LETTER

doi:10.1038/nature14491

Ocean impact on decadal Atlantic climate variability
revealed by sea-level observations
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Decadal variability is a notable feature of the Atlantic Ocean and
the climate of the regions it influences. Prominently, this is man-
ifested in the Atlantic Multidecadal Oscillation (AMO) in sea sur-
face temperatures. Positive (negative) phases of the AMO coincide
with warmer (colder) North Atlantic sea surface temperatures. The
AMO is linked with decadal climate fluctuations, such as Indian
and Sahel rainfall', European summer precipitation®, Atlantic hur-
ricanes’ and variations in global temperatures®. It is widely
believed that ocean circulation drives the phase changes of the
AMO by controlling ocean heat content®. However, there are no
direct observations of ocean circulation of sufficient length to sup-
port this, leading to questions about whether the AMO is con-
trolled from another source®. Here we provide observational
evidence of the widely hypothesized link between ocean circulation
and the AMO. We take a new approach, using sea level along the
east coast of the United States to estimate ocean circulation on
decadal timescales. We show that ocean circulation responds to
the first mode of Atlantic atmospheric forcing, the North
Atlantic Oscillation, through circulation changes between the sub-
tropical and subpolar gyres—the intergyre region’. These circula-
tion changes affect the decadal evolution of North Atlantic heat
content and, consequently, the phases of the AMO. The Atlantic
overturning circulation is declining® and the AMO is moving to a
negative phase. This may offer a brief respite from the persistent
rise of global temperatures®, but in the coupled system we describe,
there are compensating effects. In this case, the negative AMO is
associated with a continued acceleration of sea-level rise along the
northeast coast of the United States™'°.

The difficulty in linking ocean circulation changes to decadal cli-
mate variations lies in the fact that long observational records of ocean
transports are rare. Measurements such as those of the Florida Current
since 1982'"" and the Greenland-Scotland ridge transports'” since the
mid-1990s are some of the longest continuous ocean transport records
available. Continuous, full-depth, basin-wide measurements of the
Atlantic overturning circulation only began in 2004 with the RAPID
monitoring project at 26° N (ref. 13). None of these records are long
enough to directly link ocean circulation with decadal climate varia-
tions such as the AMO.

Sea-level measurements from tide gauges provide an integrated
measure of water column properties and offer timeseries of sufficient
length (Extended Data Fig. 1) to study decadal ocean circulation var-
iations. Investigating ocean circulation using tide gauges is not new:
the first attempt to estimate the Gulf Stream using tide gauges was
made in 1938". The principle is based on geostrophic dynamics: on
timescales longer than a few days, ocean circulation is in geostrophic
balance so, looking downstream, the sea level is seen to increase from
left to right in the Northern Hemisphere.

Estimates of the Gulf Stream using tide gauges have focused on the
American east coast, with an offshore estimate of sea level from either
an island gauge' or a reconstructed sea level'®. A weakness of this
method is that the offshore measurement lies in the eddy-filled ocean

where sea-level fluctuations at any one point are influenced by
mesoscale variations'” even on long timescales, increasing the difficulty
of making estimates of ocean circulation that are coherent on large
spatial scales. This is the case for sea level at Bermuda, whose decadal
fluctuations can be reproduced by considering a Rossby wave response
to wind forcing'®. To make estimates of ocean circulation that capture
the fluctuations in large-scale circulation and are less affected by eddy
variability, measurements close to or on the western boundary are
necessary'®. We account for this by focusing on the gradient of sea level
along the US east coast. Here the mean dynamic sea level decreases to
the north (Fig. 1a) due to the transition from subtropical to subpolar
gyres. This dynamic gradient reflects a circulation that contains ele-
ments not only of the Gulf Stream but also of cold, subpolar water from
the north, primarily associated with the overturning circulation®.
Indeed, in model simulations, this meridional gradient of sea level along
this coast responds strongly to declines in the Atlantic overturning
circulation®. Ultimately, it is the heat transport that we are interested
in. And while the overturning circulation carries about 90% of the heat
at subtropical latitudes®, ocean heat transport at the latitude of the
intergyre region consists of similar contributions from both the over-
turning circulation and the gyre circulation®. For this reason, we do not
discuss separately overturning and gyre but only ocean circulation in
this intergyre region, which contains elements of both mechanisms.

