
Parallel computation using active self-assembly

Moya Chen • Doris Xin • Damien Woods

Published online: 6 July 2014

� Springer Science+Business Media Dordrecht 2014

Abstract We study the computational complexity of the

recently proposed nubots model of molecular-scale self-

assembly. The model generalises asynchronous cellular

automata to have non-local movement where large

assemblies of molecules can be moved around, analogous

to millions of molecular motors in animal muscle effecting

the rapid movement of macroscale arms and legs. We show

that nubots is capable of simulating Boolean circuits of

polylogarithmic depth and polynomial size, in only poly-

logarithmic expected time. In computational complexity

terms, we show that any problem from the complexity class

NC is solved in polylogarithmic expected time on nubots

that use a polynomial amount of workspace. Along the

way, we give fast parallel algorithms for a number of

problems including line growth, sorting, Boolean matrix

multiplication and space-bounded Turing machine simu-

lation, all using a constant number of nubot states

(monomer types). Circuit depth is a well-studied notion of

parallel time, and our result implies that nubots is a highly

parallel model of computation in a formal sense. Asyn-

chronous cellular automata are not capable of such paral-

lelism, and our result shows that adding a movement

primitive to such a model, to get the nubots model, dras-

tically increases parallel processing abilities.

Keywords Molecular robotics � Self-assembly �
Computational complexity

1 Introduction

We study the theory of molecular self-assembly, working

within the recently-introduced nubots model by Woods

et al. (2013). Do we really need another new model of self-

assembly? Consider the biological process of embryonic

development: a single cell growing into an organism of

astounding complexity. Throughout this active, fast and

robust process there is growth and movement. For exam-

ple, at an early stage in the development of the fruit fly

Drosophila, the embryo contains *6,000 large cells

arranged on its ellipsoid-shaped surface. Then, in just four

minutes, the embryo rapidly changes shape to become

invaginated, creating a large structure that becomes the

mesoderm, and ultimately muscle. How does this fast

rearrangement occur? A large fraction of these cells

undergo a rapid, synchronised and highly parallel rear-

rangement of their internal structure where, in each cell,

one end of the cell contracts and the other end expands.

This is achieved by a mechanism that seems to crucially

involve thousands of molecular-scale myosin motors

pulling and pushing the cellular cytoskeleton to quickly

effect this rearrangement (Martin et al. 2008). At an

abstract level one can imagine this as being analogous to

how millions of molecular motors in a muscle, each taking

a tiny step but acting in a highly parallel fashion, effect

rapid long-distance muscle contraction. This rapid parallel

movement, combined with the constraint of a fixed cellular

volume, as well as variations in the elasticity properties of

the cell membrane, can explain this key step in embryonic

morphogenesis. Indeed, molecular motors that together, in

Preliminary version appeared at The 19th International Conference on

DNA Computing and Molecular Programming (DNA 19).

M. Chen � D. Xin � D. Woods (&)

California Institute of Technology, Pasadena, CA, USA

e-mail: woods@caltech.edu

M. Chen

e-mail: mpchen@caltech.edu

D. Xin

e-mail: dorx@alumni.caltech.edu

123

Nat Comput (2015) 14:225–250

DOI 10.1007/s11047-014-9432-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-014-9432-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-014-9432-y&domain=pdf

parallel, produce macro-scale movement are a ubiquitous

phenomenon in biology.

We wish to understand, at a high level of abstraction, the

ultimate limitations and capabilities of such molecular

scale rearrangement and growth. We do this by studying

the computational power of a theoretical model that

includes these capabilities. As a first step towards such

understanding, we show in this paper that large numbers of

tiny motors (that can each pull or push a tiny amount)

coupled with local state changes on a grid, are sufficient to

quickly solve inherently parallelisable problems. This

result, described formally below in Sect. 1.2, demonstrates

that the nubots model is a highly parallel computer in a

computational complexity-theoretic sense.

Another motivation, and potential test-bed for our the-

oretical model and results, is the fabrication of active

molecular-scale structures. Examples include DNA-based

walkers, DNA origami that reconfigure, and simple struc-

tures called molecular motors (Yurke et al. 2000) that

transition between a small number of discrete states (see

Woods et al. 2013 for references). In these systems the

interplay between structure and dynamics leads to behav-

iours and capabilities that are not seen in static structures,

nor in other unstructured but active, well-mixed chemical

reaction network type systems. Our theoretical results here,

and those in Woods et al. (2013), provide a sound basis to

motivate the experimental investigation of large-scale

active DNA nanostructures.

There are a number of theoretical models of molecular-

scale algorithmic self-assembly processes (Patitz 2012).

For example, the abstract Tile Assembly Model, where

individual square DNA tiles attach to a growing assembly

lattice one at a time (Winfree 1998; Rothemund and

Winfree 2000; Doty et al. 2012), the two-handed (hierar-

chical) model where large multi-tile assemblies come

together (Aggarwal et al. 2005; Cannon et al. 2013; De-

maine et al. 2008, 2013), and the signal tile model where

DNA origami tiles that form an ‘‘active’’ lattice with DNA

strand displacement signals running along them (Jonoska

and Karpenko 2012; Padilla et al. 2011, 2013). Other

models enable one to program tile geometry (Demaine

et al. 2014; Fu et al. 2012), temperature (Aggarwal et al.

2005; Kao and Schweller 2006; Summers 2012), concen-

tration (Becker et al. 2006; Chandran et al. 2012; Doty

2010; Kao and Schweller 2008), mixing stages (Demaine

et al. 2008, 2011) and connectivity/flexibility (Jonoska and

McColm 2009).

The well-studied abstract Tile Assembly Model Winfree

(1998) is an asynchronous, and nondeterministic, cellular

automaton with the restriction that state changes are irre-

versible and happen only along a crystal-like growth

frontier. The nubots model is a generalisation of an asyn-

chronous and nondeterministic cellular automaton, where

the generalisation is that we have a non-local movement

primitive. Since nubots is intended to be a model of

molecular-scale phenomena it ignores friction and gravity,

allows for the creation/destruction of monomers (we

assume an invisible ‘‘fuel’’ source) and has a notion of

random uncontrolled motion (called agitation, but not used

in this paper). Instances of the model evolve as continuous

time Markov processes, hence time is modelled as in sto-

chastic chemical kinetics (Gillespie 1992; Soloveichik

et al. 2008). The style of movement in nubots is analogous

to that seen in reconfigurable robotics (Butler et al. 2002;

Rus and Vona 2001; Murata and Kurokawa 2007), and

indeed results in these robotics models show that non-local

movement can be used to effect fast global reconfiguration

(Aloupis et al. 2008, 2011; Reif and Slee 2007). The nubots

model includes features seen in cellular automata, Lin-

denmayer systems (Prusinkiewicz and Lindenmayer 1990)

and graph grammars (Klavins 2004). See Woods et al.

(2013) for more detailed comparisons with these models.

1.1 Previous work on active self-assembly

with movement

Previous work on the nubots model (Woods et al. 2013)

showed that it is capable of building large shapes and

patterns exponentially quickly: e.g. lines and squares in

time logarithmic in their size. The same paper goes on to

describe a general scheme to build arbitrary computable

(connected, 2D) size-n shapes in time and number of

monomer states (types) that are polylogarithmic in n, plus

the time and states required for Turing machine simulation

due to the inherent algorithmic complexity of the shape.

Furthermore, 2D patterns with at most n coloured pixels,

where the colour choice for each pixel is computable in

time logOð1Þ n (i.e. polynomial in the length of the binary

description of pixel indices), are nubots-computable in time

and number of monomer types polylogarithmic in n

(Woods et al. 2013). The latter result is achieved without

going outside the pattern boundary and in a completely

asynchronous fashion. These results show that nubots is

capable of parallelism not seen in many other models of

self-assembly. The goal of the present paper is to formalise

and characterise the kind of parallelism seen in nubots by

formally relating it to the computational complexity of

classical decision problems.

Dabby and Chen (2012) study a 1D model, where

monomers insert between, and push apart, other monomers.

Their model is closely related to a 1D restriction of nubots

without state changes, and they build length n lines in

Oðlog3 nÞ expected time and Oðlog2 nÞ monomer types.

They also show that the set of 1D polymers produced by

any instance of their model is a context-free language, and

226 M. Chen et al.

123

give a design for implementation with DNA molecules.

Malchik and Winslow (2014) show that any context-free

language can be expressed as an instance of this model, and

give an asymptotically tight bound of 2Hðk3=2Þ on the length

of polymers produced using k monomer types, thus char-

acterising two aspects of the model.

1.2 Main result

In the nubots model a program is specified as a finite set of

nubots rulesN and is said to decide a language L � f0; 1g�
if, beginning with a word x 2 f0; 1g� encoded as a

sequence of jxj ‘‘binary monomers’’, the system eventually

reaches a configuration containing exactly the 1 monomer

if x 2 L, and 0 otherwise. Let NC denote the (well-known)

class of problems solved by uniform polylogarithmic depth

and polynomial size Boolean circuits.1 Our main result is

stated as follows.

Theorem 1 For each language L 2 NC, there is a set of

nubots rules N L that decides L in polylogarithmic expec-

ted time, constant number of monomer states, and poly-

nomial space in the input string length. Moreover, for i� 1,

NCi is contained in the class of languages decided by

nubots running in Oðlogiþ3 nÞ expected time, Oð1Þ mono-

mer states, and polynomial space in input length n.

NC problems are solved by circuits of shallow depth,

hence they can be thought of as those problems that can be

solved on a highly parallel architecture (simply run each

layer of the circuit on a bunch of parallel processors, after

polylogarithmic parallel steps we are done). NC is con-

tained in P—problems solved by polynomial time Turing

machines—and this follows from the fact that NC circuits

are of polynomial size. Problems in NC, and the analogous

function class, include sorting, Boolean matrix multipli-

cation, various kinds of maze solving and graph reach-

ability, and integer addition, multiplication and division.

Besides its circuit depth definition, NC has been charac-

terised by a large number of other parallel models of

computation including parallel random access machines,

vector machines, and optical computers (Greenlaw et al.

1995; Woods and Naughton 2008; Woods 2005). It is

widely conjectured, but unproven, that NC is strictly con-

tained in P. In particular, problems complete for P (such as

Turing machine and cellular automata (Neary and Woods

2006) prediction, context-free grammar membership and

many others (Greenlaw et al. 1995)) are believed to be

‘‘inherently sequential’’—it is conjectured that these

problems are not solvable by parallel computers that run

for polylogarithmic time on a polynomial number of pro-

cessors (Greenlaw et al. 1995; Condon 1994).

Thus our main result gives a formal sense in which the

nubots model is highly parallel: for any highly paralleli-

sable (NC) problem our proof gives a nubots algorithm to

efficiently solve in it in only polylogarithmic expected time

and constant states. This stands in contrast to sequential

machines like Turing machines, that cannot read all of an

n-bit input string in polylogarithmic time, and ‘‘somewhat

parallel’’ models like cellular automata and the abstract

Tile Assembly Model, which can not have all of n bits

influence a single bit decision in polylogarithmic time

(Keenan et al. 2014). Thus, adding a movement primitive

to an asynchronous non-deterministic cellular automation,

as in nubots, drastically increases its parallel processing

abilities.

We finish this discussion on a technical remark. Previ-

ous results (Woods et al. 2013) on nubots were of the form:

for each n 2 N there is a set of nubot rules N n (i.e. the

number of rules is a function of n) to carry out some task

parameterised by n (examples: quickly grow a line of

length n or an n� n square, or grow some complicated

computable pattern or shape whose size is parameterised

by n, etc.). For each problem in NC our main result here

gives a single set of rules (i.e. of constant size), that works

for all problem instances.

1.3 Overview of results and paper structure

Section 1 contains the statement of our main result, the

overall proof structure and some future work directions.

Section 2 gives the full definition of the nubots model and

relevant complexity classes. Section 3 serves as an intro-

duction to the nubots model by giving a simple nubots

algorithm to double the length of a length-n line in Oðlog nÞ
expected time. We suggest the reader begins there.

1.3.1 New synchronization and line growth algorithms

In Sect. 4 we describe a fast signalling method for nubots

from Woods et al. (2013), here called shift synchronization,

and give a new variant on this called lift synchronization.

These signalling mechanisms are used through our con-

structions as a method to quickly send a bit, 0 or 1, distance

n in Oðlog nÞ expected time, with the choice of 0 or 1 being

encoded by the use of shift or lift synchronization

respectively.

The line growth algorithm given in Woods et al. (2013)

grows a line of length n 2 N in Oðlog nÞ time, using

Oðlog nÞ monomer states and starting from a single

monomer on the grid. Section 5 gives a new line-growth

algorithm that completes in Oðlog2 nÞ time, using Oð1Þ1 NC, or Nick’s class, is named after Nicholas Pippenger.

Parallel computation using active self-assembly 227

123

monomer states and starting from Oðlog nÞ monomers on

the grid. A key feature of our algorithm is that it uses only a

constant number of states. This helps us achieve our main

result, which requires a single set of nubots rules that

accept any word from some, possibly infinite, NC lan-

guage: as part of our circuit simulation we need to build

longer and longer lines to simulate larger and larger cir-

cuits, all with a single set of nubots rules.

1.3.2 Parallel sorting, Boolean matrix multiplication

and space bounded Turing machine simulation

Section 6 shows that the nubots model is capable of fast par-

allel sorting: n numbers can be sorted in expected time poly-

logarthmic in n. More precisely, n distinct natural numbers,

taken from the set f0; 1; . . .; n� 1g when presented as n

unordered ‘‘strings’’ of binary (0 or 1) monomers on the grid,

can be sorted in increasing numerical order in expected time

Oðlog3 nÞ, space Oðn log nÞ � OðnÞ, and Oð1Þ monomer

states. Our sorting routine is used throughout our main con-

struction and is inspired by mechanisms, such as gel electro-

phoresis, that sort via spatial organization based on physical

quantities, such as mass and charge (Murphy et al. 2008).

