion of these allergens is not feasible at this point.  

Though Der p 1, 2 and 23 represent the most prevalent allergens, understanding the 

diversity of allergens a patient is sensitised to has important clinical implications. 

Patients reactive to multiple HDM allergens show an increased risk for multi-allergic 

disease phenotypes (Kidon et al., 2011). Moreover, different allergenic diseases show 

different patterns of allergen sensitisation (Banerjee et al., 2015). Diagnosis of HDM 

allergy is typically performed with crude protein extracts, containing both allergenic 

and non-allergenic components in non-defined amounts. Researchers have examined 

numerous commercially available diagnostic and therapeutic HDM extracts, finding 

many were lacking important allergens and some had several fold variations in Der p 

1 to Der p 2 ratios (Casset et al., 2012). The 2017 international consensus (ICON) 

report on the clinical consequences of mite hypersensitivity outlines the benefits of 

using component specific diagnosis, which includes purified or recombinant allergens 

for the most important MGAs (groups 1, 2, 4, 5, 7, 10, 11, 14, 15, 18, 21 & 23) as a 

means of determining if a patient is genuinely sensitised to HDMs (Sanchez-Borges 

et al., 2017).  

1.6.14 Cross-reactivity 

Patients sensitised to HDM also show sensitisation not only to other mites, but to food 

allergens such as snails, shrimp, mussels and fungi (Sidenius et al., 2001, ElRamlawy 

et al., 2016). As the structure and function of a protein has important implications for 

allergenicity, cross-reactivity is linked to protein family rather than allergen source 

(Hauser et al., 2010, McKenna et al., 2016, Radauer et al., 2008). Most MGAs 

discussed so far have predicted biochemical functions that placed them in well-defined 

allergen families (Radauer et al., 2008).  

Identification of cross-reacting allergens is often the result of epidemiological studies, 

however homology may also highlight cross-reacting allergens (Sidenius et al., 2001). 
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The FAO/WHO expert consultation report on Allergenicity of Foods Derived from 

Biotechnology, stipulates that a protein is to be considered potentially cross-reactive 

if it meets one or both of the following criteria; “exhibit more than 35 % identity in 

the amino acid sequence of the expressed protein”, “using a window of 80 amino acids 

and a suitable gap penalty” or “identity of 6 contiguous amino acids” with a known 

allergen (FAO/WHO, 2001). 

The availability of large protein and allergen databases can allow researchers to predict 

biochemical functions of proteins and examine homology between allergens to 

establish patterns that may confer allergenicity. This technique can be applied to 

examining the proteome of newly sequenced species to give insight into potentially 

allergenic proteins. 

1.7 Omics of HDMs 

The recent emergence of sophisticated omic technologies has allowed for cost-

effective global investigation of an organism at the genomic, transcriptomic and 

proteomic levels. Significant insight into the molecular toolkit an organism possesses 

can be gleaned from examination of the functional elements of its’ genome. The 

wealth of genomic and functional protein information available provides a rich 

resource for rapid assembly of de novo genome sequences, gene prediction and high 

accuracy of functional protein annotation (Chandramouli & Qian, 2009).  

Bioinformatic prediction of protein-coding genes occasionally results in false positive 

gene calling, thus in the case of a newly sequenced genome, proteins must be identified 

to positively prove their existence (Stanke et al., 2006, Prasad et al., 2017). Proteomics 

offers a sensitive and high-throughput method for doing so, characterising the 

complete set of proteins expressed in a whole organism or a sub-section of that 

organism (Chandramouli & Qian, 2009). A strategic approach must be taken when 

conducting proteomic studies, as proteomic studies are intrinsically biased towards 

identification of high abundance proteins, that are favourable to tryptic digestion and 
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result in formation of optimal length peptides (0.5 – 3 kDa) for LC-MS/MS 

fragmentation (Fonslow et al., 2013, Tsiatsiani & Heck, 2015). Some proteins are only 

expressed under particular conditions. Moreover, the sample preparation methods 

influence the subset of proteins that can be reliably identified through proteomics 

(Klont et al., 2018). Comprehensive proteome characterisation studies require 

extensive use of multiple protein extraction methods and depletion of high abundance 

proteins (Klont et al., 2018, Tsiatsiani & Heck, 2015, Fonslow et al., 2013). 

Comparative proteomics, between specimens, allows for the measurement of 

organism-wide alterations in protein expression, independent of substrates or ELISAs 

(Hogrebe et al., 2018). This can also allow us to identify proteins present in one sample 

and absent from another. 

To date, proteomic studies of D. pteronyssinus have identified approximately 500 

proteins utilising bottom-up proteomics (Bordas-Le Floch et al., 2017) or 2D-

electrophoresis coupled with tandem mass spectrometry of high abundance proteins 

(Erban et al., 2017). These studies were limited to spectral searches against publicly 

available sequences (Erban et al., 2017) or transcriptomic data (Bordas-Le Floch et 

al., 2017). The many outstanding questions about D. pteronyssinus allergens and 

digestive enzymes may be answered by examination of the D. pteronyssinus airmid 

genome and proteome. Moreover, comparative proteomics of laboratory and wildtype 

D. pteronyssinus may identify the biochemical tools utilised by D. pteronyssinus in 

extracting nutrients from HD.  

1.8 HDM Population Control and Allergen Avoidance Measures 

Numerous HDM population control and allergen avoidance measures have been 

proposed as a means of improving clinical outcomes for sensitised individuals. These 

can be categorised into physical (heating, freezing, ventilation, washing, vacuuming, 

HDM barriers) or chemical controls (acaricides) and some were discussed earlier in 

this text. For the sensitised individual, eliminating HDMs from their home may not be 

enough to completely avoid exposure, as furniture in public spaces have been shown 
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to also harbour HDMs. HDMs have been found in soft furnishings on trains, buses, 

aeroplanes and private cars (Clarke et al., 2015b, Colloff, 1987, Wickens et al., 1997). 

In addition, clothing acts as a reservoir for HDMs, allowing them to be transported 

from an infested home and deposited into new habitats (Clarke et al., 2015a). As we 

spend approximately 90% of our time indoors, complete allergen avoidance for the 

HDM allergic patients is almost impossible to achieve (Evans & McCoy, 1998).  

A Cochrane review of commonly used physical, chemical and combined physical-

chemical HDM control strategies has shown no clinical benefit or evidence that these 

control measures can reduce exposure to HDMs, their allergens or the 

severity/frequency of asthma symptoms (Gøtzsche & Johansen, 2008). A similar 

meta-analysis found moderate levels of symptom improvement in AD patients, 

however the authors concluded these improvements fell below what should be 

considered the basis for influencing clinical practice (Nankervis et al., 2015). A 

common issue when assessing the efficacy of HDM population and allergen control 

measures is patient compliance. For example, regular and rigorous cleaning to remove 

HDM allergen is advised, however this cleaning must be conducted by someone other 

than the sensitised individual (Murray & Ferguson, 1983). Many of the proposed 

methods are expensive, complex or time consuming and therefore difficult to maintain 

for prolonged periods of time thus resulting in poor patient compliance (Nankervis et 

al., 2015).  

1.9 Knowledge Deficiencies 

Although there are a vast number of publications examining the life cycle and 

allergens of D. pteronyssinus, there is a scarcity of in-depth molecular studies. 

Moreover, to date there have been few genomic studies of medically and economically 

important Acari. Thus, genomic sequencing and annotation of the D. pteronyssinus 

airmid genome would provide general knowledge of Acari and a necessary platform 

for the detailed molecular study of this organism. The fact that the predicted proteome 

of D. pteronyssinus is not publicly available, has hampered the investigation of HDM 
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proteomics. Indeed, no large-scale proteomic study of D. pteronyssinus has been 

undertaken of the mite body or of excreted proteins (excretome), but with a complete 

genome, the huge diversity of digestive enzymes and allergenic proteins can be 

determined. Furthermore, protocols and techniques for the implementation of large-

scale proteomic studies in HDMs, and more particularly in D. pteronyssinus, have not 

been developed, and high-throughput technologies have not been utilised for 

investigation of this medically important mite. Development of objective methods and 

high-throughput strategies to identify allergens present in HD would contribute to the 

body of knowledge of the pathogenesis of allergic diseases and address one of the key 

“unmet needs in mite allergy research” highlighted in the International consensus 

(ICON) on: clinical consequences of mite hypersensitivity, a global problem 

(Sanchez-Borges et al., 2017). Furthermore, identification of D. pteronyssinus airmid 

genes that may confer resistance to desiccation or are involved in key physiological 

processes, may allow for development of much needed secondary prevention 

strategies for mite-induced diseases, thus meeting another unmet need in mite allergy 

research (Sanchez-Borges et al., 2017). Moreover, this research will provide the 

foundation upon which much needed easy-to-administer HDM reduction or avoidance 

measures can be developed and their efficacy measured.  

1.10 Scope and Aims of this Project 

Much of the existing knowledge of D. pteronyssinus stems from ecological studies of 

mite physiology, life cycle or immunological studies of its’ allergens. Much insight 

into the factors that contribute to allergenicity or facilitate D. pteronyssinus persistence 

in the home, can be gained from examining D. pteronyssinus airmid on a genomic and 

proteomic level.  

The objectives of the work presented in this thesis are (i) sequencing the genome of 

D. pteronyssinus airmid, (ii) the characterisation of D. pteronyssinus proteomes and 

(iii) functional analysis of a trigene cluster encoding putative glucanases. This will 

identify protein families, enzymes, allergens and predicted allergens encoded in the 
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genome of this medically important HDM. In silico examination of proteins with 

homology to known allergens should identify proteins putatively involved in cross-

reactive immunological sensitisation. Development of methods for culture and 

extraction of protein from both the mite body and spent culture medium of D. 

pteronyssinus airmid will allow identification of proteins and allergens expressed and 

localised to either the mite body or excretome. Proteomic analysis of HD using D. 

pteronyssinus airmid predicted proteome will allow for the identification of numerous 

D. pteronyssinus proteins previously unknown to be present in HD and give insight 

into the wildtype pattern of protein/allergen expression. Proteomic analysis of proteins 

present in HD may represent a new testing methodology for characterising the 

allergenome of HD. Examining the repertoire of enzymes expressed by D. 

pteronyssinus airmid and their subsequent localisation will allow for insights into the 

digestive capabilities and diet of D. pteronyssinus. Phylogenetic analysis, recombinant 

expression and biochemical characterisation of novel glucanases may reveal their 

physiological role in D. pteronyssinus and other HDMs. To these ends the following 

approaches will be taken:  

1.  Culture and maintenance of D. pteronyssinus airmid in the laboratory. 

Genomic sequencing of D. pteronyssinus and construction of a genome assembly 

which will be annotated by bioinformatic analysis.  

2.  Phylogenetic analysis of D. pteronyssinus and close relatives using whole 

genome assemblies, proteo-genomic analysis of D. pteronyssinus airmid genome 

assembly with reference to other recently published D. pteronyssinus genomes. In 

silico examination of the presence of allergen homologs and predicted allergens in D. 

pteronyssinus airmid. Protein extraction from mite body, spent culture medium and 

HD, prior to separation and analysis by LC-MS/MS and interrogation of the predicted 

D. pteronyssinus airmid proteome database.  

3.  In depth phylogenetic, biochemical and proteomic analysis of novel D. 

pteronyssinus airmid β-1,3 glucanases by recombinant protein expression, enzyme 
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assay and analysis of enzyme expression by LC-MS/MS will allow for insight into the 

physiological role of these enzymes. 
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2.0 Draft Genome Sequence of Dermatophagoides 

pteronyssinus, the European HDM. 
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Abstract  

Dermatophagoides pteronyssinus is the European house dust mite and a major source 

of human allergens. Here, the first draft genome sequence of the mite is presented, as 

well as the ab initio gene prediction and functional analyses that will facilitate 

comparative genomic analyses with other mite species.  

Introduction 

Dermatophagoides pteronyssinus, the European House Dust Mite, belongs to the 

Acari suborder Astigmata, of which more than 6,100 species are described containing 

both free-living and parasitic lineages (Klimov & O’Connor, 2013). House dust mites 

(HDMs) live in close association with vertebrates and utilize powerful enzymes to 

digest organic debris that vertebrates leave behind. Many of these enzymes, secreted 

in the feces, are major sources of allergens and lead to sensitization in 15 to 20% of 

the population in industrialized countries, through activation of both innate and 

adaptive immune responses (Jacquet, 2013).  
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Materials and Methods 

For genomic sequencing, D. pteronyssinus (airmid healthgroup Ltd., Ireland) was 

cultured for 28 days on house dust mite maximal medium (HDMMM) at 75% relative 

humidity and 25 °C. A multi-isolate sample of D. pteronyssinus was collected and 

separated from the culture medium by sieving, followed by saturated saline separation. 

HDMs were washed and subjected to 24 h starvation before sterilization using 70% 

ethanol; they were then washed and frozen in liquid nitrogen prior to DNA extraction, 

which was performed using a Promega genomic DNA purification kit and mouse-tail 

method. DNA was quantified using a Qubit dsDNA BR assay kit and examined for 

integrity by agarose gel electrophoresis. Four sequencing libraries—500 bp paired-

end (PE), 2 kb mate-pair (MP), 5 kb MP, and 10 kb MP—were prepared for the 

Illumina HiSeq 2000, 2500, and 4000 platforms (BGI, China) with PE read sizes of 

100 bp and MP read sizes of 49 bp. A total of 130,978,913 PE reads, 143,286,220 2 

kb MP reads, 56,245,986 5 kb MP reads, and 29,806,232 10 kb MP reads were first 

trimmed for adapter and base call quality with Trimmomatic (Bolger et al., 2014). 

Trimmed reads were then being used for de novo assembly in dipSPAdes version 1.0 

(Safonova et al., 2015), which resulted in 4,459 contigs with an N50 of 68,101 bp. 

Scaffolds were generated using SSPACE (Boetzer et al., 2011), and gaps were closed 

using GapFiller (Boetzer & Pirovano, 2012).  

Results 

The final assembly resulted in 1,322 scaffolds, with an N50 value 450,436 bp, an L50 

of 33 scaffolds, and a GC content of 30.93%. The largest scaffold was 3,593,316 bp 

in length. The genome size of D. pteronyssinus was estimated to be approximately 

70.76 Mb with a total assembly gap length of 3.14%. Gene prediction employed 

AUGUSTUS version 3.1.0 (Stanke et al., 2008), trained using the gene set of 

Dermatophagoides farinae (Chan et al., 2015). Gene functions were annotated with 

Pfam domains (Finn et al., 2016) using InterproScan version 5.3-46.0 (Jones et al., 

2014). CEGMA version 2.5 was used to identify the presence of core eukaryotic 
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protein-coding genes (Parra et al., 2007). Secreted proteins were predicted using 

SignalP version 4.1 (Petersen et al., 2011) and transmembrane helices were predicted 

through the TMHMM server version 2.0 (Krogh et al., 2001). The ab initio gene 

prediction discovered 12,530 gene models, containing 48,371 exons in total. 419 of 

the 429 CEGMA eukaryotic core genes were identified, and full-length sequences for 

39 known mite allergens were located, including the mite group allergens 1 to 11, 13 

to 16, 18, and 20 to 33 (Chan et al., 2015, Rider et al., 2015). Functional annotation 

resulted in gene ontology terms for 5,622 genes and Pfam domains for 8,031 proteins; 

1,619 proteins are predicted to have a signal peptide, and 3,610 contain a 

transmembrane domain.  

Accession number(s). This whole-genome shotgun project was deposited at 

DDBJ/ENA/GenBank under the accession number MQNO00000000. The version 

described in this paper is the second version, MQNO02000000.  
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2.1 Supplementary Materials and Methods 

 

2.1.1 Materials 

2.1.1.1 Saturated Saline Solution (36% (w/v)) 

Sodium chloride (360 g) was brought to 1 L with distilled water and mixed until 

dissolved. 

2.1.1.2 75% Relative Humidity Solution 

Saturated saline solution (Section 2.1.1.1) was added to NaCl to form a 50% (w/v 

slurry. 

2.1.1.3 Wash Solution A 

Sodium chloride (90 g) was brought to 1 L with distilled water and mixed until 

dissolved. 

2.1.1.4 Wash Solution B 

Sodium chloride (22.5 g) was brought to 1 L with distilled water and mixed until 

dissolved. 

2.1.1.5 50 X Tris-Acetate Buffer (TAE) 

Trizma base (242 g) was added to deionised water (700 ml) and mixed until 

dissolved. Glacial acetic acid (57.1 ml) and 0.5 M EDTA (100 ml) were added, 

mixed and pH adjusted (pH 8). The volume was adjusted to 1 L with distilled water. 

The solution was stored at room temperature. 
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2.1.1.6 1 X Tris Acetate Buffer (TAE) 

50 X TAE (20 ml; Section 2.1.1.5) was added to distilled water (980 ml). The 

solution was stored at room temperature. 

2.1.2 Methods 

2.1.2.1 HDM Housing Unit 

HDMs were grown within culture vessels consisting of a 250 ml conical flask plugged 

with cotton wool (Figure 2.1). Culture vessels were housed within a Secador 

desiccator cabinet 3.0 (Figure 2.1).  Maintenance of constant humidity was facilitated 

by filling the desiccant reservoir of the Secador desiccator cabinet to a depth of 2-3 

cm with 75% Relative Humidity Solution (Section 2.1.1.2). Temperature was 

maintained by placing Secador desiccator cabinet within an incubator set to 25 oC 

 

Figure 2.1: Schematic Representation of The HDM Housing Unit. 

The housing unit consisting of Secador desiccator cabinet 3.0 placed within an 

incubator (25 oC). Relative humidity was maintained at 75% with use of relative 

humidity solution maintained at a depth of 2-3 cm. HDMs are cultured within a 250 ml 

conical flask and prevented from leaving the flask by a cotton wool plug. 

 

Incubator 25o C

Secador Desiccator Cabinet

Perforated Shelf

Relative Humidity Solution

Cotton wool plug

Conical Flask

House dust mite 

culture material

Desiccant 
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(Figure 2.1). The Secador desiccator cabinet was cleaned with hot soapy water 

followed by 70% ethanol and the relative humidity solution was changed every three 

months to prevent microbial contamination.  

 

 

 

 

Figure 2.2: Sieving Apparatus.  

A custom sieving apparatus constructed from 100 ml specimen pot (VWR) and 300 µM 

aperture plastic mesh was made. Sieving apparatus was used separate HDMs from 

culture media during culturing and harvesting.  
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2.1.2.2 Humidified HDMMM  

HDMs are vulnerable to desiccation, so to avoid desiccation stress the culture medium 

was equilibrated to 75% RH by placing HDMMM (airmid healthgroup LtD, Dublin) 

into a weigh boat, and storing in a designated food desiccator with 75% RH solution 

for two weeks prior to use. 

2.1.2.3 Sieving of HDMs 

The sieving of HDMs was conducted in a laminar flow hood to minimise risks 

associated with allergen exposure to lab personnel. Culture media was placed in a 

custom-made sieving apparatus illustrated in Figure 2.2., lid of sieving apparatus was 

secured, and contents were sieved into a 1 L beaker by tapping the sieving apparatus 

against the side of the beaker. After a period of time no HDMMM passed through the 

mesh, the remaining culture contained approximately 90% HDMs and 10% culture 

media. 

2.1.2.4 Culture of HDMs 

D. pteronyssinus airmid were obtained from cultures housed for many years at airmid 

healthgroup LtD (Dublin, Ireland). The HDMs were sub-cultured every 28 days. 

Culturing was conducted in a laminar flow hood to minimise risks associated with 

allergen exposure to lab personnel. Sieved HDMs (1.25 g; Section 2.1.2.3) were placed 

into a culture vessel (Section 2.1.2.1) along with humidified HDMMM (3.75 g; 

Section 2.1.2.2), then the opening of the culture vessel was plugged with cotton wool. 

HDMs were incubated in housing unit (Section 2.1.2.1) for the 28 days before sub-

culture.  

2.1.2.5 Feeding HDMs 

HDMs were fed 14 days post-culturing (Section 2.1.2.4) by adding humidified HDM 

culture media (2.5 g; Section 2.1.2.2).  
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2.1.2.6 Harvest and Washing of HDMs 

Wash Solution A (50 ml; Section 2.1.1.3) was poured into a 500 ml separating funnel 

followed by sieved HDMs (3.5 g; Section 2.1.2.3) and topped up with an additional 

450 ml of Wash Solution A. Contents were swirled gently to mix, then allowed to 

settle in the separating funnel until food debris sank to the bottom of the funnel and 

HDMs floated to the surface of the solution (approx. 2 min). Wash buffer A with food 

debris was drained from separating funnel into a waste beaker until only 50 ml 

remained, this ensured all the HDMs were retained. The washing procedure was then 

repeated a second time using 450 ml of Wash Solution B (Section 2.1.1.4) to remove 

remaining food debris. Wash Solution B was carefully removed from the separating 

funnel, ensuring all the HDMs were retained. Distilled water (450 ml) was added to 

the separating funnel and contents were swirled gently to mix. The entire contents of 

the separating funnel were passed through a Miracloth to separate the HDMs from the 

water. HDMs were washed by pouring additional distilled water (500 ml) through the 

Miracloth to remove residual wash buffer. HDMs were dried by placing Miracloth 

onto tissue paper. HDMs were used immediately for surface sterilisation (Section 

2.1.2.8). 

2.1.2.7 Starvation of HDMs 

Washed HDMs (Section 2.1.2.6) were spread evenly onto a petri dish, using an 

inoculation loop to create a thin layer. Petri dish containing washed HDMs was placed 

in the housing unit (Section 2.6.2.1) for 24 h without culture media, allowing their 

digestive systems to empty of food. 

2.1.2.8 Surface Sterilisation of HDMs 

Following starvation for 24 h (Section 2.6.2.7), HDMs were collected from the petri 

dishes by the addition of cold 70% ethanol (5 ml). A pasture pipette was used to 

aspirate and dispense the HDM/ethanol mixture into a 50 ml Falcon tube. Additional 
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cold 70% ethanol was added until all HDMs were collected. The Falcon tube was filled 

to a final volume of 25 ml with cold 70% ethanol and incubated for 5 min at 4 oC. 

Tubes were centrifuged (5 min, 4 oC, 2000 x g) to pellet HDMs. Ethanol was removed 

and washing repeated twice more with 25 ml fresh 70% ethanol for a total of three 

washes. HDMs were then washed three times with sterile distilled water (45 ml) to 

remove ethanol. HDMs were aliquoted into sterile Eppendorf tubes (50 mg or 200 mg) 

used immediately for DNA extraction or snap-frozen in liquid nitrogen and stored at -

80 oC.  

2.1.2.9 Isolation of Genomic DNA from D. pteronyssinus airmid 

A multi-isolate sample of 28 day old D. pteronyssinus airmid cultures was prepared 

for genomic DNA extraction by separating mites from culture medium (Section 

2.1.2.3). HDMs were washed (Section 2.1.2.6), subjected to 24 h starvation (Section 

2.1.2.7) and surface-sterilised (Section 2.1.2.8). Following starvation, all steps were 

conducted in laminar flow hood to minimise risks of DNA contamination. DNA was 

extracted from 200 mg of ground mites (n = 8) using the Promega Wizard® Genomic 

DNA Purification Kit according to manufacturer’s instructions for animal tissue 

(mouse tail method) with minor modifications. All buffers and reagents were supplied 

with the kit, except for RNase (R6513, Sigma) and proteinase K (P8450, Sigma). In 

brief, 120 µl of 0.5 M EDTA was added to 500 µl of chilled nuclei lysis buffer; 600 

µl of EDTA-nuclei lysis buffer mixture was added to the ground HDM samples (200 

mg; n = 8), followed by 17.5 µl proteinase K (20 mg/ml). Samples were inverted to 

mix then incubated at 65 oC for 30 min. Samples were allowed to cool to room 

temperature, then 3 µl of RNase A solution (4 mg/ml) was added to the nuclear mixture 

and incubated for 20 min at 30 oC. Once cool (RT), 200 µl protein precipitation 

solution was added to nuclear lysates. Samples were inverted to mix and incubated on 

ice (5 min). The protein pellet was collected by centrifugation (4 min; 13, 000 x g), 

supernatant (~ 600 µl) was removed to a fresh Eppendorf tube and protein pellet was 

discarded. Ice-cold isopropanol (600 µl) was added to supernatant and inverted to mix. 

Genomic DNA (gDNA) was collected by centrifugation (1 min; 13, 000 x g). 
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Supernatant was discarded and gDNA pellet was washed once more with 70% 

Ethanol. Following washing, gDNA pellet was allowed to air dry at 4 oC for 1 h, then 

resuspended in 80 µl of nuclease free water (W4502, Sigma) and incubated on ice for 

a further 1 h. gDNA from eight replicates were pooled to obtain enough material for 

DNA sequencing. gDNA was centrifuged briefly to pellet insoluble gDNA then a 20 

µl aliquot was removed for molecular analysis. The remaining DNA was stored at -

70oC until shipping to BGI China for sequencing. gDNA was quantified using a 

Qubit™ dsDNA BR Assay Kit (Life Technologies) and examined for integrity by 

agarose electrophoresis (Section 2.1.2.11 & 2.1.2.12). Presence of protein 

contaminants were assessed by reading the absorbance of the sample at 260 and 280 

nm using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific). 

2.1.2.10 Culture of Microbes from D. pteronyssinus at Various Stages of 

Preparation for Genomic DNA Extraction 

Whole HDMs (50 mg) during various stages of genomic DNA preparation: harvesting 

(Section 2.1.2.6), surface sterilisation (Section 2.1.2.8) and ground HDM bodies, 

(Section 2.1.2.9) were examined for presence of culturable microbes. HDMs were 

washed with 1.5 ml sterile distilled water and vortexed briefly, then pelleted by 

centrifugation (3 min; 5,000 x g). Wash liquid was retained (100 µl) and used to 

inoculate agar plates in triplicate: A) Luria-Bertani agar (L3027, sigma), B) Malt 

extract agar (70145, Sigma), C) Sabouraud Dextrose Agar (CM0041, Oxoid), D) 

DifoTMCzapek-DOX Broth (Cat No: 23381, Difco, Maryland, USA). Plates were 

incubated at 37 oC for 5 days. All work was carried out using aseptic techniques in a 

laminar flow hood. Sterile distilled water was used as a negative control.  

