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Abstract

Following the 2015 ‘Paris Agreement’ that seeks to contain global mean temperature

increase (GMTI) to well below 2°C and more ambitiously within 1.5°C, recent studies

have begun assessing the response of various sectors to these levels of warming.

Most studies have so far concentrated on temperature‐sensitive sectors. Given the

links between a warmer atmosphere and rainfall intensity, there is also a need to

examine impact sectors driven primarily by changing rainfall characteristics. One

example is soil erosion and muddy flooding from agricultural land, which damages

the natural and built environment. Using a case‐study hillslope in eastern Belgium—

an area particularly impacted by muddy floods—this study examines (a) whether soil

erosion and muddy flooding will increase in the future; and (b) whether containing

GMTI to 1.5°C would help limit the problem versus 2°C. The Water Erosion Predic-

tion Project model was used to simulate muddy flooding for the present‐day and

under a range of future scenarios derived from climate models that correspond to

1.5 and 2°C GMTI. The main findings reveal no statistically significant differences

between muddy flooding at 1.5 and 2°C GMTI. Limiting GMTI to 1.5°C therefore does

not appear to make much difference to soil erosion and muddy flooding, because the

timing of changing rainfall intensity does not always follow clear patterns with

increased warming. Regardless of the magnitude of future warming, an earlier and lon-

ger muddy flooding season is projected—highlighting that mitigation measures should

be continually adapted to remain resilient to climate change.
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1 | INTRODUCTION

Robust appraisals of climate impacts at varying levels of global mean

temperature increase (GMTI) are important in assessing the resilience

of many sectors to climate change and in planning appropriate adap-

tation strategies. At the 21st Conference of Parties of the UN

Framework Convention on Climate Change (UNFCCC), 195 countries

pledged to contain GMTI to ‘well below’ 2°C above preindustrial

levels, and to pursue efforts to further limit warming to 1.5°C

(UNFCCC, 2015). Studies examining the impacts of 2°C warming
wileyonlinelibra
have increased in recent years, as well as comparative studies with

higher levels of warming including 4°C and above (e.g., James et al.,

2015; New, Liverman, Schroeder, & Anderson, 2011). There has been

far less attention to impacts from a GMTI of 1.5°C. This is unsurpris-

ing given that even the lowest of the representative concentration

pathways (RCPs)—used as the drivers for climate projections in the

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment

Report (AR5; IPCC, 2013)—projects GMTI above 1.5°C. Investigating

the impacts from 1.5°C warming has now become a pressing

research area, with the IPCC preparing a special report due for
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publication in 2018 “on the impacts of global warming of 1.5°C

above preindustrial levels and related greenhouse gas emission

pathways.”
1.1 | Soil erosion and muddy flooding

Although there is a clear need to study temperature‐sensitive sectors

such as agriculture and energy, it is also important to examine sectors

driven primarily by changing rainfall characteristics. Extreme rainfall in

particular is highly connected to temperature because the saturated

vapour pressure of the atmosphere increases at a rate of approxi-

mately 7% per 1°C, or more formally 7% K—the so‐called Clausius–

Clapeyron (CC) relation. This does not translate simply into the same

rate for rainfall intensity, which normally shows a sub‐CC rate of

change, for example, Sun, Solomon, Dai, and Portmann (2007). How-

ever, Lenderink and van Meijgaard (2008) found a ‘super‐CC’ rate of

up to 14% K for the most extreme precipitation events. It could

therefore be expected that processes driven by intense precipitation

events will increase in magnitude in a warmer climate. Among the

processes where rainfall intensity plays an important role is soil ero-

sion from agricultural land. Soil erosion is a major environmental

threat to the sustainability and productive capacity of agriculture,

with global estimates of around 10 million hectares of cropland being

lost to erosion annually (Pimentel, 2006; Yang, Kanae, Oki, Koike, &

Musiake, 2003) at a rate ~20 times that of soil formation (Govers,

Merckx, van Wesemael, & van Oost, 2017). Although these ‘on‐site’

impacts of soil erosion tend to be most prevalent in the (sub) tropics,

more temperate regions experience greater problems from the ‘off‐

site’ impacts (Mullan, Favis‐Mortlock, & Fealy, 2012). These impacts

relate to the damage caused by soil leaving the field, including sedi-

ment and associated nutrients discharging into nearby streams and

rivers. This reduces water quality through (a) the build‐up of fine sed-

iment in gravel‐bedded rivers, reducing breeding sites for salmonid

species; and (b) the runoff of nitrates and transport of sediments with

adsorbed phosphates into water bodies promoting algal bloom and

eutrophication. The off‐site impacts of soil erosion also affect people

in a more direct way through ‘muddy flooding’ (Boardman, 2010). The

term muddy flooding does not have any precise definition, but is gen-

erally used to describe the mix of runoff and sediment generated on

bare or partially vegetated agricultural fields following heavy and/or

prolonged rainfall that results in downslope damage to property,

roads, and watercourses (Boardman, 2010). This is particularly prob-

lematic in the loess belt of western and central Europe (Boardman,

2010; Boardman, Ligneau, De Roo, & Vandaele, 1994; Boardman,

Verstraeten, & Bielders, 2006; Evrard et al., 2010) where silty soils

are easily detached and arable crops are sown during times of most

intense rainfall. The economic costs of muddy flooding can be consid-

erable, with estimates in central Belgium of up to 16.5 M€ yr−1 in

damages to private householders and up to 122 M€ y−1 to public

infrastructure (Evrard, Persoons, Vandaele, & van Wesemael, 2007).