Section 7 shows that two n� n Boolean matrices can be

multiplied in Oðlog3 nÞ expected time, Oðn4 log nÞ �
Oðn2 log nÞ space and Oð1Þ monomer states. This imme-

diately implies that problems reducible to Boolean matrix

multiplication, such as directed graph reachability and

indeed any problem in the complexity class NL, of lan-

guages accepted by nondeterministic logarithmic space

bounded Turing machines, can be solved in polylogarith-

mic expected time on nubots.

Indeed in Sect. 8.1 we go on to generalise this result by

showing that any nondeterministic logarithmic space boun-

ded Turing machine that computes a function (as opposed to

merely deciding a language) can also be simulated in poly-

logarithmic space. This involves modifying the usual matrix

multiplication method to keep track of the contents of the

output tape of the Turing machine, and correctly reassem-

bling the encoded tape contents on the 2D grid.

These results show that the model is capable of fast

parallel solution of many problems, in particular all of

those in NL. Recall that NL � NC, so we are not done yet.

Indeed these techniques form part of our more general

result: polylogarithmic expected time solution of problems

in NC via efficient simulation of uniform Boolean circuits,

as described next.

1.3.3 Proof overview of main result: Theorem 1

Let L 2 NC, in other words, L is decidable by a logspace-

uniform family CL of Boolean circuits of polylogarthmic

depth and polynomial size. To prove Theorem 1, we show

that for each such L there exists a finite set of nubots

rules N L that decides L. L being in logspace-uniform NC

implies that there is a deterministic logarithmic space (in

input size) Turing machine ML such that MLð1nÞ ¼ cn,

where cn is a description of the unique Boolean circuit in CL
that has n input gates. Our initial nubots configuration con-

sists of a length-n line of binary nubots monomers

denoted ½ex�, that represents some input word x 2 f0; 1g� (as
described in Definition 2). From this we create (copy)

another length-n line of monomers that encode the unary

string 1n to be given as input to a nubots simulator of ML.

The rule setN L includes a description ofML, and the system

first generates a circuit by simulating the computation ofML

on input 1n, which produces a nubots configuration

(collection of monomers in a connected component) that

represents the circuit cn. The circuit is then simulated on

input x. Both of these tasks present a number of challenges.

Circuit generation Logspace Turing machines run in at

most polynomial time in their input length (otherwise they

repeat a configuration), but here we wish to generate the

circuit in merely polylogarithmic time. To achieve this, our

simulation of ML works in a highly parallel fashion. This

uses a number of techniques. First, in nubots, we imple-

ment the (known) trick of space-bounded Turing machine

simulation by fast iterated matrix multiplication, which in

turn is used to solve reachability on the directed graph of

all possible configurations of the Turing machine. One of

the main challenges here is to carry out matrix multipli-

cation on the 2D grid sufficiently fast but without mono-

mers unintentionally colliding with each other. Second,

although iterated matrix multiplication is sufficient to

simulate a Turing machine that decides a language, here we

wish to simulate a Turing machine that computes a func-

tion. To do this, our parallel matrix multiplication algo-

rithm keeps track of any symbols written to the output tape

by both valid (reachable) and invalid (unreachable) con-

figurations, and at the end deletes those symbols written by

invalid configurations leaving the valid output symbols

only. These valid output symbols are then arranged into the

correct order by our fast parallel sorting routine. This

results in a string of monomers that encodes the circuit cn.

These monomers then rearrange themselves in the plane, to

lay out the circuit with each row of gates layered one on

top of the next as shown in Fig. 1 (note that for conve-

nience and to save space we sometimes draw figures on a

square grid, although the nubots model is formally defined

on the hexagonal grid).

Circuit simulation As already described, the input x is

encoded as the binary monomers ½ex�, and the entire circuit

cn is ‘‘grown’’ from ½ex�. The monomers ½ex� now move to

the first (bottom) row of the encoded circuit (Fig. 1c) and

228 M. Chen et al.

123

position themselves so that each gate can ‘‘read’’ its 1 or 2

input bit monomers from ½ex�. After each gate computes a

‘‘result’’ bit, layer 1 ‘‘synchronizes’’ via a Oðlog nÞ
expected time synchronization routine.

Next, we wish to send the ‘‘result’’ bits from layer 1 to

layer 2. Circuits are not necessarily planar, so we need to

handle wire crossings. We use our fast parallel sorting

routine: the outputs from the first circuit layer are sorted,

from left to right in increasing order, using their ‘‘to’’

address as a key. For example, a layer 1 result bit that is

destined for gate 5 in layer 2 will be placed to the left of a

layer 1 result bit that is destined for gate 6 in layer 2. Using

this sorting routine, the blue ‘‘wire address’’ regions in the

circuit (Fig. 1d) are sorted in increasing order from left to

right, then appropriately padded with empty space in

between (using counters), and are passed up to the next

level. Layer 1 then destroys itself. The entire circuit is

simulated, level by level, from bottom to top, in this

manner. After the ‘‘output gate’’ monomer computes its

output bit it destroys itself, leaving a single monomer in

state output0 or output1. No more rules are applicable and

so the system has halted with its answer. This completes

the overview of the simulation.

This overview ignores many details. In particular the

nubots model is asynchronous, that is, rule updates happen

independently as discrete events in continuous time with no

two events happening at the same time (as in stochastic

chemical kinetics). The construction includes a large

number of synchronization steps and signal passing to

ensure that all parts of the construction are appropriately

staged, but yet the construction is free to carry out many

fast, asynchronous, parallel steps between these ‘‘sequen-

tial’’ synchronization steps.

1.4 Future work and open questions

The line growth algorithm in Woods et al. (2013) runs in

expected time Oðlog nÞ, uses Oðlog nÞ states and space

OðnÞ � Oð1Þ. In Sect. 5 we give another line growth

algorithm that runs in expected time Oðlog2 nÞ, uses Oð1Þ
states and space OðnÞ � Oð1Þ. Is there a line-growth

algorithm that does better than time � space � states

¼ Xðn log2 nÞ? To keep the game fair, the input should be a

collection of monomers with space � states ¼ Oðlog nÞ.
Theorem 1 gives a lower bound on nubots power. What

are the best lower and the upper bounds on the power of

confluent2 polylogarithmic expected time nubots? One

challenge involves finding better Turing machine space, or

circuit depth, bounds on computing multiple applications

of the movable set (see Sect. 2) on a polynomial size (or

larger) nubots grid.

Synchronization is a signalling method we use to

quickly send signals in a non-local fashion. In this paper it

is used extensively to compose nubots algorithms. What

conditions are necessary and sufficient for composition of

arbitrary nubots algorithms that do not use synchroniza-

tion? Theorem 7.1 in Woods et al. (2013) shows that a

wide class of patterns can be grown without synchroniza-

tion, and its proof of this gives examples of composition

without synchronization. It would be interesting to for-

malise this notion of composition in our distributed sys-

tems without the long-range fast signalling that

synchronization gives.

Agitation is a kind of undirected, or random, movement

that was defined for the nubots model in Woods et al.

(2013) and is intended to model a nanoscale environment

where there are uncontrolled movements and turbulent

fluid flows in all directions interacting with each monomer.

Is it possible to simulate nubots-style movement using

agitation? As motivation, note that every self-assembled

molecular-scale structure was made under conditions

where agitation is a dominant source of movement! Our

(a) (b) (c) (d)

Fig. 1 High-level overview of the encoding of a Boolean circuit as a

nubots configuration (drawn on the square grid to save space). a
Boolean circuit with b detailed zoom-in. c Nubots configuration

encoding the circuit, with zoom-in shown in d. A wire leading out of a

gate in b has a destination gate number encoded in d as strips of

Oðlog nÞ blue binary monomers (indices in red). After a gate

computes some Boolean function (one of _, ^, :) the resulting bit

is tagged onto the relevant blue strip of monomers that encode the

destination addresses (red numbers). Circuits are not necessarily

planar, so to handle wire crossovers these result bits are first sorted in

parallel based on their wire address, and then pushed up to the next

layer of gates (online version in colour)

2 By confluent we mean a kind of determinism where the system

(rules with the input) is assumed to always make a unique single

terminal assembly.

Parallel computation using active self-assembly 229

123

question asks if we can programmably exploit this random

molecular motion to build structures quicker than without

it.

Is the nubots model intrinsically universal? More pre-

cisely, does there exist a set of monomer rules U, such that

any nubots system N can be simulated by ‘‘seeding’’ U

with a suitable initial configuration? The notion of intrinsic

universality is giving rise to interesting characterisations,

and separations, in a variety of tile assembly models (Doty

et al. 2009, 2012; Demaine et al. 2013, 2014; Meunier et al.

2014; Hendricks et al. 2013; Hendricks and Patitz 2013),

for an overview see the survey by Woods (2013). Our hope

would be that intrinsic universality, with its tight notion of

simulation, could be used to tease apart the power of dif-

ferent notions of movement (for example to understand if

nubots-style movement is weaker or stronger than other

notions of movement). Other open problems and further

directions can be found in Woods et al. (2013).

2 The nubots model and other definitions

In this section we formally define the nubots model.

Figure 2 gives an overview of the model and rules, and

Fig. 3 gives an example of the movement rule. An example

nubots construction for ‘‘line-doubling’’ is given in Sect. 3

which may aid the reader at this point. Let

N ¼ f0; 1; 2; . . .g.
The model uses a two-dimensional triangular grid with a

coordinate system using axes x and y as shown in Fig. 2a.

A third axis, w, is defined as running through the origin and

w!¼ � x!þ y!¼ ð�1; 1Þ, but we use only the x and y

coordinates to define position. The axial directions D ¼
f	 x!;	 y!;	w!g are the unit vectors along axes x; y;w. A

pair p!2 Z
2 is called a grid point and has the set of six

neighbours f p!þ u! j u!2 Dg. Let S be a finite set of

monomer states. A nubot monomer is a pair X ¼ ðsi; pðXÞ)
where si 2 S is a state and pðXÞ 2 Z

2 is a grid point. Two

monomers on neighbouring grid points are either con-

nected by a flexible or rigid bond, or else have no bond

(called a null bond). Bonds are described in more detail

below. A configuration C is a finite set of monomers along

with the bonds between them.

One configuration transitions to another via the appli-

cation of a single rule, r ¼ ðs1; s2; b; u!Þ !
ðs10; s20; b0; u!0Þ that acts on one or two monomers.3 The

left and right sides of the arrow respectively represent the

contents of two monomer positions before and after the

application of rule r. Here s1; s2 2 S [femptyg are

monomer states where at most one of s1; s2 is empty

(denotes lack of a monomer), b 2 fflexible; rigid; nullg is

the bond type between them, and u!2 D is the relative

position of the s2 monomer to the s1 monomer. If either of

s1 or s2 (respectively s10 or s20) is empty then b (respec-

tively b0) is null. The right is defined similarly, although

there are some further restrictions on valid rules (involving

u!0
) described below. A rule is only applicable in the ori-

entation specified by u!, and so rules are not rotationally

invariant.

A rule may involve a movement (translation), or not.

First, in the case of no movement: u!¼ u!0
. Thus we have

a rule of the form r ¼ ðs1; s2; b; u!Þ ! ðs10; s20; b0; u!Þ.
From above, at most one of s1; s2 is empty, hence we

disallow spontaneous generation of monomers from empty

space. State change (s1 6¼ s10 and/or s2 6¼ s20) and bond

change (b 6¼ b0) occur in a straightforward way, examples

are shown in Fig. 2b. If si 2 fs1; s2g is empty and s0i is not,

then the rule induces the appearance of a new monomer at

the empty location specified by u! if s2 ¼ empty, or � u! if

1 1

(0,0) x

y

w

(1,0) (2,0)

(0,1)

(0,2)

(1,1)

p

p + yp + w

p + xp - x

p - wp - y

(a) (b)

Change states

1 1 2 3

Make a flexible bond

1 1

1 11 1

Break a rigid bond

2 31 1

Change a rigid bond to a flexible bond
and change states

1

2

1 1

Position change in the w direction

w

Base Arm

1 1

Appearance

b

1 a

Disappearance

1

AB

A

B

1

21 1

Position change in the -w direction

-w

BaseArm

A B

A

B

 r1

 r2

 r3

 r4

 r5

 r6

 r7

 r7

Fig. 2 Overview of the nubots model. a A nubot configuration

showing a single nubot monomer on the triangular grid. b Examples

of nubot monomer rules. Rules r1–r6 are local cellular automaton-like

rules, whereas r7 effects a non-local movement. A flexible bond is

depicted as an empty red circle and a rigid bond is depicted as a solid

red disk (online version in colour)

3 In Woods et al. (2013) the nubots model includes ‘‘agitation’’: each

monomer is repeatedly subjected to random movements intended to

model a nano-scale environment where there is Brownian motion,

uncontrolled movements and turbulent fluid flows in all directions.

Our constructions in this paper work with or without agitation, hence

they are robust to random uncontrolled movements, but we choose to

ignore this issue and not formally define agitation for ease of

presentation.

230 M. Chen et al.

123

s1 ¼ empty. If one or both monomer states go from non-

empty to empty, the rule induces the disappearance of

monomer(s) at the orientation(s) given by u!.

For a movement rule it must be the case that u! 6¼ u!0

and dð u!; u!0Þ ¼ 1, where dðu; vÞ is Manhattan distance on

the triangular grid, and s1; s2; s10; s20 2 S n femptyg. If we
fix u!2 D, then there are two u!0 2 D that satisfy

dð u!; u!0Þ ¼ 1. A movement rule is applied both (i) locally

and (ii) globally, as follows.

(i) Locally, one of the two monomers is chosen

nondeterministically to be the base (that remains

stationary), the other is the arm (that moves). If

the s2 monomer, denoted X, is chosen as the arm

then X moves from its current position pðXÞ to a new
position pðXÞ � u!þ u!0

. After this movement u!0
is

the relative position of the s20 monomer to the s10

monomer, as illustrated in Fig. 2b. Analogously, if

the s1 monomer, Y , is chosen as the arm then Y

moves from pðYÞ to pðYÞ þ u!� u!0
. Again, u!0

is

the relative position of the s20 monomer to the s10

monomer. Bonds and states may change during the

movement.