2.1.2.11 Agarose Gel Electrophoresis 

Agarose Gel Electrophoresis was used to visualise PCR products, restriction digest 

reactions and examine genomic DNA integrity. Agarose gels were cast and run using 

Bio-Rad electrophoresis equipment. Agarose gels between 0.75 – 2 % (w/v) were 
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made by adding powdered agarose (Cat No: 551027, Invitrogen) to the appropriate 

volume of 1X TAE buffer (Section 2.1.1.6), in a 200 ml flask. The agarose was melted 

by heating in a microwave, with frequent mixing, until the agarose had dissolved into 

the TAE. Agarose-TAE mixture was allowed to cool (~50 ºC), then ethidium bromide 

(4 µl/100 ml) was added and swirled to mix. The molten gel was poured into the 

prepared mould. A gel comb was inserted, and the gel was allowed to cool on a level 

surface. Once set, the gel comb was removed, and the gel was placed into the gel 

electrophoresis tank, with the wells nearer to the negative (black) electrode. The 1X 

TAE Buffer (Section 2.1.1.6) was then poured into the tank to fully submerge the gel. 

2.1.2.12 Loading and Running DNA Samples 

gDNA samples were prepared by adding five volumes of gDNA samples to one 

volume of 6X Loading Dye (SMR0611, Thermo Scientific). Molecular weight 

markers were used to estimate gDNA fragment size; 1 kb DNA Ladder (SM1331, 

Thermo Scientific) and 100 bp GeneRuler (SM0321, Thermo Scientific), Lambda 

DNA marker (D2916, Sigma). Gels were electrophoresed at 60-120 V for 30-90 min 

and were visualised using a Syngene G:Box. 

2.1.2.13 Polymerase Chain Reaction (PCR) 

Polymerase chain reaction (PCR) was used to amplify four different Acari genes prior 

to sequencing or Restriction Fragment Length Polymorphism (RFLP). PCR was 

carried out using AccuTaqTM LA DNA Polymerase (Sigma). Typical PCR reaction 

mixtures are shown in Table 2.1. All PCR reactions were carried out in 50 μl volumes 

using a G-Storm PCR (Roche) System. Primers used are shown on Table 2.2.  
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Table 2.1: PCR Reaction constituents 

Reagent Volume 

Accu-Taq LA 10X Buffer 5 µl 

dNTP Mixture (2.5 mM each) 1 µl 

DMSO 1 µl 

Molecular grade water 38.5 µl 

Forward Primer 1 µl 

Forward Primer 1 µl 

Template DNA (50 ng/µl) 2 µl 

Accu-Taq 0.5 µl 
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Table 2.2: Primers used to amplify HDM DNA. 

Primer Name Species Specificity Sequence (5’- 3’) 

ITS2 mite universal-Forward 
6933 Mites & Ticks 

CGACTTTCGAACGCATATTGC 

ITS2 Mite Universal-Reverse GCTTAAATTCAGGGGGTAATCTCG 

DM Group 2 Forward 
D. pteronyssinus 

CGAAGCCAACCAAAACAGA 

DM Group 2 Reverse TTCAGATTTTGGTGCAATTTTC 

DM Group 3 Forward 
D. pteronyssinus 

CCCGGATCCATGATCATCTATAATAT 

DM Group 3 Reverse GAAGGAATTCTCACTGTGAACGTTTTG 

Outer-Derf-F1  

D. farinae 

CAAGCGCTTGCCGTATCAATTCGGTTAACGTT 

Outer-Derf-R1  ATGTTGCGAATTTGGTCGTCGGCATTGTTGT 

Inner-Derf-F2  GGAATTGGATTTACGATCAC 

Inner-Derf-R2  GTATGGATAGCTTCTTTCTTC 

Outer-Derp-F1 

D. pteronyssinus 

CTGAAACTAACGCCTGCAGTATCAATGGAAAT 

Outer-Derp-R1  TGTGCATTTGGTCGTCGGCATGATTGTTCCTA 

Inner-Derp-F2  GAAATGCTCCAGCTGAAATC 

Inner- Derp-R2  TCGATAGTAGCTTTCTTGGA 
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2.1.2.14 PCR amplification of Mite Group 2 Allergen Gene 

PCR was used to amplify the mite group 2 allergen gene from D. pteronyssinus and 

control DNA (D. farinae) using primers (DM Group 2 Forward & DM Group 2 

Reverse) shown in Table 2.2 and cycling parameters used as per Table 2.3.

 

 

Table 2.3: Mite Group 2 Allergen gene PCR cycling conditions. 

Step Temperature ºC Time 

Denaturation/ Activation  94 3 min 

Denaturation  94 10 s 

Annealing  54 20 s 

Extension 68 30 s 

Final Extension 68 10 min 

Cycles  35  
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2.1.2.15 PCR Amplification of Mite Group 3 Allergen Gene 

PCR was used to amplify the mite group 3 allergen gene from D. pteronyssinus and 

control DNA (D. farinae) using primers (DM Group 3 Forward & DM Group 3 

Reverse) shown on Table 2.2 and cycling parameters as per Table 2.4.

 

Table 2.4: Mite Group 3 Allergen gene PCR cycling conditions. 

Step Temperature ºC Time 

Denaturation/ Activation  94 3 min 

Denaturation  94 30 s 

Annealing  53 60 s 

Extension 68 60 s 

Final Extension 68 10 min 

Cycles  35  
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2.1.2.16 Nested PCR amplification of Mite Group 1 Allergen gene 

Nested PCR was used to amplify mite group 1 allergen gene from D. pteronyssinus 

and control DNA (D. farinae) as described by Chan et al. (2015). Outer PCR was 

performed on D. pteronyssinus DNA (Section 2.1.2.9562.1.2.16) using primers 

(Outer-Derp-F1 & Outer-Derp-R1) and D. farinae DNA (Section 2.1.2.9) using 

primers (Outer-Derf-F1 and Outer-Derf-R1) shown in Table 2.2. PCR cycling 

parameters are outlined in Table 2.5. Following amplification, the PCR reaction was 

diluted 1:1000 and used as a template for the inner PCR amplification. D. 

pteronyssinus DNA was inner PCR amplified using primers (Inner-Derp-F2& Inner-

Derp-R2) and D. farinae DNA using primers (Inner-Derf-F2 & Inner-Derf-R2); 

Table 2.2: Primers used to amplify HDM DNA, PCR cycling parameters; Table 2.5. 
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Table 2.5: Mite Group 1 Allergen gene Nested PCR cycling conditions. 

Step Temperature ºC Time 

Outer PCR   

Denaturation/ Activation  95 5 min 

Denaturation  94 50 s 

Annealing  68 50 s 

Extension 68 50 s 

Cycles  25  

Inner PCR   

Denaturation/ Activation  95 5 min 

Denaturation  94 50 s 

Annealing  55 50 s 

Extension 68 50 s 

Cycles  30  

 

2.1.2.17 PCR amplification and Restriction Fragment Length Polymorphism 

of mite ITS2 gene 

Restriction Fragment Length Polymorphism (RFLP) analysis of mite ITS2 region 

was conducted as described by Wong et al. (2011) for D. pteronyssinus and mite 

control DNA (D. farinae). Amplification of ITS2 region was conducted using ITS2 

mite universal-Forward and ITS2 Mite Universal-Reverse primers (Table 2.2) and 
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using PCR cycle conditions (Table 2.6). Restriction enzymes HinfI (FD0804, 

Thermo Scientific) and Alu1 (FD0014, Thermo Scientific) were used for RFLP 

analysis of the ITS2 gene (Table 2.7). Reactions were carried out as per the 

manufacturer’s instructions. Digestion reactions were visualised by agarose gel 

electrophoresis (Sections 2.1.2.11 & 2.1.2.12). 

 

 

 

Table 2.6: Acari Mite ITS2 gene PCR cycling conditions. 

Step Temperature ºC Time 

Denaturation/ Activation  95 3 min 

Denaturation  94 30 s 

Annealing  59 30 s 

Extension 68 50 s 

Final Extension 68 10 min 

Cycles  35  
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Table 2.7: Restriction Pattern of Mite ITS2 Gene Reported by Wong et al. 

(2011). 

Mite PCR product size HinfI Alu1 

G. malaysiensis 260 190, 90 140,120 

D. pteronyssinus 320 320 210, 120 

B. tropicalis  325 200, 90 325 

D. farina 330 180, 110 220, 110 

A. ovatus 430 210, 120 270, 160 

T. putrescentiae 490 250, 150 340, 150 

 

2.1.2.18 PCR Purification 

Purification of PCR products for sequencing was carried out using a QIAquick PCR 

Purification Kit (Qiagen, UK) as per manufacturer’s instructions. PCR products were 

eluted by placing the column in sterile microcentrifuge tube and adding nuclease-free 

water (30 µl) to the column. The purified DNA was quantified using a Nanodrop 2000 

spectrophotometer (Thermo Fisher Scientific) and stored at -20 ºC, until required for 

use. 

2.1.2.19 PCR Product Sequencing  

Gene fragments were sequenced on a commercial basis (LGC Technologies, 

Belgium). Sequence data was searched against publicly available gene sequences for 

highest scoring match (BLASTn; NCBInr).  
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2.2 Supplementary Results  

2.2.1 The Culturing of Microbes from D. pteronyssinus during gDNA 

Extraction Preparation 

Liquid recovered from washing of HDMs (Section 2.1.2.10) was assessed for presence 

of viable microbes. After a 5-day incubation (37 oC) bacterial colonies were observed 

on Luria - Bertani Agar (LB agar) and Czapek-Dox agar plates from washed non-

sterilised HDMs, HDMs post-sterilization were negative for bacterial growth (Table 

2.8). Ground HDM bodies were also negative for bacterial growth. Fungal growth 

agars Malt Extract and Sabouraud Dextrose Agar, were negative for fungi (Table 2.8). 

These data indicated that both the surface and gut of the HDMs did not contain 

culturable bacteria or fungi following surface sterilisation, therefore reducing the risk 

of microbial contamination of extracted gDNA. Surface sterilisation of the HDMs 

prior to gDNA extraction minimised the amount of microbial DNA being isolated and 

sequenced along with HDM gDNA.  
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Table 2.8: Culture of Microbes from D. pteronyssinus at Various Stages of 

Preparation for Genomic DNA Extraction. 

Growth Agar HDM Material 
Colony Forming Units 

(Positive/Negative) 

Luria -Bertani Washed Mites  Positive 

Czapek-Dox Washed Mites  Positive 

Malt Extract Washed Mites  Negative 

Sabouraud Dextrose Washed Mites  Negative 

Luria -Bertani Surface Sterilised Mites  Negative 

Czapek-Dox Surface Sterilised Mites  Negative 

Malt Extract Surface Sterilised Mites  Negative 

Sabouraud Dextrose  Surface Sterilised Mites  Negative 

Luria -Bertani Ground Mites  Negative 

Czapek-Dox Ground Mites  Negative 

Malt Extract Ground Mites  Negative 

Sabouraud Dextrose Ground Mites  Negative 

Luria -Bertani Sterile Water  Negative 

Czapek-Dox Sterile Water  Negative 

Malt Extract Sterile Water  Negative 

Sabouraud Dextrose Sterile Water  Negative 
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2.2.2 Quantification and Quality Control of D. pteronyssinus genomic 

DNA prior to sequencing 

D. pteronyssinus gDNA for genome sequencing (Section 2.1.2.9) was assessed for 

purity by A260/280 and A260/230 ratios (Table 2.9). gDNA integrity was assessed by 

Agarose Gel electrophoresis (Section 2.1.2.11). gDNA was observed to be of high 

molecular weight with minimal degradation and therefore of acceptable quality for 

sequencing. 

  

 

 

Table 2.9: Quantification and Purity of D. pteronyssinus genomic DNA 

DNA sample ID A260/230 A260/280 *Concentration  

RW_2 1.7 1.44 138 ng/µl 

*Qubit BR DS DNA quantification Kit 
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Figure 2.3: D. pteronyssinus genomic DNA Integrity 

Purified extracted gDNA from HDM D. pteronyssinus analysed on a 0.75% agarose 

gel. Lane M1: Molecular weight marker. Lane 1: 400 ng gDNA. Lane 2: 400 ng 

degraded gDNA control. M2: Molecular weight marker. Large gDNA fragments were 

observed at >10 kb, with minimal degradation. 

10 Kb

M 1       1          2        M2

Lambda 

DNA 48 Kb

2 Kb
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2.2.3 Species Purity of D. pteronyssinus genomic DNA. 

2.2.3.1 Amplification and Sequencing of Mite Group Allergen 2 Gene  

PCR was conducted on mite gDNA using dust mite group 2 allergen primers (Section 

2.1.2.14). A single amplicon was observed for D. pteronyssinus and no amplicon was 

observed for control DNA (Figure 2.4A). Sequence data (139 bp) was searched in 

NCBI, analysis showed 99% identity (BLASTn; E-value; 8 e-64) to D. pteronyssinus 

allergen 2 in NCBI database (JN222809.1 Dermatophagoides pteronyssinus Der p 2 

variant 5 mRNA, partial cds) confirming presence of D. pteronyssinus gene in the 

gDNA (Figure 2.5). These genes were used to confirm presence of a single mite 

species in cultures of D. pteronyssinus.  
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Figure 2.4: Molecular Assessment of Species Purity of gDNA from D. 

pteronyssinus. 

(A) PCR amplification of Group 2 mite allergen gene. Lane M: Molecular weight 

marker ladder. Lane 1: D. pteronyssinus airmid DNA. Lane 2: Control DNA from D. 

farinae. Lane 3: Negative control with PCR master mix present but no DNA. (B) PCR 

amplification of Group 3 mite allergen gene. Lane M: Molecular weight marker 

ladder. Lane 1: D. pteronyssinus airmid DNA. Lane 2: Control DNA from D. farinae. 

Lane 3: Negative control with PCR master mix present but no DNA. (C) Nested PCR 

amplification of Group 1 mite allergen gene. Lane M: Molecular weight marker 

ladder. Lane 1-4: D. pteronyssinus airmid DNA. Lane 5-8: Control DNA from D. 

farinae. Lane 1: Outer-Derp. Lane 2: Inner-Derp. Lane 3: Outer-Derf. Lane 4: Inner-

Derf. Lane 5: Outer-Derf. Lane 6: Inner-Derf.  Lane 7. Outer-Derp. Lane 8: Inner-

Derp. (D) RFLP of Dust Mite ITS2 gene. Lane M: Molecular weight marker ladder. 

Lane 1-3: D. pteronyssinus airmid DNA. Lane 4-6: Control DNA from D. farinae. 

Lane 1: ITS2 PCR product uncut. Lane 2. ITS2 PCR product cut with HinfI. Lane 3. 

ITS2 PCR product Cut with Alu1. Lane 4: ITS2 PCR product uncut. lane 5: ITS2 

PCR product cut with HinfI. Lane 6. ITS2 PCR product cut with Alu1. Lane 7. PCR 

master mix present but no DNA.  
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2.2.3.2 Amplification and Sequencing of Mite Group Allergen 3 Gene  

PCR was conducted on Mite gDNA using dust mite group 3 Allergen primers (Table 

2.2). A single amplicon was observed for D. pteronyssinus and no amplicon occurred 

in control DNA (Figure 2.4B). Sequence data (219 bp) was searched in NCBI; 

BLASTn, the analysis showed 99% identity (BLAST; E-value; 3 e-82) to D. 

pteronyssinus allergen 3 (EU092645.1 Dermatophagoides pteronyssinus Der p 3 

allergen mRNA, complete cds) confirming presence of D. pteronyssinus (Figure 2.6). 

 

 

Figure 2.5: Sequence alignment of mite group 2 allergen PCR product with 

highest scoring match gene in NCBInr. 

 

Alignment of Sequence_1:  [JN222809.1 Dermatophagoides pteronyssinus Der p 2 

variant 5 mRNA, partial cds] with  Sequence_2: [DM_GP2_PCR Product]  

 

 

Seq_1  121   TTTTCGAAGCCAACCAAAACACAAAAACCGCTAAAATTGAAATCAAAGCCTCAATCGATG  180 

             ################################################||||##|||||| 

Seq_2  1     ------------------------------------------------CCTC--TCGATG  10 

 

 

Seq_1  181   GTTTAGAAGTTGATGTTCCCGGTATCGATCCAAATGCATGCCATTACATGAAATGCCCAT  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  11    GTTTAGAAGTTGATGTTCCCGGTATCGATCCAAATGCATGCCATTACATGAAATGCCCAT  70 

 

 

Seq_1  241   TGGTTAAAGGACAACAATATGATATTAAATATACATGGAATGTTCCGAAAATTGCACCAA  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  71    TGGTTAAAGGACAACAATATGATATTAAATATACATGGAATGTTCCGAAAATTGCACCAA  130 

 

 

Seq_1  301   AATCTGAAAATGTTGTCGTCACTGTTAAAGTTATGGGTGATGATGGTGTTTTGGCCTGTG  360 

             |||||||||################################################### 

Seq_2  131   AATCTGAAA---------------------------------------------------  139 



Chapter 2: Draft Genome Sequence of Dermatophagoides pteronyssinus, the 

European House Dust Mite 

 

63 

 

 

2.2.3.3 Nested PCR and Sequencing of Mite Group 1 Allergen Gene  

A PCR was conducted on mite gDNA using outer primers (Table 2.2) for D. 

pteronyssinus and D. farinae. The PCR product was diluted (1:1000), then a second 

round of PCR was conducted using inner D. pteronyssinus and D. farinae primers 

Table 2.2). No amplicon was observed for PCR conducted on D. pteronyssinus DNA 

using D. farinae primers. Similarly, no amplicon was observed for PCR conducted on 

D. farinae DNA using D. pteronyssinus primers, indicating the high primer specificity 

for a single mite species and confirming the absence of D. farinae contamination in 

D. pteronyssinus genomic DNA. PCR reaction mixture (300 µl) was purified using 

Qiagen PCR purification Kit (Section 592.1.2.18), then sequenced (Section 2.1.2.19). 

Resultant sequence data (216 bp) was searched (NCBI; BLASTn) analysis showed 

99% identity (BLAST; E-value; 9 e-105) to D. pteronyssinus allergen 1 gene 

(KJ542096.1 Dermatophagoides pteronyssinus isolate RS68 cysteine proteinase-1 

pro-enzyme gene, partial cds; Figure 2.7). 

 

Figure 2.6: Sequence alignment of mite group 3 allergen PCR product with 

highest scoring gene match gene in NCBInr. 

Alignment of Sequence_1:  [DM_GP3_PCR Product] with  Sequence_2: [EU092645.1 

Dermatophagoides pteronyssinus Der p 3 allergen mRNA, complete cds]  

 

 

Seq_1  1     ------------------TTAAC-------------------------TTGGCTAATCCA  17 

             ##################||||##########################|||||||||||| 

Seq_2  1     ATGATCATCTATAATATTTTAATTGTTTTATTATTGGCCATTAATACATTGGCTAATCCA  60 

 

 

Seq_1  18    ATTCTACCAGCATCACCAAATGCAACTATTGTTGGTGGTGAAAAAGCATTAGCTGGTGAA  77 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  61    ATTCTACCAGCATCACCAAATGCAACTATTGTTGGTGGTGAAAAAGCATTAGCTGGTGAA  120 

 

 

Seq_1  78    TGTCCATATCAGATTTCATTACAATCAAGTAGTCATTTTTGTGGTGGTACTATTCTTGAT  137 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  121   TGTCCATATCAGATTTCATTACAATCAAGTAGTCATTTTTGTGGTGGTACTATTCTTGAT  180 

 

 

Seq_1  138   GAATATTGGATTTTAACAGCTGCACATTGTGTTGCCGGGTAAGTTTTGTTGTTGTTGAC  196 

             ||||||||||||||||########################################### 

Seq_2  181   GAATATTGGATTTTAA-------------------------------------------  196 
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2.2.3.4 Sequencing and RFLP of Dust Mite ITS2 Gene  

To confirm that the HDM cultures contained a single mite species (D. pteronyssinus) 

and were not contaminated with other HDM or storage mite species, PCR-RFLP of 

the ITS2 region was conducted as described by Wong et al. (2012), using primers 

(Table 2.2) specific for the ITS2 gene region of mites and ticks (Wong et al., 2011). 

PCR reactions containing multiple amplicons would indicate more than one species 

was present. A single PCR product was observed from both D. pteronyssinus and D. 

farinae gDNA (Figure 2.4 D). ITS2 PCR products from D. pteronyssinus and mite 

control (D. farinae) were digested with HinfI and Alu1 (Section 2.1.2.17; Figure 2.4D). 

HinfI restriction enzyme (FD0804, Thermo Scientific) was selected as it cuts all mite 

ITS2 PCR amplicons except D. pteronyssinus, Alu1 (FD0014, Thermo Scientific) was 

 

Figure 2.6: Sequence alignment of mite group 1 allergen PCR product with 

highest scoring gene match in NCBInr. 

Alignment of Sequence_1:  [KJ542096.1 Dermatophagoides pteronyssinus isolate RS68 

cysteine proteinase-1 preproenzyme gene, partial cds] with  Sequence_2: 

[DM_GP1_InnerDerp]  

 

 

Seq_1  707   CTTTCTTGGACGACACCATTATGTTGGATGTATTCAATACCACGTGGAATGGTATCACCA  648 

             ################################||###||||||||||#|||||||||||| 

Seq_2  1     --------------------------------TTTTCTACCACGTGG-ATGGTATCACCA  27 

 

 

Seq_1  647   TGACAACCGTGTTGGGAAGCACAATCGACTAATTCTTGTTCAGCAAGATCCAATGATTGA  588 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  28    TGACAACCGTGTTGGGAAGCACAATCGACTAATTCTTGTTCAGCAAGATCCAATGATTGA  87 

 

 

Seq_1  587   TTACGGTAAGCCAAATAAGCTGATTCAGTTGCGGCAACACCAGAGAAAGCCCAACATGAA  528 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  88    TTACGGTAAGCCAAATAAGCTGATTCAGTTGCGGCAACACCAGAGAAAGCCCAACATGAA  147 

 

 

Seq_1  527   CCACAGCCTCCTTGCATACGAATGGGAGTGACAGTTCGCATTTGTCGCAAATCGATTTCA  468 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Seq_2  148   CCACAGCCTCCTTGCATACGAATGGGAGTGACAGTTCGCATTTGTCGCAAATCGATTTCA  207 

 

 

Seq_1  467   GCTGGAGCATTTCCATTGATACTGCAGGCGTTAGTTTCAGCATTCAAATCGAATTGAGTT  408 

             ||||||||||||################################################ 

Seq_2  208   GCTGGAGCATTT------------------------------------------------  219 
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selected as restriction enzyme control as it cuts D. pteronyssinus ITS2 gene (Wong et 

al., 2011). D. pteronyssinus ITS2 gene was uncut by HinfI, but was cut by Alu1, 

resulting in fragments of approximately 210 bp and 120 bp. ITS2 PCR product from 

control DNA (D. farinae) was cut by HinfI and Alu1 showing enzyme specificity and 

absence of star activity (Figure 2.4D). PCR reaction mixture was purified (Section 

2.1.2.18) and sequenced (Section 2.1.2.19). Resultant sequence data (113 bp) was 

searched in NCBI; BLASTn and matched the D. pteronyssinus ITS2 gene 

(KY994137.1 Dermatophagoides pteronyssinus isolate 14B.3 5.8S ribosomal RNA 

gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S 

ribosomal RNA gene, partial sequence; Figure 2.8) with 99% identity (BLAST; E-

value 4 e-42). Sequence data and RFLP of ITS2 gene from D. pteronyssinus gDNA 

indicated a pure culture containing only D. pteronyssinus mites. 
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2.3 Concluding Remarks 

The work described in this chapter outlines the steps taken to grow D. pteronyssinus 

in the laboratory in sufficient numbers to successfully facilitate extraction of genomic 

DNA and allow for subsequent genome sequencing.  

D. pteronyssinus were housed within a humidity and temperature-controlled chamber, 

grown on a defined culture medium, fed and sub-cultured according to a strict regimen 

ensuring optimal growth. A multi-isolate sample of D. pteronyssinus was starved and 

surface-sterilised prior to DNA extraction to minimise DNA contamination from 

bacteria and fungi present in the HDM cultures and from the culture media. A series 

of molecular tests was conducted whereby four mite genes were amplified from DNA 

extracted from D. pteronyssinus and sequenced, to ensure these genes were a match to 

 

Figure 2.7: Sequence alignment of mite group ITS2 PCR product with highest 

scoring gene match in NCBInr. 

Alignment of Sequence_1:  [DM_ITS2_PCR Product] with  Sequence_2: [KY994137.1 

Dermatophagoides pteronyssinus isolate 14B.3 5.8S ribosomal RNA gene, partial 

sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA 

gene, partial sequence]  

 

 

Seq_1  1     --A-------------------------------------GCTTCGTTTGTCTGAGCGTC  21 

             ##|#####################################|||||||||||||||||||| 

Seq_2  1     CGACTTTCGAACGCATATTGCAGCCATTGGATAGCCGATGGCTTCGTTTGTCTGAGCGTC  60 

 

 

Seq_1  22    GTTATCAAATTATGACCAAACAAAATGGGATAGATCTGTTTCGTCGTGCAAACGTCGTC-  80 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||# 

Seq_2  61    GTTATCAAATTATGACCAAACAAAATGGGATAGATCTGTTTCGTCGTGCAAACGTCGTCG  120 

 

 

Seq_1  81    ----ATTTCCAAACATTTGATATGCTGACT----CGGTGAAAGTTG--------------  118 

             ####||||||||||||||||||||||||||#####||||||####|############## 

Seq_2  121   GATCATTTCCAAACATTTGATATGCTGACTTTTGTGGTGAAGAAGGCTTTGTTGCACATT  180 
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previously-reported gene sequences in D. pteronyssinus and exclude the possibility 

that there was other mite species present in the cultures.  

gDNA was of good integrity allowing for construction of four sequencing libraries 

(BGI, China), one paired end (500 bp) and three mate-pair (2 kb, 5 kb and 10 kb). 