Several studies have shown that soil erosion and muddy flooding

problems could increase under a changing climate (see Mullan,

Favis‐Mortlock, and Fealy (2012) and Li and Fang (2016) for exam-

ples). These studies typically employ a soil erosion model in
conjunction with future climate scenarios derived from climate

models. Given the need for studies examining the varying impacts

from 1.5 versus s 2°C warming, this study has two aims: (a) to exam-

ine whether a statistically significant difference exists between

present‐day and future rates of muddy flooding; and (b) to examine

whether a statistically significant difference exists between soil ero-

sion and muddy flooding at a GMTI of 1.5 versus 2°C. The chosen

study site is in the Belgian loess belt—chosen because it is a region

where muddy flooding occurs regularly and incurs considerable

expense (see above).
2 | METHODS

2.1 | Study area

The Belgian loess belt is a ~9,000 km2 plateau with a relatively low

mean altitude of 115 m (Figure 1). Based on instrumental climate data

for the reference period 1981 to 2010 from Uccle, near Brussels, min-

imum temperatures are 7°C and maximum temperatures are 15°C (as

an annual average), whereas precipitation is 769 mm (with a standard

deviation of 169 mm). Rainfall is relatively constant throughout the

year, though there is a slight peak in rainfall erositivity from late spring

through to early autumn (Verstraeten et al., 2006). Soils are largely

loess‐derived Haplic Luvisols comprising ~80% silt (World Reference

Base, 2014). Arable crops dominate the land cover, with ~65% cover-

age (Statistics Belgium, 2006). The main crops are spring‐sown

cereals, industrial and fodder crops including sugar beet, maize, oil-

seed rape, chicory, and potatoes (Evrard, Persoons, et al., 2007).

Farmers are encouraged to sow cover crops such as phacelia and mus-

tard during the dormant late spring and early summer months to pro-

tect the soil whereas summer crops establish (Bielders, Ramelot, &

Persoons, 2003).

The site selected for modelling is the Kluiskapel hillslope, located

in the 200 km2 Melsterbeek catchment in Belgium's Limburg prov-

ince. It is important to point out that cultivated hillslopes are just

one of the two major contributing areas to muddy flooding in the

Belgian loess belt—the other being dry zero‐order valleys where run-

off and sediment transport are concentrated in the thalweg (Evrard,

Bielders, Vandaele, & van Wesemael, 2007). In this study, we have

focused only on the first kind—muddy flooding from cultivated

hillslopes. This is because (a) measured event‐based data are available

for the selected hillslope to help validate the model, but is lacking for

wider catchment areas; and (b) the time and computational efforts

involved in parameterising models for catchments is higher than

could be afforded under the remit of this case study. The area has

been impacted by several muddy floods in recent decades, leading

to the implementation of a number of mitigation measures to reduce

the problem (Evrard, Bielders, et al., 2007). As determined from a

10 m digital elevation model (DEM) of the site, the slope is 340 m

long and 310 m wide, with elevation ranging from 80 to 95 m.a.s.l.

and an average steepness of 4.2%. The soil type within the Kluiskapel

hillslope is typical of the European Loess Belt, with 81.5% silt and

4.5% organic matter (as determined from lab testing in this study).

The long‐term mean annual temperature at the nearby station of



FIGURE 1 The study area [Colour figure can be viewed at wileyonlinelibrary.com]
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Maastricht is 10°C, with a mean annual precipitation of 769 mm. As

determined by interviews with the farmer, a typical crop rotation at

the Kluiskapel involves maize followed by soybeans, with a cover

crop of grass. A grass buffer strip occupies the lowest lying 21 m of

the slope—designed to trap sediment and encourage infiltration of

runoff. Ploughing and planting occurs in mid‐spring, with crops har-

vested in mid‐autumn.
2.2 | Present‐day soil erosion modelling

The WEPP model (Flanagan & Nearing, 1995; v.2008.907) was

selected to simulate runoff, soil loss, deposition, and sediment yield

(all diagnostics of muddy flooding) for both observed and future cli-

matic conditions. Sediment yield is particularly important because this

is the soil that leaves the hillslope and enters the surrounding natural

http://wileyonlinelibrary.com
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and built environment. The WEPP is a physically‐based, continuous

simulation model that simulates hydrology, water balance, plant

growth, soil and, erosion at field, hillslope and watershed scales.

WEPP was selected because it is the most commonly used model

for climate change‐soil erosion studies (see introduction) and is used

here to simulate ‘present‐day’ and future rates of soil erosion and

muddy flooding at Kluiskapel hillslope. WEPP requires four input

parameter files representing slope, soil, land management, and

climate.

2.2.1 | Slope

A slope profile for Kluiskapel hillslope was developed by extracting

length and elevation data from a 10 m resolution DEM based on air-

borne laser scanning for the area. A higher resolution DEM would

have been ideal, but Zhang, Chang, and Wu (2008) showed that a

10 m Light detection and ranging (LiDAR)‐derived DEM generated

realistic field boundaries, stream networks and hillslopes, and closely

matched observed runoff and erosion rates across two small forested

catchments in the USA.

2.2.2 | Soil

A soil auger was used to extract 15 cm bulk soil samples to a total

depth of 75 cm (i.e., five samples deep). This sampling was undertaken

at 18 locations, evenly distributed between the top and bottom of the

slope, making a total of 90 soil samples. Lab analysis was then con-

ducted on soil texture and organic matter (OM). Effective hydraulic

conductivity, critical shear, and erodibility values were calculated using

equations from the WEPP user manual (Flanagan & Livingston, 1995).

The soil properties are shown in Table 1.