(ii) Globally, the movement rule may push and/or pull

other monomers, or if it can not then it is not

applicable. This is formalised as follows, and an

example is shown in Fig. 3. Let v!2 D be a unit

vector. The v!-boundary of a set of monomers Q is

defined to be the set of grid points outside Q that are

unit distance in the v! direction from monomers in

Q. Let C be a configuration containing adjacent

monomers A and B, and let C0 be C except that the

bond between A and B is null in C0 if not null in C.

The movable set M ¼ MðC;A;B; v!Þ is the smallest

subset of C0 that contains A but not B and can be

translated by v! to give the set Mþ v! where the new

configuration C00 ¼ ðC0 nMÞ [Mþ v! is such that:

(a) monomer pairs in C0 that are joined by rigid

bonds have the same relative position in C0 and C00,
(b) monomer pairs in C0 that are joined by flexible

bonds are neighbours in C00, and (c) the v!-boundary

of M contains no monomers. If there is no such set,

then we define M ¼ MðC;A;B; v!Þ ¼ fg.
If MðC;A;B; v!Þ 6¼ fg, then the movement where A

is the arm (which should be translated by v!) and B

is the base (which should not be translated) is

applied as follows: (1) the movable set

MðC;A;B; v!Þ moves unit distance along v!; (2)

the states of, and the bond between, A and B are

updated according to the rule; (3) the states of all the

monomers besides A and B remain unchanged and

pairwise bonds remain intact (although monomer

positions and flexible/null bond orientations may

change). If MðC;A;B; v!Þ ¼ fg, the movement rule

is inapplicable (the rule is ‘‘blocked’’ and in

particular A is prevented from translating).

An assembly system T ¼ ðC0;NÞ is a pair where C0 is

the initial configuration, and N is the set of rules. If con-

figuration Ci transitions to Cj by some rule r 2 N , we write

Ci ‘N Cj. A trajectory is a finite sequence of configura-

tions C1;C2; . . .;C‘ where Ci ‘N Ciþ1 and 1
 i
 ‘� 1.

An assembly system evolves as a continuous time Markov

process. The rate for each rule application is 1. If there are

k applicable transitions for Ci then the probability of any

given transition being applied is 1=k, and the time until the

next transition is applied is an exponential random variable

with rate k (i.e. the expected time is 1=k).4 The probability

of a trajectory is then the product of the probabilities of

each of the transitions along the trajectory, and the

expected time of a trajectory is the sum of the expected

times of each transition in the trajectory. Thus,
P

t2T Pr½t�timeðtÞ is the expected time for the system to

evolve from configuration Ci to configuration Cj, where T
is the set of all trajectories from Ci to any configuration

isomorphic to Cj (up to translation), that do not pass

(a) (b) (c) (d)

Fig. 3 An example of a movement rule with two results depending on

the choice of arm or base. a Initial configuration, b movement rule,

c result if the monomer with state 1 is the base, d result if the

monomer with state 2 is the base. We can think of c as pushing and

d as pulling. Also, the affect on flexible bonds (hollow red circles)

and null bonds are shown (online version in colour)

4 For simplicity, when counting the number of applicable rules for a

configuration, a movement rule is counted twice, to account for the

two choices of arm and base.

Parallel computation using active self-assembly 231

123

through any other configuration isomorphic to Cj, and

timeðtÞ is the expected time for trajectory t.

2.1 Nubots and decision problems

Let N ¼ f0; 1; 2; . . .g. ½y� denotes a finite length line seg-

ment of nubot monomers. Given a binary string

x 2 f0; 1g�, written x ¼ x0x1. . .xk�1, we let ½ex� denote a

line segment of k nubot monomers that represent x using

one of two ‘‘binary’’ monomer states. j½ex�j 2 N denotes the

number of monomers in ½ex�. Given a line of monomers A

composed of m line segments, the notation ½A; i� means

segment i of A, and ½A; i�j means monomer j (or sometimes

the bit encoded by monomer j) of segment i of A. We next

define what it means to decide a language (or problem)

with nubots.

Definition 2 A finite set of nubot rules N L decides a

language L � f0; 1g� if for all x 2 f0; 1g� there is an initial

configuration C0 consisting only of the horizontal line ½ex�
of monomers, where by applying the rule set N L, the

system always eventually reaches a configuration contain-

ing only a single ‘‘answer’’ monomer which is in one of

two states: (a) ‘‘accept’’ if x 2 L, or (b) ‘‘reject’’ if x 62 L.

Further, from the time it first appears, the answer monomer

never changes its state.

2.2 Boolean circuits and the class NC

We define a Boolean circuit to be a directed acyclic graph,

where the nodes are called gates and each node has a label

that is one of: input (with in-degree 0), constant 0 (in-

degree 0), constant 1 (in-degree 0), _ (OR, in-degree 1 or

2), ^ (AND, in-degree 1 or 2), : (NOT, in-degree 1). One

of the gates is identified as the output gate, which has out-

degree 0. The depth of a circuit is the length of the longest

path from an input gate to the output gate. The size of a

circuit is the number of gates it contains. Besides the output

gate, all other gates have out-degree bounded by the circuit

size. We work with layered circuits: gates on layer i feed

into gates on layer iþ 1. A circuit computes a Boolean (no/

yes) function on a fixed number of Boolean variables, by

the inputs and constants defining the output gate value in

the standard way. In order to compute functions over an

arbitrary number of variables, we define (usually, infinite)

families of circuits. We say that a family of circuits CL ¼
fcn j cn is a circuit with n 2 N input gatesg decides a lan-

guage L � f0; 1g� if for each x 2 f0; 1g� circuit cjxj 2 CL
on input x outputs 1 if w 2 L and 0 if w 62 L.

In a non-uniform family of circuits there is no required

similarity, or relationship, between family members. In

order to specify such a requirement we use a uniformity

function that algorithmically specifies some similarity

between members of a circuit family. Roughly speaking, a

uniform circuit family C is an infinite sequence of circuits

with an associated function f : f1g� ! C that generates

members of the family and is computable within some

resource bound. Here we care about logspace-uniform

circuit families:

Definition 3 (logspace-uniform circuit family) A circuit

family C is logspace-uniform, if there is a function f :

f1g� ! C that is computable on a deterministic logarithmic

space Turing machine, and where f ð1nÞ ¼ cn for all n 2 N,

and cn 2 C is a description of a circuit with n input gates.

Without going into details, we assume reasonable

descriptions (encodings) of circuits as strings. We note that

there are stricter, but more technical to state, notions of

uniformity in the literature, such as AC0 and DLOGTIME

uniformity (Allender and Koucký 2010; Greenlaw et al.

1995; Murphy and Woods 2013). We do not require any-

thing less powerful than logspace uniformity here as our

main result is a lower bound on nubots power, hence the

more expressive the uniformity condition on circuits, the

better (although most of the common circuit classes are

reasonably robust under these more restrictive definitions

anyway).

Define NCi to be the class of all languages L � f0; 1g�

that are decided by Oðlogi nÞ depth, polynomial size log-

space-uniform Boolean circuit families. Define

NC ¼
S1

i¼0 NC
i, in other words NC is the class of lan-

guages decided by polylogarithmic depth and polynomial

size logspace-uniform Boolean circuit families. Since NC

circuits are of polynomial size, they can be simulated by

polynomial time Turing machines, and so NC � P. It

remains open whether this containment is strict (Greenlaw

et al. 1995). See Vollmer (1999) for more on circuits.

The complexity class NL is the set of languages

accepted by nondeterministic Turing machines that have a

read-only input tape and a single worktape of length log-

arithmic in the input length.

3 Example: a nubots line doubling routine

This section describes a simple construction with the goal

of familiarising the reader with the nubots model. We give

an algorithm for doubling the length of a line of l mono-

mers in Oðlog lÞ expected time. This algorithm is essen-

tially a simplification of the line growth algorithm in

Woods et al. (2013), and it will be used in later sections of

the paper. We first describe the algorithm then provide a

proof for correctness and a time and space analysis.

We require that the input line be comprised of monomers

of alternating states, i.e. everymonomer in the input line is in

232 M. Chen et al.

123

one of two unique states with the property that no two

adjacentmonomers are in the same state. This property of the

line is preserved at the end of the line doubling routine.

Lemma 4 A length l line of monomers can be doubled to

length 2l in Oðlog lÞ expected time, Oð1Þ states OðlÞ �
Oð1Þ space.

Proof. Algorithm description The algorithm uses con-

current applications of the pair doubling subroutine (PDS)

described in Fig. 4. As described in more detail below, the

algorithm treats the input line of l monomers as a line of

l=2 monomer pairs that can double in length independently

of each other, for even l. After the execution of the sub-

routine, a monomer pair is transformed into two monomer

pairs in alternating states different from the original pair.

This ensures that each pair of monomers in the input line

can only double in length once during the course of the

entire algorithm execution. Thus, the length of the input

(a1) (a2)

(b)

(c)

(d)

(e1) (e2)

(e3) (e4)

Fig. 4 Line doubling algorithm for a line of l monomers, uses ideas

from Woods et al. (2013). Example a1 input, a2 output and b rule set

for the pair doubling subroutine (PDS). The input and output

monomers have alternating blue/purple states (with numbers as

shown). Since the LHS of Rule ri is the RHS of Rule ri�1 for i[2,

the rules must be applied sequentially. c Example execution of PDS,

d example configuration of a line undergoing length doubling with

concurrent applications of PDS to demonstrate the asynchronous

nature of the algorithm. e1 Example input for the line doubling

algorithm, e2 example output for the line double algorithm. e3 & e4 A
simplified ‘‘line segment’’ representation of e1, e2 used throughout

the paper (online version in colour)

Parallel computation using active self-assembly 233

123

line is doubled by the end of the algorithm, which termi-

nates when every monomer pair in the input has been

doubled in length via the subroutine. For odd l, the same

thing happens for bl=2c monomer pairs, and the rightmost

monomer simply adds a single new monomer to its right.

PDS begins with a pair of monomers with states x; 0 and

ends with four monomers in states x� 1; 0; x� 1; 0. Figure

4a provides an example input and output of the line

doubling algorithm, where monomers are shown as left

(purple), right (blue) pairs. The rules for PDS are given in

Fig. 4b and an example execution is shown in Fig. 4c. Each

monomer on the line assumes either the ‘‘left’’ or the

‘‘right’’ state: left is colored purple, right is colored blue.

The initial xleft; 0right monomers send themselves to state

ðx� 1Þleft; 0right while inserting two new monomers to give

the pattern ðx� 1Þleft; 0right; ðx� 1Þleft; 0right. To achieve

this, the initial pair of monomers create a ‘‘bridge’’ of 2

monomers on top and, by using movement and appearance

rules, two new monomers are inserted. The bridge mono-

mers are then deleted and we are left with four monomers.

Throughout the execution, all monomers are connected by

rigid bonds so the entire structure is connected. PDS

completes in constant expected time 13 as shown in Fig. 4c

since there are a total of 13 rules for PDS that must be

applied sequentially, as shown in Fig. 4b.

PDS has the following properties: (i) during the

application of its rules to an initial pair of monomers

xleft; 0right it does not interact with any monomers outside of

this pair, and (ii) a left-right pair creates two adjacent left-

right pairs. These properties imply that along a partially

formed line, multiple subroutines can execute asynchro-

nously and in parallel, on disjoint left-right pairs, without

interfering with each other.

Correctness To demonstrate that the algorithm doubles

the length of the line correctly, it is sufficient to demon-

strate that the following invariant holds throughout the

algorithm execution and that the algorithm terminates.

Every left/right pair of monomers in states xleft0right the

input becomes replaced by two left/right monomer pair in

states ðx� 1Þleft0rightðx� 1Þleft0right. Locally, the invariant

holds from the fact that PDS takes a pair of left/right

monomers in states xleft; 0right as shown in Fig. 4a1 and

outputs four monomers in states ðx� 1Þleft; 0right; ðx�
1Þleft; 0right as shown in Fig. 4a2, with Fig. 4c demonstrating

that PDS does this correctly. Since PDS can be applied to

each monomer pair independently of any other pair, adja-

cent concurrent applications of PDS will not block each

other. To see that the algorithm terminates, we note that

since the input and the output of PDS assume different

states and PDS can only double monomer pairs in the input

states, each pair of monomers in the original input line can

undergo PDS exactly once.

Time and space analysis As shown in Fig. 4c, the space

complexity of PDS is 4� 2. Since PDS only attaches

monomers on top of the input monomers as per the rules,

adjacent monomer pairs in the input of the line doubling

algorithm will remain on the same axis (i.e. maintain their y-

coordinates on the triangle grid shown in Fig. 2a). Thus, the

space complexity of the line doubling algorithm is

OðlÞ � Oð1Þ. We have established above that the expected

time for PDS is 13. The event in which an application of PDS

takes place is a Poisson process; therefore, the expected time

for a single occurrence of this event to take place is 1=k, where

k is the total possible positions for PDS to be applied. Let T be

the time it takes for the line doubling algorithm to terminate on

an input of length l, then the expected value of T is

E½T � ¼ 13
Pl=2

i¼1 1=i ¼ Oðlog lÞ. h

4 Using synchronization to communicate quickly

In previous work by Woods et al. (2013) a fast signalling

method, called synchronization, was introduced for nubots.

Here, we use the term ‘‘shift synchronization’’ for this

technique, and introduce another kind of synchronization

called ‘‘lift synchronization’’. With these two synchroni-

zation mechanisms, we can send one of two distinct mes-

sages (bits) to all monomers on a line in expected time that

is merely logarithmic in the line length.

Lemma 5 (Communication via synchronization) Let ‘ be

a length n line of monomers, where each monomer in ‘ is in

one of two distinct states fs0; s1g, with each adjacent pair

distinct from each other. A bit b 2 f0; 1g can be commu-

nicated to all monomers on the line in Oðlog nÞ expected

time, Oð1Þ monomer states and OðnÞ � Oð1Þ space.

Proof We first give a brief overview of shift synchroni-

zation using Fig. 5, more details can be found in Woods

et al. (2013). Each monomer on the line, in state

s 2 fs0; s1g, attaches a new synchronization monomer below

itself with state s0 and with a rigid bond. When a synchro-

nization monomer with state s0 senses a new horizontally

adjacent neighbouring synchronization monomer it forms a

rigid (horizontal) bond with this monomer. After connecting

to both neighbouring synchronization monomers, the

monomer removes the bond between it and its parent

monomer (with state s) above.