Utilising the Illumina HiSeq 2000, 2500, and 4000 platforms (BGI, China) generated 

paired-end read lengths of 100 bp (n = 130,978,913) and mate-pair reads of 49 bp in 

length (n = 43,286,220; 2 kb, (n = 56,245,986; 5 kb, (n = 29,806,232; 10 kb). 

Bioinformatic analysis and genome assembly resulted in an assembly consisting of 

1,322 scaffolds and revealing the genome of D. pteronyssinus to be approximately 

70.76 Mb in length and consisting of 12,530 genes.  

The successful sequencing and assembly of D. pteronyssinus genome provided the 

genetic foundation upon which a detailed proteomic investigation of the organism was 

built, as described in subsequent thesis chapters. 
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dust mite Dermatophagoides pteronyssinus  

 

This paper has been published in the journal PLOS ONE (May 2019). 

 

Citation  

WALDRON, R., MCGOWAN, J., GORDON, N., MCCARTHY, C., MITCHELL, E. B. 

& FITZPATRICK, D. A. 2019. Proteome and allergenome of the European house dust 

mite Dermatophagoides pteronyssinus. PLOS ONE, 14, e0216171. 

 

Abstract 

The European house dust mite Dermatophagoides pteronyssinus is of significant medical 

importance as it is a major elicitor of allergic illnesses. In this analysis we have 

undertaken comprehensive bioinformatic and proteomic examination of 

Dermatophagoides pteronyssinus airmid, identified 12,530 predicted proteins and 

validated the expression of 4,002 proteins. Examination of homology between predicted 

proteins and allergens from other species revealed as much as 2.6 % of the D. 

pteronyssinus airmid proteins may cause an allergenic response. Many of the potential 

allergens have evidence for expression (n = 259) and excretion (n = 161) making them 

interesting targets for future allergen studies. Comparative proteomic analysis of mite 

body and spent growth medium facilitated qualitative assessment of mite group allergen 

localisation. Protein extracts from house dust contain a substantial number of 

uncharacterised D. pteronyssinus proteins in addition to known and putative allergens. 

Novel D. pteronyssinus proteins were identified to be highly abundant both in house dust 
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and laboratory cultures and included numerous carbohydrate active enzymes that may be 

involved in cuticle remodelling, bacteriophagy or mycophagy. These data may have 

clinical applications in the development of allergen-specific immunotherapy that mimic 

natural exposure. Using a phylogenomic approach utilising a supermatrix and supertree 

methodologies we also show that D. pteronyssinus is more closely related to Euroglyphus 

maynei than Dermatophagoides farinae. 

 

Keywords: House dust mites, allergens, proteomics, house dust, enzymes, asthma. 

 

Introduction 

House dust mites (HDM) are the most prevalent source of indoor allergens worldwide, 

with 1-2% of the total population experiencing an allergic response in their presence [1]. 

HDM allergens are major causative agents in the pathogenesis of asthma, allergic rhinitis 

and atopic dermatitis [2]. Protease allergens disrupt the epithelial barrier and activate 

immune cells resulting in the production of large amounts of proinflammatory cytokines 

[3, 4]. Sero-dominant allergens; Der p 1and Der p 2 account for 50 – 60% of IgE 

reactivity in individuals tested [5]. Allergenic protein families represent only 2% of all 

protein families. Allergenicity and cross-reactivity is linked to the allergen family rather 

than allergen source [6]. Use of publicly available allergen databases to query newly 

sequenced genomes for the presence of potentially allergenic or cross-reactive proteins 

has enormous potential in identifying new allergens.  

HDM allergens are either located within the mite body or in faecal particles. Current 

knowledge of mite allergen localisation is limited [7] and may be improved by employing 

comparative proteomics to study the mite body and spent culture media proteins of D. 

pteronyssinus. Proteins present in HDM faeces are of particular importance as faecal 

particles are inhaled deep into the lungs, due to their small size [4, 8, 9]. Very little is 

known about which HDM components are present in house dust or inhalable air, and 
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assessment is limited to allergens for which there are ELISAs [10]. Therefore, it is our 

belief that characterising D. pteronyssinus proteins present in house dust could 

potentially yield much needed insights into allergens present in house dust.  

Previous studies have shown that approximately 50% of all European homes contain 

HDM [11]. Therefore, evidenced based biocontrol strategies are needed to curtail HDM 

populations in homes. A Cochrane review of commonly used physical, chemical and 

combined physical chemical HDM control strategies has shown no clinical benefit or 

evidence that these control measures can reduce exposure to HDMs, their allergens or 

the severity/frequency of asthma symptoms [12]. Reducing humidity within the home 

has been proposed as a means of constraining HDM populations and limiting allergen 

production [13]. However, transient exposure to moist air allows for long term survival 

and reproduction indicating HDM may employ mechanisms to resist desiccation [14]. 

Therefore, genomic and proteomic characterisation of D. pteronyssinus has the potential 

to reveal biochemical pathways that could be exploited in future biocontrol strategies. 

These “Omic” approaches have accelerated digestive enzyme discovery [15], enabling 

in silico prediction of biochemical activities coupled with measurement of gene or protein 

expression. Potent enzymes are excreted by HDM into their surroundings as a by-product 

of their digestive processes, therefore the presence of putative enzymes in faeces is a 

strong indicator of a digestive function [16]. Surveying the predicted proteome of D. 

pteronyssinus airmid and subsequent proteomic examination of enzyme expression and 

localisation could identify new enzymes utilised in nutrient acquisition. 

Here we describe the proteome of the European HDM D. pteronyssinus using a strain of 

mite housed at airmid healthgroup ltd. We have analysed the proteome in an attempt to 

elucidate the phylogenetic relationships between different species of HDMs and 

determined the localisation of allergenic components and enzymes involved in nutrient 

acquisition. The predicted proteome provides the basis to further understand the reported 

cross-reactivity between HDM and phylogenetically distinct species. We have examined 

and report the D. pteronyssinus airmid predicted proteome, mite body proteome and 

excretome with reference to a wild-type proteome as a means of (i) identifying potentially 
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allergenic proteins, (ii) inferring localisation of allergenic and potentially allergenic 

molecules, and (iii) identifying proteins involved in key physiological processes. 

Materials and methods 

Genomic data  

To construct and compare the phylogenetic relationships between the Acari, 12 genomes 

were downloaded from the NCBI database for use in the analyses (S1 Table). Two 

Arachnid outgroups namely the Arizona bark scorpion (Centruroides sculpturatus) and 

the American house spider (Parasteatoda tepidariorum) were also downloaded. 

Assembly completeness of each genome was assessed using BUSCO v3 (Benchmarking 

Universal Single-Copy Ortholog) [17] with the Arthropoda dataset. Comparative 

analysis of D. pteronyssinus genome assemblies were conducted against previously 

published D. pteronyssinus strains [18, 19]. 

Phylogenetic analysis 

Phylogenomic analysis of D. pteronyssinus was undertaken with reference to 11 other 

species (subclass Acari), consisting of six Parasitiformes and five Acariformes (S1 

Table). Supermatrix and supertree phylogenomic methods were employed to infer the 

evolutionary relationships. Suitable phylogenetic markers were selected by locating 

single copy orthologs (from BUSCO analysis above) in the Acari and outgroup genomes. 

Single copy orthologs that were ubiquitously present (n = 111) were aligned using 

MUSCLE [20]. Individual gene families alignments were subsequently concatenated to 

yield a supermatrix 77,878 amino acids in length. This supermatrix was used to 

reconstruct a maximum likelihood phylogenomic species tree using RAxML [21] 

utilising the LG+G+I+F model as selected by ProtTest [22], branch supports were 

determined using 100 bootstrap replicates.  

Single copy ortholog families, present in at least four species (n = 2,796), were identified 

and individually aligned using MUSCLE. Subsequent phylogenies were generated using 

FastTree [23]. A supertree was constructed using the matrix representation with 
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parsimony (MRP) method implemented in Clann [24] using the 2,796 gene trees as input 

with 100 bootstrap replicates. The resultant phylogeny was visualised and annotated 

using the Interactive Tree of Life (iTOL) [25]. 

Proteo-genomic analysis of assembly completeness 

Proteo-genomic software Peppy [26] was used to generate peptide databases from three 

D. pteronyssinus assemblies [18, 19, 27]. LC-MS/MS spectra derived from proteomic 

experimentation on D. pteronyssinus airmid were searched against the six-frame 

translated genomes (maximum FDR 0.01; precursor tolerance 2000; fragment tolerance 

300; digestion rules – cleavage acid R & K, missed cleavages 1; static mods -mod C 

57.021464). For completeness and comparative purposes, the spectra were searched 

against the corresponding translated predicted protein-coding genes for each assembly. 

Output files were filtered to locate unique peptides and corresponding genomic locations. 

Annotation of predicted proteome 

Annotation of predicted proteins was achieved using BLAST2GO Version 5.0 [28] to 

sequentially search SwissProt (Downloaded; 14/01/2018) then NCBInr (Downloaded; 

30/08/2017) database. Gene Ontology (GO) terms were assigned to predicted proteins 

(GO cut off 55, GO weight 5, E value hit filter E-06 and default computational evidence 

codes). InterPro Scan was used to identify; families, domains, sites and repeats in 

predicted proteins (CCD, HAMAP, HMMPanther, HMMpfam, FPrintscan, 

BLASTPromDom) and performed secretion peptide prediction using SignalP ver4.0 in 

parallel. Mapping feature facilitated mapping of GO terms to enzyme codes.  

D. pteronyssinus specific proteins 

D. pteronyssinus predicted proteins without BLASTp homology (n = 3,906) to proteins 

in NCBInr/SwissProt were searched (tBLASTn; E value ≤ E-05) against Acari genomes 

for presence of homologs in closely related species (S1 Table). Predicted proteins without 

significant homology were considered D. pteronyssinus-specific proteins (n = 1,848) and 

were then searched against other the other two available D. pteronyssinus genome 
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assemblies [18, 19]. Proteins without homology to predicted proteins in these assemblies 

were considered D. pteronyssinus airmid-specific proteins.  

Identification of LEA-like proteins 

LEA homologs were identified by performing BLASTp (E-value ≤ 1E-05) searches [29] 

against the Late Embryogenesis Abundant Proteins Database (LEAPdb) [30].  

Mite group allergen orthologs 

The majority of mite allergens identified to date have been assigned to groups (Group 1-

33) in accordance with their order of discovery [7]. Chan et al (2015) reported a further 

seven non-chronological allergens for D. farinae [31]. Mite group allergen (MGA) 

orthologs were identified by performing BLASTp searches of query FASTA files 

containing MGA from D. pteronyssinus & D. farinae (when no other sequences were 

available for D. pteronyssinus) against the Acari genomes utilised in this study (S1 

Table). Allergen orthologs had to satisfy the following criteria; have reciprocal best 

BALST hits (RBH) with an allergen (E-value ≤ 1E-05) and a minimum alignment length 

of 80 amino acids with an identity ≥ 35% in accordance with FAO/WHO guidelines [32]. 

Allergens that had a RBH but did not meet the alignment and identity criteria were 

considered RBH homologs, these were included in the sequence similarity network and 

visualised using Gephi [33]. Each protein was represented by a node, two proteins were 

connected by an undirected edge if they were homologous (BLASTp ≥ 1E-05). 

Allergens and predicted allergens 

D. pteronyssinus airmid MGA and non-chronological allergens were located by 

performing a local BLASTp (E-value ≤ 1E-03) search of the D. pteronyssinus predicted 

proteome against the FASTA sequence file containing the MGAs located above. The 

match with the smallest E-value was chosen as designated MGA. These sequences were 

annotated as “Der p1 Allergen” or Der f 22 like-allergen etc. for D. farinae based BLAST 

hits. Subsequent BLASTp hits were considered MGA homologs and were assessed for 

potential cross-reactivity with MGA in accordance with FAO/WHO guidelines [32]. 
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Sequence similarity between known allergens (Uniprot “allergenome”) and D. 

pteronyssinus airmid predicted proteins was assessed in accordance with FAO/WHO 

guidelines [32]. 

D. pteronyssinus airmid culture 

D. pteronyssinus airmid were obtained from cultures housed at airmid healthgroup ltd 

(Dublin, Ireland) and maintained on diet composed of dried porcine liver and yeast, house 

dust mite maximal media (HDMMM, airmid healthgroup ltd, Ireland) at 75% relative 

humidity and 25oC.  

Harvest of mites and spent culture medium 

Mites from replicate cultures (n = 5) were separated from spent culture medium (SM) by 

sieving, and saline floatation method [16], washed with distilled water and surface-

sterilised by submersion in 70% ethanol (3 min) followed by washing with sterile 

distilled water. An average of 10.8 mites were present per mg of spent medium. Mites 

were then snap frozen in liquid nitrogen, and lyophilised. SM (n = 5) was divided into 

aliquots (200 mg) and stored at -70 °C prior to protein extraction.  

Protein extraction 

Lyophilised mite bodies (MB) were ground to a fine powder. Proteins were extracted 

from MB (25 mg) by addition of 500 µl lysis buffer and quantified according to methods 

described by Owens et al (2015) [34]. Proteins from spent culture medium (SM, n = 5) 

were extracted by addition of glass beads (50 mg; 0.5 mm BioSpec Products) and 1000 

µl lysis buffer [34], followed by bead-beating (30 Hz; 5 min; MM300, Retsch®). MB (n 

= 2) and SM lysates (n = 2) were pooled for gel filtration (one biological replicate). 

Protein lysates for shotgun proteomic analysis (n = 4) were normalised (MB; 0.4 mg/ml, 

SM 0.3 mg/ml), then prepared for digestion according to Owens et al (2015) [34]. 
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Culture media contaminants 

Proteins deriving from HDMMM (200 mg) were extracted (n = 1) and prepared for 

shotgun proteomic analysis as per methods for spent growth culture medium. 

House dust protein extracts 

Der p 1 positive (0.2 – 16.94 µg Der p 1 per gram house dust) house dust protein extracts 

(n = 21) were provided by airmid healthgroup ltd (Dublin, Ireland). 

Gel filtration chromatography  

Gel filtration chromatography was carried out using an ÄKTA purifier coupled with a 

Superdex 200 10/300 GL column (GE Healthcare, Germany), equilibrated in PBS. 

Filtered specimens (0.22 µm), were injected (500 µl) and separated (flow rate 0.4 ml/min) 

with absorbance monitored at 215, 254 and 280 nm. Fractions were collected (between 

~ 6 and 32 ml) and stored at -20 °C until further analysis.  

Proteolytic digestion of protein extracts for proteomic analysis 

Specimens for proteomic analysis were prepared for LC-MS/MS as described by Owens 

et al (2015) [34]. 

Nano-flow liquid chromatography electro-spray ionization tandem mass 

spectrometry (LC-MS/MS) analysis 

Peptide mixtures were analysed using a Thermo Fisher Q-Exactive mass spectrometer 

coupled to a Dionex RSLC nano for LC-MS/MS analysis. LC gradients operated from 

3–40% acetonitrile over 40 min, with data collection using a Top15 method for MS/MS 

scans [35]. 

Representative proteome 

LC-MS/MS spectra obtained from proteomic analysis of D. pteronyssinus airmid were 

randomised into 5 groups (14-20 files each). Spectra were searched using Sequest HT 
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engine within Proteome Discoverer (Version 1.4) against D. pteronyssinus airmid 

predicted proteome (peptide filters; set to medium peptide confidence and protein filters; 

set to two peptides per protein). Protein molecular weight and pI for predicted proteome 

and representative proteome were calculated using JVirGel [36]. 

MaxQuant and perseus data analysis 

Protein identification and label free quantitative (LFQ) analysis was conducted using 

MaxQuant (Version 1.6.1.0; http://maxquant.org/), statistical analysis of MaxQuant 

output data was performed by Perseus (Version 1.6.2.2) as described in O’Keeffe et al 

(2014) [37]. 

Culture media contaminants database 

As it was not possible to fully remove culture media from specimens prior to proteomic 

analysis, a custom contaminates database was generated. This allowed for exclusion of 

protein identifications deriving from culture media (HDMMM) which contained porcine 

liver and baker’s yeast. Spectra obtained from LC-MS/MS of HDMMM were 

interrogated (MaxQuant and Perseus) against combined proteomic database of Sus scrofa 

and Saccharomyces cerevisiae, resulting in the identification of 2,135 proteins (min. 1 

peptide). These proteins were added to MaxQuant contaminants database to generate a 

custom contaminants database (n = 2,380 contaminants).  

Data analysis of D. pteronyssinus proteomes 

Spectra obtained from LC-MS/MS were interrogated (MaxQuant and Perseus) using 

either standard contaminant (HD samples) or custom contaminant (MB & SM samples) 

databases. Proteins were considered present when a minimum of two peptides (1 unique) 

for each parent protein was observed. Proteins meeting the following criteria were 

included in the analysis; (i) identified in two of the four non-fractionated whole protein 

extracts or (ii) identified in one chromatographic fraction.  
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Qualitative assessment of mite group allergen localisation 

A qualitative assessment of localisation of mite group allergens to MB or SM was 

conducted. An allergen was considered present in MB/SM proteome if it was; (i) absent 

from one dataset or (ii) found at higher LFQ intensity and ms/ms count.  

Results and discussion 

Phylogenomic assessment of D. pteronyssinus reveals closest relative to be 

Euroglyphus maynei 

Supermatrix and supertree phylogenomic methods were employed to infer the 

evolutionary relationships between the Acari species that have genome data available (S1 

Table). Both supertree and supermatrix methodologies generated phylogenies with 

identical topologies and similarly high levels of bootstrap support (BP) for the 

monophyly of the Parasitiformes and Acariformes superorders (Fig 1A, 100% BP). 

Within the Parasitiformes superorder, Ixodida and Mesotigmata are monophyletic (Fig 

1A, 100% BP). Within the Acariformes superorder, Trombidiformes and Sarcoptiformes 

are also found to be monophyletic (100% BP) although only a single representative of 

the Trombidiformes (Tetranychus urticae) is represented in our dataset (Fig 1A).  

To date, phylogenetic studies of Acari (mites and ticks) have been restricted to multi-

locus studies utilising a small number of genes, due to the absence of full genome 

sequences [38-40]. Our phylogeny infers a strongly supported (87% and 100% BP for 

supermatrix and supertree methods, respectively) sister group relationship between D. 

pteronyssinus and Euroglyphus maynei to the exclusion of D. farinae. This confirms 

previous studies which utilised only two and six genes but observed the same 

phylogenetic relationship between D. pteronyssinus and E. maynei [38, 41]. Therefore, 

in molecular evolutionary terms, D. pteronyssinus and E. maynei are more closely related 

to one another, even though D. pteronyssinus and D. farinae are currently classified 

within the same genus. Furthermore, the phylogeny confirms the paraphyly of the 

Dermatophagoides genus as previously reported [41]. 
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Comparison of D. pteronyssinus airmid predicted proteome with other D. 

pteronyssinus assemblies 

D. pteronyssinus airmid genome assembly [27] completeness was assessed by proteo-

genomics. Peppy software [26] facilitated the mapping of 615,150 spectra (28,001 non-

redundant) to the predicted proteome and 402,998 (21,505 non-redundant) to the 

assembly. Peptides that spanned intron-exon junctions identified in the predicted 

proteome were not mapped to the assembly. Of the 21,505 peptides mapped to the 

genome assembly, 96.2 % were also identified in predicted proteins (n = 20,683). Several 

peptides (n = 65) were located adjacent to predicted genes indicating that 65 gene models 

may need to be extended. The predicted proteome of D. pteronyssinus airmid [27] 

incorporates 8.3 million amino acids, this is significantly more than the Liu et al. (2018) 

and Randall et al. (2018) assemblies, which have 6.7 million and 5.9 million amino acids 

respectively. Moreover, despite having fewer predicted proteins than the other two 

available D. pteronyssinus proteomes (i.e. 12,530 versus 15,846 proteins [19] and 19,368 

[18]), D. pteronyssinus airmid has on average longer protein coding genes (557aa vs. 

425aa & 304aa respectively). These results indicate that differences in gene calling 

methodologies are most likely responsible for the differences in the number of protein 

coding genes. 

Proteogenomic comparison of the predicted proteomes reveals the highest number of 

proteins were identified using the Waldron et al (2017) proteome (n = 4,581), followed 

by Randall et al (2018) with 4,416, then Liu et al (2018) with only 3,408 proteins 

identified. Therefore, unsurprisingly proteogenomic analysis of the available D. 

pteronyssinus genome assemblies against our protein samples which are derived from D. 

pteronyssinus airmid reveals the Waldron et al (2017) assembly and predicted proteome 

to be the most appropriate for our analyses, as higher numbers of protein identifications 

are uncovered relative to the other current assemblies [18, 19, 27]. 
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Mite group allergen orthologs in Arachnidia 

The presence of common MGA in the genomes of Arachnida species (S1 Table) was 

investigated, identifying multiple putative cross-reactive MGA orthologs in mite species. 

Most MGA had numerous orthologs distributed across all species (S1 Data) with 

presence closely linked to phylogeny. To help visualise the abundance of MGAs in the 

different Arachnida species a homology network was generated. Our results show that 

D. farinae, D. pteronyssinus, and E. maynei contained at least one MGA ortholog for all 

groups investigated, with the exception of Groups 23 & 24 in E. maynei. Group 7 and 14 

allergens are only located in the Sarcoptiformes subset of Acariformes. Homologous 

allergens, Der p 5 and Der p 21, were present in the closely related Acariformes D. 

pteronyssinus, D. farinae, E. maynei and Psoroptes ovis, but absent from the other 

species (Fig 1B, S1 Data). Group 23 allergens are specific to D. farinae and D. 

pteronyssinus. More distantly related species from the Parasitiformes superorder were 

either missing orthologs of particular allergens such as Der p 4, 5 & 21 or contained RBH 

homologs only, Der p 1, 2, 22, 23 & 27 for example, (S1 Data). Serine proteases (groups 

3, 6 & 9) appear to be expanded in some species, with a minimum of 10 homologs in D. 

pteronyssinus to a maximum of 28 in ixodes scapularis (Fig 1B, S2 Data).  

Annotation of D. pteronyssinus airmid predicted proteome 

Predicted proteome annotations 

Multi-database Blast2GO workflow enabled annotation of 96% of the predicted 

proteome (n = 11,996, S3 Data). Gene Ontology (GO) terms were assigned to 68.2% of 

proteins (n = 8,546, Fig 2A). InterPro Scan (IPS) assigned IPS annotations to 95.5% of 

predicted proteins (n = 11,971), 6, 874 with IPS GO terms and IPS IDs to a further 3,804 

proteins (Fig 2B). SignalP4.0 identified eukaryotic secretion signals in 10.3% of 

predicted proteins (n = 1,293, Fig 2B). Enzyme codes (EC) were assigned to 21.5% of 

the predicted proteins (n = 2,689, Fig 2C) with hydrolases (EC:3.0) representing the 

largest enzyme category (n = 1,244). Putative peptidase activity was identified in 377 

predicted proteins comprising almost 3% of the total predicted proteome. Peptidase EC 
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(EC:3.4) were assigned to 275 peptidases, the remaining peptidases (n = 102) were 

identified by GO annotations. Enzymes have a propensity to cause allergy [42]. The 

potent peptidase activity of Der p 1 has been shown to disrupt numerous immune system 

processes [43] and it is thought lesser studied peptidases may have a similar effect [42]. 

Enzymes, particularly those with predicted secretion peptides, should be considered in 

the context of patient exposure as they are more likely to be excreted into house dust and 

therefore may augment the immune response. 

D. pteronyssinus specific proteins 

Predicted proteins without BLASTp alignments (n = 3,906) to proteins in 

NCBI/Swissprot were searched (E-value ≤1E-05) against closely related species (S1 

Table), 2,054 had homologs in one or more species. The remaining 1,848 uncharacterised 

proteins (S4 Data) represented D. pteronyssinus-specific proteins [44]. Of these, 1,475 

(S4 Data), were specific to D. pteronyssinus airmid strain as they were not found in the 

other D. pteronyssinus assemblies [18, 19]. These data suggest that 88.3% of identified 

proteins are core protein coding genes as they are found in all 3 D. pteronyssinus 

assemblies, with the remaining 11.7% being strain specific. Some uncharacterised D. 

pteronyssinus airmid-specific proteins may represent adaptations while others are a likely 

consequence of genetic drift occurring in isolated populations [45]. Bacterial pan-

genomic studies estimate that strain-specific genes range from 5% to 35% per genome 

[46]. These strain-specific accessory genes are generally under relaxed mutational 

pressure, accumulating mutations more frequently than those of the core genome [47]. 

Further validation of the expression of these strain specific proteins is necessary to 

determine if they are functional proteins facilitating strain specific adaptations. It is worth 

highlighting that within the D. pteronyssinus representative proteome (discussed in more 

detail later) were 172 D. pteronyssinus-specific proteins, 23 of which had homologs in 

other D. pteronyssinus assemblies [18, 19], while 149 were only found in D. 

pteronyssinus airmid. The putative functions of these strain specific proteins are 

unknown, their role in strain specific adaptions may be discovered through further 

proteomic investigation.  
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LEA-like D. pteronyssinus airmid predicted proteins 

HDM lose water readily through evaporation when the critical equilibrium humidity falls 

below optimum levels [48, 49]. Studies of biochemical mechanisms to resist desiccation 

have revealed late embryogenesis abundant proteins (LEAPs) play a key role in plant, 

insect and nematode desiccation survival [50-52]. Our analysis revealed 18 D. 

pteronyssinus airmid predicted proteins (S2 Table) to have significant homology with 

reported LEA proteins [30]. Gusev et al (2014) used a similar bioinformatic approach to 

identify 27 LEA-like proteins in the anhydrobiotic sleeping chromatid, Polypedilum 

vanderplanki [53]. This anhydrobiotic organism can tolerate extreme water loss of 97% 

by entering a state of suspended animation. The presence of similar proteins in D. 

pteronyssinus may explain the ability of mites in the protonymph developmental stage 

being entirely resistant to desiccation [49]. Although D. pteronyssinus can be killed by 

extended exposure to sub-critical equilibrium humidity, reduction of humidity in the 

home does not lead to a reduction in mite numbers or levels of allergen [54], as HDM 

return to a normal metabolic and reproductive state following short periods of optimal 

humidity. Furthermore, mattresses when occupied provide ample humidity to ensure 

survival of HDM in low humidity homes [14].  