Sea-level fluctuations from Florida to Boston divide into two coher-
ent groups either side of Cape Hatteras™ (Extended Data Figs 2, 3). This
large-scale coherence in sea level is driven by ocean circulation. North
of Cape Hatteras, coherent sea-level fluctuations have been linked with
fluctuations in the overturning circulation'>**. South of Cape Hatteras,
fluctuations in the Gulf Stream from Florida to Cape Hatteras are
reflected in sea-level fluctuations. As Cape Hatteras marks the bound-
ary between the subtropical and subpolar gyres on this coastline
(Fig. 1a), we can construct a single sea-level composite representative
of the subtropical (subpolar) circulation by averaging sea level from
linearly detrended, deseasonalized tide gauges, with the inverse baro-
meter effect removed, south (north) of the Cape (Fig. 1b, c). The dif-
ference, south minus north (Fig. 1d), represents our circulation index.
This index projects onto observed surface velocities during the satellite
era in the intergyre region, with a positive index associated with more
northwards flow and a more northerly path of this circulation
(Extended Data Fig. 4). Similarly, in a high-resolution ocean model,
over timescales that contain both the cool phase of the AMO in the
1970s* and the warm phase of the 19905, the sea-level index projects
onto a similar pattern of circulation, with a positive index associated
with more northward heat transport (Extended Data Fig. 5).

Ocean circulation is proportional to heat transport at both subtrop-
ical and subpolar latitudes®. A number of recent studies (see, for
example, ref. 27) have emphasized the dominant role of ocean heat
transport in heat content changes, relating the accumulation (in time)
of heat transport to heat content. This suggests that the accumulation
of our sea-level index across Cape Hatteras, as a proxy for ocean
circulation, can be related to ocean heat content. The largest AMO
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Figure 1 | Dynamic sea level and circulation along the western Atlantic

seaboard. a, Negative (positive) mean dynamic topography contours in blue
(red) indicate cyclonic (anticyclonic) geostrophic streamlines. Contour values
in metres shown in Fig. 2. The zero contour (dark blue) marks the boundary
between the subtropical and subpolar gyres. Hatched areas indicate warm sea
surface temperature anomalies of greater than 0.5 °C during the positive phase

signal is in the subpolar region (Fig. 1a), so we wish to show that, as a
measure of ocean circulation, our sea-level index is related to heat
transport into the subpolar gyre and consequently heat content
changes there. Such a mechanism is supported by our model, in which
the sea-level index leads the heat transport into the subpolar gyre
at 40° N and, consequently, leads the heat content changes there
(Extended Data Fig. 6).

Although we do not have observations of heat transport, we can
relate our sea-level index directly to the heat content changes in the
subpolar gyre since 1960. Figure 2a shows the accumulated sea-level
index (blue curve), together with a direct estimate of the heat content in
the area in the depth-weighted temperature anomaly in the top 500 m
between 40° N and 60° N (black line). Heat content trends are similar
throughout the upper 1,000 m of the Atlantic, below which they reverse
due to the depth structure of the Atlantic overturning circulation. The
cool subpolar upper ocean of the 1970s and 1980s and subsequent
warming in the 1990s is captured by the accumulated sea-level index,
observationally supporting the hypothesis that circulation changes and
not only air-sea fluxes were involved in these changes®. For the pur-
poses of statistical analyses, the timeseries have had a 7-year low-pass,
Tukey filter applied to them, which is referred to by the prefix 7-year’
from here on. The 7-year sea-level index leads the 7-year rate of
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of the AMO from 1995-2004 relative to from 1961-2012. b, ¢, Dynamic sea-
level anomalies north (b; sites 7-30, +200 mm offset) and south (c; sites 1-6,
—200 mm offset) of Cape Hatteras, with averages in black. d, The difference in
sea level, southern minus northern average, defines our sea-level index for
ocean circulation.

heat content change by 2 years with a maximum correlation of 0.58
(significant at the 95% level). The reason that the accumulated sea-level
index leads the large rise in heat content from 40° N to 60° N in the early
1990s can be interpreted by looking at maps of the heat content anom-
aly evolution. Heat content builds downstream of the intergyre region
from the mid-1980s to the mid-1990s (Fig. 2b). This heat content
anomaly is then observed downstream in the subpolar gyre in the late
1990s and early 2000s (Fig. 2c), indicating that the sea-level index could
provide an early indication of subpolar heat content change.

