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Abstract

We investigate computing models that are presented as families of finite
computing devices with a uniformity condition on the entire family. Examples
of such models include Boolean circuits, membrane systems, DNA computers,
chemical reaction networks and tile assembly systems, and there are many oth-
ers. However, in such models there are actually two distinct kinds of uniformity
condition. The first is the most common and well-understood, where each in-
put length is mapped to a single computing device (e.g. a Boolean circuit)
that computes on the finite set of inputs of that length. The second, called
semi-uniformity, is where each input is mapped to a computing device for that
input (e.g. a circuit with the input encoded as constants). The former notion
is well-known and used in Boolean circuit complexity, while the latter notion is
frequently found in literature on nature-inspired computation from the past 20
years or so.

Are these two notions distinct? For many models it has been found that
these notions are in fact the same, in the sense that the choice of uniformity
or semi-uniformity leads to characterisations of the same complexity classes. In
other related work, we showed that these notions are actually distinct for certain
classes of Boolean circuits. Here, we give analogous results for membrane sys-
tems by showing that certain classes of uniform membrane systems are strictly
weaker than the analogous semi-uniform classes. This solves a known open
problem in the theory of membrane systems. We then go on to present results
towards characterising the power of these semi-uniform and uniform membrane
models in terms of NL and languages reducible to the unary languages in NL,
respectively.
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1 Introduction

Many of the early DNA computing algorithms [22, 28, 29, 39] involved mapping an
instance of an NP-hard problem (such as Maximal Clique) to a set of DNA strands
and lab protocols, and then using well-known biomolecular techniques to solve the
problem. To assert generality for such an algorithm one would define a mapping from
arbitrary problem instances to sets of DNA polymers and experimental protocols. In
order to claim that this mapping is not doing the essential computation, it would
have to be easily computable (for example, logspace computable). Circuit uniformity
(introduced by Borodin [11]) provides a well-established framework where we map
each input length n ∈ N to a circuit Cn ∈ C, with a suitably simple mapping.
However, some of the DNA computing algorithms cited above do something different,
they map an instance x of the problem to a computing device Cx that is unique
to that input (via a suitably simple encoding function). This latter notion is called
semi-uniformity [48, 45], and in fact quite a number of nature-inspired computational
models use semi-uniformity. This raises the immediate question of whether the notions
of uniformity and semi-uniformity are computationally equivalent. We investigate this
question in the field of membrane computing or P-systems [48, 43]. This is a branch
of natural computing which explores the power of computational models that are
inspired by the structure and function of living cells.

It has been shown in a number of models that whether one chooses to use unifor-
mity or semi-uniformity does not affect the power of the model. However, our main
result shows that uniformity is computationally strictly weaker than semi-uniformity
for a number of classes of membrane systems. Specifically, we prove that choosing one
notion over another in this setting gives characterisations of complexity classes that
are known to be distinct. The uniform versus semi-uniform question that we address
has been stated as Open Problem C in [49].

Why is this result surprising? We know that the class of problems solved by
a uniform family of devices is contained in the analogous semi-uniform class, since
the former is a restriction of the latter. However, it is also the case that in almost
all membrane system models studied to date, the classes of problems solved by semi-
uniform and uniform families turned out to be equal, see, e.g., [4, 34, 55]. Specifically,
if we want to solve some problem, by specifying a family of membrane systems (or
some other model), it is often much easier to first use the more general notion of
semi-uniformity, and then subsequently try to find a uniform solution. In almost all
cases where a polynomial time semi-uniform family of membrane systems was given
for some problem [3, 45, 55], at a later point a uniform version of the same result was
published [2, 4, 45]. Here we prove that this improvement is not always possible.

We go on to give a number of other results that tease out the computational power
of semi-uniform and uniform families of membrane systems.

Our main result proves something general about uniform and semi-uniform fam-
ilies of finite devices that is independent of particular models and formalisms. Our
techniques can be applied to other computational models besides membrane systems
and we have demonstrated this by showing similar results for Boolean circuits [38].
Indeed, a number of other models explicitly, or implicitly, use notions of unifor-
mity and semi-uniformity. Models presented as uniform families of devices include
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membrane systems and Boolean circuits as noted above, as well as DNA comput-
ers [1, 9, 53, 50, 8], chemical reaction networks [17, 16, 57, 58], neural networks [42]
and other models studied in computational complexity theory. Besides membrane sys-
tems, a surprising number of models, including some just mentioned, are presented
as semi-uniform families of devices, including DNA computers [28, 29], chemical reac-
tion networks [17, 57], the abstract tile assembly model [51, 54], the nubots model of
active molecular self-assembly and robotics [60, 15], and an insertion-based polymer
model [18, 30]. Uniform and semi-uniform families of devices are both natural ways to
present a model of computation and elucidating the distinction between them seems
a worthy goal.