Expression of D. pteronyssinus airmid proteins exhibiting LEA-like proteins (n = 7) was 

validated by proteomics. All LEA-like proteins were found at low intensity (~LQF 

intensities of 1E+08) except for DERPT_G12026 and DERPT_G404 (LFQ Intensities > 

7.8E+10). These two highly abundant LEA-like proteins are expressed under optimal 

non-desiccating laboratory growth conditions and were identified in both mite body and 

spent media. The ability of D. pteronyssinus airmid to utilise LEA-like proteins under 

normal laboratory conditions or in response to desiccation/cold may yield information 

that could be exploited for biocontrol strategies. The role of LEA-like proteins in relation 

to D. pteronyssinus is yet to be determined, however our data highlights them as potential 

players in desiccation resistance and hence as interesting biocontrol targets.  
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Allergens and predicted allergens 

We searched the D. pteronyssinus airmid proteome for the presence of 37 previously 

reported mite allergens [7, 31]. MGA were identified for D. pteronyssinus airmid, we 

found full protein sequences (n = 37) for all reported MGA; Groups 1-11, 13-16, 18, 20-

33 and seven non-chronological allergens (81.5-100 % identity, Table 1). Subsequent 

BLAST hits (E-value ≤1E-03) were considered MGA homologs (n = 233, Table 1, S5 

Data). Der p 1-like cysteine proteases were represented by 31 homologs (20.9 – 63.7 % 

identity), several were found in clusters of 2-3 adjacent protein coding genes (n = 13). 

MGA homologs with high sequence similarity to the query MGA (> 67% identity) met 

criteria for being considered isoallergens [55]. Isoallergens were identified for eight 

different MGAs (Table 1). Der p 28 has five isoallergens (69.4 – 85.7% identity) and two 

were identified for Der p 29 (75.7 - 88.1% identity). One-third of MGA homologous 

proteins met the criteria for potential allergenicity [32] and were annotated as MGA 

Homologs (MGAH) (n = 93, S5 Data). In addition, many D. pteronyssinus airmid 

predicted proteins (n = 326, S6 Data) also exhibited significant similarity [32] to allergens 

from other species, suggesting they may be cross-species allergens. Most of these 

allergen homologs (AH) had multiple high scoring alignments with non D. pteronyssinus 

allergens (n = 991, Range:1 - 204, Median: 4). Significant overlap was seen between 

allergenic (MGA) and predicted allergenic (MGAH & AH) proteins with many being 

observed in more than one category, illustrated in Fig 2D. The structure and function of 

a protein has important implications for allergenicity, most allergenic proteins are limited 

to just 2% of protein families, with cross-reactivity linked to protein family rather than 

allergen source [6, 56, 57]. Most potential allergens highlighted in this study had 

predicted biochemical functions that placed them in well defined allergen families [6]. 

For example, predicted enolases DERPT_G12026 and DERPT_G4831 have high levels 

of sequence similarity (67 – 87%) with enolases from up to 19 phylogenetically distinct 

species (S6 Data). Enolase has long been recognised as a major cross-reacting allergen 

in plants, fungi, fish, and arthropods [58]. Moreover, the presence of at least one putative 

cross-reactive enolase ortholog [32] in all 12 Acari and two Arachnid outgroups (S2 

Data) highlights the importance of this pan-allergen protein family. Several cyclophilins 
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(n = 12) were annotated as putative cross-reactive proteins, of note Der f 29 like allergen 

(DERPT_G9923) exhibited sequence homology (52 – 83 % identity) with cyclophilins 

from 12 different species (S6 Data). Cross-reactive cyclophilins from HDM, mouse, 

humans and fungi are well reported in the literature [59-61]. HDM and fungi are 

frequently co-present in HD [62] with Alternaria and Aspergillus spp. being the most 

common source of mould allergens [63]. D. pteronyssinus airmid predicted proteins 

exhibited homology to Aspergillus fumigatus (n = 19) and Alternaria alternata (n = 6) 

allergens. Homology between HDM and fungal proteins may play a role in reported 

fungal exacerbation of HDM-induced asthmatic symptoms [64, 65]. Excretion of 

putative allergenic proteins into HD via faecal particles would implicate a route of 

exposure and therefore has significant implications for allergy. Eukaryotic secretion 

peptides were predicted in 20.7% of allergenic/potentially allergenic proteins. Even if 

these putative allergens were unable to induce immune responses in their own right, co-

presence with other immune modulators may be involved in bystander sensitization. Der 

p 1 accumulates in HD, levels exceeding 2 µg/g of dust are considered hazardous to the 

occupants [1]. In addition to being a potent activator of the immune system, Der p 1 has 

an adjuvant effect, enhancing IgE production against bystander molecules that may be 

present in HD [66]. Therefore, any protein accumulating in HD should be considered in 

the context of being a bystander allergen candidate.  

Proteomic characterisation of D. pteronyssinus airmid 

Representative proteome 

Analysis of LC-MS/MS spectra obtained from proteomic analysis of D. pteronyssinus 

airmid resulted in the high confidence identification of 3,931 proteins (S7 Data). This 

representative proteome comprised 31.4% of the predicted proteome of D. pteronyssinus 

airmid with experimental evidence for expression. Protein molecular weight and pI were 

widely distributed in the representative proteome (Range: 5.25- 3086.2 kDa, pI 3.26 – 

12.85) and similar to that of the predicted proteome (Range: 3.94 - 3086.2 kDa, pI 2.63 

– 13.27), confirming the protein extraction methods were optimal for the characterisation 

of D. pteronyssinus airmid proteome (Fig 3A). Establishing a representative proteome, 
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that reflects the methodological limitations of protein extraction and identification is 

essential for subsequent enrichment analyses. This background proteome is defined by 

Bessarabova et al (2012) as “the complete set of proteins known to be expressed in an 

organ/tissue/body liquid/cell line of sample origin” [67]. To date, proteomic investigation 

of D. pteronyssinus has extended to a few discrete studies [68-71]. Laboratory HDM 

populations have been shown to have different reproduction rates to wild-type strains 

[72] and isolated populations to give rise to geographical allergen variants [7]. 

Experimental examination of uncharacterised D. pteronyssinus airmid-specific proteins, 

particularly those with evidence for expression, may provide useful insights into the 

genes evolving within isolated populations. Our representative proteome may be 

expanded by employing alternative protein extraction methods, use of trypsin alternative 

or multi-protease digestion and depletion of high abundance proteins [73-75]. 

Wildtype proteome of D. pteronyssinus  

Extending the relevance of D. pteronyssinus proteomics to the environment is essential, 

as very little is known about which HDM components are present in inhalable air [10]. 

Proteomic analysis of 21 Der p 1 positive HD samples revealed the presence of 150 D. 

pteronyssinus proteins (S8 Data), the ten most abundant are given in Table 2, with 

sequence coverage ranging from 9.6 – 73.3%. Here, it can be seen that allergens Der p 1, 

2, 5, 14 and Der f 6 like allergen are amongst the most abundant D. pteronyssinus proteins 

in HD. Der p 1 and Der p 2 are considered major allergens while Der p 5, 6 and 14 are 

mid-tier IgE binders, all were amongst the ten most abundant proteins in HD [7]. Five 

non-allergenic proteins were also highly abundant, suggesting that sensitisation and IgE 

binding is a result of the unique properties of the protein rather than its abundance in 

house dust. Allergenic/potentially allergenic molecules accounted for almost 51 % of all 

proteins identified in HD (n = 76). The predicted functions of many of these proteins 

place them into well-established allergen families, therefore their presence in HD and 

sequence similarity to known allergens make them interesting targets for future studies 

seeking to identify new allergens. Comparative analysis between allergenic and non-

allergenic components of HD may reveal epitopes or structural characteristics common 
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to inhalant allergens [10]. Our data illustrates the utility of high sensitivity protein MS as 

a novel way to identify HDM products in the wild-type environment and has significant 

implications for the development of immunotherapies that mimic natural exposure. 

Previously, researchers have examined numerous commercially available diagnostic and 

therapeutic HDM extracts, finding many were lacking important allergens and some had 

several fold variations in Der p 1 to Der p 2 ratios [76]. For example, the 2017 

international consensus (ICON) report on the clinical consequences of mite 

hypersensitivity states that the “development of objective methods to assess allergen 

exposure and environmental control outcomes” are unmet and in need in mite allergy 

research [1]. Furthermore, the European medicines agencies guideline on the clinical 

development of products for specific immunotherapy for the treatment of allergic 

diseases, states that for seasonal allergies “it is mandatory to document the exposure to 

the relevant allergens” and “it is recommended to document the exposure level for the 

individual patient especially for the evaluation periods to evaluate the variation of indoor 

allergens” [77]. Generating diagnostic and therapeutic HDM extracts with allergen 

content and ratios that mimic natural exposure is of great importance. Characterisation 

of the factors affecting allergen repertoire and accumulation in different home 

microhabitats may give rise to much needed strategies for reducing allergen exposure for 

sensitised individuals [78]. 

Proteome of laboratory-reared D. pteronyssinus airmid 

D. pteronyssinus airmid whole protein lysates (WPL) were analysed directly (shotgun) 

and subjected to fractionation by size exclusion chromatography resulting in 

identification of 1,948 MB and SM proteins by high sensitivity protein mass 

spectrometry. Protein identification was confirmed by detection of at least two peptides 

per protein, and percentage sequence coverage ranged from 0.2 to 99.4 % across the 

entire protein dataset. Gel filtration fractionation of MB extracts and SM (Fig 3A1-A3) 

led to the unique identification of 248 and 105 proteins (18% of total identified proteins) 

from chromatographic fractions. Of the proteins identified, 1,076 proteins (58.2%) were 

uniquely found in MB extracts (S9 Data), while 99 proteins (0.8%) were solely identified 
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as secreted proteins (S10 Data). Faecal rich SM was obtained by sieving to remove large 

mites, therefore smaller mites remained. In a previous proteomic study of D. 

pteronyssinus faeces, it was suggested that their method of faeces sample collection is 

beneficial over the sieving technique, which unavoidably contains mite bodies and 

growth media [69]. While culture media-derived proteins (contaminants) will also be 

detected in proteomic analysis, it is possible to differentiate true dust mite proteins from 

contaminants by use of a culture media contaminants database as demonstrated in our 

study. Several functional terms assigned to proteins were differentially represented in 

MB (S9A-C Data) and SM (S10A-C Data) proteomes compared to the RP.  

Several GO terms were differentially represented (Over-represented: n = 161, Under-

represented: n = 6, S9A Data), of note, GO Cellular Component terms cytosol (Fisher’s 

P = 5.3E-49, GO:0005829) and mitochondrion (Fisher’s P = 8.5E-33, GO:0005739) were 

the most highly over-represented terms. This finding supports our proteomic strategy, 

showing significant enrichment of GO terms associated with intracellular activities. EC 

were highly represented in the MB proteome, assigned to 44.6% of proteins identified (n 

= 824). Only two enzyme names were found to be differentially represented, acting on 

peptide bonds (Fisher’s P = 1.28E-05) was over-represented and transferring 

phosphorous-containing groups (Fisher’s P = 1.03E-04) underrepresented (S9B Data). 

NAD(P)-binding domain superfamily (IPR036291) was the most highly over-

represented IPS ID (Fishers P = 1.63E-12) of 25, with mobidb-lite IPS ID (Fishers P = 

5.58E-17) for Intrinsic disorder protein sequences, representing the most significantly 

underrepresented of 30 IPS IDs (S9C Data).  

All MGA apart from Der p 28 were found in the MB, six were among the most abundant 

proteins identified (S3 Table). In the absence of Der p 28, nine Der p 28 homologs were 

identified including four isoallergens (Table 1, S9 Data). MGA were also found to be 

amongst the most abundant proteins in the SM, including Der p 2 and Der p 14 (S4 

Table). Allergenic/potentially allergenic molecules were highly represented in both MB 

and SM proteomes accounting for 11.4% and 18.5 % of all proteins identified. Homologs 

of Der p 1 (n = 17), Der p 2 (n = 2) and Der p 23 (n = 1) were identified in the SM. Given 
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that allergens Der p 1and Der p 2) account for up to 60% of IgE reactivity in HDM 

sensitised individuals [5], and Der p 23 sensitivity is seen in 79% of HDM allergic 

patients [79]  examination of cross-reactivity between these MGA and excreted 

homologs is warranted. 

MB and SM proteomes were abundant in enzymes, which accounted for 44.6 % and 

52.4% of all proteins identified respectively (S9&10 Data), some of these enzymes may 

be involved in digestion. HDM have long been associated with feeding on shed skin 

present in HD. While they have been observed to eat skin, the poor nutritional value of 

keratin makes it unlikely to be a primary food source. Rather, HDM are trophic 

generalists, they feed on organic debris associated with their proximity to humans [16]. 

In the laboratory, D. pteronyssinus have been grown on diverse culture media including 

various combinations of wheat bran, wheat flour, dog food, rodent chow, ground porcine 

liver, dried egg powder, defatted skin scales, and fish food. Most research groups use 

dried yeast to supplement diets and improve mite population growth [72, 80-83]. HDM 

have been observed to feed on bacteria and fungi in laboratory experiments [84, 85]. 

Whether HDM consume bacteria or fungi in a wildtype setting as a nutrient source needs 

further experimental evidence. Expression and excretion of bacterial and fungal 

degrading enzymes may indicate a role in digestion [85].  

Numerous glycoside hydrolases (EC:3.2.1) were identified in the predicted proteome (n 

= 57) and proteomic datasets (RP, MB & SM) summarised in Table 3. Each glycoside 

hydrolase enzyme sub-family were represented by at least one proteomic identification. 

Two predicted lysozymes (EC:3.2.1.17) and one 14.5 kDa bacteriolytic enzyme, Der p38 

(DERPT_G10989) were identified with evidence for high expression, these enzymes 

may be responsible for bacteriolytic activity in HDM extracts [86]. Excreted proteins 

with predicted activities against major components of fungal cell walls were identified 

and include; chitinases (n = 5), four glycoside hydrolase family 16 members with putative 

β-1,3 glucanase activity, β-mannosidase (n = 1), α-mannosidases (n = 4), chitosanase (n 

= 1) and α-N-Acetyl hexosaminidaseine (n = 2). Carbohydrate metabolism GO terms 

were among the 318 over-represented GO terms (Fisher’s exact test < 0.05 FDR) in the 
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excretome and included carbon utilization, hydrolase activity hydrolyzing O-glycosyl 

compounds, chitin metabolic process, chitin binding and starch metabolic process (S10A 

Data).  Of the putative enzymes identified in the SM proteome (n = 457), enrichment 

analysis showed 35 to be over-represented, many of which related to carbohydrate 

digestion; Alpha-glucosidase, Chitinase and Alpha-mannosidase (S10B Data). The 

presence of a predicted secretion signal was a strong indicator of excretion as 22.5% of 

all proteins identified in the SM proteome contained predicted secretion signals. 

Moreover, secretion signal peptides were the most highly over-represented IPS ID 

(Fisher’s P = 1.08E-26) of 61 (S10C Data).  

The expression of the numerous carbohydrate active enzymes listed above provides 

compelling evidence to support observations of D. pteronyssinus feeding on fungi and 

bacteria and demonstrate that they possess the necessary enzymes to utilise bacteria and 

fungi as a nutrient source [85]. Feeding on bacteria or fungi within wild-type 

microhabitats may alter allergen repertoire between homes, as diet has been demonstrated 

to alter allergen production in laboratory HDM cultures [87]. This new insight 

compounds the necessity for characterising factors affecting HDM allergen production 

within the home. 

The process of chitin synthesis and remodelling is an integral part of the growth and 

development of all arthropods. Chitin remodelling enzymes include chitinase, β-N-

Acetylhexosaminidase and the highly conserved chitin synthase, a key enzyme in the 

insect biosynthetic pathway [88]. Proteomic profiling of D. pteronyssinus airmid 

facilitated identification of eight predicted chitinases (EC:3.2.1.14, five β-N-

Acetylhexosaminidases (EC:3.21.52) and two chitin synthases (IPR004835) (Table 3) 

putatively involved in chitin remodelling. These enzymes represent important biocontrol 

targets, as chitin is absent from vertebrates, dysregulation of these enzymes could provide 

a much needed method of curtailing HDM populations in the homes of sensitised 

individuals [12, 88]. 
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Mite Group Allergen Localisation 

All proteins are synthesised in the MB prior to excretion, however excreted proteins are 

likely to accumulate in growth medium and HD. Data regarding localisation of MGA are 

limited [7]. Localisation is often linked to the degree of protein allergenicity, identifying 

sites of MGA accumulation may reveal trends of exposure that can be applied to 

assessing new allergens. In our analysis, the majority of MGA were detected in MB and 

SM proteomes, the relative amounts in each proteome was used to infer localisation. 

Proteomic assessment of localisation showed sero-dominant allergens Der p 1, Der p 2 

and Der p 23 to accumulate in SM (Table 4), with Der p 1 and Der p 2 being the two 

most abundant proteins (S4 Table). Der p 23 has previously been reported to be found 

only in low quantities in SM relative to Der p 2 [79], we observed the same trend, more 

Der p 2 ms spectra (n = 486) were detected than for Der p23 (n = 90). Allergens Der p 3, 

Der f 6 like allergen, Der p 9, Der p 15 and Der p 28 were also found to accumulate in 

the SM (Table 4). Localisation of Der p 3 to SM is consistent with previous observations 

for Der f 3 [89], the serine peptidases Der p 3, Der f 6 like allergen and Der p 9 were all 

among the top 10 most abundant SM proteins (S4 Table). Despite a different 

methodological approach, another study also found Der p 1, Der p 2, Der p 6 and Der p 

15 to be major proteins in D. pteronyssinus faeces and SM [69]. 

Analysis of localisation must not be restricted to laboratory-based studies and should 

include environmental reference samples where possible as demonstrated for allergens 

Der p 5 and Der p 21. Initial proteomic assessment found Der p 5 and Der p 21 were not 

excreted under laboratory conditions as they were absent from SM (S10 Data). However, 

proteomic analysis of HD revealed Der p 5 to be among the top 10 most abundant proteins 

(Table 2) and Der p 21 the 63rd most abundant, both were identified in at least 16 of the 

Der p 1 positive dust samples (S8 Data). The location of Der p 5 and Der p 21 in 

laboratory cultures, present in MB and absent from SM, would indicate they are not 

excreted, however, their presence in HD shows that there must be other factors that 

contribute to accumulation of non-excreted allergens in the home. These allergens may 

accumulate in HD as the mite bodies begin to degrade. The accumulation of dead mites 
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in laboratory cultures is avoided by regular sub-culturing of mites. Cross-referencing SM 

with MB associated proteins as demonstrated in Table 4, can infer localisation and can 

allow for novel insights into modes of accumulation when compared to wild-type dust 

samples. Our work has demonstrated the utility of high sensitivity mass spectrometry in 

characterising the complex proteomes of D. pteronyssinus. Laboratory cultures show 

parallels in protein expression with wild-type samples, as most proteins were identified 

in two or more of the proteomes (Fig 3C) with only four proteins uniquely identified in 

HD. Additional research is required to characterise the various microhabitats of HDM 

and factors affecting allergen presence in the home. 

Conclusion 

Here we performed a comprehensive bioinformatic and proteomic examination of D. 

pteronyssinus airmid describing the expression of 4,002 proteins (S11 Data) and 

identified 332 potential allergens. High sensitivity mass spectrometry allowed for the 

description of novel D. pteronyssinus components in HD and facilitated qualitative 

assessment of MGA localisation. This research has expanded the knowledge of proteins 

utilised by D. pteronyssinus for key physiological processes and will form the basis for 

further research into biocontrol strategies for the medically important HDM.  
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Figure 1. Arachnida Phylogenomic Species Tree and Network of Mite Group 

Allergen Orthologs in Genomes of twelve Acari and two Arachnids. 
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Figure 2. Annotation of D. pteronyssinus airmid Predicted Proteome. 
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Figure 3. Proteomic Characterisation of D. pteronyssinus airmid 
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Figure legends 

 

Figure 1. Arachnida Phylogenomic Species Tree and Network of Mite Group 

Allergen Orthologs in Genomes of twelve Acari and two Arachinds 

A. Phylogenomic species tree of 11 Acari species inferred using maximum-likelihood 

supermatrix (111 ortholog families, 77,878 aa aligned, LG+G+I+F model) and supertree 

(2,796 ortholog families) methods. Bootstrap support values are given for each branch, 

with values above branches corresponding to the supermatrix phylogeny and values 

below corresponding to the supertree phylogeny. Both supermatrix and supertree 

methods infer a strongly supported (87% and 100% bootstrap support respectively) sister 

group relationship between D. pteronyssinus and E. maynei to the exclusion of D. 

farinae. Therefore, in evolutionary terms D. pteronyssinus and E. maynei are more 

closely related to one another even though D. pteronyssinus and D. farinae belong to the 

same genus. B. Network map depicting abundance of mite group allergen homologs in 

each species. Homologous allergen group together forming an interconnected network 

distinct from non-homologous allergens i.e 2 & 22, groups 3, 6 & 9, groups 5 & 21, and 

groups 15 & 18.  

Figure 2. Annotation of D. pteronyssinus airmid Predicted Proteome. 

Annotation of D. pteronyssinus airmid proteins conducted using Blast2GO to search 

SwissProt, NCBI and InterPro databases for homology to known proteins and functional 

domains. A. GO annotations were assigned to 68.2% of the predicted proteome (n = 

8,546). A small number of proteins had Blast hits with proteins in NCBInr or SwissProt 

databases but were not assigned a GO term (n = 372). The remaining proteins (n = 3,612) 

were not homologous with proteins in these databases. Most of the predicted proteins 

were annotated with more than one GO category (Biological Processes, Molecular 

function, Cellular component) with median number of assigned GO terms being 9 

(Range: 0-164). B. InterPro scan feature of Blast2GO enabled assignment of InterPro IDs 

to 95.5% of predicted proteins (n = 11,971). InterPro GO IDs were assigned to 55 % (n 

= 6, 874) of the predicted proteome and predicted eukaryotic secretion peptides to 10.3% 
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of the predicted proteome (n = 1,293). A further 3, 804 proteins were assigned InterPro 

Scan (IPS) IDs. Multi-database Blast2GO workflow enabled 96% of the predicted 

proteome to be assigned some form of annotation (n = 11,996). A small number of 

proteins had BLAST hits with proteins in NCBInr/SwissProt databases but were not 

assigned a GO term (n = 372). Several predicted proteins (n = 294) were assigned GO 

annotations but BLASTp hit alignments did not meet the required threshold of 

significance. The remaining proteins (n = 3,612) were not homologous with proteins in 

these databases C. Enzyme code classes assigned to D. pteronyssinus airmid predicted 

proteins (n = 2,689), representing 21.5% of D. pteronyssinus airmid predicted proteome. 

Hydrolyses (EC:3.0) formed the largest enzyme category (n = 1,244) and Isomerases 

(EC:5.0) the smallest (n = 87). D.Venn diagram depicting overlapping categorisation of 

allergenic and predicted allergenic proteins. D. pteronyssinus airmid predicted proteins 

were assigned into unambigous allergen groupings based upon BlastP homology to 

known allergens. We found full predicted proteins for all reported MGA (Groups 1-11, 

13-16, 18, 20-33) and Seven non-chronalogical allergens (81.5 - 100 % identity). 

Subsequent blast hits were considered MGAH. Predicted proteins with potential cross-

reactivity (FAO/WHO, 2001) with allergens from other species (Uniprot “allergenome”) 

were annotated as Allergen homolog (AH). Many Allergenic/potentially allergenic 

proteins were present in multiple allergen analyses, in total 332 allergenic/potentially 

allergenic proteins were identified. 

 

Figure 3. Proteomic Characterisation of D. pteronyssinus airmid 

A. Proteomic Strategy for characterisation of D. pteronyssinus airmid. Flow diagram 

depicting proteomic strategy for characterisation of D. pteronyssinus airmid excretome 

and mite body proteome utilising whole sample analysis and sample fractionation 

analysis. A1. Gel filtration chromatography of D. pteronyssinus airmid whole body 

homogenate. Whole body homogenate protein extract (4.5 mg; 500 µl injection) 

separated by size exclusion chromatography (Superdex 200 10/300 GL; 0.4 ml/min flow 

rate). 0.5 ml fractions collected between 6.21 and 32.26 ml post-injection. A2. SDS-



Chapter 3: Proteome and allergenome of the European house dust mite 

Dermatophagoides pteronyssinus  

 

107 

 

PAGE analysis of D. pteronyssinus airmid whole body homogenate fractions. SDS-

PAGE (4-20%) with silver staining of whole body homogenate protein extract (Lane 1; 

10 µg) from D. pteronyssinus airmid and fractions from gel filtration (6.2 -22.2 ml post-

injection) of same (Lanes 2-13, 17 µl loaded). SDS-PAGE visualisation of fractions 

(0.5ml) depicting fractionation of complex protein mixture into reduced complexity 

extracts containing proteins of approximately similar sizes. Fractions, 7.2 – 32.2 ml, post 

injection (n = 50) were pooled to give 1 -1.5 ml aliquots (n = 21),100 µl was processed 

for LC-MS/MS. A3. Gel filtration chromatography of D. pteronyssinus airmid spent 

growth medium (SM). Protein extract of spent growth media (0.2 mg; 500 µl injection) 

separated by size exclusion chromatography (Superdex 200 10/300 GL; 0.4 ml/min flow 

rate). 0.5 ml fractions collected between 6.1 and 32.1 ml post-injection for SDS-PAGE 

analysis. Proteins in gel filtration fractions were acidic and therefore unsuitable for 

analysis by SDS-PAGE. Therefore, fractions were pooled and analysed according the 

methods used for mite body extract fractions. Fractions, 7.1 – 32.1 ml, post injection (n 

= 50) were pooled to give 1 -1.5 ml aliquots (n = 21), 100 µl was processed for LC-

MS/MS. B. Alignment of theoretical molecular mass and pI from D. pteronyssinus 

airmid PP (n = 12, 530) and representative proteome (n = 3,931) Software: 

http://www.juirgel.de Hiller et al., (2006). Proteins > 900 kDa excluded for graphing 

purposes (DERPT_G11449, DERPT_G9606, DERPT_G4775, DERPT_G8007,3088 

kDa, 2021 kDa, 1122 kDa & 1001 kDa respectively).  Predicted proteins with strong 

proteomic evidence for expression (2+ medium confidence peptides) accounted for 

31.4% of the predicted proteome (n = 3, 931). Calculated molecular mass and pI (Range: 

5.25- 3086.2 kDa, pI 3.26 – 12.85) of representative proteome was approximate to that 

of the predicted proteome (Range: 3.94 - 3086.2 kDa, pI 2.63 – 13.27).  Median protein 

size in the D. pteronyssinus airmid PP was 54.25 kDa. The largest predicted protein 

coding gene was DERPT_G11449 at 79,548 bp and encoded a paladin (Titin) protein 

homolog (26,516 a.a, 3086.2 kDa, pI 4.93). The smallest predicted protein was 

DERPT_G12515 (36 a.a, 3.94 kDa, pI 6.04) of unknown function, encoded by a 106 bp 

gene. The median protein pI was calculated to be 7.42, the protein with lowest predicted 

pI of 2.63 was DERPT_G12367 (50 a.a, 5.45 kDa), DERPT_G11425 had the highest 
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predicted pI at 13.27 (67 a.a, 6.94 kDa). C. Venn Diagram depicting overlap between 

Mite Body (MB), Spent Culture Medium (SM) and House Dust (HD) Proteomes, 

totalling 1,952 proteins identified.  
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Tables 

 

Table 1. Mite Group Allergens (MGA), Isoallergens and MGA Homologs. 