2.2.3 | Land management

Plant growth parameters for the necessary crops were taken directly

from the WEPP plant database (Flanagan & Nearing, 1995). The

selected crops were maize 1 year and soybeans the next—the crops

grown in the selected field area. Dates for management operations

were obtained directly from the farmer. The management file was split

into two sections along two different of the same hillslope. The man-

agement file for the upper majority of the slope was parameterised

based on the crops outlined above, whereas the bottom 21 m of the

slope was parameterised as a strip of permanent grass, with values
TABLE 1 Measured and estimated* input parameters representing soil c

Depth (cm) Clay % Silt % Sand % OM % Kr (s/m

0–15 11.2 80.5 8.3 4.5 0.021

16–30 10.9 79.9 9.1 4.2 0.022

31–45 10.5 80.8 8.7 4.2 0.023

46–60 10.5 81.2 8.3 4.8 0.023

61–75 10.2 80.9 8.8 4.8 0.024

Mean 10.7 80.7 8.6 4.5 0.023

Note. Kr = rill erodibility; Ki = interrill erodibility; Tc = baseline critical flow hyd
taken from the WEPP database to represent this land cover. This sec-

tion of land management represents the 21 m grass buffer strip

planted at the base of the Kluiskapel hillslope to act as a mitigation

measure for muddy floods from the slope. The key details of the man-

agement files in WEPP are shown inTable 2. Crop rotations and dates

of farming operations were left unchanged for future WEPP simula-

tions. The reasons for omitting these important indirect effects of cli-

mate change are given in Section 4.5.
2.2.4 | Climate

Climate data in WEPP are simulated using the weather generator cli-

mate generator (CLIGEN; Nicks, Lane, & Gander, 1995). The CLIGEN

produces long sequences of daily synthetic weather series based on

the statistical properties of the observed climate. CLIGEN requires a

series of input parameters as shown inTable 3. The most important cli-

matic input variables are those relating to precipitation. The CLIGEN

requires monthly means, standard deviations, and skewness values

for mean precipitation per wet day. Also required to calculate

sequences of wet and dry days are the transitional probabilities of a

wet day following a wet day (Pw/w) and a wet day following a dry

day (Pw/d). Finally, monthly maximum half hour precipitation values

(MX.5P) and time to peak rainfall intensity values (Time Pk) are

required to calculate rainfall intensity. These values are all calculated

on a monthly basis with the exception of the 12 Time Pk values.

Instead, the Time Pk values describe an empirical probability distribu-

tion of the time to peak rainfall intensity as a fraction of storm dura-

tion (Yu, 2003). The full list of the CLIGEN input parameters is

shown in Table 3.

Climate data were obtained from the Royal Netherlands Meteoro-

logical Institute (KNMI) Climate Explorer site, which archives a range

of freely available climate datasets. Daily series of maximum and min-

imum temperatures and precipitation from 1950 to 2016 were taken

from the E‐OBS high‐resolution (0.25°) gridded dataset of daily cli-

mate over Europe (Haylock et al., 2008) using coordinates for the grid

overlying the field location (as shown in Figure 1). Subhourly precipita-

tion data from 2004 to 2014 were taken from Niel‐bij‐Sint‐Truiden

(13 km from Kluiskapel hillslope) to calculate MX.5P and Time Pk. All

other variables—wind speed and direction, relative humidity (1906–

2014), and solar radiation (1965–2014) were taken from Maastricht

in the Netherlands. Maastricht is just 29 km from Kluiskapel hillslope

and with no major changes in topography or distance from the coast,

it could be expected that both areas have very similar climates. The
onditions at Kluiskapel hillslope

)* Ki (kg s/m4)* Τc (n/m2)* Kb (mm h−1)* Albedo*

5,434,397 3.5 1.62 0.10

5,450,501 3.5 1.70 0.11

5,475,242 3.5 1.66 0.11

5,477,699 3.5 1.63 0.09

5,489,447 3.5 1.67 0.09

5,465,457 3.5 1.66 0.10

raulic shear; Kb = baseline effective hydraulic conductivity



TABLE 2 Management details for Kluiskapel hillslope

Year Operation Crop Management dates

1 Initial conditions
Tillage
Tillage
Plant
Harvest
Tillage
Plant

Ryegrass cover crop
Chisel plow 30 cm depth
Harrow‐roller 5 cm depth
Corn (maize)
Corn (maize)
Chisel plow 30 cm depth
Ryegrass

1 Jan
1 Mar
15 Apr
15 Apr
15 Oct
15 Oct
15 Oct

2 Tillage
Tillage
Plant
Harvest
Tillage
Plant

Chisel plow 30 cm depth
Harrow‐roller 5 cm depth
Soybeans
Soybeans
Chisel plow 30 cm depth
Ryegrass

1 Mar
15 Apr
15 Apr
15 Oct
15 Oct
15 Oct

TABLE 3 Input parameters required to run the weather generator
CLIGEN.