The rightmost and leftmost synchronization monomers

are treated differently. At the rightmost end of the line, the

new monomer requires only one bonded neighbour (to the

left) before removing its bond to its parent monomer. The

leftmost synchronization monomer is called the ‘‘shift

monomer’’. This shift monomer attempts to push the (new)

synchronization row to the right. However, by definition of

the movement rule, the shift monomer can move only after

234 M. Chen et al.

123

all of vertical rigid bonds between the synchronization row

and the original line have been removed. Also, due to the

order in which bonds are formed and removed, this can

only happen after the entire synchronization row has

grown. At some point, we are guaranteed to get to the

configuration in Fig. 5g, where the shift monomer is free to

push right. After the move (Fig. 5h), the relative position of

synchronization monomers to their generating monomers

has changed. Thus, the original line of monomers are free

to detect that synchronization has occurred, and a 0 bit has

been communicated to all of them.

To send a 1 bit we use a similar method, called lift

synchronization, shown in Fig. 6. In lift synchronization

the synchronization row is lifted vertically down, and

away, from the original line, rather than being shifted

right. As with shift synchronization this can only occur

after the entire synchronization row has been built and all

bonds are in their final form. After the move (Fig. 6h), the

monomers on the original line detect the new empty space

below, and thus detect that a 1 bit has been communi-

cated to them.

In this way, for a line in any of the 6 rotations, it is

possible to communicate a 0 or 1 bit, depending on whether

shift or lift synchronization is used. The expected time to

send the bit is Oðlog nÞ, as (a) all new monomers are created

independently and in parallel, and (b) each monomer needs

only to wait on a constant number of neighbours in order to

get its bond structure to the final configuration. The space

and states bounds are straightforward to see. h

5 Fast line growth using Oð1Þ states

The line growth algorithm given in Woods et al. (2013)

grows a line of length n 2 N in Oðlog nÞ time, using

Oðlog nÞ monomer states and starting from a single

monomer on the grid. Here, we provide an alternative line

growth algorithm that completes in Oðlog2 nÞ time, using

Oð1Þ monomer states and starting from Oðlog nÞ monomers

on the grid. Although our construction is an Oðlog nÞ factor
slower than that in Woods et al. (2013), it uses only Oð1Þ
states while maintaining the property that all growth is

contained within an OðnÞ � Oð1Þ region. The latter two

properties are both requirements in achieving our main

theorem via the other constructions in this paper, which

extensively use this line growth algorithm.

Problem 6 (Binary Line Growth problem) Input: A line of

blog2 nc þ 1 monomers each in one of two binary states from

fs0; s1g, that encode the binary string b ¼ bblog2 nc. . .b1b0 in

the standard way, where n ¼
Pblog2 nc

i¼0 bi � 2i.
Output: A line of n monomers.

Theorem 7 (Binary Line Growth) There is a nubots

algorithm to solve the Binary Line Growth problem in

expected time Oðlog2 nÞ, space OðnÞ � Oð1Þ, and with

Oð1Þ states, starting from a configuration of Oðlog nÞ
monomers on the grid.

Proof As described in the problem statement, the input n

is encoded as a line of blog2 nc þ 1 monomers where the

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 5 Shift synchronization, see Woods et al. (2013) for more

details. a Initial state, b monomers, randomly and in parallel, each

grow a new synchronization monomer below. The leftmost new

monomer (in brown) is denoted the ‘‘shift monomer’’. c, d When

synchronization monomers detect neighbouring horizontal synchro-

nization monomers to the left and right, they bond. When a

synchronization monomer has bonded to both horizontal neighbours,

its bond to its parent monomer is removed. eWhen the shift monomer

detects a synchronization monomer neighbour to the right, it changes

state, permitting a movement rule to be applied, although the

connectivity prevents this movement from occurring yet. f Synchro-
nization monomers continue to appear and update their bond

structure. g, h All of the vertical rigid bonds are gone and the

movement rule can now be applied in one step. All monomers on the

original horizontal line detect the change in state (parity) of their

neighbour below (online version in colour)

Parallel computation using active self-assembly 235

123

ith monomer encodes bit bi of the binary string

b ¼ bblog2 nc. . .b1b0, and where b encodes n 2 N in the

usual way. The construction proceeds iteratively: at itera-

tion k, where 0
 k
blog2 nc, bit bk is read from the input

and if bk ¼ 1 the partially grown line is increased in length

by the value 2k, otherwise the length of the line remains

unchanged. The idea is described at a high-level in the

algorithm in Fig. 7, below we show that the integer vari-

ables in that algorithm can be implemented as lines of the

corresponding integer lengths, and these can be acted upon

in a way that quickly builds the length n line.

Construction details During construction, the line-grow-

ing configuration is composed of three main regions. The

first is the ‘‘input’’, as described above; at iteration k of the

algorithm the least significant bit (LSB) bk of the input is

read (stored), and deleted. Then we have a working region

containing two lines, respectively called the ‘‘generator’’

and the ‘‘mask’’, each of which have length 2k at itera-

tion k. Finally we have the ‘‘line’’ under construction: at

iteration k, the line length is given by the binary number

bk�1. . .b1b0 encoded by the first k bits (LSBs) of the input.

The construction begins with the rightmost of the input

monomers growing a small, constant-size, hardcoded

structure containing both the generator and mask, both

initialised to be of length 1.

Figure 7 describes a (seemingly overcomplicated, but

analogous to our construction) algorithm for generating the

integer n from a bit string b. Our construction implements

this algorithm, but where the integer variables ‘‘mask’’,

‘‘generator’’, ‘‘line’’ are encoded in unary as lines of

monomers of that length. It is straightforward to verify, via

induction on k, that upon input of the string b 2 f0; 1g�,
that encodes n 2 N, the algorithm in Fig. 7 returns the

integer n. Our nubots implementation of one iteration of

this algorithm is shown in Fig. 8. Figure 8 uses a high-level

notation where lines of nubots monomers are represented

as colored lines drawn on the square grid. We describe the

construction by describing the main primitives it uses to

implement the algorithm in Fig. 8: line doubling or tripling

implement multiplying by 2 or 3; synchronization imple-

ments bit communication—and thus which instructions to

implement next—to all monomers; and masking imple-

ments taking differences.

Line doubling and tripling Line doubling takes a line of

length ‘ and generates a line of length 2‘, as described in

Sect. 3. Line tripling takes a line of length ‘ and generates

a line of length 3‘, using a similar technique (rather than

inserting 2 monomers, we insert 1, synchronize, then

insert 1 again), hence we omit the details.

Synchronization and communicating a bit We use a syn-

chronization algorithm to simultaneously switch a line of

monomers into a single shared state. As described in Sect. 4,

we have the twomethods of lift and shift synchronization: we

use one to communicate a 0 bit and the other to communicate

a 1 bit to monomers in the generator and mask.

Masking For two lines of different lengths, ‘1 [‘2,

masking communicates their difference ‘1 � ‘2 to the line

of greater length ‘1. The lines are assumed to be orientated

parallel, touching, and horizontal with their leftmost extent

at the same x position. Assume the shorter line is on top: it

synchronizes (by growing a new synchronization row on

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 6 Lift synchronization. Lift synchronization uses similar ideas to

shift synchronization, except instead of pushing the entire synchro-

nization row horizontally, the synchronization row is moved verti-

cally below, and away, from the original line. The monomers on the

original line are then free to detect the disappearance of synchroni-

zation monomers, signalling the completion of the lift synchroniza-

tion (online version in colour)

236 M. Chen et al.

123

top), then the longer line synchronizes (by growing a new

synchronization row on bottom). Then the monomers in the

longer line detect the presence or absence of monomers on

the shorter line above: if there is a monomer above then the

longer line monomer goes to state s1, if not it goes to state

s2. See Fig. 9d–f for an outline.

Final steps The final bit of the input to be read is

bblog2 nc ¼ 1 (the MSB of a binary number is always 1) and

just before reading it the line length is n� 2blog2 nc. Upon

reading the final bit bblog2 nc some message passing occurs

(via synchronizations) to trigger the deletion of the mask

and to cause the generator monomers to change state so

that they are now part of the line. This latter step adds

2blog2 nc (generator length) to the line, giving the desired

line length of n.

Time, space, and states analysis Line doubling/tripling of

a length n line happens in expected time Oðlog nÞ, as does
synchronization. There are Oðlog nÞ iterations each with a

Fig. 7 Algorithm that takes a binary string b as input, that encodes n 2 N, and returns the integer n. This algorithm describes the control flow for

the nutbots construction that builds a line of length n in the proof of Theorem 7

(a)

(b)
(c1)

(c2)

Fig. 8 Reading a single input bit, and growing the line accordingly. a
From the start state, depending on if the least significant bit remaining

in the string (bit bk , the kth bit of the original string) is a 0 or 1, the

system will end up in one of two different configurations, shown in b
or c2. More details for the bk ¼ 1 case are shown in Fig. 9 (online

version in colour)

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Reading a 1 bit. a Initial configuration, b synchronization

message sent to the mask (dark blue) and generator (light blue) lines

to initiate tripling of the generator. c Masks doubles in length,

generator triples, d synchronization, e masking: monomers in the

generator look immediately above for a corresponding monomer in

the mask line. If none exists, the generator monomer changes its state

to that of a line monomer, if one exists it stays part of the generator.

f Masking finished, synchronization (online version in colour)

Parallel computation using active self-assembly 237

123

constant number of doublings/triplings and synchroniza-

tions, hence the total expected time is Oðlog2 nÞ. The three
lines (mask, generator, line) are of length
 n and with

their synchronization rows the height needed is 4, giving a

space bound of OðnÞ � Oð1Þ. A straightforward analysis of

the algorithm shows that Oð1Þ states are sufficient. h

6 Fast parallel sorting

In this section we show how, on nubots, to sort n binary

numbers, taken from the set f0; 1; . . .; n� 1g, in polyloga-

rithmic expected time and a constant number of states. Our

sorting algorithm is loosely inspired by the work of Murphy

et al. (2008) who show that physical techniques can be used

to sort numbers that are represented as the magnitude of

some physical quantity. They show that a variety of physical

mechanisms can be thought of as an implementation of fast

parallel sorting, including gel electrophoresis and chroma-

tography (molecular weight), rainbow sort (Schultes 2006)

(frequency), and mass spectrometry (mass to charge ratio).

However, our construction needs to take care of the fact that

ours is a robotic-style geometric model that needs to

implement fast growth while handling blocking and other

geometric constraints. A similar algorithm works for vari-

ations on this problem, such as sorting \n such numbers,

but we omit the details of that.

We first define the nubots distinct element sorting

problem and then formally state the result.

Problem 8 (Distinct element sorting problem) Input: A

line of monomers, denoted A ¼ ½A; 1�½A; 2�. . .½A; n�, com-

posed of n 2 N contiguous line segments where for each

i 2 f1; 2; . . .ng line segment ½A; i� is of length j½A; i�j ¼
blog2 nc þ 1 and encodes a distinct binary number from

f0; 1; . . .; n� 1g, where specifically, for all j 2
f1; 2; . . .blog2 ncg it is the case that monomer ½A; i�j is in

one of two binary states from fs0; s1g and the end-of-seg-

ment monomer ½A; i�blog2 ncþ1 is in one of two binary end-of-

segment states fs#0; s#1g.
Output: A line A0 consisting of the n binary line

segments sorted in increasing order of the standard

lexicographical ordering of their binary sequences.

Theorem 9 (Distinct element sorting) Any instance A of

the distinct element sorting problem is solvable on nubots

in expected time Oðlog3 nÞ, space Oðn log nÞ � OðnÞ, and
Oð1Þ monomer states.

Proof The general idea is as follows. For each element i

(encoded as a ‘‘head’’) to be sorted, we grow a line of

monomers (a ‘‘rod’’) to length i as shown in Fig. 10b. After

doing so, the relative heights of the heads gives their order.

We then move each head horizontally left, through a

sequence of Oðlog nÞ parallel merging steps, so that all

heads are vertically aligned (Fig. 10c). Finally, the heads

are rotated and translated so that they lay along a vertical

line as shown in Fig. 10d, in increasing order. The details

are described next.

6.1 Sorting details: rod growth and labeling

We begin with an instance of the distinct element sorting

problem, an example of which is shown in Fig. 11a.

Initialization The monomers begin in binary states as

described in Definition 8. Growth begins at each of the n

blue heads: the head is copied and rotated down to vertical

as shown in Fig. 11b. This rotation of a Oðlog nÞ length line
takes Oðlog log nÞ expected time to complete using the

parallel ‘‘arm rotation’’ method in Woods et al. (2013)—

that is, each monomer independently rotates by one posi-

tion, relative to its leftmost neighbour. After rotation (Fig.

11b), each blue-green line independently synchronizes,

then makes a copy of itself which is in turn rotated down to

become one of the n horizontal light-grey line segments

shown in Fig. 11c. After all light-grey segments are hori-

zontal, they bond to each other and synchronize. This entire

process completes in expected time Oðlog nÞ, using the

Chernoff bound in Woods et al. (2013), and is dominated

by the synchronization process.

Grow rods After this synchronization step, as shown in

Fig. 11c, the rightmost grey line segment is copied to form

a dark grey segment that is copied down to vertical in Fig.

11d. Also in Fig. 11d, and triggered by the previous syn-

chronization, the blue-green rods, in Oðlog nÞ expected

time, signal the heads to disconnect from each other, and

the blue-grew rods then begin ‘‘growing upwards’’. This

vertical growth of the rods implements a form of counting:

we want the rods to grow to the height encoded by their

blue head. This is carried out by using the line-growth

algorithm in Sect. 5 which takes time Oðlog2 nÞ (an alter-

native method would be to use a suitable counter, such as

the one described below). After a rod has grown to the

value encoded in its head, shown in Fig. 11e, the rod

synchronizes, this latter step taking expected time Oðlog nÞ.
After expected time Oðlog3 nÞ all n rods have

synchronized.