Furthermore, although we do not formally show it, our results hold for a version
of the stochastic chemical reaction network model [52] that meets our definitions for
membrane systems and in particular where there are families of networks deciding
languages and unimolecular reactions only (in the model there are discrete natural
number molecular counts and all reactions are of the form A → M, where M is a
mutliset of molecular species). Interestingly, these results also hold if we generalise
this model to use maximally parallel synchronous reaction updates. This shows that
adding the seemingly strong and unrealistic ability of maximal parallelism in this
context conveys no extra power to the model (despite the fact that it does increase the
power of more general, bimolecular for example, chemical reaction network models).

Our main result is of importance to work on models of computation and natural
computing since it highlights that the (seemingly harmless) choice between uniformity
and semi-uniformity in these models may lead to drastic changes in computational
power. How drastic? Roughly speaking, we find that the semi-uniform models stud-
ied here characterise the class NL, while the analogous uniform models have power
comparable to, or more formally reducible to, the unary languages in NL. Our work
here and on Boolean circuits suggests that this question should be asked of other
computational models.

1.1 Overview of results

Roughly speaking, a membrane system consists of a membrane-bound compartment
that contains other (possibly nested) membrane-bound compartments that in turn
contain objects that interact with each other and with membranes to carry out a
computation. A family, or set, of recogniser membrane systems decides a language L.
Families can be uniform or semi-uniform. For a uniform family there is an associated
pair of functions (f, e), where f maps a binary input word x, of length n, to a
membrane system Πn that may be used to process any word of length n, and e
encodes x as a multiset of input objects to Πn (for each of the 2n words of length
n ∈ N we have a single membrane system Πn). For a semi-uniform family, a single
function h maps the input word x to a membrane system Πx (for each word we have
a membrane system). In either case, rules are applied to objects in the membrane
system until it produces special object(s) indicating that x is accepted or rejected. Of
course the encoding functions f, e, h should be suitably simple so that the membrane
system, and not the encoding functions, are doing the interesting work. In this paper
we use FAC0 uniformity and semi-uniformity, that is, the functions f, e, h are in FAC0,
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the class of functions computed by uniform constant depth polynomial size Boolean
circuits; this is a class of fairly simple problems and is mostly known for what it does
not contain.

In Section 3 we give our main result, that uniform families of active membrane
systems without charges and dissolution (denotedAM0

−d) that run in polynomial time
are strictly weaker than their semi-uniform counterpart. We prove this by showing
that these uniform families solve no more than non-uniform-AC0, a class that does
not even contain Parity (the set of words over {0, 1} with an odd number of 1s). The
analogous semi-uniform systems can indeed solve Parity and do much else besides. In
fact, for two out of three models that we consider, the semi-uniform families exactly
characterise NL. This is shown in Section 4 and illustrated as Theorem 17 at the top
of Figure 1.

This leaves the question: what is the exact power of uniform families of AM0
−d

systems? In previous papers, where more powerful membrane systems and complexity
classes are studied, e.g. [2, 3, 4], model definitional choices were not so important.
In our setting, definitional details such as the choice of uniformity condition and the
particular kinds of acceptance modes allowed for such recogniser membrane systems
lead to seemingly different results and some open questions as we now describe.

We give results for three variants on the definition of recogniser membrane sys-
tem. The most powerful are acknowledger membrane systems, where an accepting
computation should produce one or more yes objects, and a rejecting computation
should produce zero yes objects. In Section 5 we give an exact characterisation of
uniform families of acknowledger AM0

−d membrane systems. It turns out that they
decide exactly those languages that are FAC0 disjunctive truth-table reducible to the
unary languages in NL (called tallyNL). See Theorem 20 in Figure 1.

In Section 6 we consider recogniser>1 membrane systems: a restriction of acknowl-
edger systems where an accepting computation produces one or more yes objects and
zero no objects, and a rejecting computation produces one or more no objects and
zero yes objects. We give upper and lower-bounds, in terms of classes reducible to
tallyNL, for uniform families of recogniser>1 AM0

−d systems. In Figure 1, two upper
bounds are illustrated as Theorems 21 and 23, and a lower bound as Theorem 24.

The more standard, uniform recogniser systems, are a restriction of recogniser>1

membrane systems and are defined so that an accepting computation should produce
a single yes object and zero no objects, and a rejecting computation should produce
a single no object and zero yes objects. As noted above, our results (Figure 1,
Theorem 16) show that these uniform recogniser systems are strictly weaker than
semi-uniform recogniser systems in our setting. We do not give a tight characterisation
for the power of uniform recogniser systems, but discuss this as an open problem in
Section 7.