Parameter Unit 1 2 3 4 5 6 7 8 9 10 11 12

1 Mean P in Mean daily precipitation per wet day for each
month

2 SD P in Standard deviation of Mean P per month

3 Skew P in Skewness of Mean P per month

4 Pw/w % Probability of a wet day following a wet day for
each month

5 Pw/d % Probability of a wet day following a dry day for
each month

6 TMAX AV °F Mean maximum temperature for each month

7 TMIN AV °F Mean minimum temperature for each month

8 SD TMAX °F Standard deviation of TMAX AV per month

9 SD TMIN °F Standard deviation of TMIN AV per month

10 SOL.RAD L/da Mean solar radiation for each month

11 SD SOL L/da Standard deviation of SOL RAD per month

12 MX.5P in Mean maximum half hourly precipitation for
each month

13 DEW PT °F Mean dew point temperature for each month

14 Time Pk b Time to peak rainfall intensity

15 % DIR c % Mean percent wind from 1 of 16 compass
directions for each month

16 MEAN m/s−1 Mean wind speed associated with percent DIR
per month

17 SD m/s−1 Standard deviation of MEAN per month

18 SKEW m/s−1 Skewness of MEAN per month

19 CALM % Mean percent of days with mean wind speed
<1 ms−1 per month

Note. CLIGEN: climate generator.
aL/d = Langleys/day.
bFor all parameters except 14, rows 1–19 represent the 12 calendar
months shown along the columns.
cPercent DIR refers to 16 different compass directions for wind direction.
These are N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W,
WNW, NW, and NNW. Lines 15–18 therefore appear 16 times in a
CLIGEN parameter file, meaning there are a total of 948 input values to
CLIGEN (79 lines × 12).
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relative humidity data were converted to dew point temperature using

Equation 1 (Alduchov & Eskridge, 1996). A summary of the climatic

datasets is presented in Table 4, along with details on which the

CLIGEN variables these datasets were applied as follows:
TD ¼ 243:04 LN
RH
100

� �
þ 17:625*T

243:04þ T

� �� �
= 17:625 − LN

RH
100

� ��

−
17:625*T
243:04þ T

� ��
;

(1)

where TD = dew point temperature, RH = relative humidity; T = mean

temperature, and LN = natural logarithm.

The CLIGEN was run for 60 years in order to drive WEPP for a

60‐year simulation representing present‐day baseline conditions. This

duration was chosen to allow for 30 cycles of the maize‐soybeans

two‐year crop rotation.

2.2.5 | Model validation

WEPP was validated for the study hillslope based on volumetric calcu-

lations made on sedimentation zones following a muddy flooding

event on July 29, 2014. The storm that caused the muddy floods

was spatially heterogeneous, with daily rainfall amounts of 31–

80 mm measured at nearby rain gauges. The mean of all simulated

present‐day muddy flood events between 31 and 80 mm was there-

fore compared with the measured sedimentation to provide some

indication of model performance. For further details on the event,

see Mullan, Vandaele, Boardman, Meneely, and Crossley (2016).

2.3 | Future soil erosion modelling

2.3.1 | Obtaining 1.5 and 2°C GMTI scenarios

Present‐day climatic conditions in CLIGEN were modified to represent

future climatic conditions that correspond with (a) a 1.5°C GMTI; and

(b) a 2°C GMTI. Changes in monthly‐mean TMIN, TMAX, and PPT

under these warmer climates were identified using projections from

the CMIP5 ensemble (Taylor, Stouffer, & Meehl, 2012). For each

model run, the 20‐year periods during which GMTI reached 1.5 and

2°C were identified using a sliding window approach, in which running

20‐year GMTI was evaluated relative to the 1986 to 2005 baseline cli-

matology. Averaged across the HadCRUT4 (Morice, Kennedy, Rayner,

& Jones, 2012), Berkeley Earth Surface Temperature (Rohde et al.,

2013), and Goddard Institute for Space Studies (Hansen, Ruedy, Sato,

& Lo, 2010) observational datasets, the 1986 to 2005 period was

already 0.67°C warmer than preindustrial (defined as 1880–1899);

GMTIs of 1.5 and 2°C were therefore identified once the models' run-

ning 20‐year climates had warmed by a further 0.83 and 1.33°C,

respectively. TMIN, TMAX, and PPT fields were extracted for these

target climate periods, and the baseline (1986–2005), before being

averaged in space over the region bounded by 5–7°E and 50–52°N.

In total, this process generated 113 future scenarios with a GMTI of

1.5°C and 93 scenarios with a GMTI of 2°C.

2.3.2 | Spatial downscaling

Future climate scenarios were downscaled using a two‐step approach,

which first involves spatially downscaling monthly climate scenarios

from GCM/ESM grid box scale to the same scale as the observed cli-

mate, followed by temporal downscaling of monthly scenarios to daily



TABLE 5 How CLIGEN parameters were modified to account for
changed climatic conditions. Each case of a variable versus another
variable refers to developing linear relationships between those vari-
ables using the 1986 to 2005 historical data on a monthly basis

CLIGEN
parameter How was it modified?

Mean P Equations 3 and 4

SD P Mean P vs SD P—forced with future Mean P

SKEW P Q99 vs SKEW P—forced with future Q99 (itself calculated
based on linear relationships between historical Q99 and
SD P and forced with future SD P)

P(W/W) See next paragraph

P(W/D) See next paragraph

TMAX AV Adjusted directly from future TMAX AV

TMIN AV Adjusted directly from future TMIN AV

SD TMAX TMAX AV vs SD TMAX—forced with future TMAX AV

SD TMIN TMAX AV vs SD TMAX—forced with future TMAX AV

SOL.RAD TMAX AV vs SOL.RAD—forced with future TMAX AV

SD.SOL TMAX AV vs SD.SOL—forced with future TMAX AV

MX.5P TMIN AV vs SOL.RAD (exponential function)— forced with
future TMIN AV

DEW PT TMAX AV vs DEW PT—forced with future TMAX AV

TABLE 4 Details on climate data downloaded for Maastricht climate station, as used to parameterise CLIGEN