The first mode of atmospheric variability over the North Atlantic,
the North Atlantic Oscillation (NAO), forces both buoyancy and
wind-driven ocean circulation” and, we believe, is the major forcing
of the circulation in the intergyre region. The 7-year NAO is signifi-
cantly correlated with (r = 0.71 at the 98% level) and leads the 7-year
sea-level difference by approximately 1 year over the period 1950 to
2012. On extending the time period to 1920-2012, the correlation
drops slightly but is still significantly correlated (r = 0.61 at the 98%
level, Extended Data Fig. 7). The correlation between the sea-level
difference and the NAO is higher and more significant than the
correlation of the NAO with either the southern or northern sea-level
(Fig. 1b, ¢) composites (r = —0.5 at the 86% level for the southern
composite; 7 = —0.43 at the 70% level for the northern); this supports
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Figure 2 | Relating the sea-level circulation index to heat content changes.
a, Accumulated sea-level index (nominally, in mm month) derived from
accumulating the sea-level circulation index (blue), temperature anomaly in the
upper 500 m of the subpolar North Atlantic from 40° to 60° N (black) and

Longitude (°W)

Longitude (°W)

accumulated NAO (red, dashed). b, Average temperature anomaly in the top
500 m for the periods 1985-94 relative to the average from 1958-2010.
Contours of mean dynamic topography (metres) defined in Fig. 1a are overlaid
for reference. ¢, Same as b but for the period 1995-2004.
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Figure 3 | Sea-level circulation index, the NAO and the AMO on multi-
decadal timescales. Shown are the accumulated sea-level index (blue), which is
representative of subpolar heat content evolution, the accumulated NAO (red,
dashed) and the AMO (black). The heat content proxy and the accumulated
NAO have been normalized. All timeseries have been 7-year low-pass filtered.
The accumulated sea-level index and accumulated NAO have been detrended.

our hypothesis that the NAO forces the ocean circulation and conse-
quently the ocean heat transport into the subpolar gyre.

In the past 90 years, the AMO has undergone three major transi-
tions: warming in the mid-1990s and 1920s, and a cooling in the 1960s.
From the early-1920s, when the tide gauge network along the east coast
of North America was developed, robust comparisons of our sea-level
index to the AMO are possible (Fig. 3). The accumulated sea-level
index and the accumulated NAO are linearly detrended and capture
much of the multi-decadal variation. The 7-year sea-level index leads
the 7-year rate of change of the AMO by 2 years and is significantly
correlated (r = 0.51, significant at the 96% level, Extended Data Fig. 8).
This lead time of 2 years remains consistent when the timeseries is
broken into 60-year blocks (Extended Data Table 2). In recent years,
the sea-level index (Fig. 1d) indicates that the AMO is again transition-
ing to a negative phase, consistent with observations of a reduced
overturning circulation®.

Using the sea-level difference between subtropical and subpolar
gyres, we have developed and validated a proxy for ocean circulation
in the intergyre region. This represents a mechanism for ocean heat
transport to the subpolar gyre and heat content changes there. When
observations exist, heat content changes have coincided with the major
phase transitions of the AMO, confirming that ocean circulation plays a
key role in decadal Atlantic variability. The ocean responds to NAO
forcing with changes in ocean circulation: on decadal timescales, the
ocean integrates NAO forcing and returns it to the atmosphere as the
AMO. This is implicitly the Bjerknes compensation that had previously
been seen in air-sea fluxes”. The sea-level difference provides an indi-
cator of ocean circulation changes that precede phase changes in the
AMO, thus explaining why, as the positive AMO declines®, sea-level
rise is accelerating north of Cape Hatteras™'°. While Greenland ice sheet
melt has been linked with accelerating sea-level rise in recent years, the
fact that the period of accelerated sea-level rise from the 1950s to the
1970s' (as well as the current period of sea-level rise) coincides with a
declining AMO indicates that multi-decadal fluctuations in ocean cir-
culation play a key role. In this framework, sea-level rise along the US
east coast becomes entwined with the effects of the AMO on climate.