We note that there is a previous P characterisation for both uniform and semi-
uniform families of active membrane systems without charges and dissolution [21]: the
same systems as we use here, but under much more general uniformity conditions,
namely polynomial time, or P, uniformity. In that work the authors are motivated
by the relationship with classes above P and so it is sufficient in their work to use P

uniformity. When using significantly tighter uniformity conditions (e.g. FAC0), such
polynomial-time encoding functions for uniform and semi-uniform families can be

4



tallyNL

FAC0
m(tallyNL)

FAC0
tt(tallyNL)

FAC0
T(tallyNL)

NLFAC0-semi-uniform-PMC∗AM0
−d

acknowledger

FAC0-semi-uniform-PMC∗AM0
−d

recogniser>1

FAC0
dtt(tallyNL) FAC0

ctt(tallyNL)(FAC0,FAC0)-uniform-PMCAM0
−d

acknowledger (20)

⋆

(FAC0,FAC0)-uniform-PMCAM0
−d

recogniser>1
(24)

(21) (23)

(17) (17)

(
(
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Figure 1: Summary of results. Numerical labels refer to theorems which are proved
in this paper, and symbols are used to show inclusion type, with an unlabelled ar-
row denoting ⊆. The figure shows the relationship between NL, tallyNL (the set
of unary languages decided in non-deterministic logspace), and a number of classes
FAC0

r (tallyNL) of languages that are reducible to tallyNL by various types of FAC0

computable reductions r. The star (⋆) indicates the class labeled by the dashed line.
See [38] for proofs of inclusions that do not have numerical labels and for more on
classes reducible to tallyNL.

seen to be stronger than the membrane systems themselves [37] (assuming NL ( P).
In this paper we use FAC0 uniformity which is weak enough to expose the underlying
power of certain, suitably weak, classes of active membrane systems without charges
or dissolution. A number of other varieties of membrane systems (e.g. [20, 40]) also
claim P characterisations that depend on P uniformity. We leave it as a possible
direction for future work to investigate these, and other, membrane systems under
suitably tight notions of uniformity or semi-uniformity.

2 Definitions

For a function f : {0, 1}∗ 7→ {0, 1}∗ and integers m,n ≥ 1 let fn : {0, 1}
n 7→ {0, 1}m

be the restriction of f to domain and range consisting of strings of length n and
m respectively. We consider only functions f where for each n there is an m such
that all length-n strings in f ’s domain are mapped to length-m strings, thus f =⋃∞

n=0 fn. Each language L ⊆ {0, 1}∗ has an associated total characteristic function
χL : {0, 1}∗ 7→ {0, 1} defined by χL(w) = 1 if w ∈ L and 0 if w /∈ L. We say a language
L is decided by a Turing machine M if M computes the characteristic function χL.
For a string w, we let |w| denote its length.

Let NL be the class of languages accepted by non-deterministic logarithmic-space
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Turing machines. Such machines have a read-only input tape, a write-only output
tape and a read-write work tape whose length is a logarithmic function of input
length. The class of functions computed by a deterministic logarithmic-space Turing
machines (with an additional write-only output tape) is denoted FL.

Let tally be the set of all languages over the one-letter alphabet {1}. We define
tallyNL = tally∩NL, i.e. the class of all tally languages and length encoded languages
in NL. For more details on complexity classes and Turing machines see [41].

A circuit Cn computes a function computes a function fn : {0, 1}n 7→ {0, 1}m on
a fixed number n of Boolean variables. We consider functions of an arbitrary number
of variables by defining (possibly infinite) families of circuits. We say a family of
circuits C = {Cn | n ∈ N} computes a function f : {0, 1}∗ 7→ {0, 1}∗ if for all n ∈ N
and for all w ∈ {0, 1}n circuit Cn outputs the string fn(w). We say a family of circuits
C decides a language L ⊆ {0, 1}∗ if for each w ∈ {0, 1}n circuit Cn ∈ C on input w
computes χL.

In a non-uniform family of circuits there is no required similarity between family
members. In order to specify such a requirement we use a uniformity function that
algorithmically specifies the similarity between members of a circuit family. Roughly
speaking, a uniform circuit family C is an infinite sequence of circuits with an associ-
ated function f : {1}∗ → C that generates members of the family and is computable
within some resource bound. For more details on Boolean circuits see [59].

When dealing with uniformity for small complexity classes one of the preferred
uniformity conditions is DLOGTIME-uniformity [32]. Roughly speaking, a circuit
is DLOGTIME-uniform if there is a procedure that can decide if a word is in the
“connection language” of the circuit family in time linear in the word length. Each
word of the connection language encodes either an input gate of the circuit, an output
gate of the circuit, or a wire connecting the output of one identified gate to the input
of a second identified gate. Each word also encodes, in binary, the number n for this
circuit. For more details on DLOGTIME uniformity see [5, 32].