Label growth Rod growth occurs above the light-grey

line. Below that line another process takes place, the pur-

pose of which is to label each rod with its position (from

right), as a binary number in purple. Here the dark-grey line

(Fig. 11d, on right) grows a ‘‘padded’’ counter, from right to

238 M. Chen et al.

123

left. The result of this counter is shown in Fig. 11e and is a

ðblog2 nc þ 1Þ � ðblog2 nc þ 1Þ2blog2 ncþ1 rectangle where

each of the purple columns, from right to left, encodes a

distinct value from 2blog2 ncþ1 down to 1, with the grey

regions in between being there for padding purposes only.

This counter works as follows. The counter is a modified

version of the one used in Sect. 6.2 of Woods et al. (2013);

their counter used Oðlog nÞ states, here we use Oð1Þ states.
First note that the dark grey strip is of height blog2 nc þ 1,

it begins counter growth by converting each of its

monomers to a state that represents the bit 1, giving the

binary representation of the number 2blog2 ncþ1 � 1. Let

j ¼ blog2 nc þ 1, and we begin from the single dark grey

column, applying the following procedure iteratively to

each new column until j ¼ 1. Each column copies itself to

the left and in the new column the jth bit is flipped. Both

columns then decrement their value of j, and both iterate

the copy and bit-flip procedure. As is the case in Woods

et al. (2013), this process happens asynchronously and

independently to all columns. After this happens we have a

ðblog2 nc þ 1Þ � 2blog2 ncþ1 rectangle containing all of the

purple columns. We are not done yet: we wish for the

purple counter columns to align themselves with the n

green rods which are distance blog2 nc þ 1 apart, as in Fig.

11e. To achieve this, another round of column insertion

(i.e. counting) begins, so that between each pair of counter

columns, exactly k ¼ blog2 nc new columns are inserted

(between each pair of purple columns we are implementing

a counter that counts from k down to 1; note that the integer

k is available since the purple counter columns are of

height k). Now the purple counter rows are exactly distance

k þ 1 ¼ blog2 nc þ 1 apart. When the process is complete

(a)

(b)

(c)

(d)

Fig. 10 High-level overview of the sorting algorithm. a A line of

nðblog2 nc þ 1Þ monomers, with n blue line segments (‘‘heads’’) each

is the binary representation of a natural number i
 n. b A blue head

that encodes value i is grown to height i by a green rod, in time

polylog in i. Purple ‘‘labels’’ are also grown at the bottom. c The

heads are horizontally merged, using the labels to synchronize, to be

vertically aligned. d Merged heads rotate down into a line config-

uration, giving the sorted list. Each stage occurs in expected time

polylogarithmic in n, more details appear in subsequent figures

(online version in colour)

(a)

(b)

(c)

(d)
(e) (f)

Fig. 11 The beginning of our sorting algorithm, this gives the details

for the overview in Fig. 10a, b. a Initial configuration with head

monomers in blue, b head monomers are copied and rotated down to

vertical (dashed blue-green), and then c are copied and rotated down

to horizontal to form the light-grey label region. The light-grey region

synchronizes after being copied. On the right, the dark grey region is

copied and in it rotates down to vertical, as shown in d. In d the heads

have received a ‘‘synchronization done’’ message from the light-grey

region and e they grow a vertical green rod (line) of length equal to

the value encoded in the head (note the heads are not connected to

each other, except through the green rods and light-grey region). Also

in e, the dark grey region grows a purple counter, from right to left,

that counts from 2blog2 ncþ1 � 1 down to 0 (see main text for details)

and is padded with blog2 nc þ 1 monomers between each counter

column (thus growing a ðblog2 nc þ 1Þ � ðblog2 nc þ 1Þ2blog2 ncþ1

rectangle, in dark grey and purple). f All parts of the dark grey

region delete themselves, except those directly below a green rod

(purple). The purple regions that remain encode n distinct binary

strings (online version in colour)

Parallel computation using active self-assembly 239

123

the bottom row of the entire rectangle synchronizes, to give

the structure illustrated in Fig. 11e (although the grey

rectangle extends further to the left than shown).

To give a straightforward time analysis, we assume that

the copying and decrementing for an individual column

happens sequentially and so takes expected time Oðlog nÞ.
Then in the completed counter, each counter column is the

result of no more than Oðlog nÞ column-copying opera-

tions, hence any monomer in the final rectangle depends on

the application of Oðlog2 nÞ rules. Applying a Chernoff

bound (Woods et al. 2013), gives an expected time of

Oðlog2 nÞ. The final synchronization step costs Oðlog nÞ
expected time, giving a total expected time of Oðlog2 nÞ.

Deletion and synchronization All columns of the dark

grey region then delete themselves, except those that are

directly below a green rod. The deletion events happen in

time Oðlog nÞ. The purple regions that remain are n counter

columns that encode n distinct binary numbers. After each

green rod (above) has synchronized it signals to the light-

grey line. As each counter row below completes deletion, it

too signals to the light-grey line. The light-grey line

undergoes a lift synchronization. The system is now in the

configuration shown in Fig. 11f.

Analysis As already discussed, rod growth and the sub-

sequent synchronization of all n rods takes expected time

Oðlog3 nÞ, and label growth takes expected time Oðlog2 nÞ.

6.2 Sorting details: merging

Now that all rods have grown, and are labeled, we will now

merge them as shown in in Fig. 10c.

Main idea Intuitively, we would like to simply shift all of

the heads to the left, deleting any rods that get in the way.

However, if we are not careful, rods can block each other and

significantly slow down the process so that it no longer runs

in time polylogarithmic in n (consider the worst case, where

the shortest rod is the rightmost one, and we wish to move all

heads to the left). Our merging algorithm gets around this

issue by merging in a pairwise fashion. Every second pair of

heads merge, deleting one of the rods and then the light-grey

line synchronizes. We are left with dn=2e rods, each having

two heads. Then every second pair of those merge, and so on

for Oðlog nÞ iterations. To organise the correct order of

mergings, we use the purple labels, specifically their binary

sequences, which are shown in Fig. 11f.

Merging algorithm The following procedure is iterated

until there is exactly one rod left. For each i, the ith rod

checks its label, if the LSB of the purple label is 1 (in Fig. 11f

the LSB is on top), then rod i attempts tomergewith rod i� 1

to its left, by ‘‘moving’’ its head to the left distance

blog2 nc þ 1. This pairwise merging process is described in

the caption of Fig. 12. Rod i, and its label (but not its head)

get deleted in the process. After merging of the pair of rods is

complete, rod i� 1deletes its LSB, thus shortening its purple

region by 1. Rod i� 1 now has two heads, and signals to the

light-grey line that it is done. After all pairs have merged, we

have dn=2e rods, with 2 heads each. At this point the light-

grey line synchronizes and the process iterates. After

Oðlog nÞ rounds of pairwisemergingwe are left with one rod,

which has no label and is carrying all n heads.

When a pair of rods are merging, the right rod needs to

move distance blog2 nc þ 1 to the left. In the worst case

there are dn=2e collisions for a pair of rods, however, these
are all resolved in parallel as described in Fig. 11c. So we

have
dn=2e heads, that each need to independently walk

distance blog nc þ 1 to the left which naı̈vely takes

Oðlog2 nÞ expected time, and applying the Chernoff bound

from Woods et al. (2013) reduces this to Oðlog nÞ.

Final steps After merging is complete, the heads are on a

single rod, sorted vertically upwards in increasing order of

head value. The heads rearrange themselves on the rod to

that they are separated by vertical distance exactly

blog2 nc þ 1, and then rotate down into a line configuration,

giving the sorted list as shown in Fig. 10d.

6.3 Sorting details: time, space and states analysis

The expected time to complete the various stages of sorting

was given above, and is dominated by growing and syn-

chronizing the rods, which is Oðlog3 nÞ. For the space ana-
lysis, note that the length of the light-grey line is Oðn log nÞ
(giving the horizontal space bound). The rods are of height

OðnÞ, and the purple labels are of height Oðlog nÞ, giving a

vertical space bound ofOðnÞ. Hence we get a space bound of
Oðn log nÞ � OðnÞ. All counters and line growth algorithms

use number of states that is constant, which can be seen by a

careful analysis of each part of the construction. h

7 Fast Boolean matrix multiplication

LetM and N be n� n Boolean matrices. LetMi;j denote the

element at row i and column j of M, and let MN denote

their matrix product. The following two definitions are

illustrated in Fig. 13 and describe our encoding of a square

matrix as an addressed line of monomers.5

5 Our choice of a 1D, rather than 2D, encoding simplifies our

constructions. It would also be possible use a more direct 2D square

encoding, which, it turns out, can be unfolded to and from our line

encoding in expected time Oðlog nÞ. We omit the details.

240 M. Chen et al.

123

Definition 10 (Matrix element encoding) An element Mi;j

of n� n Boolean matrix M is encoded in nubots monomers

as a line of Oðlog nÞ monomers ½M; ði; jÞ� ¼ ½emi;j�½ei�½ej�
where ½emi;j� is a nubot monomer that encodes the bit Mi;j,

and ½ei� and ½ej� are lines of binary monomers of length

Oðlog nÞ that encode the numerical values i and j, respec-

tively (the segments ½ei� and ½ej� are each terminated by

delimiter monomers).

Definition 11 (Monomer encoded Boolean matrix) An

n� n Boolean matrix M is encoded in nubots monomers as

a line of Oðn2 log nÞ monomers ½M� ¼ ½M; ð1; 1Þ�
½M; ð1; 2Þ�. . .½M; ðn; n� 1Þ�½M; ðn; nÞ� of all ½M; ði; jÞ� for

1
 i; j
 n, ordered from left to right, first by i, then by j.

The main result of this section, Theorem 13, is a fast

parallel algorithm for Boolean matrix multiplication.

Problem 12 (Monomer encoded Boolean matrix multi-

plication problem) Input: Monomer encoded Boolean

matrices ½A� and ½B�, that represent n� n Boolean

matrices A;B.

Output: Monomer encoding of the Boolean matrix

½C� ¼ ½AB�.

Theorem 13 The monomer encoded Boolean matrix

multiplication problem can be solved on nubots in

Oðlog3 nÞ expected time, Oðn4 log nÞ � Oðn2 log nÞ space

and with Oð1Þ monomer states.

7.1 Parallel function evaluation in 2D

Before proving Theorem 13 we give a useful lemma that

formalises a notion of nubots efficiently computing many

(n2 here) functions in parallel, where each function acts on

two length k inputs. Fig. 14 illustrates the proof.

Lemma 14 (Parallel function evaluation in 2D) Let F be

any function that maps a pair of length k adjacent parallel

(a)

(b)

Fig. 13 a Encoding of a Boolean matrix M as a line of monomers

½M�, b zoom-in of the encoding of a single matrix entry Mij 2 f0; 1g
as a line segment ½M; ði; jÞ� that contains a single monomer ½emi;j� that
encodes the bit Mi;j and line segments of binary monomers, ½ei� and ½ej�,
that encode i and j

(a) (b) (c) (d) (e) (f) (g)

Fig. 12 Merging the heads on two adjacent rods, this gives the details

for the overview in Fig. 10c. Exactly one round of parallel (pairwise)

head-merging has already occurred, and so each green rod has two

blue heads. a Two rods, with two heads each: the goal is to merge all

4 heads onto the left rod. b Due to how they were generated the LSBs

(top bits) on the two purple labels are distinct. If the LSB bit is 1, the

rod moves left, and deletes the purple label monomers. The rod tries

to move left by having the light-grey line sequentially delete its

Oðlog nÞ monomers one at a time, although here the rigid rod is

immediately blocked due to collisions with the heads on the left.

c Collisions are marked in red. The rod monomers at the collision

locations delete themselves. The new shorter rods can continue

moving to the left, by ‘‘walking’’ along the blue heads as shown in c,
d, e The rods on the right make contact with the rods on the left, f the
contact triggers a ‘‘done’’ state to be reached by the rod on the left. It

also signals for the rod on the right to delete itself. Head monomers

from the right are shifted to their new rod. g When everything has

moved into place, synchronization occurs along the single green rod,

and the LSB (top) bit of the purple label is deleted (online version in

colour)

Parallel computation using active self-assembly 241

123

horizontal monomer lines ½X�; ½Y � to a length k horizontal

monomer line ½Z�, that is Fð½X�; ½Y �Þ ¼ ½Z�, and more-

over F is nubots computable in OðkÞ expected time,

OðkÞ � Oð1Þ space, and Oð1Þ states.

Let ½A� ¼ ½A; 1�½A; 2�. . .½A; n� and ½B� ¼ ½B; 1�½B; 2�. . .½B; n�
be monomer lines, each composed of n consecutive length k

monomer lines (called ‘‘line segments’’). Then, given ½A�
and ½B� as input, the line ½C� ¼ ½C; 1�½C; 2�. . .½C; n2� con-
sisting of all ½C; iþ ðj� 1Þn� ¼ Fð½A; i�; ½B; j�Þ for

1
 i; j
 n is computable on nubots in Oðk þ log2 nÞ
expected time, Oðn2kÞ � OðnkÞ space, and Oð1Þ states.
Proof of Lemma 14 Figure 14 gives an overview of the

construction. From an initial configuration with ½A� and ½B�
adjacent as in Fig. 14a, ½B� rotates down to vertical (Fig.