Variable
downloaded

Temporal
resolution

Time
period Station/grid

CLIGEN variables
applied to

Maximum temperature Daily 1906–2014 E‐OBS TMAX AV; SD TMAX

Minimum temperature Daily 1906–2014 E‐OBS TMIN AV; SD TMIN

Precipitation Daily

Sub‐hourly

1957–2014

1957–2014

E‐OBS

Niel‐bij‐Sint‐Truiden

Mean P; SD P; Skew P; P (W/W); P (W/D)
MX.5P; Time Pk

Solar radiation Daily 1965–2014 Maastricht SOL.RAD; SD SOL

Relative humidity Daily 1906–2014 Maastricht DEW PT

Wind speed Daily 1906–2014 Maastricht MEAN; SD; SKEW; CALM

Wind Direction Daily 1906–2014 Maastricht % DIR

Note. CLIGEN: climate generator.
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—necessary for perturbing CLIGEN to represent future climatic condi-

tions in WEPP. This approach has been applied in various hydrological

and soil erosion modelling studies (e.g., Zhang, 2005; Zhang, Chen,

Garbrecht, & Brissette, 2012; Chen, Zhang, & Brissette, 2014; Mullan,

Vandaele, et al., 2016; Mullan et al., 2017). Spatial downscaling was

applied using quantile mapping to bias correct the GCM/ESM data.

On a monthly basis, observed TMAX, TMIN, or PPT (1986–2005)

was plotted against the ranked quantiles of the hindcast period

(1986–2005) GCM/ESM series using QQ‐plots. In the case of TMAX

and TMIN, a univariate transfer function was then fitted to each plot.

In the case of PPT, a third‐order polynomial function was applied to

those values within the range of observations, whereas a univariate

fit was applied to those outside this range. A similar approach was

adopted in Zhang et al. (2012), Zhang (2016) and Mullan, Chen, and

Zhang (2016). Calibrated transfer functions were then applied to the

future 20‐year GCM/ESM timeslice.

2.3.3 | Temporal downscaling

The spatially downscaled climate scenarios needed to be temporally

downscaled to daily scenarios to drive CLIGEN. In theory, any of the

948 input values in Table 3 can be modified to represent changed cli-

matic conditions. Table 5 shows that CLIGEN parameters were modi-

fied and how they were modified. Transitional probabilities (Pw/w and

Pw/d) were calculated by first splitting historical precipitation into

three groups—wet months, dry months, and all months. Wet months

were calculated as those where monthly precipitation totals equal or

exceed the 90th percentile of the mean monthly precipitation totals

over the entire 1986 to 2005 period for each respective month. Dry

months were classified as the months that do not fulfil this criterion.

Linear relationships were then developed between historical total

monthly precipitation and the transitional probabilities for each of

these three groups, with future transitional probabilities, then calcu-

lated by forcing these transfer functions with future monthly precipi-

tation totals. In order to preserve the projected mean monthly

precipitation totals (Rm) following the adjustment of transitional prob-

abilities, Mean P was calculated using the approach of Zhang, Nearing,

Garbrecht, and Steiner (2004) and Zhang et al. (2012). First, the

unconditional probability of precipitation occurrence (π) was calcu-

lated as follows:
π ¼ Pw=d

1þ Pw
d

− Pw=d
; (2)

the new Mean P is then calculated using:

Mean P ¼ Rm
Ndπ

(3)

whereMean P and Rm are as described before, and Ndπ is the expected

number of wet days in the month.

2.3.4 | Running WEPP under future scenarios

WEPPwas run for the future by holding the slope, soil, andmanagement

input files constant from the present‐day simulation and perturbing the

climate file under the various downscaled climate scenarios for 60‐year

time periods, as was the case for present‐day baselinemodelling. Future

muddy flooding diagnostics outputted by WEPP include mean annual



TABLE 6 Present‐day baseline and future simulated mean annual
rates of muddy flooding diagnostics

Diagnostic/
scenario

Precipitation
(mm)

Runoff
(mm)

Soil loss
(t ha−1)

Sediment yield
(t ha−1)

Baseline 735 5.4 6.9 2.3

1.5°C 773 6.0 7.6 2.5

Change +5% +11% +10% +10%

2°C 779 6.6 8.0 2.8

Change +6% +21% +16% +22%
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precipitation, mean annual runoff, mean annual soil loss, and mean

annual sediment yield. These statistics are taken as an annual average

across the entire hillslope, with the exception of sediment yield—this

is the amount of sediment that leaves the hillslope and enters the wider

environment. Other analysed outputs include mean maximum monthly

precipitation—the mean (across all years of the record) of the highest

daily precipitation amount for each respective month. For simplicity,

this is hereafter referred to as rainfall intensity. Return periods (RP) for

all simulated sediment yield and rainfall intensity events under

present‐day conditions and under the mean and maximum of future

1.5 and 2°C scenarios were computed by using:

RP ¼ nþ 1
m

; (4)

where n represents the number of years in the record andm is the num-

ber of recorded occurrences of each event.

Testing for statistically significant differences in muddy flooding

metrics between (a) observed and 1.5°C scenarios, (b) observed and

2°C scenarios, and (c) 1.5 and 2°C scenarios, was conducted using

the Mann–Whitney U tests. Data were first tested for normality using

the Anderson–Darling tests and were found to be not normally distrib-

uted, meaning nonparametric statistical testing needed to be com-

pleted. The Mann–Whitney U tests compare whether two samples

means come from the same population. Tests were conducted on

annual means of precipitation and sediment yield across all 1.5°C

(n = 113) and 2°C scenarios (n = 93), monthly means and maxima of

all observed, 1.5 and 2°C scenarios (n = 12 for all), and the return

period means and maxima of all observed, 1.5 and 2°C scenarios

(n = 39 for all). Results are reported in Table 7 in the form of p values

less than 0.05 (statistically significant at > 95% confidence level), and

less than 0.005 (statistically significant at > 99.5% confidence level).
3 | RESULTS

3.1 | Model performance

The measured sedimentation zone following a muddy flood event on

July 29, 2014 at Kluiskapel hillslope was 12 t ha−1, which compares

reasonably closely to the simulated mean of soil eroded for present‐

day events of a similar magnitude, which is 16.2 t ha−1. Because not

all eroded soil would be deposited in the sedimentation zone, the mea-

sured figure of 12 t ha−1 should represent an underestimate of the

total amount of soil eroded (Mullan, Vandaele, et al., 2016), giving fur-

ther confidence to simulated rates that are ~33% higher. Of course, it

is recognised that validation based on a single event is less than ideal,

but is much better than having nothing to compare simulations with.