The depth of a circuit is the length of the longest path from an input gate to an
output gate. The size of a circuit is the number of wires it contains [5].

Non-uniform-AC0 is the set of languages decidable by families of constant-depth
polynomial-size (in input length n) circuits with unbounded fan-inAnd andOr gates,
and Not gates with fan-in‘1. AC0 is the set of languages decidable by constant-depth
polynomial-size (in input length n) DLOGTIME-uniform circuits with unbounded fan-
in And and Or gates, and Not gates with fan-in 1. FAC0 is the class of functions
computable by polynomial-size constant-depth DLOGTIME-uniform circuits with un-
bounded fan-in And and Or gates, and Not gates with fan-in 1.

2.1 Reductions

For concreteness, we explicitly define some standard types of reductions. Let A,B ⊆
{0, 1}∗. Let C be a set of functions (for example FL or FAC0), a function f is C-
computable if f ∈ C.

Definition 1 (Many-one reducible). Set A is many-one reducible to set B, written
A ≤C

m B, if there is a function f that is C-computable with the property that for all
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w, w ∈ A, if and only if f(w) ∈ B.

The following definition of truth table reduction comes from [10, 12], see also [27,
47]. The Boolean function σ is historically called a truth table [47].

Definition 2 (Truth-table reduction). Set A is C truth table reducible to set B,
written A ≤C

tt B, if there exists C-computable functions τ : {0, 1}∗ → {0, 1}∗×{0, 1}∗×
. . . and σ : {0, 1}∗ → {0, 1} such that w ∈ A if and only if τ(w) = (a1, . . . , aℓw) such
that σ(χB(a1), . . . , χB(aℓw)) = 1, where χB is the characteristic function of B.

A disjunctive truth table reduction (dtt) is one where at least one string gener-
ated by τ(w) is in B, in other words σ(χB(a1), . . . , χB(aℓw )) =

∨
1≤i≤ℓw

χB(ai). A
conjunctive truth table reduction (ctt) is one where all the strings generated by τ(w)
are in B, in other words σ(χB(a1), . . . , χB(aℓw )) =

∧
1≤i≤ℓw

χB(ai).

Definition 3 (Turing reducible). Set A is C Turing reducible to B, written A ≤C
T B,

if there is a Turing machine M , that is resource-bounded in the same way machines
computing functions in C are, such that w ∈ A iff M accepts w with B as its oracle.

The following implications follow directly from these definitions, for more details
see [27].

=⇒A ≤C
dtt B

=⇒
A ≤C

m B A ≤C
tt B =⇒ A ≤C

T B=⇒ A ≤C
ctt B =⇒

Let FAC0
r (C) be the set of all languages that are FAC0 reducible to languages in C

via a reduction of some type r ∈ {m, dtt, ctt, tt, T}.

2.2 Configuration graphs

Definition 4 (Configuration Graph). Let w ∈ {0, 1}∗ be the input to a halting s(|w|)-
space bounded Turing machine M . The configuration graph GM,w of M on input w
is an acyclic directed graph where for each potential configuration of M there is a
vertex that encodes it and where a potential configuration consists of an input read
bit, work tape contents, input tape head position and work tape head position. The
graph GM,w has a directed edge from a vertex c to a vertex c′ if the configuration
encoded by c′ can be reached from the configuration encoded by c in one step via M ’s
transition function.

A configuration graph GM,w has the property that there is a directed path from
the vertex cs representing the initial configuration, to the accept vertex ca if an only
if M accepts input w. Also, we consider only space bounded Turing machines that
do not repeat a configuration (i.e. loop), hence we define configuration graphs to be
acyclic which will be a useful property later on. We are interested in O(log |w|) space
bounded Turing machines, whose configuration graphs are of size (number of vertices)
O(|w|2|Q|). Lemma 5 follows from Theorem 3.16 in [25].

Lemma 5. Given the binary encoding of a Turing machine M , which has state set
Q and an FAC0 computable space bound O(log |w|), and given an input w, the config-
uration graph GM,w, of size O(|w|2|Q|), is computable in DLOGTIME-uniform-FAC0.
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2.3 Membrane systems

In this section we define the specific variant of membrane systems we use in this paper.
We also define recognizer membrane systems, uniform families and some complexity
classes. These definitions are based on those from the literature [31, 44].

In this paper the term membrane systems and the notation AM0
−d refer to active

membrane systems without charges and without dissolution rules [21, 44].
Let MS(O) represent the set of all multisets over the elements of the finite set O.

Definition 6. A membrane system of type AM0
−d is a tuple Π = (O, µ,M,H,Λ, R)

where:

• O is the alphabet of objects (or the set of object types);

• µ = (Vµ, Eµ, env) is a rooted tree representing the membrane structure. Vµ ( N
is the finite set of membranes. Eµ ( Vµ×Vµ such that (p, c) ∈ Eµ if the (parent)
membrane p contains the (child) membrane c. The root, env ∈ Vµ, of the tree
is the only membrane with no parent and is called the “environment”. Leaves
of the tree represent “elementary membranes”: i.e. membranes which contain
no other membranes.