14b). ½B� is copied from the grey line which rotates down to

horizontal as shown in Fig. 14c. In Fig. 14d1, we duplicate

each line segment ½A; i�, for 1
 i
 n, n times, down to the

grey vertical line, which acts as a barrier to stop the

duplication. A one monomer horizontal gap is inserted

between adjacent columns of green columns (of line seg-

ments), which triggers a vertical synchronization, shown as

a vertical red line in Fig. 14d2 of each completed green

column. Next, monomer-to-monomer messages are passed,

horizontally from right to left, within each green line

segment to signify that monomers should change from

being ‘‘vertically connected’’ to being ‘‘horizontally con-

nected’’. After this, the vertical red synchronization lines

carry out another synchronization and then delete them-

selves in a way that keeps all green monomers horizontally

connected. In Fig. 14d3, each purple ½B; j� inserts a 1-

(a) (b) (c)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3)

(f) (g) (h)

Fig. 14 Parallel function evaluation in 2D, used in the proof of

Lemma 14. a Initial configuration with line ½A� in green and line ½B�
in purple, each has n line segments. We wish to compute F on all n2

pairs of line segments in ½A� and ½B�. b ½B� rotates down to vertical and

duplicates, c the duplicate of ½B� rotates down to horizontal creating a

grey border. d1 Each segment of ½A� duplicates, and the resulting pair

of segments duplicate, and so on iteratively, d2 The copied line

segments of ½A� reach the bottom grey border line. A vertical gap is

inserted between each column of green line segments, then synchro-

nization occurs (red). d3 The vertical synchronization causes the

system to change connectivity (to be a comb with horizontal teeth),

allowing for segments of ½B� to insert 1-monomer vertical gaps

between themselves. d4 Duplicates of ½A�, not adjacent to a gap delete

themselves; monomers rearrange and horizontal synchronization rows

are regrown. e1 Segments of ½B� duplicate, iteratively, e2 When

duplication finishes, synchronizations occur along the copied seg-

ments of ½A�, e3 duplicates of segments of ½B� not adjacent to the left/

right ends of duplicates of segments of ½A� delete themselves. f Purple
duplicated line segments of ½B� rotate up to align parallel with those of
½A�, the structure shrinks vertically, and a new vertical synchroniza-

tion row (grey) is formed on the right. g F is evaluated in parallel on

all line segments ½A; i� and ½B; j�, to give the set of all line segments

Fð½A; i�; ½B; j�Þ for all 1
 i; j
 n represented in blue h the rectangle

rearranges into the line ½C� of length Oðn2 log nÞ, as in Fig. 15 (online

version in colour)

242 M. Chen et al.

123

monomer vertical gap between between it and its neigh-

bour ½B; jþ 1�. After all gaps insert, the purple vertical line
synchronizes, and then n horizontal synchronizations hap-

pen which tell excess duplicates of ½A; i� to delete them-

selves to give the configuration in Fig. 14d4.

Next, a duplication and deletion process occurs with

½B; j� line segments as shown in Fig. 14e (similar to what

we did before, but now horizontally rather than vertically).

The ½B; j�’s duplicate until they hit the vertical grey barrier

on the right, at which point the system synchronizes. After

this occurs, excess ½B; j� segments are deleted (using direct

monomer-to-monomer message transfer as before). When

this process is complete, we are at Fig. 14e3.

Next, the duplicates of each ½B; j� rotate up to horizontal

as shown, and the leftmost copy of ½B� deletes itself in a

way that vertically ‘‘shrinks’’ the assembly to get Fig. 14f.

During this process we make n grey synchronization rows,

also shown in Fig. 14f. From Fig. 14f, g, Fð½A; i�; ½B; j�Þ is
computed on each of these n2 line segments (independently

and in parallel), and by the lemma hypotheses this can be

done in the allotted space. The horizontal red lines

synchronize, and then the vertical red line synchronizes.

After this occurs, we can delete the grey synchronization

rows and unfold the result into a line, which is of length

Oðn2 log nÞ, to get the final configuration in Fig. 14h, using

the technique shown in Fig. 15.

Space, state and time analysis By stepping through the

construction (and Fig. 14), it is straightforward to check

that the entire construction is contained within space

Oðn2kÞ � OðnkÞ, and uses Oð1Þ states.
For the time analysis, we first observe that rotation, and

copying, of a length ‘ line can each be done in Oðlog ‘Þ
expected time via a straightforward analysis (Woods et al.

2013). Steps (b), and (c) of Fig. 14 involve rotations and

copying of lines of length Oðn log nÞ: this completes in

expected time Oðlog nÞ. The duplication processes of green

and purple segments in Fig. 14d, e take Oðlog2 nÞ expected
time. Each application ofF takes expected timeOðkÞ, and we
apply it independently in parallel n2 times, hence via a

Chernoff bound (Woods et al. 2013), all complete in merely

OðkÞ expected time. There are a number of other placeswhere

 n2 independent processes, each with expected time

Oðlog nÞ, take place (deletions in Fig. 14d4, e3, and rotations
in f), and by the sameChernoff bound each take expected time

Oðlog nÞ. In each of Fig. 14d2, e2, g there are n lines, each of
length Oðn log nÞ that need to be synchronized. For example,

in Fig. 14d2, synchronization for each red vertical single line

takes expected timeOðlog nÞ, and since wemust wait until all

n vertical lines are synchronized (independently), and only

then synchronize the horizontal line, this takes expected time

Oðlog2 nÞ. Finally, the rearrangement in Fig. 14g–h (given in

detail in Fig. 15) takes expected timeOðlog2 nÞ: each insertion
line must growOðn log nÞmonomers before a level is moved

up. There are n of them that work independently, so the

Chernoff bound (Woods et al. 2013) gives an expected time to

finish of Oðlog2 nÞ. Besides computingF , the slowest parts of

the construction run in expected timeOðlog2 nÞ, and there are
at most a constant number of these parts, so the entire

construction finishes in expected time Oðk þ log2 nÞ. This
concludes the proof of Lemma 14. h

7.2 Proof of Theorem 13: fast Boolean matrix

multiplication

Proof of Theorem 13 The multiplication C ¼ AB of two

n� nBooleanmatrices is defined asCi;j ¼
Wn

k¼1 Ai;k ^ Bk;j

� �

.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 15 Unfolding a rectangle of n2 monomer line segments, each of

length Oðlog nÞ into a line of length Oðn2 log nÞ. a Initial configu-

ration, b a new ‘‘insertion line’’ (shown in orange) grows from the left

of each row i. The left end of the orange insertion line at row i is

attached to the left end of row i� 1 (above) by a monomer shown in

grey. As the insertion line for row i grows, it ‘‘pushes’’ row i to the

right, relative to row i� 1. A monomer (black) attached to the right

end of row i� 1 and a monomer (green) attached to the right end of

the orange insertion line i below are used as ‘‘hooks’’ so that the

insertion line is stopped from growing beyond length Oðn log nÞ.
c The green monomer of row 2 and the black monomer of row 1

become ‘‘hooked’’, d row 2 moves up to be horizontally aligned with

row 1. The grey, green, and black monomers delete. When the orange

insertion line in the second row is placed adjacent to row 1, it

becomes a red synchronization row. All rows continue this process

independently and in parallel. When all are done the insertion line

becomes a synchronization row. e Ready to synchronize, f final

configuration (online version in colour)

Parallel computation using active self-assembly 243

123

To calculate Ai;k ^ Bk;j, for each i; j; k, we begin by defining

the function FAND which acts on two encoded matrix ele-

ments ½A; ði; k1Þ� and ½B; ðk2; jÞ� as follows.
FANDð½A; ði; k1Þ�; ½B; ðk2; jÞ�Þ

¼
½;�½ei�½ej�½ek1�½ek2� if k1 6¼ k2

~ci;j;k1
� �

½ei�½ej�½ek1�½ek2� if k1 ¼ k2

(

where ; is a special monomer denoting ‘‘no useful data

here’’, ½~ci;j;k1 � is the monomer encoding for the (useful) bit

Ai;k1 ^ Bk1;j when k1 ¼ k2, and as usual ½ei�, ½ej�, ½ek1�, ½ek2�
denote the binary monomer line segments encoding of

i; j; k1; k2
 n.

We now apply Lemma 14 to ½A� and ½B� setting F to

FAND. This gives a line of monomers with n4 segments,

each of length Oðlog nÞ, and n3 of which encode useful data.
The remainder are the n4 � n3 segments ‘ for which

k1 6¼ k2. The entire line synchronizes and begins the process

of deleting the useless line segments ‘ as follows. Each ‘

encodes an Oðlog nÞ bit number p (as the concatenation of

the bit strings for i; j; k1; k2Þ. The digits of p are used to

organise the deletion of the segments. If the LSB of p in

segment ‘ is 1, then ‘ deletes itself. Deletion of a segment

works as follows: the rightmost monomer r of ‘ walks on top

of its ‘ segment, walking left, sequentially deleting mono-

mers until all of the ‘ segment is deleted. The monomer r is

now adjacent to a new segment ‘0 (to the left of the former ‘)

which causes ‘0 to ‘‘delete’’ its LSB (sets its monomer state

to ;). The entire line grows a shift synchronization row and

the process iterates. To stop the iteration: if an r monomer

completes its walk left and meets a non-‘ segment (i.e. it

meets a useful segment) it initiates growth of a lift

synchronization row, when all lift synchronization rows

form, a lift synchronization occurs signalling that the entire

deletion process has finished. This gives a line of monomer

segments of the form ½~ci;j;k1 �½ei�½ej�½ek1�½ek2� with k1 ¼ k2. Next

each of the redundant ½ek2� segments deletes itself, then the

line synchronizes. This gives a line of n3 segments

½C; ði; j; kÞ� for 1
 i; j; k
 n.

To calculate the elements Ci;j ¼
Wn

k¼1 Ci;j;k, for

1
 i; j
 n, we begin by sorting the line segments first

by i, then by j, then by k. From this sorted line of elements,

for each i; j we calculate ½C; ði; jÞ�, the encoding of the

matrix element Ci;j, in a two-step process as follows. First,

for all i; j; k where k 6¼ 1, the ½~i� and ½~j� line segments delete

themselves from each of the ½C; ði; j; kÞ� line segments, and

the entire line synchronizes when done. The n segments ½~k�,
for all k
 n, then rotate perpendicular to their original

orientation, and translate (horizontally ‘‘shrink’’) so that the

n monomers of the form ½~ci;j;k� lie horizontally adjacent to

each other. At this point we have a structure consisting of

vertical columns of ½~ci;j;k� and ½~k�, ordered horizontally by i,

then by j then by k, for 1
 i; j; k
 n (and also with those ½~k�
that encode 1, which still have their horizontal ½~i� and ½~j�
segments). The set of monomer bitstrings f½~k� j k
 ng are

used to organise iterated pairwise ORing. For each ½~k� with
LSB 1 delete the LSB from the ½~k� segment and OR its ½~ci;j;k�
bit with its neighbour ½~ci;j;k0 � to the left, with the result bit

being stored in the ½~ci;j;k0 � monomer to the left. Then a shift

synchronization occurs. This is iterated Oðlog nÞ times until

all n bits have been ORed and finished with a lift

synchronization. We are left with a line of segments of the

form ½ ~C; ði; jÞ� ¼ ½~ci;j�½~i�½~j�, for 1
 i; j
 n, ordered first by i

and then by j. This is exactly the monomer representation of

the matrix C ¼ AB that we desire.

Time, space and state analysis The time of Boolean

matrix multiplication is dominated by Lemma 14 and the

sorting algorithm. Since the expected time of FAND is

Oðlog nÞ, then k ¼ Oðlog nÞ in the hypothesis of

Lemma 14, giving Oðlog2 n) as the expected time of the

application of Lemma 14. There are Oðn3Þ monomer seg-

ments (each of length Oðlog nÞ) to be sorted when calcu-

lating the ORs, so the expected time for sorting is

Oðlog3 nÞ. Hence, the entire matrix multiplication takes

expected time Oðlog3 nÞ.
The most space-consuming aspects of Boolean matrix

multiplication are Lemma 14 and the sorting algorithm.

Lemma 14 takes space Oðm2kÞ � OðmkÞ for two lines each

containing m line segments each of which is of length k. For

matrix multiplication, we are starting from two encoded n�
n matrices, each of which has n2 elements. Setting m ¼ n2

and k ¼ Oðlog nÞ, the total space for Boolean matrix

multiplication is thus Oðn4 log nÞ � Oðn2 log nÞ, and since

the sorting algorithm takes less space than that, we are done.

A careful analysis of the algorithm shows that the

number of monomer states is Oð1Þ. h

8 Boolean circuit simulation

Our main result, Theorem 1 is a restatement of the fol-

lowing theorem. Definition 2 defines what it means for

nubots to decide a language.

Theorem 15 Let L 2 NCj be a language decided by a

logspace-uniform Boolean circuit family C of circuits that

have depth Oðlogj nÞ, for some j� 1, size OðnkÞ and input

length jxj ¼ n, and let ½ex� denote the representation of x 2
f0; 1g� as a line of binary monomers. Then there is a set of

nubots rules N L such that, for all x 2 f0; 1g�, starting from
an initial configuration containing only ½ex�, N L decides

244 M. Chen et al.

123

whether x 2 L and uses space nOð1Þ � nOð1Þ, monomer

states Oð1Þ, and expected time Oðlogjþ3 nÞ.

The proof is contained in Sect. 8.2, where we give a

nubots algorithm that given x, quickly generates a Boolean

circuit, and then simulates that circuit on input x. Before

that, in Sect. 8.1, we present a nubots algorithm that sim-

ulates function-computing logspace Turing machines in

polylogarithmic expected time. This fast Turing machine

simulation will be used in the circuit generation part of

Sect. 8.2.

8.1 Fast parallel simulation of space bounded Turing

machines

Here, we give a polylogarithmic expected time simulation

of deterministic logspace Turing machines that compute

functions with domain and range f0; 1g�.

Lemma 16 Let M be a deterministic Turing machine

that on input x 2 f0; 1g�, of length jxj ¼ n, generates an

output y 2 f0; 1g�, in Oðlog nÞ workspace and time t.

There is a set of nubots rules NM such that for all

x 2 f0; 1g�, starting with the initial configuration con-

taining only the line ½ex� (that represents x), NM com-

putes ½ey� (the representation of y) using Oð1Þ states,

nOð1Þ � nOð1Þ space, and Oðlog4 nÞ expected time.

Before giving the proof of Lemma 16 we state some

assumptions about M:

1. M follows the standard conventions for logspace

Turing Machines: there are 3 tapes: a read-only input

tape, a Oðlog nÞ space bounded work tape, and a write-

only output tape whose head moves in one direction

only.

2. M uses the alphabet f0; 1g on all 3 tapes (the input is

delimited with the symbol #).

3. A configuration consists of the input tape head position

and read symbol, worktape contents and head position,

worktape read symbol, and machine state, and (unusu-

ally6) the output tape head position and write symbol.