Online Content Methods, along with any additional Extended Data display items

and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

Data. Monthly mean sea-level records were obtained from the Permanent Service
for Mean Sea-level (www.psmsl.org) for tide gauges stretching from Florida to
Boston (locations 1 to 30, Extended Data Fig. 1). Linear trends were removed from
each record. This removes the impact of glacial isostatic adjustment and other land
subsidence effects, which have time periods of thousands of years and are known
to affect tide gauges along this coastline. A 12-month low-pass filter removed the
seasonal cycle. Southern (northern) composites of sea level were calculated by
averaging records 1-6 (7-30). The meridional coherence of sea-level fluctuations
is such that using just a single tide gauge results in an r.m.s. error of only 5 mm
relative to the full composite. Finally, the sea-level index is simply the difference
obtained by subtracting the northern from the southern sea-level composite. The
high level of meridional coherence allows the interpretation of the sea-level gra-
dient as this simple index.
Sources. Monthly NAO data from the National Center for Atmospheric Research
“The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-
based)” (https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-
oscillation-nao-index-pc-based); monthly AMO index, based on the Kaplan sea
surface temperature (SST) data set (from http://www.esrl.noaa.gov/psd/data/
timeseries/ AMOY/); subsurface temperature data from the EN3 product (http://
www.metoffice.gov.uk/hadobs/en3/); geostrophic velocity anomalies were pro-
duced and distributed by Aviso (http://www.aviso.altimetry.fr/) as part of the
Ssalto ground processing segment. CNES-CLS09 Mean Dynamic Topography
(v1.1 release) for the period 1993-99 was produced by the French Space Agency
CNES.
Model validation. The multi-decadal oscillation of SSTs is most intense in the
subpolar gyre (Fig. 1a). Modelling studies have shown that it is ocean heat trans-
portinto the subpolar gyre (here we choose 40° N) that controls the heat content of
the subpolar upper ocean and consequently the SST. The concept here is that
circulation in the intergyre region reflects the balance between warm subtropical
water entering the subpolar gyre and colder subpolar water being recirculated
within the gyre. We show that the sea-level gradient along the US east coast is a
good proxy for this circulation (Extended Data Figs 4 and 5).

We can relate sea-level changes to ocean circulation in a reduced gravity geo-
strophic framework:

g/
v==kxVh
f

where v is geostrophic velocity, k is the unit vector in the vertical direction, h is
sea level, g’ is reduced gravity and fis the Coriolis parameter. To estimate the
transport in the intergyre region, previous studies have considered the sea-level
difference between an onshore tide gauge and an offshore tide gauge, such as
Bermuda. Reference 24, for example, relates the sea-level difference between
Atlantic City and Bermuda to the Atlantic overturning circulation.

However, Bermuda is in the eddy-filled ocean interior'’, which can disrupt
spatially-coherent ocean transport signals. Our approach is to use sea-level esti-
mates south of Cape Hatteras instead of an offshore sea-level estimate. Dynamic
topography along the US east coast also decreases to the north across the intergyre
boundary at Cape Hatteras much as it decreases from Bermuda to Atlantic City.
However, measurements on the coast do not suffer the same contamination due to
eddies as mid-ocean measurements'®. Hence we estimate the transport along the
intergyre boundary as:

Vig OChS 7hn

where the subscript ig refers to the intergyre region, s and n refer to south and
north respectively. We can formulate the heat transport through a section strad-
dling the intergyre boundary as:

HTig=pc, H Ov,gdA

where p is density, c, is the specific heat capacity of seawater, @ is conservative
temperature and A is the area of the section considered. In this study we assume
that the velocity fluctuations dominate the temperature fluctuations and so set the
heat transport directly proportional to the intergyre velocity. This is an assump-
tion that has proved true in direct heat transport estimates®'. We note there is no
dilemma in picking the location of the northern or southern points as the meri-
dional coherence of sea-level fluctuations allows us to use a simple average of all
sea-level records from Miami Beach to Cape Hatteras (Cape Hatteras to Boston)
for hg (hy).