3.2 | Mean annual changes

Table 6 shows the absolute and relative changes in mean annual

muddy flooding diagnostics across all future 1.5 and 2°C GMTI climate

scenarios compared with the present‐day baseline. Increases in all

muddy flooding diagnostics are projected when the mean of all 2

and 1.5°C scenarios are compared with the present‐day baseline, with
larger increases in 2°C scenarios for all diagnostics. Figure 2 shows the

full distribution of projected changes in the same diagnostics for

Kluiskapel hillslope under the same scenarios. The median across all

scenarios for both 1.5 and 2°C is very close to the present‐day base-

line for runoff, soil loss, and sediment yield, but is notably higher than

the baseline in the case of precipitation. For runoff, soil loss, and sed-

iment yield, the upper extremes are higher for 1.5°C scenarios com-

pared with 2°C scenarios. As shown in Table 7, there is no

statistically significant difference between mean annual changes in

muddy flooding metrics for 1.5 versus 2°C.
3.3 | Seasonal changes

Figure 3 shows projected changes in rainfall totals, rainfall intensity,

and sediment yield for each month of the year across all 1.5 and 2°C

scenarios, with planting and harvest dates also shown. In terms of sed-

iment yield, the model mean is higher than the baseline during June,

July, and October, and is lower during May, August, and September.

The model mean for rainfall totals is higher than the baseline every

month of the year, except for June in the case of 1.5°C, and June

and September for 2°C. The model mean for rainfall intensity is typi-

cally higher than the baseline during most of the year under both sce-

narios, except for August and September. For all three muddy flooding

diagnostics, the extreme increases occur during the summer months—

particularly in July. As shown in Table 7, observed versus future

monthly muddy flooding metrics are only statistically significant for

the maximum future scenarios—not the means.
3.4 | Muddy flood events

Figure 4 shows return periods for rainfall during individual muddy

flooding events and sediment yield during muddy flood events for the

present‐day baseline, as well as themean andmaximumof all 1.5 versus

2°C scenarios. Themean of all future scenarios for both rainfall and sed-

iment yield reveals an increase in the magnitude of events for a given

return period up to 1 in 30 years, but it shows lower magnitude

responses for the longest return period of 1 in 61 years. The maximum

of all future scenarios reveals markedly higher magnitude events for all

given return periods. For example, the 1 in 61 year event for sediment

yield for the present‐day baseline is 40 t/ha, compared with 96 t/ha

for the maximum 1.5°C scenario and 60 t/ha for the maximum 2°C sce-

nario. The number of muddy flood events is also projected to increase—

from 3.8 events per year in the present‐day to 4.4 and 4.8 events per

year under the mean of all 1.5 versus 2°C scenarios respectively. As



FIGURE 2 Full distribution of future annual simulated rates of muddy flooding diagnostics for all 1.5 and 2°C scenarios compared with present‐
day baseline rates (red) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Results from Mann–Whitney U tests conducted indepen-
dently on muddy flooding metrics for present‐day (OBS) versus 1.5°C
scenarios, OBS versus 2°C scenarios, and 1.5 versus 2°C scenarios.
Dashes (—) represent no statistically significant changes

Diagnostic/
scenario

Precipitation Sediment yield

OBS vs.
1.5°C

OBS vs.
2°C

1.5
vs.
2°C

OBS vs.
1.5 °C

OBS vs.
2°C

1.5
vs.
2°C

Annual means N/A N/A — N/A N/A —

Monthly
means

— — — — — —

Monthly
maxima

p < 0.005 p < 0.005 — p < 0.005 p < 0.005 —

Return period
means

p < 0.05 p < 0.05 — p < 0.05 p < 0.05 —

Return period
maxima

p < 0.005 p < 0.005 — p < 0.005 p < 0.005 —
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shown inTable 7, differences between observed return periods for pre-

cipitation and sediment yield versus return periods for the mean of 1.5

and 2°C scenarios, respectively, are both statistically significant at a

95% confidence level. When observed return periods are compared

with return periods for the maximum of the two sets of future scenarios

independently, statistically significant differences at a 99.5% confi-

dence level are noted.
4 | DISCUSSION

4.1 | Present‐day muddy flooding

Present‐day muddy flood events are concentrated in August and

September because of two related factors: (a) the detachment of soil

particles between the widely spaced rows of maize plants (Vogel,

http://wileyonlinelibrary.com


FIGURE 3 Full distribution of future monthly simulated rates of muddy flooding diagnostics for all 1.5 and 2°C scenarios compared with present‐
day baseline rates (red) [Colour figure can be viewed at wileyonlinelibrary.com]
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Deumlich, & Kaupenjohann, 2016) from planting in mid‐April to har-