4. M always ends its computation in a halting, accept

state.

There are n possible positions for the head on the input tape

and Oðlog nÞ head positions on the work tape. We note that

each configuration of M can be written as a string over

f0; 1g� of length Oðlog nÞ. This follows from the fact that

in a given configuration Oðlog nÞ bits describe the position
of the input and output tape heads, Oðlog log nÞ bits

describe the position of the worktape head, Oðlog nÞ bits

describe the contents of the work tape, and Oð1Þ symbols

describe the read and write symbols on the various tapes,

and the machine state. Thus, on length-n input, M visits at

most 2Oðlog nÞ ¼ nOð1Þ configurations before halting, or

looping forever, in other words t ¼ nOð1Þ. We next define

the configuration matrix of a space-bounded Turing

machine.

Definition 17 (Configuration matrix) Let M be a deter-

ministic Turing machine with space bound sðnÞ. Consider
the set of all k ¼ nOð1Þ possible configurations on a length n

input (we include all syntactically valid configurations for a

worktape with sðnÞ tape cells, even though on a given input

many will be unreachable). We define M to be the k � k

Boolean matrix where for 1
 i; j
 k, mi;j ¼ 1 if and only if

there exists a one-step transition from configuration ci to

configuration cj, and mi;j ¼ 0 otherwise.

Proof of Lemma 16 A logarithmic space-bounded Turing

machine M can be simulated efficiently in parallel (in

polynomial time, using polynomial processors/resources)

in a variety of parallel models by iterated squaring of M’s

Boolean configuration matrix M (Papadimitriou 1994).

Specifically, we can determine whether there exists a

sequence of one-step transitions from any configuration ci
to any cj by beginning with matrix M, computing

M :¼ M2 þM, and iterating this procedure Oðlog nÞ times.

A path between the two configurations exists only if entry

m0
i;j ¼ 1 in the resulting matrix M0. We call matrix M0 the

path-complete matrix. SinceM is deterministic and always

accepts (M is total: for any input 1n; n 2 N it outputs a

circuit cn), there is exactly one path, through M’s con-

figuration graph, that leads from the start configuration to

the halt (accept) configuration. The technique of iterated

squaring is sufficient for simulating Turing machines that

decide languages, but here we want to simulate a function-

computing machine. We do this by modifying the iterated

squaring technique: our configurations contain (extra)

information about what is written to the output tape, we

appropriately extract this information during our simula-

tion of M by iterated squaring. The remainder of the proof

describes how we do all of this in nubots.

We generate all possible configurations of Turing

machine M, in parallel. First, we build a counter that

counts up to 2sðnÞ ¼ nOð1Þ, the upper bound on the number

of distinct worktape contents of M. Once completed, each

row of the counter then generates its own counter, counting

up to the number of different positions that the head can be

on the input tape. This process is iterated for each of the

(constant number of) attributes in a Turing machine

configuration to give a final counter with k ¼ nOð1Þ rows,
one for each distinct configuration (see Definition 17 for k,

6 Our configurations include an output tape write symbol and an

output tape head position which is not standard practice (Papadim-

itriou 1994), but will be useful in our construction.

Parallel computation using active self-assembly 245

123

and see Woods et al. (2013) for details on efficiently

growing a counter). The counter backbone synchronizes,

giving a k � Oðlog kÞ rectangle, whose bond structure

forms a ‘‘comb’’. The counter rearranges itself into a line

½C� ¼ ½C; 1�½C; 2�. . .½C; k� where line segment ½C; i�
encodes configuration ci.

We next use our encoding ½C� of all possible configura-

tions to generate an encoding of the configuration matrix M.

First, ½C� is copied so that we have two parallel instances

of ½C�, side-by-side. Next, we apply Lemma 14, setting F ¼
FM where FM takes as input the pair of parallel line

segments ½C; i� and ½C; j�, and a copy of the input line

segment7½ex� that encodes x, and returns a segment

½M; ði; jÞ� ¼ ½m; i; j�½C; i�½C; j� where ½m; i; j� is a binary

nubots monomer representing element mi;j in M’s config-

uration matrix8. In other words, given the encoding of two

configurations ci; cj, the function FM determines if there is

a one-step transition from ci to cj via Turing machine M.

FM works by straightforward message-passing and state

changes from monomer to monomer along the pair of

encoded configurations. To satisfy the hypotheses of

Lemma 14, FM should work in time linear in the encoded

configurations’ length (j½C; i�j, j½C; j�j) which is easily

achieved. It is also the case that the space and states bound

in the hypotheses of Lemma 14 are met by FM. After

applying Lemma 14 we get an encoding of the configuration

matrix M as a single line ½M� of consecutive line segments

½M; ði; jÞ� ¼ ½m; i; j�½C; i�½C; j� for 1
 i; j
 k.

We make a copy of the encoded matrix ½M� (a line of

monomers) and then use Theorem 13 to square ½M�,
giving ½M2� (another line of monomers). After we have

both lines ½M� and ½M2�, ‘‘adding’’ the lines together (to

compute M2 þM) is easy: matrix elements with the same

ði; jÞ coordinates are adjacent when ½M� and ½M2� are

orientated parallel and next to each other, so the addition

can be carried out ‘‘locally’’. The iterated squaring (and

addition) are carried out 1þ log k ¼ Oðlog nÞ times. The

result is an encoding of M’s path-complete matrix M0.
Consider the path-complete configuration matrix M0,

with start configuration cstart and halt configuration chalt.

We need to (i) determine which configurations are on the

unique path, in the configuration graph, from cstart to chalt,

and (ii) follow this unique path keeping track of what was

written to the output tape at each step. For any i, if

configuration cstart leads to configuration ci in � 1 steps

then M0
cstart;ci

¼ 1. Similarly, if configuration ci leads to

configuration chalt in one or more steps then M0
ci;chalt

¼ 1.

Hence it is sufficient to extract row cstart and column chalt
from M0, and compare them, in order to find the entire path

of configurations from cstart to chalt.

We do this by first deleting all encoded matrix elements

of ½M0� that are not in row cstart or not in column chalt. This

results in two lines of monomers, that are then aligned

parallel and side-by-side. Next each entry i is compared, if

there is a 1 in both we keep the entry, otherwise the entry is

deleted. We are left with the list of configurations on the

path from cstart to chalt. This line of monomers synchronizes.

Next, the encoded matrix entries (bits) are deleted

leaving the list of encoded configurations. Configurations

that do not write anything to the output tape are deleted.

The remaining configurations are sorted in increasing order

of output-tape write location. Since the output tape head

moves one way only, this gives the list of outputting

configurations in the order they are executed by the Turing

machine M. Finally, all monomers that do not represent a

symbol written by the output tape head are deleted, and the

result is compressed into a line. We are left with a

monomer line encoding y, the output tape contents.

State, space and time analysis of Turing machine simula-

tion The state complexity of Oð1Þ can be seen from

stepping through the algorithm. In the proof, the configu-

ration matrix dimension size is k � k, where k ¼ nOð1Þ.
From Theorem 13, matrix multiplication on nubots for two

k � k matrices takes space Oðk4 log kÞ � Oðk2 log kÞ, and
since k ¼ nOð1Þ this gives the space bound in the lemma

statement. The space complexity of our Turing machine

simulation is dominated by this.

For the time analysis, first note that generating the

configurations consists of running a counter that takes

expected time Oðlog2 nÞ, see Woods et al. (2013) for

details. After the configurations are generated, each

iteration of matrix multiplication, addition, and deletions

is bounded by time Oðlog3 nÞ. Since we do Oðlog nÞ matrix

multiplications and additions the expected time on nubots

is Oðlog4 nÞ. The expected time of the other rearrange-

ments and computations during the construction is dom-

inated by that of matrix multiplication. This completes the

proof of Lemma 16. h

8.2 Generating and simulating a Boolean circuit: proof

of Theorem 15

We define the nubots monomer encoding of gates and

Boolean circuits. Boolean circuits were defined in Sect. 2.2.

Definition 18 (Nubot monomer encoding of a gate) The

encoding eg of a Boolean circuit gate g is as follows: a

single gate monomer encodes the gate type (AND, OR, or

7 Each configuration is of length polynomial in jxj ¼ Oðj½ex�jÞ, hence
including ½ex� here does not change the asymptotics.
8 The line segments in an encoded matrix usually encode the matrix

element’s ði; jÞ coordinates, here we do things slightly differently: we

are using encoded configurations, rather than natural numbers, as the

matrix indices. This simplifies our constructions a little.

246 M. Chen et al.

123

NOT), directly above the gate monomer are k line seg-

ments of monomers called result segments where k is the

gate’s out-degree. Each result line segment encodes a

destination gate number using Oðlog nÞ binary monomers,

where n is the circuit size. There is an empty region of

height Oðlog nÞ below the gate monomer called the input

region (Fig. 16b: dotted blue regions).

A gate is simulated as follows. The input region of eg is

an empty region to which a line of monomers, that encode

the inputs to g, can attach (Fig. 1d: dotted blue regions).

Upon attachment of the input lines, the gate monomer

computes g’s Boolean function. Let g be a gate with out-

degree 2, and which outputs to the gates g1 and g2. The

result region of nubot gate eg consists of two lines of binary

monomers that encode the wires that lead to g1 and g2 (Fig.

1d: solid blue regions). The simulation of wires is covered

in the proof below.

Definition 19 (Nubot monomer encoding of a Boolean

circuit) A Boolean circuit c is encoded as a nubots con-

figuration consisting of the encoded gates (Definition 18)

written in layers, one for each each layer in c (see Fig. 1).

Within a layer, the encoded gates are horizontally spaced

apart by the circuit size.

Proof of Theorem 15 The proof has two parts, circuit

generation and circuit simulation.

Circuit generation Let cn 2 C be a Boolean circuit with n

input gates that we wish to simulate. From the theorem

statement C is uniform by logspace Turing machine M. To

generate the encoding of cn as nubot monomers, first, M
on input 1n is simulated via Lemma 16 to give a line of

monomers ½ ecn � that encodes cn ¼ Mð1nÞ. Next, this ‘‘lin-
ear’’ encoding of cn geometrically unfolds into a two-

dimensional ‘‘ladder’’ format, with one encoded circuit

layer per rung, as shown in Fig. 1c and defined in Defini-

tion 19. We use the folding technique from Woods et al.

(2013) that takes expected time Oðlog2 ‘Þ to fold a length ‘

line into a square (here we modify the technique to fold a

line into a comb, then on the teeth of the comb the gate

result monomers fold out from each of the teeth to give the

structure in Fig. 1). Since j½ ecn �j is polynomial in n, the

rearrangement happens in expected time Oðlog2 nÞ.

Circuit simulation We have a nubots configuration that

encodes a circuit as shown in Fig. 16a. We evaluate the

encoded Boolean circuit layer by layer, from input layer

(bottom) to output layer (top), with each layer being

evaluated in parallel. Evaluating a layer is a 3-step process

shown in Fig. 16c–e. First assume we have the configura-

tion shown in Fig. 16c: along the bottom grey line there are

gate monomers (that encode AND, OR, or NOT), and

below the bottom grey line there are pink and green line

segments of monomers that encode gate input bits 0 and 1

respectively, and above are blue line segments that encode

the wires out of these gates (i.e. destination addresses to the

next layer above). Evaluation of a gate is straightforward:

since the gates have fan-in
 2, the gate simply reads the 1

or 2 pink/green line segments below by reading its lower

neighbours’ states. The gate monomer computes the

encoded gate’s Boolean function and passes the resulting

bit to the result line segments above. Note that gates may

have fan-out (or out-degree) as large as the circuit size, i.e.

polynomial in input length, so for this we assume adjacent

gates on a layer are spaced at least as far apart horizontally

as the circuit size. Then a gate communicates its result to

all of them via shift or lift synchronization (in expected

time logarithmic of circuit size). After all gate monomers

in a layer have completed this process, they synchronize.

By now we have reached Fig. 16d.

Boolean circuits may be non-planar and so have

crossing wires when drawn in 2D, hence naı̈vely moving

bit-encoding monomers in the plane to the next layer above

may cause unintended collisions. We resolve this problem

using our nubots sorting algorithm from Sect. 6. After a

layer has synchronized, the (blue) line segments in the gate

result regions of that entire layer are organised into a

horizontal line, to serve as input to our sorting procedure.

These gate result regions are then sorted by increasing wire

number. The gates on the next layer above are assumed to

be encoded in increasing (gate index) order. After sorting,

the gate result regions are aligned with the gate above them

(using counters) and pushed vertically upwards to the

relevant gate. This is done in such a way that when it is

finished there are no monomers below the new layer (any

excess monomers are deleted); this deletion leaves enough

space below for the sorting algorithm on the next iteration.

After the monomer that encodes the circuit’s unique

output gate computes its result bit, it destroys itself, leaving

a single monomer encoding the output bit. No rules are

applicable and so the system has halted with its

answer.Time, state, and space analysis of circuit simula-

tion There are Oð1Þ gate types, and all numbers are

written using binary monomers. All other parts of the

construction from previous sections use Oð1Þ states. By

stepping through the simulation with this in mind it is

straightforward to obtain a state complexity of Oð1Þ.

We are simulating a circuit of size OðnkÞ and depth

Oðlogj nÞ. Each layer of the circuit is encoded as a

monomer layer of height Oðlog nÞ, giving a total height of

of Oðlogjþ1 nÞ for the encoded circuit. The width of an

encoded layer is Oðn2kÞ which comes from the circuit size

being OðnkÞ, and from each gate being horizontally

separated by a further OðnkÞ to handle fan-out (note a

Parallel computation using active self-assembly 247

123

horizontal separation of a mere Oðlog nÞ monomers is

sufficient for the sorting algorithm). This gives Oðn2kÞ �
Oðlogjþ1 nÞ space to lay out the circuit. However, sorting n

numbers, each written as length Oðlog nÞ bit strings, takes
space Oðn log nÞ � OðnÞ. Thus the total space complexity

for the circuit simulation is Oðn2kÞ � OðnÞ. Lemma 16 tells

us that circuit generation takes space nOð1Þ � nOð1Þ (the

hidden constants are coming from the logspace bounded

Turing machine), which dominates the total space for both

circuit generation and circuit simulation.