• M : Vµ → MS(O) map each membrane to an object multiset, defining the mem-
brane’s object contents;

• Λ: Vµ → H is an injective mapping of membranes to H, the finite set of mem-
brane labels. In this work the environment membrane always has the label “env”;

• R is a finite set of developmental rules of the following types (where o, u, c ∈ O
and w ∈ MS(O), h ∈ H):

(a) [ o → w ]h (object rewriting), an object o in a membrane with label h is
replaced by a multiset of objects w.

(b) o [ ]h → [u ]h (communication in), an object o in a membrane with a child
membrane with label h is moved into the child membrane and modified to
become u.

(c) [ o ]h → [ ]h u (communication out), an object o in a membrane with label
h is moved into the parent membrane and modified to become u.

(e) [ o ]h → [u ]h [ v ]h (elementary membrane division), an elementary mem-
brane with label h containing object o is duplicated, in one copy o is replaced
by u while in the other copy it is replaced by v.

The environment membrane cannot divide nor communicate out objects.1

The missing (d) rule is the dissolution rule which we do not consider in this
paper. Active membrane systems may also have non-elementary membrane division

1Definitions of active membranes often include a second container membrane that cannot dissolve
called the “skin” [44], we omit this from our definitions. The proofs in this paper can be easily
modified to account for a skin.
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rules [44]. That is, membranes with child membranes may also divide. For the
kinds of membrane systems we consider in this paper the inclusion or omission of
non-elementary division rules does not affect the results [21, 37].

A configuration C of a membrane system is a tuple (µ = (Vµ, Eµ, env),M,Λ) whose
elements are defined in Definition 6 (with the exception that Λ may be non-injective).

A permissible encoding of a membrane system 〈Π〉, or of a configuration 〈C〉,
encodes all multisets in a unary manner. For example, a multiset is encoded in the
format [a, a, a, b, b], rather than in the shorter format a3b2. Likewise, the membrane
structure should be encoded such that each membrane child-parent relation is written
explicitly.

A configuration Ci transitions to configuration Ci+1 by the application of a multiset
of rules R from the set R. The rules are applied in a maximally parallel manner. That
is, at each timestep, a multiset of applicable rules R is non-deterministically chosen
such that (i) all rules in R are applicable, and (ii) there does not exist a multiset of
applicable rules R′ such that R ( R′. Rules are applicable in a timestep according
to the following principles: Rules are applied to the most deeply nested membranes
first. In each timestep, an object can be involved in at most one rule of any type. A
membrane can be the subject of at most one rule of type (b), (c) or (e). If a membrane
is divided (a rule of type (e)) and there are objects in this membrane which evolve
via rules of type (a), then we assume that first the type (a) rules are applied, and
then the division rule. All other rules are applied non-deterministically.

A computation of a membrane system is a sequence of configurations where each
configuration transitions to the next. As noted above, at a given timestep the multiset
of applicable rules is non-deterministically chosen: therefore on a given input there
are multiple possible computations. In other words, membrane systems are non-
deterministic. A computation that reaches a configuration where no more rules are
applicable is called a halting computation.

2.3.1 Recogniser, recogniser>1, and acknowledger membrane systems

For the following three definitions it is the case that the set of objects O contains
the special objects yes and no and that there are no rules applicable to yes or no
(hence if yes or no are created, they can never be destroyed). The standard [44]
definition of a recogniser membrane system is as follows.

Definition 7. A recogniser membrane system is a membrane system such that all
computations halt, and at the halting step (and not before) exactly one of the objects
yes ∈ O or no ∈ O appears in the multiset of the environment membrane.

A computation that halts with yes in the environment is referred to as an accept-
ing computation while one with no in the environment is referred to as a rejecting
computation. In this paper, and in previous work [36, 37], we also use the following
more general systems:

Definition 8. A recogniser>1 membrane system is a membrane system such that all
computations halt, and either (a) one or more copies of the object yes ∈ O or (b)
one or more copies of the object no ∈ O appear in the multiset of the environment
membrane, but not both.

9



As with recogniser membrane systems, a computation of a recogniser>1 membrane
system that halts with yes in the environment is referred to as an accepting compu-
tation while one with no in the environment is referred to as a rejecting computation.
In this paper we also use the following systems that are more general than the two
above:

Definition 9. Acknowledger membrane systems are systems such that all computa-
tions halt (and where one or more copies of the distinguished object yes may or may
not appear in the env membrane).