vest in mid‐October; and (b) maximum rainfall intensity during

August and September. Present‐day monthly rainfall totals peak in

mid‐winter and early summer, so it is clear that rainfall intensity

rather than rainfall totals exerts a dominant control on muddy

flooding in this region. This is unsurprising, because soil erosion

and muddy flood events in Limburg are triggered by the detachment

of silty soils following intense short‐lived thunderstorms (Evrard,

Bielders, et al., 2007). Intense rainfall through raindrop impact initi-

ates processes such as slaking of aggregates, microcracking, and

physicochemical dispersion (Bresson & Boiffin, 1990), leading to the

formation of a surface crust by local rearrangement of particles,

and then a depositional crust when particles are transported and

deposited further away (Valentin & Bresson, 1992). Surface crusts
greatly reduce the infiltration capacity as well as soil surface rough-

ness—which, along with vegetation cover—are the most important

field factors for the generation of runoff and erosion (Le Bissonnais,

1996). It is therefore unsurprising that the highest rainfall intensity

during August and September produces virtually all of the annual

sediment yield during these same 2 months.
4.2 | Future muddy flooding

As shown in the results section, the evidence for future increases in

soil erosion and muddy flooding is mixed. It is generally only the max-

imum of the future scenarios, which shows statistically significant

changes from the present‐day, owing to the extreme nature of the

http://wileyonlinelibrary.com


FIGURE 4 Return periods for rainfall during muddy flood events (left panels) and sediment yield during muddy flood events (right panels) for the
present‐day baseline, as well as the mean and maximum of all 1.5 and 2°C future scenarios [Colour figure can be viewed at wileyonlinelibrary.com]
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future scenarios with highest rainfall totals and intensity. The main

reason we see little statistically significant change in the mean of the

future scenarios is because (a) it has been assumed that land use

remains unchanged; and (b) the magnitude and timing of rainfall inten-

sity is not markedly different from the present‐day. Peak sediment

yield is projected to remain in August in the future, but is very closely

followed by July—a month with very little sediment yield at the

present‐day. Overall, the projections in Figure 3 show an earlier and

longer muddy flooding season in the future. The reason for this shift

in timing is simple—it reflects the changing seasonality of rainfall

intensity, which clearly remains the dominant external climatic control

on future muddy flooding above monthly rainfall totals. We can see
this influence clearly in Figure 5, where the correlation between sedi-

ment yield and rainfall intensity is much stronger than the correlation

between sediment yield and rainfall totals, both at the present‐day

and in the future. This was shown to be the case for the same hillslope

in Mullan, Vandaele, et al. (2016). Unlike present‐day muddy flooding,

the earlier and extended future muddy flooding season means that

sediment yield would likely be generated more extensively across

the width of the field, both between and within rows of maize. Since

maize takes ~8–10 weeks to establish, a sufficient protective cover

to the soil to prevent detachment following planting (Boardman,

2010; though this may change in the future with declining maize

yields,e.g., Challinor, Koehler, Ramirez‐Villegas, Whitfield, and Das

http://wileyonlinelibrary.com


FIGURE 5 Correlation between sediment yield and rainfall totals (left panels) and sediment yield and rainfall intensity (right panels) during the six
key months for muddy flooding (April–September). Panels labelled Mean refer to the mean of all 1.5 or 2°C scenarios, whereas Max represents the
maximum of these scenarios
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(2016)), it is very feasible that much of the muddy flooding from May–

July would be generated from rill formation across rows of maize

plants, whereas muddy flooding later in the year would follow

present‐day patterns between rows (Vogel et al., 2016). The longer

future muddy flooding season also helps explain why the magnitude

of rainfall amounts and sediment yield during muddy flood events

for the model mean are projected to increase for return periods up

to 30 years, but decrease for the longest return period of 61 years.

This reflects the fact that more muddy flood events are projected in

the future over a longer time period, but that no single month will pro-

duce rainfall intensity and consequently sediment yield as high as

August does at the present‐day. It should be pointed out, however,

that the maximum future scenario projects large increases in the mag-

nitude of events for all return periods, illustrating the potential for

larger‐scale muddy flood events in the future.
4.3 | Difference between 1.5 and 2°C

The difference in muddy flooding diagnostics for 1.5 versus 2°C

GMTI is minimal for most metrics analysed, with no statistically sig-

nificant differences for any metrics (Table 7). Both the mean and

median of all future scenarios lie near present‐day baseline rates

for all diagnostics. This simply reflects an averaging of many future

climate scenarios incorporating both higher and lower rainfall rates

than present day. What is most interesting is the change in

extremes, where very large increases in rainfall, runoff, soil loss,

and sediment yield are projected for both 1.5 and 2°C future scenar-

ios—but most dramatically for the former. With the promotion of a

more vigorous hydrological cycle under increased warming

(Hartmann et al., 2013), it may seem surprising that the extra 0.5°C

warming under 2°C scenarios fails to result in consistently higher

magnitude muddy flooding than 1.5°C scenarios. The most likely

explanation relates to the timing of changing rainfall characteristics

under 1.5 versus 2°C scenarios. Figure 3 reveals higher rainfall totals

and intensity, and consequently higher sediment yield, during the

winter and spring months for 2°C scenarios—both in terms of the

mean and extremes. Crucially though, it is the summer months when

the damage is done—and this is when rainfall totals and intensity are

projected to be higher under 1.5°C scenarios versus 2°C scenarios.