In terms of upper ocean heat content, the heat transported in this intergyre
region has a profound impact on the subpolar gyre. This is because warm water
may be transferred from the upper waters of the subtropics to the subpolar gyre
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whereas subpolar water can only enter the subtropics at depth (traditionally in the
deep western boundary current). Therefore we relate the heat transport into
the subpolar gyre and heat content of the upper waters of the subpolar gyre
to the transport in the intergyre region:

HT, N ochs —hy

For exactly the reason that we need to use tide gauges as a proxy for heat
transport, we cannot validate the conceptual model directly due to the lack of
direct observations. However, a global eddy-permitting (1/4°) ocean model
(ORCA-025) provides the framework to investigate these balances. The heat
transport into the subpolar gyre has previously been shown in this model to be
the dominant factor in setting upper ocean temperature in the subpolar gyre®.
Here, we reproduce this result, showing that the accumulated heat transport across
40° N captures the major decadal fluctuations in heat content of the subpolar gyre
(Extended Data Fig. 6). We can use these heat transport measurements to validate
our circulation index. At this resolution there are shortcomings in the representa-
tion of the Gulf Stream path: the Gulf Stream overshoots at Cape Hatteras
and separates from the US coast too far north. However, we take account of
this in choosing the northern and southern sea-level points so that they
straddle the separation point. Also, despite the model being eddy-permitting
rather than eddy-resolving, it does generate mesoscale variability. This is seen
when including an offshore sea-level measurement (such as Bermuda) in a sea-
level circulation index. Such an index fails to reflect the large scale circulation. This
effect would be expected to be even larger in an eddy-resolving model. Extended
Data Fig. 5 shows that the model-derived sea-level index projects onto the inter-
gyre velocities in a similar manner to the observed sea-level index. Extended Data
Fig. 6 shows the accumulated sea-level difference compared with the accumulated
heat transport across a section near 40° N and the volume averaged temperature of
the upper 500 m of the subpolar gyre (40° N to 60° N). The sea-level difference is
significantly correlated with the heat transport into the subpolar gyre (r = 0.62)
and leads by 5 years (as in the main text, we report statistics on unaccumulated
timeseries).

Code availability. Matlab code is available to download from http://bit.ly/
1F7gtps.

Statistical analysis. Cross-correlations are calculated using annually averaged
data after first removing the mean and linear trend from each variable. Two
approaches are used to quantify the uncertainty in the correlation. First, we cal-
culated the parameter

r

1—1r2

T=

(N—-2)

where r is the correlation and N is the number of samples. The distribution of T'is
assumed to have a t-distribution with N — 2 degrees of freedom when the samples
are not autocorrelated. This is used with a one-sided test to estimate the likelihood
that the correlation has not occurred by chance (that is, the certainty with which
we can reject the null hypothesis). Our data are autocorrelated and the number of
independent samples (degrees of freedom) is therefore smaller than N. To cal-
culate the effective number of degrees of freedom we follow ref. 30 by evaluating
the autocorrelation of each variable and the estimate N as

(lfalaz)
(1+aia,)

where N, is the degrees of freedom, Ny, is the number of observations and a;, a,
are the values of the autocorrelations at a lag of one year. We evaluated Negover the
longest time for each variable and then used the lowest value for all correlations.
For the shorter time series Ny was reduced in proportion to the length of the
series. Degrees of freedom are reported in Extended Data Table 1.