The asymptotically slowest part of simulating a circuit

layer is the sorting algorithm, which takes expected time

Oðlog3 nÞ per layer. There are Oðlogj nÞ layers, thus the

total expected time for the simulation is Oðlogjþ3 nÞ. The
circuit generation takes time Oðlog4 nÞ from Lemma 16,

but since we assumed that j� 1 in the statement of

Theorem 15, this leaves the total expected time for both

circuit generation and circuit simulation at Oðlogjþ3 nÞ.
This completes the proof of Theorem 15. h

Acknowledgments We thank Erik Winfree for valuable discus-

sion and suggestions on our results, Paul Rothemund for stimu-

lating conversations on molecular muscle, Niall Murphy for

informative discussions on circuit complexity theory, and Dhiraj

Holden and Dave Doty for useful discussions. Damien thanks

Beverley Henley for introducing him to developmental biology

many moons ago. Supported by National Science Foundation

grants CCF-1219274, 0832824 (The Molecular Programming Pro-

ject), and CCF-1162589.

References

Aggarwal G, Cheng Q, Goldwasser MH, Kao M-Y, de Espanes PM,

Schweller RT (2005) Complexities for generalized models of

self-assembly. SIAM J Comput 34:1493–1515

Allender E, Koucký M (2010) Amplifying lower bounds by means of

self-reducibility. JACM 14:1–36

Aloupis G, Collette S, Demaine ED, Langerman S, Sacristán V,

Wuhrer S (2008) Reconfiguration of cube-style modular robots

using Oðlog nÞ parallel moves. In: ISAAC: Proc. of the 19th

Annual International Symposium on Algorithms and Computa-

tion, pp 342–353

Aloupis G, Collette S, Damian M, Demaine E, Flatland R, Langerman

S, O’Rourke J, Pinciu V, Ramaswami S, Sacristán V, Wuhrer S

(2011) Efficient constant-velocity reconfiguration of crystalline

robots. Robotica 29(1):59–71

Becker F, Remila E, Rapaport I (2006) Self-assemblying classes of

shapes, fast and with minimal number of tiles. In: Proceedings of

the 26th Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS 2006), vol 4337 of

LNCS. Springer, pp 45–56

Butler Z, Fitch R, Rus D (2002) Distributed control for unit-

compressible robots: goal-recognition, locomotion, and splitting.

IEEE/ASME Trans Mechatron 7:418–430

(a) (b) (c)

(d) (e) (f)

Fig. 16 Nubots configuration that simulates a Boolean circuit. Dotted

blue regions denote gate input regions. Blue rectangles denote gate

result regions. The gate address encoded by a line segment is in red.

Gates are monomers. Pink encodes 0, green encodes 1. a Initial

configuration that encodes the entire circuit and its input, b zoom-in

shown the initial configuration of 6 gates, c input line segments arrive

at the gate, d the gate monomers calculate their respective gates’

result, and communicate the result bit to the result segments (shown

as colour change), e the input monomers and grey line are deleted.

The result monomers sort themselves using the sorting algorithm (not

shown) and are moved upwards to be the input to the next layer. The

gate from which each input monomer originates is shown in

parenthesis (these values came from gates 3, 2, and 1—not shown),

f the gate monomers of the next layer calculate their result values

(online version in colour)

248 M. Chen et al.

123

Cannon S, Demaine ED, Demaine ML, Eisenstat S, Patitz MJ,

Schweller RT, Summers SM, Winslow A (2013) Two hands are

better than one (up to constant factors): Self-assembly In the

2HAM vs. aTAM. In: STACS: 30th International Symposium on

Theoretical Aspects of Computer, Science, pp 172–184

Chandran H, Gopalkrishnan N, Reif J (2012) Tile complexity of

approximate squares. Algorithmica 66(1):1–17

Condon A (1994) A theory of strict P-completeness. Comput

Complex 4(3):220–241

Dabby N, Chen H-L (2012) Active self-assembly of simple units

using an insertion primitive. In: SODA: Proceedings of the 24th

Annual ACM-SIAM Symposium on Discrete Algorithms,

pp 1526–1536

Demaine E, Demaine M, Fekete S, Ishaque M, Rafalin E, Schweller

R, Souvaine D (2008) Staged self-assembly: nanomanufacture of

arbitrary shapes with Oð1Þ glues. Nat Comput 7(3):347–370

Demaine ED, Eisenstat S, Ishaque M, Winslow A (2011) One-

dimensional staged self-assembly. In: DNA: 17th Intl Conf on

DNA Computing & Molecular Programming, vol 6937 of

LNCS. Pasadena, pp 100–114

Demaine ED, Patitz MJ, Rogers TA, Schweller RT, Summers SM,

Woods D (2013) The two-handed tile assembly model is not

intrinsically universal. In: ICALP: 40th International Collo-

quium on Automata, Languages and Programming. Proceedings,

part 1, vol 7965 of LNCS. Riga, Latvia, pp 400–412. arXiv:1306.

6710 [cs.CG]

Demaine ED, Demaine ML, Fekete SP, Patitz MJ, Schweller RT,

Winslow A, Woods D (2014) One tile to rule them all:

simulating any Turing machine, tile assembly system, or tiling

system with a single puzzle piece. In: ICALP: Proceedings of the

41st International Colloquium on Automata, Languages, and

Programming. arXiv:1212.4756 [cs.DS]

Doty D (2010) Randomized self-assembly for exact shapes. SICOMP

39:3521

Doty D, Lutz JH, Patitz MJ, Summers SM, Woods D (2009) Intrinsic

universality in self-assembly. In: STACS: Proceedings of the

27th International Symposium on Theoretical Aspects of Com-

puter, Science, pp 275–286

Doty D, Lutz JH, Patitz MJ, Schweller RT, Summers SM, Woods D

(2012) The tile assembly model is intrinsically universal. In:

FOCS: Proceedings of the 53rd Annual IEEE Symposium on

Foundations of Computer, Science, pp 439–446

Fu B, Patitz M, Schweller R, Sheline B (2012) Self-assembly with

geometric tiles. In: ICALP: The 39th International Colloquium

on Automata, Languages and Programming, vol 7391 of LNCS.

Springer, pp 714–725

Gillespie D (1992) A rigorous derivation of the chemical master

equation. Phys A 188(1):404–425

Greenlaw R, Hoover HJ, Ruzzo WL (1995) Limits to parallel

computation: P-completeness theory. Oxford University Press,

USA

Hendricks J, Patitz MJ (2013) On the equivalence of cellular automata

and the tile assembly model. In: MCU: Proceedings of Machines,

Computations and Universality. University of Zürich, Switzer-

land. September 9–12, Electronic Proceedings in Theoretical

Computer Science, vol 128, pp 167–189

Hendricks J, Padilla JE, Patitz MJ, Rogers TA (2013) Signal

transmission across tile assemblies: 3D static tiles simulate

active self-assembly by 2D signal-passing tiles. In: DNA19: The

19th International Conference on DNA Computing and Molec-

ular Programming, vol 8141 of LNCS. Springer. arXiv:1306.

5005 [cs.ET]

Jonoska N, McColm GL (2009) Complexity classes for self-assem-

bling flexible tiles. Theoret Comput Sci 410(4):332–346

Jonoska N, Karpenko D (2012) Active tile self-assembly, self-similar

structures and recursion. arXiv:1211.3085 [cs.ET]

Kao M., Schweller R. (2006) Reducing tile complexity for self-

assembly through temperature programming. In: SODA: Pro-

ceedings of the Seventeenth Annual ACM-SIAM Symposium on

Discrete Algorithms, ACM, pp 571–580

Kao M, Schweller R (2008) Randomized self-assembly for approx-

imate shapes. In ICALP: Proceedings of the 35th International

Colloquium on Automata, Languages and Programming, vol

5125 of LNCS. Springer, pp 370–384

Keenan A, Schweller R, Sherman M, Zhong X (2014) Fast arithmetic

in algorithmic self-assembly. In: UCNC : the 13th International

Conference on Unconventional Computation and Natural Com-

putation. arXiv:1303.2416 [cs.DS]

Klavins E (2004) Directed self-assembly using graph grammars. Self

Assembled Architectures and Devices, Snowbird, UT, In Foun-

dations of Nanoscience

Malchik C, Winslow A (2014) Tight bounds for active self-assembly

using an insertion primitive. The 22nd European Symposium on

Algorithms. arXiv:1401.0359 [cs.FL]

Martin AC, Kaschube M, Wieschaus EF (2008) Pulsed contractions

of an actin-myosin network drive apical constriction. Nature

457(7228):495–499

Meunier P-E, Patitz MJ, Summers SM, Theyssier G, Winslow A,

Woods D (2014) Intrinsic universality in tile self-assembly

requires cooperation. In: SODA: ACM-SIAM Symposium on

Discrete Algorithms, pp 752–771. arXiv:1304.1679 [cs.CC]

Murata S, Kurokawa H (2007) Self-reconfigurable robots. IEEE

Robot Autom Mag 14(1):71–78

Murphy N, Woods D (2013) AND and/or OR: uniform polynomial-

size circuits. In MCU: Machines, Computations and Universal-

ity, vol 128, pp 150–166, EPTCS. arXiv:1212.3282

Murphy N, Naughton TJ, Woods D, Henley B, McDermott K, Duffy

E, van der Burgt PJ, Woods N (2008) Implementations of a

model of physical sorting. Int J Unconv Comput 4(1):3–12

Neary T, Woods D (2006) P-completeness of cellular automaton rule

110. In: ICALP: The 33rd International Colloquium on Auto-

mata, Languages and Programming, vol 4051 of LNCS.

Springer, pp 132–143

Padilla J, Liu W, Seeman N (2011) Hierarchical self assembly of

patterns from the Robinson tilings: DNA tile design in an

enhanced tile assembly model. Nat Comput 11(2):323–338

Padilla J, Patitz M, Pena R, Schweller R, Seeman N, Sheline R,

Summers S, Zhong X (2013) Asynchronous signal passing for

tile self-assembly: fuel efficient computation and efficient

assembly of shapes. In Unconventional Computation and Natural

Computation, vol 7956 of LNCS. Springer, pp 174–185

Papadimitriou CM (1994) Computational complexity. Addison-Wes-

ley, New York

Patitz MJ (2012) An introduction to tile-based self-assembly. In:

Unconventional Computation and Natural Computation, vol

7445 LNCS. Springer, pp 34–62

Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of

plants. Springer, New York

Reif J, Slee S (2007) Optimal kinodynamic motion planning for 2D

reconfiguration of self-reconfigurable robots. Robot Sci Syst

12(2):81–115

Rothemund PWK, Winfree E (2000) The program-size complexity of

self-assembled squares (extended abstract). In: STOC: Proceed-

ings of the thirty-second annual ACM symposium on Theory of

computing. ACM Press, pp 459–468

Rus D, Vona M (2001) Crystalline robots: self-reconfiguration with

compressible unit modules. Auton Robots 10(1):107–124

Schultes D (2006) Rainbow sort: sorting at the speed of light. Nat

Comput 5(1):67–82

Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with

finite stochastic chemical reaction networks. Nat Comput

7(4):615–633

Parallel computation using active self-assembly 249

123

http://arxiv.org/abs/1306.6710
http://arxiv.org/abs/1306.6710
http://arxiv.org/abs/1212.4756
http://arxiv.org/abs/1306.5005
http://arxiv.org/abs/1306.5005
http://arxiv.org/abs/1211.3085
http://arxiv.org/abs/1303.2416
http://arxiv.org/abs/1401.0359
http://arxiv.org/abs/1304.1679
http://arxiv.org/abs/1212.3282

Summers S (2012) Reducing tile complexity for the self-assembly of

scaled shapes through temperature programming. Algorithmica

4:1–20

Vollmer H (1999) Introduction to circuit complexity: a uniform

approach. Springer, New York

Winfree E (1988) Algorithmic Self-assembly of DNA. Ph.D. thesis,

California Institute of Technology

Woods D (2005) Upper bounds on the computational power of an

optical model of computation. In: Algorithms and Computation.

Springer, pp 777–788

Woods D (2013) Intrinsic universality and the computational power

of self-assembly. In: MCU: Proceedings of Machines, Compu-

tations and Universality, vol 128. Univ. of Zürich, Switzerland.

Sept 9–12, Electronic Proceedings in Theoretical Computer

Science, pp 16–22

Woods D, Naughton TJ (2008) Parallel and sequential optical

computing. In: Optical supercomputing, vol 5172 of LNCS.

Springer, pp 70–86

Woods D, Chen H-L, Goodfriend S, Dabby N, Winfree E, Yin P

(2013) Active self-assembly of algorithmic shapes and patterns

in polylogarithmic time. In: ITCS’13: Proceedings of the 4th

conference on Innovations in Theoretical Computer Science.

ACM, pp 353–354. Full version: arXiv:1301.2626 [cs.DS]

Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Nuemann JL

(2000) A DNA-fuelled molecular machine made of DNA.

Nature 406:605–608

250 M. Chen et al.

123

http://arxiv.org/abs/1301.2626

	Parallel computation using active self-assembly
	Abstract
	Introduction
	Previous work on active self-assembly with movement
	Main result
	Overview of results and paper structure
	New synchronization and line growth algorithms
	Parallel sorting, Boolean matrix multiplication and space bounded Turing machine simulation
	Proof overview of main result: Theorem 1

	Future work and open questions

	The nubots model and other definitions
	Nubots and decision problems
	Boolean circuits and the class {\mathrm{NC}}

	Example: a nubots line doubling routine
	Using synchronization to communicate quickly
	Fast line growth using O(1) states
	Fast parallel sorting
	Sorting details: rod growth and labeling
	Sorting details: merging
	Sorting details: time, space and states analysis

	Fast Boolean matrix multiplication
	Parallel function evaluation in 2D
	Proof of Theorem 13: fast Boolean matrix multiplication

	Boolean circuit simulation
	Fast parallel simulation of space bounded Turing machines
	Generating and simulating a Boolean circuit: proof of Theorem 15

	Acknowledgments
	References