We say that a computation of an acknowledger membrane system is an accepting
computation if at least one yes object is present in the env membrane at the final step.
A computation of an acknowledger membrane system is in a rejecting computation if
there are zero yes objects in the env membrane at the final step.

2.3.2 Families of membrane systems

There are two main notions of uniformity considered in the membrane computing
literature defined as follows.

Definition 10 (Semi-uniform families). A family of membrane systems systems Π =
{Πw | w ∈ Σ∗} is said to be semi-uniform if there is a function h : Σ∗ 7→ Π that maps
from each input word w to a description (in a permissible encoding) of a membrane
system Πw.

Definition 11 (Uniform families). A family of membrane systems Π = {Πn | n ∈ N}
is said to be uniform if there are two associated functions:

1. f : 1∗ 7→ Π that maps 1n (the unary representation of n) to the description
(in a permissible encoding) of a membrane system Πn with a designated input
membrane;

2. e : Σ∗ 7→ MS(O) that maps a word w ∈ Σ∗ to the input multiset e(w) (in a
permissible encoding) where O is the set of objects of f(1n), n = |w|.

We let Πn(e(w)) denote the membrane system f(1n) = Πn with the multiset e(w)
in its designated input membrane. Note that both Πn and Πn(e(w)) are membrane
systems.

In this paper, we deal only with confluent membrane systems: in a confluent
membrane system Π all computations of Π agree on the answer, that is, either all of Π’s
computations are accepting (in which case Π accepts) or else all of Π’s computations
are rejecting (in which case Π rejects).

A semi-uniform family, Π, recognises a language L ⊆ Σ∗ confluently if for all
w ∈ Σ∗ there exists Πw ∈ Π such that w ∈ L implies that Πw accepts confluently
and w /∈ L implies Πw rejects confluently. A uniform family, Π, with encoder e,
recognises a language L ⊆ Σ∗ confluently if for all w ∈ Σ∗ there exists Π|w|(e(w))
where Π|w| ∈ Π such that w ∈ L implies that Π|w|(e(w)) accepts confluently and
w /∈ L implies Π|w|(e(w)) rejects confluently. Such a (semi-)uniform families are
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called a confluent families of recogniser, recogniser>1, or acknowledger membrane
systems.

That is, each membrane system Π in a confluent family starts from a fixed ini-
tial configuration and then Π non-deterministically chooses one from a number of
valid computations. All of these valid computations give the same result: either all
accepting (if w ∈ L) or else all rejecting (if w /∈ L).

If the functions f(1|w|) and e(w) (or respectively the single function h(w)) for a
(semi-)uniform family are computable in time polynomial in |w| on a Turing machine
we say the family uses polynomial time (semi-)uniformity. If the uniformity functions
are computable by DLOGTIME uniform constant depth circuits, that is, f, e, h ∈ FAC0,
then the family is said to use constant depth uniformity.

In this paper we consider two classes of problems, those that can be solved by FAC0-
uniform families of confluentAM0

−d (active membranes without charges or dissolution
rules) that run in time polynomial in |w|, denoted (FAC0,FAC0)-uniform-PMCAM0

−d,
and FAC0-semi-uniform families of confluent AM0

−d systems that run in time poly-
nomial in |w|, denoted FAC0-semi-uniform-PMC∗AM0

−d.

2.4 Context-freeness in membrane systems

Lemma 12. Let o be an object in a membrane with label h in a configuration Ci of
a membrane system Π. Remove all other objects from Ci to get configuration C∅

i . If
there is a rule r in Π such that by applying that rule to o, h in C∅

i gives a configuration
C∅
i+1 with object o′ in h′, then it is the case that from configuration Ci there exists a

configuration Ci+1 reachable in a single step that contains o′ in h′.

Proof. The rule r is of the type (a), (b), (c) or (e) as described in Definition 6. It is
sufficient to show that there is always at least one maximal set of rule applications
for configuration Ci that creates o

′ in h′ in Ci+1.
Recall that an object in a configuration can be involved in at most one rule of any

type. If the rule r is of type (a), it has the form [ o → o′w ]h where w is a (possibly
empty) string over O and it is necessarily the case that h = h′ (rules of type (a) are
applied within a single membrane).

Let the notation Ci − {o} denote the configuration Ci without the instance of the
object o under consideration and consider any maximal multiset R of rules that can be
applied to the configuration Ci −{o}. Also, consider the multiset of rule applications
R unioned with the application of the rule [ o → o′w ]h to our object instance o in the
relevant membrane with label h in Ci. We claim that this new multiset is a maximal
multiset of rules that can be applied to Ci. To see this notice that object instance o
has a rule being applied to it, and each object can have at most one rule applied to it,
and no other objects with applicable rules are without rules because R was maximal.
Hence there is a maximal multiset of rule applications for Ci that applies r and hence
when it is applied Ci+1 contains o′ in a membrane with label h = h′.