Nett = Nobs

In a second approach we applied the non-parametric method described in
ref. 31. A large number (we used 10,000) of simulated time series are con-
structed from the Fourier transform of one of the original data series by
preserving the modulus of each Fourier component but changing the phase
to a random value between 0 and 2. The distribution of correlations between
these random series and the second variable was then calculated. The percent-
age of simulated correlations that are less than the observed correlation indi-
cates the confidence that the true correlation is greater than zero. Because we
are considering lagged correlations we modify the technique of ref. 31 so that
for each simulated time series we evaluate the maximum of cross-correlation
across all lags rather than the correlation at zero lag only. This provides a more
stringent test of confidence.

To estimate the uncertainty in the time lag of the maximum correlation we used
the times at which the correlation was equal to the maximum value less the

©2015 Macmillan Publishers Limited. All rights reserved
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standard deviation of correlations derived from the simulated time series. The
results are summarized in Extended Data Table 1.

We have also evaluated the correlation over shorter periods to determine if
the lag has remained constant over time. Results from three overlapping 60-year
periods are shown in Extended Data Table 2. For each the correlation is a max-
imum when sea-level difference leads the differentiated AMO by 2 to 3 years.

The text refers to both accumulated and unaccumulated timeseries. Accumu-
lation of zero mean timeseries constrains the beginning and end of the accumu-
lated timeseries to zero. To avoid this arbitrary constraint, we report all
our statistics on unaccumulated timeseries. As mentioned, for the purposes of

statistical analyses, the timeseries have had a 7-year, Tukey filter applied to them,
which is referred to in the text with the prefix ‘7-year’.

Sample size. The timespan of the study was the maximum for which all of the
necessary data were available. Therefore no statistical methods were used to pre-
determine sample size as we used all the samples available to us.

30. Bretherton, C. S.,, Widmann, M., Dymnikov, V. P, Wallace, J. M. & Bladé, I. The
effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12,
1990-2009 (1999).

31. Ebisuzaki, W.Amethod to estimate the statistical significance of a correlation when
the data are serially correlated. J. Clim. 10, 2147-2153 (1997).

©2015 Macmillan Publishers Limited. All rights reserved



LETTER

30. Boston
29. Nantucket Island
(b) 28. Woods Hole
— 27. Providence
26. Newport
25. New London
24. Montauk
23. Bridgeport
22. Willets Point
21. New York
20. Sandy Hook
— 19. Atlantic City
- ee—— 8. Cape May
17. Philadelphia
- - - 16. Lewes
15. Kiptopeke Beach
—— 4. Cambridge |l
13. Baltimore
12. Annapolis
11. Washington DC
10. Solomon'’s Island
09. Gloucester Point
08. Sewells Point
07. Portsmouth
06. Wilmington
05. Charleston |
04. Fort Pulaski
03. Fernandina Beach
02. Mayport
01. Miami Beach

Latitude

24 i .\ \\ o | i

| | | | | |
-80 -78 -76 -74 -72 -70 1900 1920 1940 1960 1980 2000
Longitude Year

Extended Data Figure 1 | Tide gauges used in this study. a, Locations and b, temporal coverage of the tide gauges used in this study.
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Extended Data Figure 2 | Dynamic sea-level anomalies from the 30 stations  tide gauges along this coastline. A seasonal cycle was removed using a

used in this study. Linear trends were removed from each record. This 12-month boxcar filter. From 1920, there are multiple tide gauges both north
removes the impact of glacial isostatic adjustment and other land subsidence ~ and south of Cape Hatteras, so this is when we begin our study.

effects, which have time periods of thousands of years and are known to affect
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Extended Data Figure 3 | Correlation of tide gauges along the US east coast relative to one another. The dashed line indicates the location of Cape Hatteras.