This could possibly relate to a tendency for many climate models

to project wetter winters and drier summers with increased

warming—a trend clearly seen in recent decades in midlatitude con-

tinental regions (Trenberth & Shea, 2005). Alternatively, it could

relate to climate models capturing complex changes in atmospheric

circulation and a shift in the storm track, resulting in a high degree

of spatial and temporal variability in rainfall characteristics

(Trenberth, 2011). Regardless of the causal mechanisms, what is

clear is that the timing of rainfall intensity is the most important fac-

tor in terms of whether 1.5 or 2°C scenarios impact soil erosion and

muddy flooding more. The role of timing with respect to rainfall

characteristics and land cover is a well‐known cause of soil erosion

and muddy flooding and has been reported previously for the same

hillslope (Mullan, Vandaele, et al., 2016). For a more in‐depth
discussion of timing with respect to soil erosion, see Boardman and

Favis‐Mortlock (2014), and Burt, Boardman, Foster, and Howden

(2015).
4.4 | Implications for future mitigation

Uncertaintywas reported byMoser (2010) as one of the key reasons for

inaction with climate adaptation and mitigation. Because progress has

been made with mitigating muddy flooding in Flanders since the adop-

tion of the Erosion Decree in 2001, it is important that decision‐makers

are not complacent about the new challenges imposed by climate

change and that mitigation measures are continually adapted to make

them resilient to climate change. Given the uncertainty imposed by

the many scenarios presented here (206), low‐regret, flexible, and ‘soft

solutions’ (Wilby & Dessai, 2010) are best placed as adaptation options.

This may include widening grass buffer strips and grass waterways or

increasing the capacity of retention ponds to accommodate increased

runoff and sediment yield. Such measures have already been shown to

be successful and cost‐effective within existing policy structures (e.g.,

Evrard, Persoons, et al., 2007), so adapting these mitigation measures

seems the most pragmatic way to ensure muddy flooding mitigation

remains resilient to future climate change.
4.5 | Limitations and future research

Crop rotations and dates of farming operations were left unchanged

for future WEPP simulations. However, it is acknowledged that to

project the full range of impacts of climate change on soil erosion

and muddy flooding, changes in land cover and farming dates need

to be accounted for. In fact, changing land use has been shown in

many instances to be the dominant factor in driving increases in soil

erosion (e.g., Boardman & Vandaele, 2015; Mullan, 2013a, 2013b;

Mullan, Favis‐Mortlock, & Fealy, 2012; O'Neal, Nearing, Vining,

Southworth, & Pfeifer, 2005). This is unsurprising given that different

crops have varying susceptibilities to muddy flooding, owing to differ-

ences in time taken to establish crop cover, canopy height, plant spac-

ing within rows etc. Different crops and modified dates of planting

and/or harvest also have the potential to modify the soil surface con-

ditions, for example, timing of crust development—which is fundamen-

tal to the timing and magnitude of muddy flooding. For example,

within the Belgian loess belt, Evrard, Persoons, et al. (2007) found that

rainfall amounts of 46 ± 20 mm are needed to trigger muddy floods

from July–September, but only 25 ± 12 mm is needed from May–

June. Some previous studies (e.g., O'Neal et al., 2005; Zhang &

Nearing, 2005; Mullan, Favis‐Mortlock, & Fealy, 2012; Mullan,

2013a, 2013b) have used scenarios‐based approaches to changing

crop types, with some also modifying dates of planting and/or harvest

based on changes in temperature and growing season. The reason we

did not account for these changes is because of the associated prob-

lems, including the dependence on wider socioeconomic factors such

as, change in demographics, and economic subsidies as well as the fact

that changes in farming dates depend on other complex physical (e.g.,

field conditions driven by temperature, rainfall, evapotranspiration,

and drainage) and socioeconomic (e.g., availability of labour, and
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cultural norms) factors. Future studies (whose aim encompasses the

direct and indirect impacts of climate change on muddy flooding)

should explore novel ways to ensure crop type and dates of farming

operation are examined along with the direct impacts of climate

change. Another limitation with this study is the scale. Projected rates

of muddy flooding have been made for one hillslope in Flanders.

Larger projects would need to target whole catchments rather than

individual hillslopes, especially considering the hydrological connectiv-

ity of these landscapes (Boardman & Vandaele, 2015). The study also

fails to address the spatial patterns of sediment yield and the relative

contribution of sediment from rills, gullies, and interrill areas. Although

a wide number of climate scenarios where used here, the choice of

spatial and temporal downscaling techniques can considerably impact

the resultant projections (e.g., Mullan, Fealy, & Favis‐Mortlock, 2012).

Finally, the lack of measured data to validate modelled projections is a

limitation. Regular monitoring across hillslopes and catchments needs

to be conducted to construct databases to help more fully ascertain

the extent of the problem in the present day, as well as assist in model

development.
5 | CONCLUSIONS

• No statistically significant differences exist when any of the aver-

age annual or monthly metrics of soil erosion and muddy flooding

are compared between the present‐day and the mean for the two

sets of future scenarios.

• Statistically significant differences exist when present‐day return

periods are compared with return periods for the mean of both

sets of future scenarios, whereas statistical significance is also evi-

dent with present‐day versus all metrics for the maximum of the

two sets of future scenarios.

• Subtle changes in the seasonality of future muddy flooding are

projected, revealing an earlier and longer muddy flooding season

with more events spread across a longer period over the summer

months.

• No statistically significant differences exist when any of the aver-

age annual, monthly of event‐based metrics of soil erosion and

muddy flooding are compared between 1.5 and 2°C future

scenarios.

• Soil erosion and muddy flooding (as impacted directly by climatic

changes) are therefore not particularly sensitive to small changes

in GMTI—at least for this case study site. It is a changes in the

timing of rainfall characteristics that are fundamental—and these

do not always follow clear patterns with increased warming.

• Regardless of the magnitude of future warming, there is evidence

here to suggest changes in the magnitude and timing of muddy

flooding in the future could increase the scale of the problem.

Future studies that examine the indirect impact of changing crop

type and dates of farming operations are needed to more fully

investigate this problem. Regardless of this, it is clear that

decision‐makers should continually adapt muddy flooding mitiga-

tion measures within existing policy frameworks to ensure they

remain resilient to future climate change.
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