Rules of type (b), (c) and (e) involve both an object and a membrane. Consider
Ci − {o} defined as above, and consider any maximal multiset R of rule applications
to Ci − {o}. Furthermore, if in R there is a rule that involves the membrane with
label h where object instance o was, then remove that rule application from R to

11



get R̂. We claim that the multiset of rule applications R̂, unioned together with the
rule application “rule r applied to our object instance o contained in the membrane
with label h” is a maximal multiset of rule applications for Ci. To see this note that
(i) r is now being applied to the relevant instances of o, h so no other rule can be
applied to that object nor to the membrane with that label, and (ii) there are no
other rules that can be applied because R was maximal. After the application of this
maximal multiset of rules the new configuration Ci+1 contains o′ in a membrane with
label h′.

The following lemma generalises Lemma 12 from one to multiple computation
steps, and applies it to the setting of systems that recognise languages. Intuitively,
it states that if a sequence of rules r can be applied starting from some configuration
it is not possible to prevent this from happening by adding new objects to that
configuration.

Lemma 13. Let Π be a recogniser, recogniser>1 or acknowledger membrane system.
Let o be an object in a membrane with label h in a configuration Ci of Π. Remove all
other objects from Ci to get configuration C∅

i . If starting from configuration C∅
i there

is a computation that halts after t steps on configuration Ci+t that contains object yes
in the environment then it is the case that starting from configuration Ci there exists
a halting computation with yes in the environment.

Proof. By hypothesis we know that there is a sequence of t rules r1, r2, . . . , rt that
can be applied to C∅

i to get yes in the environment. We apply Lemma 12 t times,
first to configuration Ci with r = r1, then to Ci+1 with r = r2, and so on until we get
configuration Ci+t which contains yes in the environment.

If Π is a recogniser system then we are done: recogniser systems produce yes in
the halting step. If Π is a recogniser>1 or acknowledger membrane system we add the
fact (from Section 2.3.1) that no rules can be applied to the object yes , and since
there is a computation where yes is in the environment at configuration Ci+t, then
it remains there until the computation eventually halts.

Lemma 13 shows that the kind of membrane systems studied in this paper intu-
itively exhibit some notion of context-freeness. Essentially, there is a sense in which
an object os can be said to trigger a sequence of rules that eventually result in the
production of object ot on some computation, and specifically, the production of ot
can not be prevented by starting over with more objects (more context) in the sys-
tem. Hence, the ideas used in the proof of Lemma 13 justify the use of the following
definition in our proofs.

Definition 14 (Eventually evolves). Let Cs be a configuration of a membrane sys-
tem Π, containing an object of type os in a membrane labelled hs (along with any
number of other objects and membranes). Let C∅

s denote Cs with all objects removed
except one instance of os in the relevant membrane with label h. We say that os
in hs in configuration Cs eventually evolves on some computation path, or for short
eventually evolves, object type ot in a membrane labelled ht if there is a computa-
tion (sequence of configurations) starting from C∅

s where the final configuration in the
computation has object type ot in a membrane labelled ht.
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Note that if os in hs in Cs eventually evolves yes in env this means that by
Lemma 13 there is at least one computation (sequence of configurations) that leads
to a configuration with yes in env from Cs. However, since membrane systems are
nondeterministic, this does not necessarily happen for all computations.

3 Uniformity is strictly weaker than semi-uniformity

Theorem 16 proves that uniform families of membrane systems are strictly weaker
than semi-uniform families of the same type. The result holds for all three definitions
of acknowledger, recogniser>1 and recogniser membrane systems.

Lemma 15. (FAC0,FAC0)-uniform-PMCAM0
−d ⊆ non-uniform-AC0, for acknowl-

edger, recogniser>1 and recogniser membrane systems.

Proof. Let L ∈ (FAC0,FAC0)-uniform-PMCAM0
−d, and let Π be the FAC0-uniform

family of that type that decides L. That is, given w ∈ {0, 1}∗ there is a membrane
system Π|w| ∈ Π that accepts e(w) iff w ∈ L.

We now describe a non-uniform family of constant-depth circuits C = {Cn | n ∈ N
and Cn accepts L ∩{0, 1}n} that recognizes L. For any input w ∈ {0, 1}∗, we claim
that circuit C|w| ∈ C decides whether or not w ∈ L. The first constant number of

layers of the circuit C|w| compute the input encoding function e(w) ∈ FAC0. This
generates a polynomial (in |w|) number of binary words that encode elements from
the polynomially sized object set O as well as their multiplicities (in unary).

The circuit C|w| then converts the list of encoded e(w) objects into a single binary
string χ of length |χ| = |O| such that for all i ∈ {1, 2, . . . , |O|}, the ith bit χi = 1
iff oi ∈ O is in e(w). That is, χ is a characteristic sequence for e(w), ignoring
multiplicities.