GroupA 

Allergen 

Query 

Sequence IDB 

Designated MGA 

Sequence IDC 
DescriptionD 

Biochemical 

Function 

% 

Identities 
E-value Isoallergens 

No. 

HomologsE 

1 P08176 DERPT_G1283 Der p 1 Cysteine protease 6 99.7 0 
 

31 

2 Q1H8P8 DERPT_G8792 Der p 2 Lipid binding 97.9 2.0E-104 
 

6 

3 P39675 DERPT_G8859 Der p 3 Trypsin 2 98.1 0 
 

41 

4 Q9Y197 DERPT_G360 Der p 4 a-Amylase 3 100 0 DERPT_G359 2 

5 P14004 DERPT_G7260 Der p 5 Structural protein 2 99.2 1.1E-91 
 

2 

6 DEFA_160240 DERPT_G9187 Der f 6 like 

Allergen 

Serine proteases 83.8 5.4E-140 
 

39 

7 P49273 DERPT_G8042 Der p 7 Unknown 99.5 8.3E-156 
 

4 

8 Q2YFE5 DERPT_G10534 
Der p 8 

Glutathione 

transferase 2 

99.5 3.7E-166 DERPT_G10535 5 

9 Q7Z163 DERPT_G7100 Der p 9 Serine protease 98.5 0 
 

35 

10 O18416 DERPT_G8047 Der p 10 Tropomyosin 5 99.3 0 
 

5 

11 Q6Y2F9 DERPT_G8381 Der p 11 Paramyosin 11 99.2 0 
 

6 

13 E0A8N8 DERPT_G8964 Der p 13 Fatty acid binding 2 100 3.3E-91 
 

8 

14 Q8N0N0 DERPT_G9820 
Der p 14 

Vitellogenin: egg 

yolk storage 6 

99.6 0 
 

3 

15 Q4JK69 DERPT_G3350 Der p 15 Chitinase 99.3 0 
 

13 

16 A0A291KZA1 DERPT_G5615 Der f 16 like 

Allergen 

Gelsolin: actin 

binding 

99.8 0 
 

2 

18 Q4JK71 DERPT_G784 Der p 18 Chitinase 96.3 0 
 

11 

20 B2ZSY4 DERPT_G59 Der p 20 Arginine kinase 100 0 DERPT_G10997 3 

21 Q2L7C5 DERPT_G7259 Der p 21 Structural protein 2 100 6.1E-98 
 

2 
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GroupA 

Allergen 

Query 

Sequence IDB 

Designated MGA 

Sequence IDC 
DescriptionD 

Biochemical 

Function 

% 

Identities 
E-value Isoallergens 

No. 

HomologsE 

22 A0A291KZA0 DERPT_G5267 Der f 22 like 

Allergen 

MD-2–related lipid 

recognition 

100 1.7E-106 
 

7 

23 L7N6F8 DERPT_G11207 
Der p 23 

Chitin-binding 

domain type 2 

100 4.9E-65 
 

14 

24 A0A0K2GUJ4 DERPT_G5941 

Der p 24 Allergen 

Ubiquinol-

cytochrome c 

reductase 

100 3.1E-86 
 

1 

25 A0A291KYZ7 DERPT_G6990 Der f 25 like 

Allergen 

Triosephosphate 

isomerase 

100 0 
 

2 

26 A0A088SAG5 DERPT_G10519 Der f 26 like 

Allergen 

Myosin light chain 92.4 7.6E-99 
 

9 

27 A0A291KZ97 DERPT_G8127 
Der f 27 like 

Allergen 

Serpin 82 0 DERPT_G8125 

DERPT_G8126 

DERPT_G8127 

14 

28 A0A291KZD8 DERPT_G6942 

Der f 28 like 

Allergen 

Heat shock protein 

70 

99.5 0 DERPT_G4999 

DERPT_G585 

DERPT_G7298 

DERPT_G7750 

DERPT_G9299 

16 

29 A1KXG2 DERPT_G9923 Der f 29 like 

Allergen 

Cyclophilin 83.2 9.7E-111 DERPT_G1407 

DERPT_G9923 

14 

30 Q962I7 DERPT_G8780 Der f 30 like 

Allergen Ferritin 

Ferritin 100 5.7E-136 DERPT_G4895 

DERPT_G9802 

4 

31 A0A088SAY1 DERPT_G5053 Der f 31 like 

Allergen 

Cofilin 100 1.7E-108 
 

1 
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GroupA 

Allergen 

Query 

Sequence IDB 

Designated MGA 

Sequence IDC 
DescriptionD 

Biochemical 

Function 

% 

Identities 
E-value Isoallergens 

No. 

HomologsE 

32 A0A291KZC9 DERPT_G5605 Der f 32 like 

Allergen 

Pyrophosphatase 100 3.0E-174 
 

1 

33 A0A2L0EBJ4 DERPT_G7263 Der f 33 like 

Allergen 

a-tubulin 100 0 DERPT_G10901 

DERPT_G8894 

12 

Non-

Chronolog

ical 

Allergens 

DEFA_097280 DERPT_G5569 Der f Acidic 

ribosomal like 

Allergen 

Alpha Actin 81.6 1.3E-37 
 

18 

L7UZ85 DERPT_G9110 Der f Actinin like 

Allergen 

Aldehyde 

dehydrogenase 

88.7 2.8E-141 
 

11 

DEFA_095270 DERPT_G5156 Der f Aldehyde 

dehydrogenase 

like Allergen 

Acidic Ribosomal 

Protein 

88.8 0 
 

3 

X4ZE83 DERPT_G12026 Der f Enolase like 

Allergen 

Elongation Factor 93.8 0 
 

15 

DEFA_072440 DERPT_G5247 Der f EF 

Elongation Factor 

like Allergen 

Enolase 98.5 0 
 

2 

DEFA_098190 DERPT_G10356 Der f Eukaryotic 

aspartyl protease 

like Allergen 

Eukaryotic aspartyl 

proteas 

86.2 0 
 

1 

DEFA_029120 DERPT_G5894 Der f Profilin like 

allergen 

Profilin 96.2 3.6E-93 
 

1 

Allergen GroupA, Chronological and non-chronological allergens described for mites. Query Sequence IDB, UniProt Accession or D. farinae Accession 

(Chan et al., 2015). Sequence IDC, D. pteronyssinus airmid protein sequence ID. DescriptionD, mite group allergen name. 
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Table 2. Top 10 Most Abundant D. pteronyssinus Proteins Identified in House Dust Protein Extracts 

Sequence IDsA DescriptionB 
N: 

SamplesC 

N: 

Unique 

peptidesD 

Sequence 

coverage 

[%] 

Mol. 

Mass 

[kDa] 

N: 

MS/MS 

countE 

LFQ 

IntensityF 

DERPT_G8792 Der p 2 Allergen; Proposed Mon-

Allergen, Allergen Homolog (Der f2, 

Eur m2, Der s2) 

21 7 56.2 15.9 178 4.3E+10 

DERPT_G1283 Der p 1 Allergen, Proposed Sten-

Allergen, Allergen Homolog (Der f1, 

Der m1, Pso o1) 

21 11 18.8 96.0 129 1.9E+10 

DERPT_G212 Polyubiquitin  21 9 18 287.2 133 1.5E+10 

DERPT_G10213 Glutamate receptor kainate 3  17 12 17.7 99.7 97 5.1E+09 

DERPT_G9820 Der p14 Allergen; Proposed Sten-

Allergen, Allergen Homolog (Sar s14, 

Eur m14, Der f14)  

17 51 36.2 191.4 212 4.9E+09 

DERPT_G7260 Der p5 Allergen; Allergen Homolog 

(Der f5) 

17 8 21.5 36.2 70 4.5E+09 

DERPT_G4157 Der p36 Allergen 20 7 64.7 24.5 73 3.4E+09 

DERPT_G114 Proposed Sten-Allergen, Allergen 

Homolog (ole e5, Sola 1 SOD) 

13 7 74.3 15.7 60 3.4E+09 

DERPT_G9187 Der f6 like allergen; Allergen Homolog 

(Blo t6) 

18 11 9.6 228.1 122 3.2E+09 

DERPT_G9697 Sucrase- intestinal, alpha-1,4-

glucosidase activity 

18 16 16.6 202.1 119 2.8E+09 

Sequence IDA, D. pteronyssinus airmid protein sequence ID. DescriptionB, annotations assigned by Blast2GO. N: SamplesC, number of extracted 

dust samples in which specified protein was identified. N: Unique peptidesD, number of unique (not present in any other protein sequence in the 

predicted proteome) peptides identified by LC-MS/MS for specified protein. N: MS/MS countE, sum of peptides selected for ms/ms analysis. LFQ 

IntensityF, label free quantification intensity. (Software: Maxquant version 1.6.2.10, Perseus version 1.6.2.2) 
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Table 3. Carbohydrate Degrading Enzymes.  
Proteomic Evidence 

Carbohydrate active enzyme EC No/ InterPro ID PPA RPB MBC SMD 

Glycosidases 3.2 63 44 32 30 

Glycosyl hydrolases 3.2.1 57 42 30 29 

a-amylase 3.2.1.1 2 1 1 1 

Chitinase 3.2.1.14 10 8 3 5 

Lysozyme 3.2.1.17 3 1 2 1 

Alpha-Glucosidase 3.2.1.20 4 4 4 4 

Alpha-Galactosidase 3.2.1.22 3 2 2 2 

Beta-Galactosidase 3.2.1.23 3 2 2 2 

Alpha-Mannosidase 3.2.1.24 11 8 5 5 

Beta-Mannosidase 3.2.1.25 1 1 1 1 

Trehalase 3.2.1.28 2 2 0 0 

Beta-Glucuronidase 3.2.1.31 1 1 1 1 

amylo-alpha-1,6-glucosidase 3.2.1.33 2 1 1 0 

Hyaluronoglucosaminidase 3.2.1.35 2 0 1 0 

Glucosylceramidase 3.2.1.45 2 2 2 2 

Alpha-L-Fucosidase 3.2.1.51 3 2 2 2 

Alpha-N-Acetyl hexosaminidase 3.2.1.52 5 5 2 2 

mannosyl-glycoprotein endo-β-N-

acetylglucosaminidase 

3.2.1.96 
1 1 0 0 

Chitosanase 3.2.1.132 2 1 1 1 

Glysoside Hydrolase family 16 IPR000757 6 4 3 14 

Glyco Hydrolase family 18 (W/O EC)F IPR001223 9 8 4 4 

PPA, Predicted Proteome. RPB, set of all proteins identified in the Representative proteome. MBC, set of all proteins identified in the mite body. SMD, set of 

all proteins identified in the Excretome. HDE, set of all D. pteronyssinus proteins identified in house dust. Glyco Hydrolase family 18 (W/O EC)F, proteins 

annotated as Glyco Hydrolase family 18 but lacking enzyme code annotation.  
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Table 4. Proteomic Evaluation of MGA Localization in D. pteronyssinus airmid 

MGAA Sequence IDB N: Mol. mass [kDa]C N: Sequence 

coverage [%]D N: ScoreE N: MS/MS 

countF 

N: LFQ 

IntensityG LocalisationH 

1 DERPT_G1283 96.0 
41.3 323.31 1511 4.9E+11 

SM 
32.2 323.31 966 2.7E+11 

2 DERPT_G8792 15.9 
78.8 323.31 486 5.2E+11 

SM 
76.7 323.31 419 6.7E+11 

3 DERPT_G8859 28.1 
67.4 323.31 510 4.4E+11 

SM 
66.7 323.31 250 5.1E+10 

4 DERPT_G360 60.3 
75.5 323.31 370 1.5E+11 

MB 
76.9 323.31 410 1.8E+11 

5 DERPT_G7260 36.2 25.5 323.31 188 2.7E+10 MB 

6 DERPT_G9187 228.1 
14.4 323.31 468 2.6E+11 

SM 
17.9 323.31 192 2.4E+10 

7 DERPT_G8042 28.5 
48.6 256.04 105 1.7E+10 

MB 
53.7 323.31 273 6E+10 

8 DERPT_G10534 25.6 
57.1 248.79 65 5.3E+09 

MB 
97.3 323.31 165 3.8E+10 

9 DERPT_G7100 29.4 
87.2 323.31 440 2.9E+11 

SM 
85.3 323.31 162 2.2E+10 

10 DERPT_G8047 33.0 
77.1 323.31 171 3.9E+09 

MB 
81.7 323.31 923 5.4E+11 

11 DERPT_G8381 184.0 48.9 323.31 1822 4.7E+11 MB 

13 DERPT_G8964 15.0 
71.8 222.22 66 4E+09 

MB 
90.8 323.31 387 2E+11 

14 DERPT_G9820 191.4 
78.5 323.31 1388 1.6E+11 

MB 
88.8 323.31 4729 2.2E+12 
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MGAA Sequence IDB N: Mol. mass [kDa]C 
N: Sequence 

coverage [%]D 
N: ScoreE 

N: MS/MS 

countF 

N: LFQ 

IntensityG 
LocalisationH 

15 DERPT_G3350 183.4 
27.1 323.31 706 3E+11 

SM 
26.3 323.31 398 1.1E+11 

16 DERPT_G5615 55.4 
62.1 323.31 127 6.1E+09 

MB 
92.1 323.31 718 1.5E+11 

18 DERPT_G784 63.1 
48 323.31 267 4.7E+10 

SM 
45.3 323.31 218 4.6E+10 

20 DERPT_G59 43.8 
72.4 323.31 196 2.6E+10 

MB 
85.1 323.31 727 3.7E+11 

21 DERPT_G7259 16.5 
14.3 10.742 1 1.2E+07 

MB 
70.7 138.58 117 2.3E+10 

22 DERPT_G5267 15.6 
51 135.52 58 1.9E+10 

MB 
65 135.32 62 2.1E+10 

23 DERPT_G11207 10.3 
44.4 323.31 90 6.6E+10 

SM 
34.4 32.386 26 3.6E+09 

24 DERPT_G5941 16.6 49.3 36.632 37 1.4E+09 MB 

25 DERPT_G6990 30.0 
76.4 323.31 157 2.4E+10 

MB 
80 323.31 293 1E+11 

26 DERPT_G10519 133.7 10.8 138.1 134 3.1E+10 MB 

27 DERPT_G8127 43.3 
37.8 247.65 19 3.3E+09 

MB 
37.8 189.99 54 2E+10 

28 DERPT_G6942 72.5 23 33.474 22 2E+09 SM 

29 DERPT_G9923 40.8 
19.7 172.32 66 2.2E+10 

MB 
27.7 155.96 122 4.8E+10 

30 DERPT_G8780 20.8 
86.1 323.31 153 3E+10 

MB 
99.4 323.31 572 6E+11 
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MGAA Sequence IDB N: Mol. mass [kDa]C 
N: Sequence 

coverage [%]D 
N: ScoreE 

N: MS/MS 

countF 

N: LFQ 

IntensityG 
LocalisationH 

31 DERPT_G5053 16.8 
77 251.82 57 2.1E+09 

MB 
89.2 275.91 154 3.9E+10 

32 DERPT_G5605 166.9 
33.4 323.31 237 2E+10 

MB 
37.3 323.31 286 5.2E+10 

33 DERPT_G7263 51.4 38.3 87.829 21 7.6E+08 MB 

Der f acidic ribosomal like 

allergen 
DERPT_G5569 11.5 

45.1 49.195 8 1.7E+08 
MB 

45.1 71.984 30 3E+09 

Der f Actinin like allergen DERPT_G9110 149.6 
20 219.08 45 3.8E+08 

MB 
62.1 323.31 841 1.9E+11 

Der f aldehyde 

dehydrogenase like 

allergen 

DERPT_G5156 54.1 

94.1 323.31 303 2.7E+10 

MB 95.9 323.31 840 4.3E+11 

Der f EF elongation factor 

like Allergen 
DERPT_G5247 94.7 

70.1 323.31 297 2.6E+10 
MB 

78.2 323.31 765 2.4E+11 

Der f enolase like Allergen DERPT_G12026 47.4 
78.8 323.31 261 4E+10 

MB 
84.3 323.31 597 2.4E+11 

Der f eukaryotic aspartyl 

protease like allergen 
DERPT_G10356 42.9 

45.6 172.3 38 1.2E+09 
MB 

62.2 166.75 137 1.8E+10 

Der f profilin like allergen DERPT_G5894 14.3 
73.8 111.29 30 2.4E+09 

MB 
86.2 99.86 67 1.2E+10 

Highlighted in in grey: Mite Body (MB) proteome Data. In white: Excretome proteome data (SM). MGAA, Mite Group Allergen. Sequence IDB, D. pteronyssinus airmid 

protein sequence ID. DescriptionB, annotations assigned by Blast2GO. N: Mol. mass [kDa]C, calculated Molecular mass of protein in kDa.. N: Sequence coverage [%]D, 

percentage of total protein sequence for which peptides were identified. N: ScoreE, protein score, cumulative score of individual peptide mass spectra’s. N: MS/MS countF, 

sum of peptides selected for ms/ms analysis. LFQ IntensityG, label free quantification intensity. (Software: Maxquant version 1.6.2.10, Perseus version 1.6.2.2). 

LocalisationH, qualitative assessment of allergen localisation to MB or SM based upon MS/MS count and LFQ intensity.  
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Supporting Information 

S1 Table: Genome Assemblies Utilised for Phylogenetic Analysis. 

S2 Table: LEA Homologs in D. pteronyssinus airmid  

S3 Table: Top 10 Most Abundant Proteins Identified in D. pteronyssinus airmid Mite 

Body  

S4 Table: Top 10 Most Abundant Proteins Identified in D. pteronyssinus airmid Spent 

Culture Medium. 

Appendix 1. Electronic Files (Excel) 

S1_Data: Allergen Orthologs Potentially cross-reactive orthologs of known mite 

group allergens (Der p1-11, 13-16, 18, 20-33 or non-chronalogical allergen sequences 

available in UniProt for D. pteronyssinus and D. farinae ,where D. pteronyssinus 

sequences were unavailable) identified by BLAST searches in 12 acari and 2 arachnid 

out-grouping. To be considered an allergen ortholog, proteins had to have reciprocal 

best hits with an allergen (E-value ≤1E-05), an alignment length of at least 80 amino 

acids and share at least 35% identity. We also identified allergen homologs by 

removing the criteria of being a reciprocal best hit. 

S2_Data: Number of potentially cross-reactive orthologs of known MGA (Der p1-11, 

13-16, 18, 20-33 or non-chronalogical allergen sequences available in UniProt for D. 

pteronyssinus and D. farinae ,where D. pteronyssinus sequences were unavailable) 

identified by BLAST searches in 12 acari and two arachnid outgrouping. To be 

considered an allergen ortholog, proteins had to have reciprocal best hits with an 

allergen (E-value ≤1E-05), an alignment length of at least 80 amino acids and share at 

least 35% identity.  

S3_Data: D. pteronyssinus and D. pteronyssinus airmid specific genes. D. 

pteronyssinus specific genes (n = 1,850) are absent from other acari but present in all 



Chapter 3: Proteome and allergenome of the European house dust mite 

Dermatophagoides pteronyssinus  

 

118 

 

one or more D. pteronyssinus genome assemblies (SI Table 1). D. pteronyssinus 

airmid specific genes (n = 1,475) were found only in D. pteronyssinus airmid genome 

assembly. 

S4_Data. D. pteronyssinus airmid predicted proteome (n = 12,530 sequences) 

annotated by blast homology to sequences in NCBInr, SwissProt and InterPro 

databases utilising Blast2GO.  

S5_Data: BLAST alignment results for D. pteronyssinus airmid predicted proteins 

(E-value ≤1E-03) to MGA sequences available in UniProt for D. pteronyssinus and D. 

farinae (where D. pteronyssinus sequences were unavailable).  

S6_Data: List of all D. pteronyssinus airmid protein sequences with known 

immunomodulatory effects or predicted ,“allergenic molecules (n = 332)”, based upon 

BLASThomology to known allergens (E-value ≤1E-05), with an alignment length of 

at least 80 amino acids and share at least 35% identity. This list is a consolidation of 

protein sequences designated as“Mite Group Allergens and Non-chronological 

allergens” (MGA, n = 37), “Mite group allergen homologs” (MGAH, n = 93), 

“Allergen Homologs” (AH, n = 326).  Allergen Homolog BLASTp alignment data.  

S7_Data: List of D. pteronyssinus airmid proteins (n = 3,931) identified by meta-

proteomic analysis of 88Gb of spectra (99 LC-MS/MS files) representing the 

proteome available for analysis utilising extraction and analysis techniques employed 

during this study (Representative Proteome). 

S8_Data: Proteomic results of all D. pteronyssinus airmid proteins (n = 150) identified 

from house dust protein extracts by LC-MS/MS.  

S9_Data: A) Proteomic results of all D. pteronyssinus airmid proteins (n = 1,849) 

identified from the mite body through combined proteomic strategy of whole extract 

protein analysis and gel filtration protein extract fractionation, followed by LC-

MS/MS. B) List of the most specific GO terms (n = 167) differentially represented 
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between the representative proteome and mite body proteome (<0.05 FDR) illustrating 

sample enrichment for proteins associated with mite body processes. C) List of 

enzyme names (n = 2) differentially represented between the representative proteome 

and mite body proteome (<0.05 FDR) illustrating sample enrichment for enzymes 

associated with mite body processes. D) List of InterPro IDs (n = 57) differentially 

represented between the representative proteome and mite body proteome (<0.05 

FDR) illustrating sample enrichment of proteins with functional domains associated 

with mite body processes. 

S10_Data: A) Proteomic results of all D. pteronyssinus airmid proteins (n = 873) 

identified from the spent culture media (Excretome) through combined proteomic 

strategy of whole extract protein analysis and gel filtration protein extract 

fractionation, followed by LC-MS/MS. B) List of the most specific GO terms (n = 

320) differentially represented between the representative proteome and Excretome 

(<0.05 FDR) illustrating selective extraction of proteins associated with the 

Excretome. C) List of enzyme names (n = 35) differentially represented between the 

representative proteome and Excretome (<0.05 FDR) illustrating selective extraction 

of certain groups of enzymes associated with the Excretome. D) List of InterPro IDs 

(n = 69) differentially represented between the representative proteome and Excretome 

(<0.05 FDR) illustrating selective extraction of proteins with functional domains 

associated with the excretome. 

S11_Data: List of all D. pteronyssinus airmid proteins identified in this study by 

proteomics (n = 4, 002). 
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S1 Table. Genome data utilised in our assessment of genomic completeness 

and phylogenetic analysis 

Species Genome 

Reference 

Suborder 

Centruroides sculpturatus  Arachnid outgroup 

Parasteatoda tepidariorum   Arachnid outgroup 

Dermatophagoides farina [2] Acariformes 

Euroglyphus maynei [3] Acariformes 

Sarcoptes scabiei  [4] Acariformes 

Tetranychus urticae [5] Acariformes 

Psoroptes ovis [6] Acariformes 

Ixodes scapularis [7] Parasitiforme 

Galendromus occidentalis [8] Parasitiforme 

Rhipicephalus microplus [9] Parasitiforme 

Tropilaelaps mercedesae [10] Parasitiforme 

Varroa destructor [11] Parasitiforme 

Varroa jacobsoni   Parasitiforme 
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S2 Table. LEA Homologs in D. pteronyssinus airmid assigned based upon single best highest scoring Blast hit with known LEA protein. 