There is high correlation between tide gauges grouped north and south of Cape Hatteras.
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Extended Data Figure 4 | Surface velocity anomaly when the sea-level index  with a more northerly circulation in the intergyre region and increased surface
is positive. a, Ma§nitude (ms™") and b, zonally integrated meridional velocity ~ flow into the subpolar gyre. Velocities are geostrophic surface velocities derived
anomalies (10° m” s ') for the time period 1993 to 2011, corresponding to from satellite altimetry.

when (c) the sea-level index is positive. A positive sea-level index is associated
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Extended Data Figure 5 | Model-derived surface velocity anomaly to 2001, corresponding to when (c) the model-derived sea-level index is
magnitude when the model-based sea-level index is positive. Similar to positive. Similar to the satellite observations, a positive sea-level index is
observed velocities, positive indices are associated with more northerly associated with a more northerly circulation in the intergyre region. Meridional

circulation in the intergyre region. a, Surface velocity magnitude (m s~ ') and  heat transport change in both subtropical and subpolar gyres is positive when
b, percentage of meridional heat transport change (%) for the time period 1958  the sea-level index is positive.
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Extended Data Figure 6 | Model-derived sea-level index, heat transport gyre across 40° N (Acc. HT 4, black, normalized units). The heat transport
and subpolar heat content. The accumulated sea-level index (Acc. SL diff, into the subpolar gyre dominates the top 500 m temperature anomaly

blue, in mm months) leads the accumulated heat transport into the subpolar ~ (Subpolar HCA, green, °C) in the subpolar gyre.
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Extended Data Figure 7 | Relationship between sea-level index and the that would be expected from randomly generated timeseries with similar
NAO. a, 7-year sea-level difference (blue, cm) and 7-year NAO (green, spectral properties to the original timeseries. The red line indicates the
normalized units). b, Lagged correlations between the two quantities. maximum correlation between the two timeseries.

¢, Scrambled correlation tests. The histogram indicates the typical correlations
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Extended Data Figure 8 | Relationship between sea-level index and the rate  that would be expected from randomly generated timeseries with similar
of change of the AMO. a, 7-year sea-level difference (blue) and rate of change  spectral properties to the original timeseries. The red line indicates the
of the AMO (green). b, Lagged correlations between the two quantities. maximum correlation between the two timeseries.

¢, Scrambled correlation tests. The histogram indicates the typical correlations
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Extended Data Table 1 | Sea level, NAO and rates of change of the AMO statistics

Var X VarY Filt | Time DoF | Corr | Sig. % | Sig. % | RMS Lag at | Estimate
(yrs) | interval (t-stat) | (Scrm) | of rand | max d range
corr corr of lag
(yrs) | (yrs)
B-A Di HC 7 1950-2012 | 9 0.58 |95 98 0.22 -2 -3to 0
B-A NAO 7 1950-2012 | 9 0.71 |98 98 0.29 1 -1to2
NAO Di HC 7 1950-2012 | 9 0.41 |86 84 0.18 -2 -4 to -1
B-A NAO 7 1920-2012 | 13 0.61 |98 99 0.21 0 -1to2
B NAO 7 1920-2012 | 13 -0.50 | 95 86 0.23 -11 -13to 7
A NAO 7 1920-2012 | 13 -0.43 | 91 70 0.22 1 -3to4
B-A Di AMO |7 1920-2012 | 13 0.51 | 96 98 0.18 -2 -4 to -1
NAO Di AMO |7 1920-2012 | 13 0.58 |98 98 0.21 -4 -5to-2

Correlation, lags and significance between the southern (B) and northern (A) sea-level indices. First variable (Var X) and second variable (Var Y) are indicated in the first two columns. In the second column, Di refers
to the rate of change, and HC refers to subpolar heat content from 40° to 60° N. All timeseries are filtered with a 7-year low-pass filter (Filt). Degrees of Freedom (DoF), correlation (Corr) and significance (Sig.) are
shown. Significance is determined by a t-statistic (t-stat) or a scrambled test (Scrm). The RMS of a random correlation (column 9) together with the lag at maximum correlation (column 10) allows determination of
a range for the lag estimate (column 11).
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Extended Data Table 2 | Sub-sampled statistics

From To Correlation Lag (yrs) Lag range (yrs)
1920 2012 0.5 -2 -4 to -1
1920 1980 0.36 -1 -3t00
1936 1995 0.46 -3 -4 to -1
1952 2012 0.54 -2 -4t00

Correlation, lags and lag range of sea-level index and the rate of change of the AMO over various time periods to investigate the consistency of the lags. Time periods under consideration are indicated in the first two
columns.
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