Query Sequence 

IDA Sequence IDB DescriptionC 
LEA Class 

(Best hit)D 
% 

Identities 
E-value 

AMR19109 DERPT_G248 UDP-glucose 4-epimerase 99 22.508 8.95E-07 

JAC82215 DERPT_G290 Phospholipase ABHD3 99 29.551 7.23E-54 

NP_001256174 DERPT_G404 Laminin subunit gamma-1  6 21.64 8.74E-09 

AMR19109 DERPT_G997 Natural resistance-associated Macrophage 1 Short 99 25.904 9.20E-09 

JAC82215 DERPT_G3026 Phospholipase ABHD3 99 28.198 1.43E-49 

AMR19109 DERPT_G3148 GDP-mannose 4,6-dehydratase 99 24.671 4.28E-13 

XP_006488730 DERPT_G4173 F-box LRR-repeat 20  6 25.824 3.02E-07 

NP_851129 DERPT_G4823 LEA homology 6 29.688 1.41E-08 

KCW52581 DERPT_G4831 Allergen Homolog (Hev b9, Sac Enolase, Alt a 11) Enolase  6 55.708 8.0E-152 

AMR19109 DERPT_G6082 UDP-glucose 4-epimerase 99 26.036 3.51E-14 

BAE92616 DERPT_G6261 Flagellar attachment zone 1 6 22.145 6.06E-09 

AMR19109 DERPT_G7527 3 beta-hydroxysteroid dehydrogenase Delta 5-- 99 26.829 6.14E-08 

LEA76_BRANA DERPT_G8349 Zonadhesin Flags: Precursor 6 21.053 2.03E-06 

JAC82215 DERPT_G8791 Phospholipase ABHD3  99 28.909 1.27E-43 

AMR19109 DERPT_G10968 UDP-glucuronic acid decarboxylase 1  99 24.924 4.37E-19 

AMR19109 DERPT_G11799 Fatty acyl- reductase 1 99 25.595 6.23E-06 

KCW52581 DERPT_G12026 Der f enolase like Allergen; Allergen homolog (Bla g Enolase, Sal 

s 2, Bos D Enolase), Proposed Pan-Allergen: Enolase  6 56.308 3.6E-173 

BAE92616 DERPT_G12094 Liver stage antigen 6 23.642 8.14E-08 

Query Sequence IDA, from LEAP database (http://forge.info.univ-angers.fr/~gh/Leadb/index.php). Sequence IDB, D. pteronyssinus airmid protein 

sequence ID. DescriptionC, annotations assigned by Blast2GO. LEA Class (Best hit)D , single best Blast alignment. 
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S3 Table. Top 10 Highest Abundant Protein Identified in D. pteronyssinus airmid Mite Body 

Sequence IDsA DescriptionB N: 

WEC 

N: 

FractionsD 

N: 

PeptidesE 

N: Unique 

peptidesF 

Sequence 

coverage 

[%] 

Mol. Mass 

[kDa] 

N: 

MS/MS 

countG 

LFQ 

IntensityH 

DERPT_G9820 Der p14 Allergen; Proposed Sten-Allergen, 

Allergen Homolog (Sar s14, Eur m14, Der f14) 

4 20 261 261 88.8 191.4 4729 2.2E+12 

DERPT_G8046 Myosin-7 4 20 297 297 76.2 249.0 3554 1.1E+12 

DERPT_G1155

8 

ATP synthase subunit 4 20 47 47 79.6 56.5 1101 7.6E+11 

DERPT_G8792 Der p 2 Allergen; Proposed Mon-Allergen, 

Allergen Homolog (Der f2, Eur m2, Der s2) 

4 20 20 20 76.7 15.9 419 6.7E+11 

DERPT_G8780 Der f30 like allergen: Ferritin heavy chain 4 20 27 27 99.4 20.8 572 6.0E+11 

DERPT_G8047 Der p10 Allergen; Proposed Pan-Allergen, 

Allergen Homolog (Der p10, Aca s10, Pso o10, 

Sar s10, Blo t10) 

4 20 51 51 81.7 33.0 923 5.4E+11 

DERPT_G749 Allergen Homolog (Sal s3, Thua3): Fructose-

bisphosphate aldolase  

4 20 42 42 85.9 39.4 667 4.9E+11 

DERPT_G8381 Der p11 Allergen; Proposed Sten-Allergen, 

Allergen Homolog (Ani s2, Blo t11, Der f11, 

Der p11) 

4 20 173 173 48.9 184.0 1822 4.7E+11 

DERPT_G5156 Der f aldehyde dehydrogenase like allergen; 

Allergen homolog (Tyr p 35, Cla h3) 

4 20 69 68 95.9 54.1 840 4.3E+11 

DERPT_G3392 Allergen homolog (Tri a34, Asp vGAPDH): 

Glyceraldehyde-3-phosphate dehydrogenase 

4 20 53 52 98.5 35.7 674 3.9E+11 

Sequence IDA, D. pteronyssinus airmid protein sequence ID. DescriptionB, annotations assigned by Blast2GO. N: WEC, number of whole protein extract replicates in which 

specified protein was identified. N: FractionsD, number of gel filtration fractions in which specified protein was identified. N: WED, number of whole protein extract replicates 

in which specified protein was identified. N: PeptidesE, number of peptides identified by LC-MS/MS for specified protein. N: Unique peptidesF, number of unique (not present 

in any other protein sequence in the predicted proteome) peptides identified by LC-MS/MS for specified protein. N: MS/MS countG, sum of peptides selected for ms/ms analysis. 

LFQ IntensityH, label free quantification intensity. (Software: Maxquant version 1.6.2.10, Perseus version 1.6.2.2). 
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S4 Table. Top 10 Most Abundant Proteins Identified in Spent Culture Medium of D. pteronyssinus airmid 

Sequence IDsA DescriptionB 

N: 

WEC 

N: 

FractionsD 

N: 

Peptide

sE 

N: 

Unique 

peptidesF 

Sequence 

coverage 

[%] 

Mol. 

Mass 

[kDa] 

N: 

MS/MS 

countG 

LFQ 

IntensityH 
DERPT_G8792 Der p 2 Allergen; Proposed Mon-

Allergen, Allergen Homolog (Der f2, Eur 

m2, Der s2) 

4 21 17 17 78.8 15.9 486 5.2E+11 

DERPT_G1283 Der p 1 Allergen, Proposed Sten-Allergen, 

Allergen Homolog (Der f1, Der m1, Pso 

o1) 

4 21 35 35 41.3 96.0 1511 4.9E+11 

DERPT_G8859 Der p3 Allergen, Proposed Sten-Allergen, 

Allergen Homolog (Der p3, Der f3, Eur 

m3, Blo t3, Tyr p3)  

4 21 30 30 67.4 28.1 510 4.4E+11 

DERPT_G9697 Sucrase- intestinal, alpha-1,4-glucosidase 

activity 

4 21 106 102 61.7 202.1 1288 3.4E+11 

DERPT_G3350 Der p15 Allergen 4 15 52 52 27.1 183.4 706 3.0E+11 

DERPT_G7100 Der p9 Allergen 4 21 24 24 87.2 29.4 440 2.9E+11 

DERPT_G9187 Der f6 like allergen; Allergen Homolog 

(Blo t6) 

4 21 29 29 14.4 228.1 468 2.6E+11 

DERPT_G1098

9 

kDa bacteriolytic enzyme 4 21 10 10 37 30.9 302 1.6E+11 

DERPT_G9149 Lysosomal alpha-mannosidase 4 11 89 89 74.5 118.3 875 1.6E+11 

DERPT_G9820 Der p14 Allergen; Proposed Sten-

Allergen, Allergen Homolog (Sar s14, Eur 

m14, Der f14) 

4 20 183 183 78.5 191.4 1388 1.6E+11 

Sequence IDA, D. pteronyssinus airmid protein sequence ID. DescriptionB, annotations assigned by Blast2GO. N: WEC, number of whole protein extract 

replicates in which specified protein was identified. N: FractionsD, number of gel filtration fractions in which specified protein was identified N: PeptidesE, 

number of peptides identified by LC-MS/MS for specified protein. N: Unique peptidesF, number of unique (not present in any other protein sequence in 

the predicted proteome) peptides identified by LC-MS/MS for specified protein. N: MS/MS countG, sum of peptides selected for ms/ms analysis. LFQ 

IntensityH, label free quantification intensity. (Software: Maxquant version 1.6.2.10, Perseus version 1.6.2.2) 
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4.0 Characterisation of three Novel β-1,3 glucanases from 

the Medically Important House Dust Mite 

Dermatophagoides pteronyssinus (airmid). 
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ABSTRACT 

The European house dust mite, Dermatophagoides pteronyssinus is a major source of 

airborne allergens worldwide and is found in half of European homes. Interactions 

between microbes and house dust mites (HDM) are considered important factors that 

allow them to persist in the home. Laboratory studies indicate the European HDM, D. 

pteronyssinus is a mycophagous mite, capable of utilising a variety of fungi for nutrients, 

however specific mycolytic digestive enzymes are unknown. Our previous work 

identified a number of putative glycosyl hydrolases present in the predicted proteome of 

D. pteronyssinus airmid and validated the expression of 42 of these. Of note, three GH16 

proteins with predicted β-1,3 glucanase activity were found to be consistently present in 

the mite body and excretome. Here, we performed an extensive bioinformatic, proteomic 

and biochemical study to characterize three-novel β-1,3 glucanases from this medically 

important house dust mite. The genes encoding novel β-1,3 glucanases designated Glu1, 

Glu2 and Glu3 were identified in D. pteronyssinus airmid, each exhibited more than 59% 

amino acid identity to one another. These enzymes are encoded by Glu genes present in 

a tri-gene cluster and protein homologs are found in other acari. The patchy phyletic 

distribution of Glu proteins means their evolutionary history remains elusive, however 

horizontal gene transfer cannot be completely excluded. Recombinant Glu1 and Glu2 

exhibit hydrolytic activity toward laminarin, pachyman and barley glucan. Excreted β-

1,3 glucanase activity was increased in response to D. pteronyssinus airmid feeding on 

baker’s yeast. Active β-1,3 glucanases are expressed and excreted in the faeces of D. 

pteronyssinus airmid indicating they are digestive enzymes capable of breaking down β-

1,3 glucans of fungi present in house dust.  
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HIGHLIGHTS 

• β-1,3 glucanases found in HDMs and other Acari species, specifically those 

within the Acariformes but not Parasitiformes orders. 

• Mycophagous HDM, D. pteronyssinus, increases expression and excretion of β-

1,3 glucanases in response to S. cerevisiae diet. 

• β-1,3 glucanases excreted by D. pteronyssinus are found in house dust. 

 

ABBREVIATIONS 

HDM   House Dust Mite 

HGT   Horizontal Gene Transfer 

MES   4-Morpholineethanesulfonic acid 

MM   Minimal Media 

HDMMM  HDM Maximal Media 

PBS   Phosphate Buffered Saline 

SM   Spent Culture Medium 

MB   Mite Body 
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INTRODUCTION 

House dust mites (HDMs) appear to have evolved from an avian parasite ancestor, which 

in turn may have evolved from a mycophagous free-living ancestor (Klimov and 

O’Connor, 2013; O’Connor, 1979). Close relatives of the most common house dust-

dwelling acariforme mites; Dermatophagoides pteronyssinus, Dermatophagoides 

farinae and Euroglyphus maynei, exhibit facultative mycophagy (O'Connor, 1979). The 

stored product mite, Tyrophagous puterscentiae is frequently found to contaminate 

laboratory fungal cultures, feeding on hyphae and spores of dermatophytes, molds and 

yeasts (Duek et al., 2001). Recent studies have demonstrated D. pteronyssinus is better 

suited to nutritionally exploit fungi than D. farinae, and is capable of using yeasts and 

the filamentous fungi, Aspergillus and Penicillium spp. as food sources (Molva et al., 

2019).  

In order to feed on fungi, D. pteronyssinus must possess the enzymatic arsenal to degrade 

the microbe’s cell wall and digest the cell contents (Erban and Hubert, 2012). A typical 

fungal cell wall is a multilayer structure composed of a chitin linked to a β-1,3- and β-

1,6-glucan layer, followed by an outermost layer of mannoproteins. β-glucans form 50-

60% of the fungal cell wall with β-1,3 contributing 65-90% of the β-glucan content (Fesel 

and Zuccaro, 2016). Enzymes from the Glyco Hydrolase family 16 (GH16) exhibit 

hydrolytic activity against a variety of polysaccharides, including β-1,3 glucans 

commonly found in fungal cell walls (Alvarez et al., 2015). Enzymes capable of 

hydrolysing β-1,3 glucans exhibit endo- β-1,3 glucanase (EC 3.2.1.39), endo- β-1,3-1,4 

glucanase (EC 3.2.1.6) or exo- β-1,3 glucanase activity (EC 3.2.1.58) (Song et al., 2010).  

In previous work, we identified six putative GH16 proteins with predicted β-1,3 

glucanase activity in D. pteronyssinus airmid, four were validated as expressed (Waldron 

et al., 2019). Moreover, previous studies have demonstrated β -glucosidase activity to be 

present in protein extracts from D. pteronyssinus (Martinez et al., 1999). This enzyme 

activity may be utilised by D. pteronyssinus for immune defence and/or digestive 

activities (Erban and Hubert, 2008; Pauchet et al., 2009).  
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GH16 proteins represent interesting targets for further study as active β-1,3 glucanases 

have been reported only in a handful of arthropods including Lepidoptera, Collembola 

and Diptera (Bragatto et al., 2010; Moraes et al., 2014). Moreover, they have been 

reported to be lost from Chelicerates (scorpions, mites, spiders and ticks) (Jiggins and 

Palmer, 2015). The unexpected discovery of an endo- β-1,3 glucanase in the Antarctic 

springtail, Cryptopygus antarcticus was explained by horizontal gene transfer (HGT) 

(Song et al., 2010). Thus, the presence of β-1,3 glucanases in the genome of D. 

pteronyssinus may also point to acquisition by HGT, as HGT has been seen previously 

in this species (Tang et al., 2017).  

In the present study, we conducted an extensive bioinformatic and biochemical 

investigation of three recently discovered GH16 proteins with predicted β-1,3 glucanase 

activity to (i) examine the evolutionary history of predicted β-1,3 glucanases present in 

the D. pteronyssinus (ii) conduct functional characterisation of predicted β-1,3 

glucanases and (iii) examine if D. pteronyssinus utilise β-1,3 glucanases to digest the 

yeast, Saccharomyces cerevisiae.  

MATERIALS AND METHODS 

Bioinformatic Analysis.  

The evolutionary history of the three Glu genes relative to closely related species was 

investigated by taking the three corresponding Glu protein sequences and using each as 

a query sequence in a BLASTp (Altschul et al., 1997) database search (e-value cutoff of 

1e-10) against a local protein database containing eleven other Acari species. Six of these 

species belong to the Parasitiformes order while the remaining five belong to the 

Acariformes order (Table 1). Homologous sequences were retrieved and aligned using 

MUSCLE (Edgar, 2004) using the default settings. The resultant alignment was used to 

reconstruct a maximum likelihood tree using RAxML (Stamatakis, 2014) utilising the 

LG+G+I+F model as selected by ProtTest (Darriba et al., 2011), branch supports were 

determined using 100 bootstrap replicates.  
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A broader evolutionary analysis was also undertaken by performing a BLASTp database 

search with an e-value cutoff of 1e-10 of the three Glu proteins against a dataset 

representative of fully sequenced prokaryotic and eukaryotic species. This dataset was 

composed of over 8 million protein sequences from 1,698 genomes sampled from all 

three domains of life which had been used in previous interdomain evolutionary analysis 

(McCarthy and Fitzpatrick, 2016). Homologous sequences were retrieved and aligned 

using MUSCLE using the default settings. The resultant alignment was used to 

reconstruct a maximum likelihood tree using FastTree2 (Price et al., 2010) utilising the 

LG model and local supports values were also determined. 

Protein Extraction.  

Culture and protein extraction from D. pteronyssinus airmid mite body (MB) and spent 

culture medium (SM) were conducted as described in Waldron et al. (2019). HDM were 

cultured on a diet of dried porcine liver (MM) or a mixture of porcine liver and baker’s 

yeast (HDMMM). 

Purification of β-1,3 glucanase from D. pteronyssinus airmid. 

Gel filtration chromatography was carried out using an ÄKTA Purifier coupled with a 

Superdex 200 10/300 GL gel filtration column (GE Healthcare, Germany), equilibrated 

in Phosphate Buffered Saline (PBS). MB protein extracts were filtered (0.22 µm), 

injected (500 µl) and separated (flow rate 0.4 ml/min) with absorbance monitored at 215, 

254 and 280 nm. Fractions were collected (between ~ 8 and 26 ml) and assayed for β-

1,3-glucanase activity using the AZCL-Pachyman assay (described below). Fractions 

with detectable activity (16 – 22 ml post-injection) were pooled, buffer exchanged (50 

mM 4-Morpholineethanesulfonic acid (MES), pH 5.5) and concentrated using centrifugal 

filters (Amicon; 3 kDa MWCO). The resulting protein solutions were further fractionated 

by cation exchange chromatography, and the β-1,3 glucanases bound the column (HiTrap 

SP Xl) and were eluted with sodium chloride gradient (60 - 90 mM NaCl in 50 mM MES 

pH 5.5). 
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Expression Analysis by RT-PCR.  

RNA was extracted from D. pteronyssinus airmid using methods for nucleic acid 

extraction in Waldron et al. (2017) using the Purelink RNA mini kit (Invitrogen) and 

cDNA synthesised (qScript; Quantabio). Expression of Glu1, Glu2 and Glu3 genes were 

assessed by RT-PCR of cDNA with reference to control gene Der p1, using primers listed 

in Table 2. 

Recombinant Protein Expression.  

D. pteronyssinus airmid Glu1, Glu2 and Glu3 genes were commercially synthesised 

(IDT; USA) to allow for signal peptide removal, incorporation of terminal BglII and XhoI 

sites and codon optimisation for expression in Escherichia coli. Gene fragments were 

cloned into the pEX-N-GST Precision Shuttle vector (OriGene), recombinantly 

expressed in and purified from E. coli according to methods described by Dolan et al. 

(2014). The identity of purified recombinant proteins was confirmed by performing in-

gel proteolytic digestion followed by LC-MS analysis, as described by Shevchenko et al. 

(2006). 

Proteolytic Digestion and Nano-flow Liquid Chromatography Electro-Spray 

Ionization Tandem Mass Spectrometry (LC-MS/MS) Analysis of Protein Extracts. 

Protein extracts from D. pteronyssinus airmid were prepared and analysed by LC-

MS/MS as described by Waldron et al. (2019). Protein identification and label free 

quantitative (LFQ) analysis was conducted using MaxQuant (Version 1.6.1.0; 

http://maxquant.org/), statistical analysis of MaxQuant output data was performed by 

Perseus (Version 1.6.2.2) as described in O’Keeffe et al. (2014). 

House Dust Protein Extract Analysis.  

House dust protein extracts used in this study were provided by airmid healthgroup ltd 

(Dublin, Ireland). House dust protein extracts (100 µl) were brought to a final 

concentration of 1 M urea, then digested using methods described in Waldron et al. 
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(2019). Statistical analysis of the correlation between β-1,3 glucanase activity (mU/ml), 

Der p 1 (µg/g) and LFQ intensity of Glu1, Glu2, Glu3 was performed using Graphpad 

(PRISM) statistical software, Spearman’s correlation with 95% confidence interval. 

Laminarin Assay.  

β-1,3 glucanase activity was measured using laminarin substrate (β-1,3-1,6 glucan; 

L9634; Sigma). Protein extracts (50 µl; 0.2 mg/ml), recombinant proteins (50 µl; 0.125 

mg/ml), β-1,3 glucanase enzyme standard (67138; Sigma; 50 µl; 5 mU) and house dust 

protein extracts (50 µl) were individually incubated with laminarin substrate as follows: 

(200 µl; 0.25% (w/v) laminarin; 50 mM sodium acetate pH 6.0; 2.5 h; 37 oC). Assays 

were terminated by heating samples (90 oC; 5 min).  

Barley Glucan Assay.  

β-1,3-1,4 glucanase activity was measured using low viscosity barley glucan 

(Megazyme, Ireland) using methods described for the laminarin assay. 

Glucose Measurement Assay.  

Glucose measurement was performed according to Bethke and Busse (2008) with minor 

modifications. Sample/standard were diluted (1:10 to 1:80; 50 mM sodium phosphate pH 

7.4), then added (50 μl) to each microplate well. Enzyme-Ampliflu® Red mixture (50 

μl) was added and microplate was incubated in the dark (RT; 30 min). Absorbance (560 

nm) was measured (BioTek Instruments, Inc., USA). Enzyme mix sufficient for one plate 

was prepared by combining 50 μl Ampliflu® Red reagent stock solution (Sigma 90101; 

10 mM in DMSO), 100 μl horseradish peroxidase stock solution (Sigma P8375; 10 U/ml 

in 50 mM sodium phosphate pH 7.4), and 100 μl glucose oxidase stock solution (Sigma 

G7141; 100 U/ml in 50 mM sodium phosphate pH 7.4) with 4.75 ml of 50 mM sodium 

phosphate pH 7.4. All stock solutions were frozen as aliquots at −20°C prior to use. A 

glucose standard curve (0 - 1.8 μg). enabled the glucose content of samples to be 

calculated.  
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Glucanase Quantification.  

β-1,3 glucanase activity was quantified by performing laminarin assay followed by 

glucose measurement assay. Endogenous glucose in D. pteronyssinus airmid protein 

extracts was quantified using glucose measurement assay and subtracted from total 

glucose measured following laminarin assay. Relative specific β-1,3 glucanase activity 

was calculated with reference to β-1,3 glucanase enzyme standard. One unit of β-1,3 

glucanase was defined as the amount of enzyme that liberated the equal amount of 

glucose to that of the β-1,3 glucanase standard under the conditions described above. 

AZCL-Pachyman Assay.  

Endo- β-1,3 glucanase activity was measured using AZCL-Pachyman (Megazyme, 

Ireland). Briefly, recombinant proteins (200 µl; 0.125 mg/ml) were incubated with the 

substrate (800 µl; 0.25% (w/v) AZCL-Pachyman; 50 mM sodium acetate pH 6; 2.5 h; 37 

oC), centrifuged (10,000 g; 5 min) and supernatant recovered. Samples were tested in 

triplicate; the mean absorbance was recorded (600 nm).  

AZCL-HE-Cellulose Assay.  

Cellulase activity (β-1,4 glucanase) was measured using AZCL-HE-Cellulose 

(Megazyme, Ireland) using methods described for AZCL-Pachyman assay. 

Biochemical Characterisation of Recombinant Glucanases.  

Optimal pH and temperature of recombinant proteins was assessed by performing 

laminarin assays across pH range (pH 4, 5, 6, 7, 8, 9) and temperatures (4oC, 25oC, 30oC, 

37oC, 50oC). Enzyme mixtures were neutralised (pH 7 - 8) and glucose concentration 

measured.  
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RESULTS 

Bioinformatic Analysis of D. pteronyssinus airmid Glucanases.  

Three GH16 genes with putative β-1,3 glucanase or β-1,3-1,4 glucanase activity were 

located in the D. pteronyssinus airmid genome assembly and designated Glu1 

(DERPT_G3105), Glu2 (DERPT_ G3104) and Glu3 (DERPT_ G3106) in order of their 

discovery. The genes had open reading frame lengths of 816-828 bp, were located within 

the same contig forming a tri-gene cluster, designated the Glu cluster, with intergenic 

distances of 241 bp between Glu2 and Glu1, and 282 bp between Glu1 and Glu3 (Figure 

1A). The genes translated to Glu proteins that exhibited a high degree of amino acid (a.a) 

sequence similarity to one another ranging between 59% and 69% identity  

The Glu proteins of 272 - 275 a.a in length, each contained a signal sequence of 18-19 

a.a. The Glu proteins are of a similar size (31.7-32.1 kDa) and contain a glycoside 

hydrolase family 16 (GH16) catalytic domain with catalytic residues (Figure 1B). 

Proteomic analysis of D. pteronyssinus airmid excreted proteins present in SM resulted 

in the identification of all three β-1,3 glucanases with sequence coverage of 25.8 – 77.9% 

(Figure 1C).  

Blastp search of other Acari genomes (Table 1) identified three additional Glu homologs 

in D. pteronyssinus airmid while five in total were found in D. farinae and four in E. 

maynei. Homologs were also located in Sarcoptes scabiei (two) and Psoroptes ovis (two) 

but absent from the Parasitiforme order. A maximum likelihood phylogeny was 

constructed which revealed that Glu1, Glu2 and Glu3 are grouped in a single clade with 

strong (86%) bootstrap support (BP). Glu3 is grouped with orthologs from D. farinae 

and E. maynei (Figure 1F, 99% BP). D. pteronyssinus Glu1 and Glu2 are grouped in a 

single clade with 87% BP (Figure 2). Based on our phylogeny, D. farinae and E. maynei 

have an ortholog of Glu1 but not of Glu2 (Figure 2).  

Blastp searched against a local proteome database located 299 homologs, primarily 

located in bacterial species but also select fungal species, two animals (Ciona intestinalis 
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and Daphnia pulex), oomycetes such as Saprolegnia and Aphanomyces species as well 

as a number of diatoms including Ectocarpus and Aurococcus species. The resultant 

maximum likelihood phylogeny shows the majority of eukaryote homologs are located 

in a single highly supported clade (S1 Figure 78% BP). Three of the Acariformes 

homologs (D. farinae, E. maynei and D. pteronyssinus airmid) share sister group 

relationships with bacterial homologs.  

Enzyme Purification and Identification.  

Identification of β-1,3 glucanase active native protein (Glu1) was facilitated by a two-

step purification workflow (Figure 3A-D), the β-1,3 glucanase active fraction was 

visualized by SDS-PAGE (Figure 3E) and bands excised for identification by LC-

MS/MS (Figure 3F). High confidence identification of putative β-1,3 (4) glucanase 

(DERPT_G3105) of approximately 25 kDa in size was achieved with 70.6% coverage 

and identification of 19 peptides. Purification resulted in the recovery of 20 µg of 

glucanase enriched extract with specific activity 670 mU/mg from 1.4 mg of starting 

material with 106 mU/mg specific activity, summarised in Table 3. 

Cloning and Expression.  

Total RNA was extracted from D. pteronyssinus airmid and converted to cDNA. RT-

PCR analysis was performed using intron containing control gene, Der p1. Absence of 

genomic DNA was confirmed by the smaller amplicon size of the Der p1 cDNA 

amplicon relative to the corresponding genomic amplicon (Figure 4A). Glu1, Glu2 and 

Glu3 amplicons from cDNA and genomic DNA were of identical size, confirming 

absence of introns. Amplicons derived from cDNA confirmed expression of all three 

genes in the Glu gene cluster (Figure 4A). Commercially synthesised Glu1, Glu2 and 

Glu3 in expression vector pEX-N-GST (Figure 4B) were expressed in E. coli with an N-

terminal GST tag. Recombinant proteins were purified by affinity chromatography as 

determined by SDS-PAGE and western blot analysis (Figure 4C & D). SDS-PAGE gel 

bands corresponding to recombinant proteins were excised (Figure 4C), proteins were 
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digested, and peptides were identified by LC-MS/MS (Figure 4E) confirming expression 

and successful purification of the three recombinant proteins.  

Substrate Specificity and Relative Specific activity of Glu1 and Glu2.  

Four substrates were used to test the ability of GST-rGlu1, GST-rGlu2 and GST-rGlu3 

to hydrolyse β-1,3-1,6 glucans, β-1,3 glucans, β-1,3-1,4 glucans and β-1,4 glucans. 

Activity for GST-rGlu1 and GST-rGlu2 was highest on laminarin (β-1,3-1,6 glucan) 

resulting in 37% and 8% of substrate hydrolysis, respectively, compared to only 7% and 

2% on barley glucan (β-1,3-1,4 glucan) (Figure 5B). GST-rGlu2 exhibited approximately 

20% of the hydrolytic activity of GST-rGlu1 on laminarin and barley glucan, and 33% 

on AZCL-Pachyman (β-1,3 glucans) (Figure 5C). GST-rGlu1 showed highest relative 

specific activity on laminarin substrate with 743.5 mU/mg and GST-rGlu2 with 158.3 

mU/mg (Figure 5D). GST-rGlu1 and GST-rGlu2 were unable to hydrolyse AZCL-HE-

cellulose (β-1,4 glucan) and GST-rGlu3 was found to be inactive on all substrates (data 

not shown).  

Effects of Temperature and pH on Enzyme Activity. 

An evaluation of temperature on GST-rGlu1 and GST-rGlu2 hydrolytic activity against 

laminarin showed an increase in activity as temperatures increased peaking at 37 oC for 

GST-rGlu1 and 50 oC for GST-rGlu2 (Figure 5E). The effect of pH on hydrolysis of 

laminarin was also determined, both GST-rGlu1 and GST-rGlu2 showed activity in the 

pH range 4.0 – 8.0. Maximum hydrolytic activity was observed at pH 5.0 for GST-rGlu1 

and pH 4.0 for GST-rGlu2 (Figure 5F). 

Internal and Excreted HDM Glucanase Activity and Abundance Increased on 

Yeast-based Diet.  

Protein extracts from MB (n = 5) and SM (n = 5) of D. pteronyssinus airmid cultured on 

growth medium, with (HMDMM) and without yeast (MM), were assayed for β-1,3 

glucanase activity. Extracts were incubated with laminarin substrate, released glucose 

was quantified by subtracting endogenous glucose present in protein extracts (approx. 6-
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28% of total glucose). Specific β-1,3 glucanase activity in MB of D. pteronyssinus airmid 

fed yeast was higher than in HDMs cultured without yeast (P = 0.0088), this difference 

was also consistent in the SM (P < 0.0001). There was no significant difference in β-1,3 

glucanase activity found between MB and SM of HDMs cultured without yeast (P = 

0.167) however, a significant difference was seen when HDMs were fed yeast (P = 

0.0083) (Figure 5A). Comparative proteomic analysis of SM from D. pteronyssinus 

airmid grown with and without yeast revealed all three β-1,3 glucanases increased in 

abundance (20- 39 %) in the SM of HDMs fed yeast (Table 4, S1 Data). 

Glucanase Activity in House Dust Correlates with Glu1/2 Presence. 

Protein extracts from HD positive for Der p 1 (0.2 – 16.94 µg Der p 1 per gram house 

dust) contained β-1,3 glucanase activity (Range; 2.5 - 370 mU/ml), activity levels 

correlated with Der p 1 concentration (Figure 6A). Subsequent proteomic analysis 

identified Glu1 or Glu2 to be present in many of the HD extracts (n = 16), nine extracts 

were found to contain both enzymes. LFQ intensity of both Glu1 and Glu2 correlated 

significantly (Spearman’s correlation) with relative specific β-1,3 glucanase activity 

(Figure 6B & C).  

DISCUSSION  

HDM are trophic generalists feeding on pollen, bacteria, plant fibres, fungal mycelia and 

spores associated with their human proximity habitats (Colloff, 2009; van Bronswijk, 

1973). β-1,3 glucan content of house dust ranges between 15 -79,000 µg per gram and 

may be an important part of the HDM diet in the home (Brooks et al., 2013; Maheswaran 

et al., 2014). β-glycosidase activity has been reported previously in enzymatic studies of 

D. pteronyssinus however no specific proteins were linked to the activity seen (Martinez 

et al., 1999). Studying the expression, localisation and biochemical activity of HDM 

enzymes can allow for insight into their physiological function (Erban and Hubert, 2012).  

To date, biochemical characterisation of D. pteronyssinus proteins have primarily 

focused on allergenic proteins (Bordas-Le Floch et al., 2017). In the present study, we 



Chapter 4: Characterisation of three Novel β-1,3 glucanases from the Medically 

Important House Dust Mite Dermatophagoides pteronyssinus (airmid). 

 

137 

 

conducted an extensive bioinformatic and biochemical investigation of three recently 

discovered GH16 proteins to gain insight into their role in D. pteronyssinus digestion.  

Glu genes coding for these Glu proteins lacked introns and were found adjacent to one 

another, forming a tri-gene cluster designated the Glu cluster. A further three homologs 

for Glu proteins were located in the genome of D. pteronyssinus airmid outside of the 

Glu cluster. Molecular phylogeny of these Glu proteins confirms their close relatedness 

with the several Acariformes β-1,3 glucanases, with homologs found in other HDM 

species (D. farinae & E. maynei) and closely related parasitic mites (P. ovis & S. scabei). 

Glucanase genes were expanded in HDMs, which contained between four and six 

homologs, compared to the parasitic Acariformes which contained only two copies. 

Interestingly, none of the six species from the Parasitiforme order contained homologs, 

suggesting glucanase activity is a recent adaption in Acariformes. Interestingly, our 

phylogeny demonstrates that D. pteronyssinus has an additional Glu (Glu2) homolog, not 

seen in the other two HDMs (Figure 2). Based on its genomic location and high sequence 

identity, it appears to be a tandem duplication of Glu1. We are confident this is not an 

assembly/annotation error as this ortholog is present in a separate D. pteronyssinus 

assembly (Randall et al., 2018)). Moreover, the expression of all three Glu genes was 

confirmed by RT-PCR and their translation into protein confirmed by proteomic analysis, 

both in the course of this study and in previous work (Waldron et al., 2019). Recent 

studies have demonstrated D. pteronyssinus is better suited to nutritionally exploit fungi 

than D. farinae, and is capable of using yeasts and filamentous fungi as a food source 

(Molva et al., 2019). The presence of an additional Glu protein in D. pteronyssinus may 

allow it to exploit different nutrients than D. farinae, namely fungi, thus explaining why 

the presence of one species does not influence the numbers found of the other (Zock et 

al., 2006). Moreover, D. farinae exhibit a higher rate of population growth on bacteria-

enriched diets than D. pteronyssinus (Erban and Hubert, 2008). The two mites may be 

utilising different components of house dust for food, with D. farinae better adapted to 

the exploitation of bacteria and D. pteronyssinus adapted for the exploitation of fungi.  
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To further investigate the evolutionary history of the three Glu genes, we searched their 

protein sequences against taxonomically diverse proteomes including prokaryotes, 

plants, fungi, heterokonts and animals (McCarthy and Fitzpatrick, 2016) and 

reconstructed a phylogenetic tree. The majority of eukaryote homologs including Glu1, 

2 & 3 are located in a single highly-supported clade (S.Figure, 78% BP). Interestingly, 

three separate Glu Acariformes homologs (D. farinae, E. maynei and D. pteronyssinus 

airmid) share a sister group relationship with bacterial homologs (S.Figure). Some of the 

inconsistencies in the phylogenetic placement of eukaryote and prokaryote homologs 

may be due to HGT (Fitzpatrick, 2012) or other phylogenetic artefacts, such as long 

branch attraction (Felsenstein, 1978). To confidently infer potential HGT, a more 

comprehensive phylogenetic analysis is required. Such an analysis is beyond the scope 

of this work. However, we can confidently say that the distribution of Glu homologs 

amongst the eukaryotes in our proteome database is patchy at best. We are cognisant our 

inferences may be influenced by taxon sampling issue as our local proteome database 

consists of a large proportion of bacterial sequences (56%). To further investigate this 

we searched all three Glu proteins against the non-redundant database of GenBank 

(Sayers et al., 2019). As with our local proteome database search results the vast majority 

(~80%) of homologs located in GenBank are bacterial in origin. A number of additional 

eukaryote homologs from species not in our local database were located including 

homologs in the snowberry fruit fly (Rhagoletis zephyria), springtails (Folsomia 

candida, Cryptopygus antarcticus and Orchesella cincta) and, of special noteworthiness, 

the mycophagous amoeba Planoprotostelium fungivorum. Therefore, additional database 

search of the Glu proteins against GenBank confirms that the distribution of these 

proteins in eukaryotes is patchy. 

Fractionation of D. pteronyssinus airmid MB protein lysates via a combination of gel 

filtration and cation exchange chromatography resulted in a semi-pure protein 

preparation which retained β-1,3 glucanase activity. SDS-PAGE of this fraction and 

subsequent high-sensitivity mass spectrometric analysis of a band corresponding to 25 

kDa revealed the presence of a putative β-1,3-1,4 glucanase (DERPT_G3105; Glu1). 

Thus, confirming the source of β-1,3 glucanase activity seen in D. pteronyssinus airmid 
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protein extracts was from the mites themselves and not microbes present in the cultures. 

A typical purification with 1.4 mg of crude protein extract resulted in the recovery of 20 

µg of β-1,3 glucanase enriched extract with 670 mU/mg specific activity.  

The low yield of purified native β-1,3 glucanase necessitated the generation of 

recombinant proteins to allow for full biochemical characterisation. Recombinant 

proteins were purified by affinity chromatography, however solubility was poor with 

soluble enzyme accounting for < 0.5 % of the total protein of crude cell-free extract. 

Enzyme activity analysis of purified recombinant GST-rGlu1 and GST-rGlu2 confirmed 

that they are β-1-3 glucanases, with highest hydrolytic activity seen against laminarin 

substrate and moderate activity on AZCL-Pachyman and barley glucan. Relative specific 

β-1-3 glucanase activity was highest for GST-rGlu1 at 743.5 mU/mg, while GST-rGlu2 

had relative specific activity of 158.3 mU/mg. None of the three recombinant proteins 

exhibited β-1-4 glucanase activity against AZCL-HE-Cellulose. This biochemical 

analysis has confirmed Glu1 and Glu2 to be laminarinases (EC 3.2.1.6) capable of 

hydrolysing β-1,3-glucans and mixed β-1,3-1,4/ β-1,3-1,6 glucans. Peak enzyme activity 

was observed for GST-rGlu1 at a pH 5 and temperature of 37 oC. GST-rGlu2 showed 

optimal activity at lower pH (pH 4) and higher temperature (50 oC).  

Recombinantly expressed GST-rGlu3 lacked hydrolytic activity against all substrates 

tested. This maybe a result of E. coli as a poor choice of expression system resulting in 

the production of an inactive enzyme. The increased excretion of Glu3 in the SM of D. 

pteronyssinus airmid fed a diet containing yeast is a strong indicator that it is a digestive 

enzyme, expression of rGlu3 in an alternative expression system may yield an active 

protein in future studies.  

In laboratory HDM cultures, fungi and bacteria are constituently present, their growth is 

kept to a minimum by limiting humidity and regular sub-culturing of HDMs (Colloff, 

2009; Molva et al., 2018). Laminarinase activity was observed in the MB and SM of D. 

pteronyssinus airmid fed MM lacking yeast, indicating a basal level of expression and 

excretion in response to microbes naturally present in their environment (Molva et al., 

2018). During basal expression, there was no significant difference in laminarinase 
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activity between the MB and SM. However, when fed heat-killed yeast, laminarinase 

activity was increased 2.6-fold internally in the MB and 5.9-fold externally in SM. 

Comparative proteomic analysis supported these assay results, identifying Glu1, Glu2 

and Glu3 to be increased in abundance (20 – 39%) in the SM from HDMs fed on yeast 

(Table 4, S1 Data). Other studies have demonstrated that D. pteronyssinus is capable of 

fully digesting S. cerevisiae (Molva et al., 2018), and here we have demonstrated that 

they increase the production of three β-1-3 glucanase in response to feeding on this yeast. 

Moreover, a number of other enzymes were identified as uniquely present in the SM of 

yeast fed mites, including three alpha-mannosidase (DERPT_G10145, DERPT_G9692 

& DERPT_G222, S2 Data). Mannoproteins form the outermost layer of the yeast cell 

wall and 40% of the carbohydrate content (Aguilar-Uscanga and Francois, 2003; Fesel 

and Zuccaro, 2016). Laminarinases are frequently used to remove mannoproteins from 

S. cerevisiae and disrupt the cell wall (Van Rinsum et al., 1991). It is possible that Glu1, 

Glu2 and Glu3 remove this mannoprotein layer which is then further hydrolysed by these 

mannosidases.  

Protein extracts from HD contained notable laminarinase activity, correlating 

significantly (P = 0.0001) with D. pteronyssinus biomarker Der p 1. Moreover, proteomic 

analysis facilitated the identification of Glu1 and Glu2, and correlation between 

laminarinase activity in HD and LFQ intensity of Glu1 and Glu2 (Figure 6B & C). In 

house dust from floors and mattresses the fungal species frequently identified by high-

throughput DNA sequencing, to be of high abundance are; Aspergillus spp, 

Cladosporium spp., Penicillium spp. and Alternaria spp. (Kaarakainen et al., 2009; 

Rintala et al., 2012; Sousa et al., 2014). D. pteronyssinus has been demonstrated to 

consume Aspergillus spp, and Penicillium spp. in the laboratory (Molva et al., 2019). 

Therefore, it is highly probable they also consume these fungi in the home, and may 

utilise Glu enzymes to digest these fungi as they do for S. cerevisiae, thus explaining 

high presence of Glu1 and Glu2 in house dust. Our previous proteomic characterisation 

of HD and SM identified distinct parallels in the types of proteins identified in both of 

these conditions (Waldron et al., 2019). This data further demonstrates the utility of 

laboratory-based models for understanding the wildtype proteome of D. pteronyssinus. 
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Overall, our data infers that Glu1, Glu2 and Glu3 are digestive enzymes involved in 

HDM digestion of fungi. D. pteronyssinus contains an additional Glu protein, Glu2, 

which may confer a specialisation for mycophagy over other HDMs. Both Glu1 and Glu2 

exhibit hydrolytic activity against β-1,3 glucans a major structural component of fungal 

cell walls and were increased in abundance in the SM of D. pteronyssinus airmid fed a 

diet containing S. cerevisiae. Basal expression and excretion of Glu1 and Glu2, in D. 

pteronyssinus airmid reared on a diet free of yeast, indicate they are produced in response 

to common microbes co-present in laboratory cultures. The identification of β-1,3 

glucanase activity, and positive identification of Glu1 and Glu2 in HD provides 

compelling evidence that these are important enzymes utilised by D. pteronyssinus in 

both the laboratory and wildtype setting, for the digestion of fungi.  
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Figure Legends 

Figure 1. Bioinformatic Analysis of D. pteronyssinus Glucanase Trigene Cluster 

Containing Glu1, Glu2 & Glu3. A. Illustration of Glu gene cluster depicting gene length, 

inter gene distance between Glu1, Glu2 and Glu3 and predicted 3D protein structure 

(swissmodel.expasy.org). B. Map of protein functional domains in Glu1, Glu2 and Glu3 

predicted using InterproScan. C. Protein sequences showing LC-MS/MS sequence 

coverage (underlined).  

Figure 2. Maximum Likelihood Phylogeny of Glu Homologs in Fully Sequenced Acari 

Proteomes. Bootstrap support values are shown at nodes. All homologs come from the 

Acariformes order, no homologs were located in members of the Parasitiforme order. 

Figure 3. Workflow Depicting Purification and Subsequent Identification of Novel 

Glucanase, Glu1 (DERPT_G3105) from D. pteronyssinus airmid Protein Extracts. Flow 

diagram depicting proteomic strategy for the identification of the glucanases from D. 

pteronyssinus airmid. A. D. pteronyssinus airmid were cultured for 28 days, then B. 

Separated from culture medium using the saturated saline flotation method and proteins 

from whole body homogenate were extracted. C. Gel filtration chromatography of D. 

pteronyssinus airmid whole body homogenate. Protein extract (2.75 mg; 500 µl injection) 

separated by size exclusion chromatography (Superdex 200 10/300 GL; 0.4 ml/min flow 

rate). Fractions (2 ml) were collected between 8 ml and 26 ml post-injection and assayed 

for glucanase activity. Positive fractions (16 – 22 ml post-injection) were pooled and 

further separated by D. Cation exchange chromatography. Glucanases bound the column 

(HiTrap SP Xl) and were eluted in 60-90 mM NaCl. E. SDS-PAGE analysis of glucanase 

active semi-purified native protein elution F. LC-MS/MS of SDS-PAGE band at 

approximately 25 kDa identified a putative β-1,3-1,4 glucanase designated Glu1, 

predicted eukaryotic secretion signal highlighted in bold. G. High confidence 

identification of D. pteronyssinus Glu1 protein by LC-MS/MS with 70.6% sequence 

coverage. 
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Figure 4. Cloning and Recombinant Protein Expression of D. pteronyssinus Glucanase 

Trigene Cluster Containing Glu1, Glu2 & Glu3. A. RT-PCR of Glu1, Glu2 & Glu3 from 

genomic DNA (gDNA) and cDNA confirming gene expression and absence of introns. 

Der p1 gene containing three introns revealed gDNA amplicon of ~1135 bp and cDNA 

amplicon of ~867 bp. B. PCR confirmation of insertion of E. coli codon-optimised rGlu1, 

rGlu2 and rGlu3 gene sequences into pEX-N-GST expression vector. Amplicons 

containing insert were seen at ~1700 bp and amplicons from empty plasmid were seen at 

~900 bp. C. SDS-PAGE of affinity purified GST-rGlu1, GST-rGlu2 and GST-rGlu3 and 

D. Western blot of same using an anti-GST antibody. E. LC-MS/MS of GST-rGlu1, 

GST-rGlu2 and GST-rGlu3 excised from SDS-PAGE gel (Figure 3C) confirming protein 

expression and successful purification. 

Figure 5. Biochemical Characterisation of D. pteronyssinus airmid Glucanases. A. 

Relative specific glucanase activity (mU/mg protein) in D. pteronyssinus airmid protein 

extracts from mites grown with and without yeast. Protein extracts from Spent Culture 

Medium (SM) and Mite Body (MB) of D. pteronyssinus grown on HDMMM containing 

Yeast (Y+) and MM without yeast (Y-). Values represent mean of five replicates. *** 

Unpaired T-test P ≤ 0.001. ** Unpaired T-test P ≤ 0.01. B. Substrate specific activity 

(Percentage of substrate converted to glucose) of GST-rGlu1 and GST-rGlu2 on 

laminarin and Barley glucan. C. Activity of GST-rGlu1 and GST-rGlu2 on AZCL-

Pachyman substrate. D. Relative specific β-1,3 glucanase activity (mU/mg) of GST-

rGlu1 an GST-rGlu2. E. Activity of GST-rGlu1 and GST-rGlu2 activity in the 

temperature range 4 oC to 50 oC, shows optimal temperature for GST-rGlu1 to be 37 oC 

and GST-rGlu2 to be ≥ 50 oC. F. Activity of GST-rGlu1 and GST-rGlu2 in the pH range 

4 to 9 showing optimal pH of GST-rGlu1 to be pH 5 and GST-rGlu2 to be ≤ pH4. B-E: 

Values: mean values from triplicate sampling. Error bars: SD. 

Figure 6. β-1,3 glucanase Activity in House Dust Correlates with LFQ Intensity of Glu1 

and Glu2. Proteomic analysis of Der p 1 positive house dust protein extracts. A. A 

positive correlation between β-1,3 glucanase activity (mU/ml) and Der p 1 (µg/gram 

dust) content of house dust protein extracts. B. & C. Correlation between β-1,3 glucanase 
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activity (mU/ml) and LFQ intensity of Glu 1 (n = 16) and Glu 2 (n = 9), respectively, 

identified in house dust protein extracts. *Spearman’s Correlation p ≤ 0.05 ** 

Spearman’s Correlation p ≤ 0.005 *** Spearman’s Correlation p ≤ 0.0001. 

S1 Figure. Maximum Likelihood Phylogeny of Glu Homologs from Diverse Taxa. 

Bootstrap support values are shown at nodes. Bacterial, Fungal, Acariformes and other 

animals have their names highlighted with red, green, blue and purple text, respectively. 

Glu homologs are grouped in a single clade (highlighted with blue coloured branches) 

that also contains the majority of eukaryote homologs. Three additional Acariformes 

homologs (highlighted with purple branches) are grouped amongst bacterial species.  
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Tables  

 

Table 1: Genome Assemblies Utilised for Phylogenetic Analysis.  

Species Genome Reference Suborder 

Centruroides sculpturatus  Arachnid outgroup 

Parasteatoda tepidariorum   Arachnid outgroup 

Dermatophagoides farinae (Chan et al., 2015) Acariformes 

Euroglyphus maynei (Rider et al., 2017) Acariformes 

Sarcoptes scabiei  (Rider et al., 2015) Acariformes 

Tetranychus urticae (Grbić et al., 2011) Acariformes 

Psoroptes ovis (Burgess et al., 2018) Acariformes 

Ixodes scapularis (Schwager et al., 2017) Parasitiforme 

Galendromus occidentalis (Gulia-Nuss et al., 2016) Parasitiforme 

Rhipicephalus microplus (Barrero et al., 2017) Parasitiforme 

Tropilaelaps mercedesae (Dong et al., 2017) Parasitiforme 

Varroa destructor (Cornman et al., 2010) Parasitiforme 

Varroa jacobsoni   Parasitiforme 

Genomes available for 11 species from the subclass Acari, six of these genomes belong 

to the Parasitiformes superorder while the remaining five belong to the Acariformes 

superorder. The evolutionary history of three Glu genes relative to closely related 

species was investigated by taking the three corresponding Glu protein sequences and 

using each as a query sequence in a BLASTp 1 (Altschul et al., 1997) database search 

(e-value cutoff of 1e-10) against a local protein database containing the eleven other 

Acari species listed. 
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Table 2. List of Primers. 

Primer Name 

Annealing 

Temperatur

e (oC) 

Sequence (5’- 3’) 

Derp1_F 
59 

TCGTCCATCATCGATCAAAA 

Derp1_R TCGATGTTGGCAGCAAAATA 

Glu1_Nat_F 

63 

ATGGCCAATTGGCAGATGGTC 

Glu1_Nat_R 
TTATCGCCATTGATAAACACGAAC

AT 

Glu3_Nat_F 
51 

ATGGCTTTTCTCTACTTCC 

Glu3_Nat_R TTATTTTTTTTGTTGATAAACAC 

Glu2_Nat_F 
50 

ATGCAAAATTTTCTTTTGTTT 

Glu2_Nat_R TTATTGTTGATAAACACGGAC 

Glu3_Nat_F 
51 

ATGGCTTTTCTCTACTTCC 

Glu3_Nat_R TTATTTTTTTTGTTGATAAACAC 

pEX-N-GST_F 
56 

AACGTATTGAAGCTATCCCAC 

pEX-N-GST_R TTCTACCATCGACACCACCA 

Primers used for the amplification of Glu1, Glu2 and Glu3 and Der p 1 genes from 

gDNA and cDNA. pEX-N-GST primers designed to span the vector multiple 

cloning site.  
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Table 3. Purification of β-1-3 glucanase Active Fraction from D. pteronyssinus airmid Protein Extracts.   

Purification Step Volume 

(ml) 

Total 

Protein 

(mg) 

Total 

Activity 

(mU) 

Specific 

Activity 

(mU/mg) 

Yield (%) Purification 

Factor 

Crude enzyme 0.5 1.4 148 106.07 100 1 

Gel Filtration 0.4 0.48 221 460.01 146 4.3 

Cation Exchange 0.1 0.02 13.4 670.45 8.8 6.3 

Crude enzyme (106 mU/mg) was separated by gel filtration chromatography, β-1-3 glucanase active fractions (16 to 22 ml post-injection) 

were pooled, concentrated and buffer exchanged into 50 mM MES pH 5.5 for cation exchange separation. Glucanases bound the column 

(HiTrap SP Xl) and eluted between 60 and 90 mM sodium chloride. The resultant β-1-3 glucanase active fraction contained 20 µg protein 

with relative specific activity of 670 mU/mg. Typical values given. 
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Table 4. LFQ LC-MS/MS of Proteins Excreted by D. pteronyssinus airmid cultured With and Without Yeast.  

Protein Y+ Y- Peptides 

Sequence 

coverage 

[%] 

MS/MS 

count 

Log2 

Difference 

Percentage 

Change 

P-

value 

Glu1 32.494 32.096 17 67.6 316 0.398 +31.7% 0.044 

Glu2 30.941 30.672 9 58.7 133 0.268 +20.4% 0.033 

Glu3 25.825 25.349 5 25.8 30 0.467 +39.0% 0.012 

Proteins from SM and MB from D. pteronyssinus airmid fed with yeast (Y+) or without yeast (Y-) were extracted, normalised and analysed 

by LC-MS/MS. Glu1, Glu2 and Glu3 were present in higher abundance (P ≤ 0.05) in both in SM and MB of D. pteronyssinus airmid fed 

with yeast. LFQ intensity: Log (2), mean of four replicates. P-value: Students T-test. Y+: Growth media containing bakers’ yeast. Y-: Growth 

media without bakers’ yeast. SM: Spent Culture Medium. MB: Mite Body. 
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Supplementary Data 

Appendix 2. Electronic Files (Excel) 

S1 Data. 

Proteins (n = 753) from SM from D. pteronyssinus airmid fed with yeast (Y+) or without 

yeast (Y-) were extracted, normalised and analysed by LC-MS/MS. Proteins with 

significant differences in abundance (Students T-test, P ≤ 0.05) between SM Y+ and SM 

Y- are marked with + in column “C: Student's T-test Significant SM-_SM+”.  

S2 Data. 

Subset of S1 Data containing proteins uniquely present in SM Y+ or SM Y-. Unique: 

present in three of four replicates in one condition and absent from three of four replicates 

in the other condition.  
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5.0 Discussion 

5.1 Summary 

When this study commenced, D. pteronyssinus genomic and protein sequence data was 

limited to a discrete number of genes and a select number of proteins. Thus, the work 

presented in this thesis represents the first large-scale peer reviewed study of the genome 

and proteome of D. pteronyssinus using the airmid strain. Specifically, genome 

sequencing, assembly and gene identification led to the high-quality publication of the 

first D. pteronyssinus genome sequence (Chapter 2). This genome assembly facilitated 

extensive characterisation of the predicted proteome, allergenome and proteome of 

laboratory reared D. pteronyssinus airmid with reference to the proteome of wildtype D. 

pteronyssinus (Chapter 3). Genomic data enabled the identification of 4,002 gene 

products, confirming their presence and identifying their sites of localisation. Combined 

proteomic and genomic data led to the discovery of three novel Glycosyl hydrolase 

family 16 proteins (Chapter 4). Recombinant expression and extensive bioinformatic, 

biochemical and proteomic analysis revealed these to be involved in digestion of yeasts. 

The data presented in this thesis, provides new insights into the molecular physiology 

and pathogenicity of D. pteronyssinus. The principal research achievements from the 

work presented in this thesis are summarised in Figure 5.1 

This discussion will consider (i) Implications of expanding the genome of D. 

pteronyssinus and generation of a high quality predicted proteome, (ii) Novel insights 

from orphan genes, (iii) new insights into the biochemical pathways that allow D. 

pteronyssinus to persist in the home, (iv) implications of the intra-mite proteome for 

allergy (v) implications of the excretome for allergy (vi) use the wildtype proteome as a 

basis for interpreting laboratory proteomic studies (vii) enzymes capable of digesting 

fungal components (viii) implications of this research in the development of biocontrol 

strategies, and diagnostic products and therapeutic extracts. This thesis will conclude 

with a consideration of how this work may be expanded in the future.  

 



Chapter 5: Discussion 

 

167 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Summary of Primary Research Outputs. Main research outputs from 

each research area.   

• Generation of a high quality genome assembly,  > 97% 
complete

• First D. pteronyssinus genome to be published and only 
genome assembly to be made publicly available.

• Generation of In silico proteome with 12, 530 predicted 
proteins

Genome 
Sequencing

• First phylogenetic analysis of HDMs to use whole genome 
sequences

• In depth bioinformatic annotation of predicted proteome

• Identification of 100’s of allergen homologs and putative 
cross-reactive proteins

• Identification of LEA-like proteins

• Extensive characterisation of intra-mite, excretome and House 
dust proteomes

Characterisation of 
D. pteronyssinus

proteomes 

• Bioinformatic and phylogenetic  analysis of trigene cluster

• Identification of native D. pteronyssinus protein with 
laminarase activity

• Biochemical analysis of three recombinant β-1,3 glucanases

• Proteomic assessment of yeast diet induced expression of β -
1,3 glucanases

• Proteomic analysis of presence of β -1,3 glucanases in house 
dust

Functional analysis 
of a trigene cluster 
encoding putative 
β-1,3 glucanases
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5.2 Implications of Expanding the Genome of D. pteronyssinus and 

Generation of a High Quality Predicted Proteome  

Without the generation of a high-quality complete genome assembly, it would have been 

impossible to conduct proteomic experiments to their full potential or generate large-

scale novel information about this species.  

The genome sequencing of D. pteronyssinus airmid in the early phase of this project 

enabled the first comprehensive proteogenomic study of D. pteronyssinus to be 

conducted. This sophisticated computational strategy provides an interface between 

genomics and proteomics, integrating nucleotide sequencing and MS data from the same 

sample (Ruggles et al., 2017). Resultant information can be used to assess genome 

completeness, accuracy of gene models and compare genome assemblies to determine (i) 

the relative completeness of the query genomes and (ii) the most appropriate model for 

further proteomics studies.  

We employed a proteogenomics strategy to exploit data derived from the D. 

pteronyssinus airmid genome sequencing project, coupling it with extensive proteomic 

data compiled during the course of this study to (i) assess D. pteronyssinus airmid 

genome completeness and (ii) validate gene models.  

The D. pteronyssinus airmid assembly was estimated to be 96.86% complete, containing 

419 of the 429 CEGMA eukaryotic core genes. Ab initio gene prediction discovered 

12,530 gene models, containing 48,371 exons in total (Waldron et al., 2017). 

Proteogenomic interrogation of a six-frame translation of the genome facilitated the 

mapping of 615,150 LC-MS/MS spectra (28,001 non-redundant) to the predicted 

proteome and 402,998 (21,505 non-redundant) spectra to the assembly. The higher 

number of spectra mapped to the predicted proteome is to be expected, as peptides 

spanning intron-exon junctions are mapped only to the predicted proteome, and cannot 

be identified from the genome assembly alone. 

What is most informative about using this approach is to identify peptides that were 

exclusively matched to the genome, as this gives an insight into the degree to which gene 
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calling was successful. Our analysis showed that 96.2 % of peptides that were identified 

in searches against the genome assembly were also located within predicted protein 

coding genes, indicating a high degree of gene call accuracy. This result further supports 

the CEGMA estimation of the D. pteronyssinus airmid genome assembly completeness, 

and both estimates put the Waldron et al. (2017) assembly and predicted proteome at 

approximately 96 % complete.  

Among the remaining 822 non-redundant spectra, that matched exclusively to the 

genome, 65 were located adjacent to protein coding genes, indicating these gene models 

may need extending. The remaining peptides were matched to loci outside of open 

reading frames. As these represented only a tiny proportion of the total number of protein 

coding genes, re-evaluation of the genome assembly isn’t warranted at this point.  

We extended our analysis to examine other recently published D. pteronyssinus genomes 

to determine if D. pteronyssinus airmid was the best model for our proteomic 

characterisation studies. The Randall et al. (2018) and Liu et al. (2018) assemblies 

reported higher numbers of protein coding genes than the Waldron et al. (2017) 

assembly. However, interrogation of all three gene sets with LC-MS/MS spectra revealed 

the highest number of proteins were identified using the Waldron et al. (2017) proteome, 

resulting in 4,581 proteins identified by 2 or more peptide spectrum matches. This 

equated to 36.5% of the predicted proteome being positively matched to LC-MS/MS 

spectra. The Randall et al. (2018) gene set contained 19,368 predicted proteins, our 

analysis positively identified 4,416 of these, a comparable number to the Waldron et al. 

(2017) assembly, however this only accounted for 22.8% of their gene set. A similar 

trend was seen for the Liu et al. (2018) gene set, which contained 15,846 predicted 

proteins, of which only 3,408 were identified, accounting for 21.5% of their gene set. 

Moreover, despite having fewer predicted proteins than the other two available D. 

pteronyssinus genome assemblies, the D. pteronyssinus airmid gene set contained 

approximately 20% more amino acids with longer protein coding genes.  

These results highlight the variation that can result from differences in gene calling 

methodologies. Unbiased proteogenomic analysis of the available D. pteronyssinus 
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genome assemblies revealed the Waldron et al. (2017) assembly and predicted proteome 

to be the most comprehensive, incorporating more a.a, longer protein coding genes and 

resulting in more protein identifications than the other assemblies. Thus, providing 

compelling evidence of its strength for future proteomic studies on D pteronyssinus 

airmid. Moreover, as the only publicly available D. pteronyssinus genome assembly, this 

data will no doubt prove to be an invaluable resource to other HDM researchers. A similar 

analysis should be employed by other research groups to determine which D. 

pteronyssinus genome assembly offers the best gene models for their particular strain of 

mite or proteomic methodology. As all three genome assemblies contained genes not 

found in the other strains, the genome offering the highest number of proteomic 

identifications should be experimentally evaluated and used for subsequent studies.  

A high-coverage genome assembly merely provides the foundation for proteomic studies, 

the highest benefit comes from using an extensively annotated predicted proteome. 

Compilation of such a proteomic database was critical to achieving our goal of generating 

a multidimensional view of D. pteronyssinus. The D. pteronyssinus airmid predicted 

proteome was subjected to a multi-step protein annotation workflow using BLAST2GO 

Version 5.0 software package, to perform (i) BLAST homology annotation, (ii) Assign 

Gene Ontology (GO) terms, (iii) identify; families, domains, sites and repeats in 

predicted proteins, (iv) Identify predicted secretion peptides and (v) map GO terms to 

enzyme codes. This combined annotation strategy resulted in 96% of predicted proteins 

being assigned one or more annotation. Once complete, the proteomic database, 

facilitated the exploitation of proteomic data to identify important protein families, 

enzymes, allergens and predicted allergens expressed by this medically important HDM. 

5.3 Novel Insights from Orphan Genes 

Taxonomically restricted genes or orphan genes can offer huge insight into lineage-

specific adaptations. These genes lack homologs in other closely related species and 

typically account for 10% – 30% of genes (Wissler et al., 2013). We identified orphan 

genes by further examining a subset of predicted proteins, those that had revealed no 

blast homology to proteins in NCBInr (n = 3,906) and searching them against full gene 



Chapter 5: Discussion 

 

171 

 

sets of 11 arachnids (S1 Table). Many had homologues in other arachnids, however a 

subset of 1,848 protein coding genes were unique to D. pteronyssinus. Almost 80% of 

these D. pteronyssinus orphan genes were specific to the airmid strain, as they were not 

found in the other D. pteronyssinus assemblies (Randall et al., 2018, Liu et al., 2018).  

These data provide significant insight into the genetic mechanisms underpinning D. 

pteronyssinus populations, showing that 88.3% of the D. pteronyssinus airmid genome 

represents core protein coding genes, found in all three D. pteronyssinus assemblies, with 

the remaining 11.7% being airmid strain-specific. Some uncharacterised D. 

pteronyssinus airmid-specific proteins may represent adaptations, while others are a 

likely consequence of genetic drift occurring in isolated populations (Tutar, 2012). 

Compilation of proteomic data from all proteins identified in this study (representative 

proteome analysis) validated more than 10 % of these airmid strain orphan genes as true 

protein coding genes, showing they are expressed under normal laboratory conditions. 

The functions of these strain specific proteins are intriguing, their role in strain specific 

adaptions may be discovered through further proteomic investigation.  

5.4 New Insights into the Biochemical Pathways that Allow D. 

pteronyssinus to Persist in the Home 

Hygrothermal conditions dictate duration of life cycle, fecundity, survival, feeding and 

allergen production in D. pteronyssinus and other HDMs (Arlian et al., 1998, Colloff, 

1992). The ability of mites to withstand periods of environmental extremes is key to their 

continued persistence in the home (Colloff et al., 1992, Calderón et al., 2015). Thus, 

identifying protein coding genes that confer hygrothermal stress tolerance may provide 

much needed insight into biochemical pathways that enable such stress resistance. 

Disruption of these pathways could curtail D. pteronyssinus populations.  

In this study we used a similar bioinformatic approach to Gusev et al. (2014) to perform 

the first study of its’ kind in HDMs, to identify a subset of D. pteronyssinus airmid 

predicted proteins which may have a role in desiccation and cold tolerance. These 

proteins, 18 in total, were indirectly assessed through homology with known late 

embryogenesis abundant proteins (LEAPs) demonstrated to allow other organisms to 
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survive hygrothermal extremes (Hunault & Jaspard, 2010). Expression of seven of these 

LEA-like proteins was validated by proteomics, all appeared to be expressed at low levels 

except for two, DERPT_G12026 and DERPT_G404. These highly abundant LEA-like 

proteins are expressed under optimal non-desiccating laboratory growth conditions and 

were identified in both mite body (MB) and spent media (SM).  

Anhydrobiotic organisms can tolerate extreme water loss exceeding 97%, there is 

evidence for similar mechanisms in D. pteronyssinus as the protonymph stage is highly 

resistant to desiccation, surviving many months at 0% RH (Arlian, 1992). Future studies 

may focus on the protonymph life stage as a model for desiccation resistance in D. 

pteronyssinus. Proteomic investigation of desiccated and non-desiccated protonymphs 

may yield important information on whether these LEA-like proteins aid in stabilisation 

of proteins, membrane structure and osmoprotection during hygrothermal stress (Sinclair 

et al., 2013). Moreover, expansion of the LEA work presented in this study may 

eventually allow for development of much needed secondary prevention strategies for 

mite-induced diseases (Sanchez-Borges et al., 2017). 

 

5.5 Implications of the Mite Body Proteome for Allergy  

A key goal of this study was to better understand the internal proteome of D. 

pteronyssinus and how this may relate to allergen exposure and allergy. Thus, a 

characterisation study was undertaken to catalogue proteins associated with D. 

pteronyssinus airmid under normal laboratory growth conditions. A fractionation 

approach was taken to improve identification of low abundant proteins. Coupling LC-

MS/MS with pre-fractionation facilitated the identification of 248 proteins from the mite 

body (MB) that were not detected through direct proteomic analysis. Following removal 

of proteins also identified from spent culture media extracts, 1,076 proteins were found 

to be exclusively present in the body of D. pteronyssinus airmid. 

All proteins are synthesised in the MB, and they are then either retained in the MB or 

excreted. However, MB localised proteins may still be found in the SM but are typically 



Chapter 5: Discussion 

 

173 

 

low abundance in these extracts compared to the MB. Direct quantification of the 1000’s 

of proteins identified during this study is not possible, therefore a comparative proteomic 

strategy was employed to establish protein localisation to the MB or SM. Where a protein 

was identified in both MB and SM extracts, localisation was inferred by higher LFQ 

intensity and ms count.  

The route by which a sensitised individual is exposed to HDM allergens has significant 

implications for the types of allergens they react to. We frequently think of exposure in 

terms of inhalation, however skin contact exposure is important for certain allergic 

patients, particularly those with atopic dermatitis (AD). Bedding and clothing provide a 

means for HDMs to come into direct contact with the skin and cause transdermal 

sensitisation (Teplitsky et al., 2008, Clarke et al., 2015a, Tovey et al., 1995). Distinct 

patterns of allergen reactivity is seen in patients with AD symptoms compared to those 

with respiratory symptoms (Banerjee et al., 2015). AD patients show greater reactivity 

to Der p 10, 11 and 14, than patients with respiratory symptoms only (Banerjee et al., 

2015). Our localisation analysis identified these allergens to be some of the most 

abundant MB proteins in D. pteronyssinus airmid. These allergens are non-enzymatic, 

therefore the propensity to induce IgE responses may be linked to their high abundance. 

If so, other newly identified and highly abundant proteins in D. pteronyssinus MB may 

also cause sensitisation and therefore may represent interesting targets for future studies 

on AD patients.  

In addition, the MB was abundant in proteins showing distinct homology to known 

allergens, our analysis shows that more than 11% of all the proteins identified from the 

MB of D. pteronyssinus airmid could elicit immune responses either directly, or as a 

result of homology based cross-reactivity. The degree to which these putative allergens 

induce allergic reactions in HDM sensitised individuals remains a topic for future studies. 

Other important non-allergenic pathogenic proteins were identified in the MB of D. 

pteronyssinus, including phospholipase A2. Recent research has identified HDM 

phospholipase A2 to be a key driver in the pathogenesis of AD, shown to generate 

antigenic neo-lipids, that activate T-cells, causing inflammation (Jarrett et al., 2016). The 
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predicted proteome of D. pteronyssinus airmid contained 19 predicted phospholipid A2 

enzymes, however only one was identified (DERPT_G9584), it was observed in the MB 

dataset at low LFQ intensity. Phospholipid A2 enzymes contain a number of hydrophobic 

amino acid residues, allowing them to interact with the lipid substrate, this may result in 

the proteins being unfavourable for the aqueous protein extraction methods employed in 

this study (Dennis et al., 2011). Optimising proteomic extraction methodologies for the 

identification of phospholipase A2 proteins from the MB of D. pteronyssinus may 

identify the specific proteins responsible for this pathology.  

The data generated from characterising the MB of D. pteronyssinus sheds new light into 

the relationship between allergen localisation in the mite and the route of allergen 

exposure, presenting clear evidence that intra-mite proteins also represent potential 

targets for the immune system via transdermal exposure. Further proteomic investigation 

of D. pteronyssinus MB utilising alternative protein extraction methods and alternative 

culture media will no doubt expand upon the number of proteins identified in this study.  

5.6 Implications of the Excretome for Allergy 

The faecal particles of HDMs are the primary vector for allergens in patients with 

respiratory symptoms. Due to their small size, they are inhaled deeply into the lungs, 

coming into direct contact with the lung epithelium. In the context of sensitisation, 

proteins present in the faeces are of particular importance, therefore predicting what types 

of proteins may be excreted is equally as important (Tovey et al., 1981, Platts-Mills et 

al., 1986, Jacquet, 2013). 

It has been estimated that a third of all proteins expressed by an organism are secreted 

(Orfanoudaki et al., 2017). In our analysis, eukaryotic secretion signals were present in 

10.3% of predicted proteins, and 12% of validated proteins in the representative 

proteome. However, they were significantly over represented in the SM (P = 1E-26) 

where more than 22 % of all proteins identified contained eukaryotic secretion signals. 

This data shows that the presence of a secretion signal is a strong indicator that a protein 

may be present in the faeces, and therefore may be used as a predictor for route of 

exposure when assessing new allergens.  
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Given what we know about HDM digestive physiology, it is therefore no surprise that 

over 52% of proteins identified in the SM proteome have predicted enzyme activity. 

However, specific types of enzymes were over-represented in this dataset, most notedly 

ones assigned the term Acting on peptide bonds (P = 6.73E-31). The large presence of 

peptidases in SM was surprising. Despite making up only 3% of the predicted proteome, 

over 10% of all proteins in the SM had predicted peptidase activity. It is well-established 

that enzymes have a propensity to induce allergic responses, peptidases are the best 

established example of this (Huby et al., 2000). Potent peptidases, such as Der p 1, disrupt 

epithelia barrier function and alter numerous immune system processes (Reithofer & 

Jahn-Schmid, 2017, Huby et al., 2000). Given this new insight into the enzymatic content 

of SM, it is not difficult to understand how inhaling such an enzyme-rich substance can 

elicit the enormous levels of HDM sensitisation reported. Therefore, in the context of 

patient exposure, D. pteronyssinus proteins with predicted enzyme activity should be 

considered allergen candidates worthy of further study, particularly if they contain 

predicted secretion peptides, as they are more likely to be excreted into house dust. 

5.7 The Wildtype Proteome as a Basis for Interpreting Laboratory 

Proteomic Studies 

Establishing a laboratory model of D. pteronyssinus, that shows similar protein 

expression and excretion profiles, to that of wild-type D. pteronyssinus is essential to 

progress knowledge of this and other species of HDMs. Researchers frequently purchase 

commercially available D. pteronyssinus protein extracts to conduct studies into the 

mechanisms underlying HDM allergy. However, extracts from different companies are 

not standardised, varying substantially in the ratios of some allergens and lacking others 

entirely. How these extracts compare to the types of proteins or abundance of allergens 

found in house dust is unknown (Thomas, 2018). Our comparative proteomic analysis of 

house dust revealed a surprising degree of similarity between the excretome of laboratory 

reared D. pteronyssinus airmid mites to D. pteronyssinus proteins found in house dust. 

All but 13 proteins identified in house dust were also identified in the SM dataset. 

However, further development of the laboratory model is needed, as demonstrated for 

allergens Der p 5 and Der p 21. Initial proteomic assessment failed to detect Der p 5 and 
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Der p 21 in the SM, suggesting they were not excreted under laboratory conditions. 

However, proteomic analysis of house dust revealed Der p 5 to be among the top 10 most 

abundant proteins and Der p 21 the 63rd most abundant. This serves to demonstrate that 

mechanisms other than excretion can lead to allergen accumulation in house dust. It is 

likely that in the wildtype environment, as the mite bodies begin to degrade they release 

MB localised proteins. This was not observed in the laboratory model, as accumulation 

of dead mites is avoided by regular sub-culturing. This work demonstrates the utility of 

high sensitivity protein MS as a novel way to identify HDM products in the wildtype 

environment, contrasting them with those found in laboratory reared mites to 

contextualise laboratory studies.  

5.8 Digestion of Fungi 

The nature of HDMs-fungal interactions has been the source of much debate since the 

early days of HDM research (van Bronswijk, 1973, Hay et al., 1993, Hay et al., 1992, 

Naegele et al., 2013). However, recent research has unambiguously demonstrated that D. 

pteronyssinus engages in mycophagy, utilising Aspergillus spp, Penicillium spp. and 

yeast for nutrition (Molva et al., 2019). In the course of this study, we observed D. 

pteronyssinus protein extracts to exhibit laminarinase activity and devised a series of 

experiments to investigate if this β-1,3 glucanase activity was linked to consuming fungi.  

Following positive identification of a β-1,3 glucanase active protein from D. 

pteronyssinus protein extracts, bioinformatic analysis was conducted to examine the 

genomes of other Acari in search of similar proteins in close relatives. This analysis 

revealed β-1,3 glucanases are recent adaptions in acariformes. Moreover, genes encoding 

β-1,3 glucanases were expanded in D. pteronyssinus compared to E. maynei and D. 

farinae. This additional Glu2 protein may allow adaptation of D. pteronyssinus towards 

mycophagy, exploiting fungal components in house dust more efficiently than other 

HDMs in this complex ecosystem. This novel finding may in part explain the co-

existence of multiple HDM species in house dust, and why the presence of one species 

does not influence the numbers found of the other (Zock et al., 2006). 
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Most research groups use dried yeast to supplement diets and improve mite population 

growth (Andersen, 1991, Hubert et al., 2016, Eraso et al., 1997, Arlian & Morgan, 2015, 

Hart et al., 2007). Therefore, we used S. cerevisiae in our study as a standardised fungal 

medium on which to feed D. pteronyssinus and unambiguously demonstrate that fungal 

feedstuffs quantitatively increase glucanase activity and abundance in dust mite body and 

spent media. Further, recombinant expression of these Glu proteins confirmed the 

hydrolytic activity of Glu1 and Glu2 towards β-1,3 glucans in laminarin, pachyman and 

barley glucan. These Glu proteins were expressed and excreted basally (without yeast 

diet) by D. pteronyssinus in response to microbes naturally present in both their 

laboratory and wildtype environment (Molva et al., 2018). A number of other enzymes 

capable of digesting fungal components were also identified, uniquely present in the SM 

of yeast-fed mites, including three alpha-mannosidase, and a fourth alpha-mannosidase 

was significantly increased in abundance. It is probable that Glu1, Glu2 and Glu3 act in 

conjunction with these enzymes to digest fungal components, and further research is 

needed to examine this hypothesis.  

5.9 Implications of this Research in the Development of Biocontrol 

Strategies, Diagnostic Products and Therapeutic Extracts. 

The process of chitin synthesis and remodelling is an integral part of the growth and 

development of all arthropods. Chitin is also a major component in the peritrophic 

membrane of HDMs, therefore plays an essential role in both cuticle formation and 

digestive physiology of HDMs. Dysregulation of the chitin synthase pathway would have 

a catastrophic effect on the ability of D. pteronyssinus to grow and feed in wild-type 

habitats. This chitin synthase pathway is highly conserved, utilising chitinase, β-N-

acetylhexosaminidase and chitin synthase (Merzendorfer & Zimoch, 2003). Proteomic 

profiling of D. pteronyssinus airmid facilitated identification of eight predicted 

chitinases, five β-N-acetylhexosaminidases and two chitin synthases, putatively involved 

in chitin remodelling. As chitin is absent from vertebrates, dysregulation of these 

enzymes could provide much needed biocontrol strategies to alleviate HDM colonization 

of homes (Merzendorfer & Zimoch, 2003, Gøtzsche & Johansen, 2008). Future 

proteomic studies examining the regulation of these enzymes by D. pteronyssinus and in 
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response to exposure to various test compounds, may provide a high-throughput testing 

method for screening new acaricides.  

International experts have outlined a number of critical areas of HDM allergy research 

and therapeutics development that need to be addressed in the global efforts to combat 

house dust mite induced diseases, those most relevant to this study are outlined below 

along with how the research conducted in this study may form the foundation upon which 

these can be addressed.  

1. Development of objective methods to assess allergen exposure and 

environmental control outcomes (Sanchez-Borges et al., 2017). 

2. Mandatory documentation of exposure to the relevant allergens and “it is 

recommended to document the exposure level for the individual patient especially for the 

evaluation periods to evaluate the variation of indoor allergens” (EMA, 2008). 

Protocols and techniques for the large-scale unbiased proteomic characterisation of D. 

pteronyssinus products were developed, identifying over 4,000 proteins in laboratory 

reared mites and 150 proteins from house dust. Extensive bioinformatic analysis 

identified hundreds of D. pteronyssinus proteins that may play a role in allergy and 

identifying the expression of many of these, providing the most comprehensive 

allergenome analysis of this medically important mite to date. Expanding these MS 

studies to incorporate quantitative analysis of allergenic and putative allergenic 

components in house dust to develop multiplex assays would provide much needed 

methods to address the deficits in allergen exposure knowledge highlighted above. 

Moreover, this would enable generation of diagnostic and therapeutic HDM extracts with 

allergen content and ratios that reflect natural allergen exposure. 

3. Development of secondary prevention strategies for mite-induced diseases 

(Sanchez-Borges et al., 2017). 

Our molecular characterisation of D. pteronyssinus airmid identified potential protein 

targets for dysregulation of crucial physiological activities including digestion, cuticle 
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remodelling and hygrothermal stress tolerance. Proteomic methodologies developed in 

the course of this study could be implemented to assess disruption of these and other 

essential pathways, providing a means to measure the efficacy of environmental control 

measures.  

5.10 Concluding Remarks 

To conclude, this thesis presents the first large-scale molecular investigation of the 

medically important mite, D. pteronyssinus, in terms of genome annotation, 

identification of putative allergens, intra-mite proteome and excretome, proteins involved 

in cuticle remodelling and hygrothermal stress tolerance. Moreover, the thesis describes, 

in detail, novel experimental strategies for further study of this allergen vector. Overall, 

this work has yielded significant insight into the molecular physiology of HDMs. 
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