For each i, the bit χi is wired into a unique And gate ai, giving a total of |O|
And gates at this level. The second input to the And gate ai is from a constant gate
ci, where ci = 1 if oi ∈ O in the input membrane eventually evolves (Definition 14)
to the yes object in the env membrane and ci = 0 otherwise.

The next layer contains a single Or gate g such that for each i, And gate ai is
wired to g. This Or gate is the output gate of the circuit. Also wired into the Or

are |O| × |H | constant gates such that gate co,h = 1 if both (i) o ∈ O is in membrane
labelled h ∈ H in the initial configuration of Π|x| and (ii) o in h eventually evolves to
yes in the env membrane, otherwise co,h = 0.

We now argue that the above construction of C|w| accepts w ∈ L. Recall that
Π|w|(e(w)) is a confluent membrane system and so if the computation is an accepting
one, then all possible computation paths are accepting. For a computation to be
accepting, a yes object must appear in the env membrane. Therefore at least one
object in the initial configuration of Π|w|(e(w)) must eventually evolve to be a yes in
the env membrane. Also Π|w|(e(w)) is confluent, therefore if at least one object in the
initial configuration of Π|w|(e(w)) eventually evolves yes in the env membrane, the
system accepts. Since the property of whether an object in some membrane eventually
evolves to object yes in the env membrane depends only on R and µ in Π|w|, and
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hence in turn depends only on |w| (by Lemma 13), it can be encoded (non-uniformly)
in the constants ci in circuit C|w|.

Suppose Π|w| accepts regardless of the input e(x). In this case one of the objects,
say o, in the initial configuration of Π|w| will eventually evolve to yes in the env
membrane. This means the relevant gate co,h will be a 1-constant gate and so the
output Or will evaluate to 1 and so C|w| accepts regardless of input.

Suppose w ∈ L, therefore at least one of the objects in in e(w), when placed in the
input membrane of Π|w|, yields a computation that ends with a configuration with
object yes in membrane env. In turn this implies that at least one of the And gates
ai has inputs ci = 1 and χi = 1 and so evaluates to 1. Finally this causes the Or to
evaluate to 1 and so C|w| accepts input w.

Suppose w /∈ L, in this case none of the objects in e(w) will eventually evolve to
yes in the env membrane. Thus any of the ai And gates that have a constant ci = 1
as input will have χi = 0 and so will evaluate to 0. With all 0 inputs, the output Or

evaluates to 0 and the circuit rejects.
This circuit is of polynomial size and its depth is the sum of the depths of the

FAC0 encoding function (which has depth O(1), by definition), the depth of the circuit
that converts e(w) into χ (which is O(1) using masking and comparison), and 2 for
the final layer of And gates and the single Or gate. Hence C is a non-uniform-AC0

circuit family that recognizes L.

Theorem 16. (FAC0,FAC0)-uniform-PMCAM0
−d ( FAC0-semi-uniform-PMC∗AM0

−d,
for acknowledger, recogniser>1 and recogniser membrane systems.

Proof. (⊆) By definition, uniform families are a restriction of semi-uniform families
and so
(FAC0,FAC0)-uniform-PMCAM0

−d ⊆ FAC0-semi-uniform-PMC∗AM0
−d.

(6=) Parity ⊆ {0, 1}∗ is the set of binary strings that contain an odd number of 1s.
We claim that Parity ∈ FAC0-semi-uniform-PMC∗AM0

−d for recogniser systems (and
hence also for acknowledger and recogniser>1 membrane systems). Let w ∈ {0, 1},
n = |w|, and let w = w1, . . . , wn. We will define the function h : {0, 1} 7→ Π, where
each h(w) = Πw computes χParity(w) as follows. Each Πw has a single membrane, env,
the set O contains 2n+ 2 objects: O = {oi|1 ≤ i ≤ n} ∪ {ei|1 ≤ i ≤ n} ∪ {yes , no }.
The initial configuration is the membrane env containing a single object o1 in env if
w1 = 1 or object e1 in env if w1 = 0. The rules of Πw are as follows: if wi = 1 then
[ oi → ei+1 ]env, [ ei → oi+1 ]env and if wi = 0 then [ ei → ei+1 ]env, [ oi → oi+1 ]env.
There are also the rules [ en → no ]env and [ on → yes ]env.

By starting with object o1 if w1 = 1, and then changing between ei and oi if
wi = 1, and not changing if wi = 0 at each timestep then we ensure that the object
oi represents “the parity of the first i bits of w is odd”, and ei represents that they
are even. Thus, on evolves to a single yes object if there is an odd number of 1s in
w and en evolves to a single no if there is an even number of 1s in w.

To end we note that it is known [19] that Parity /∈ non-uniform-AC0. Lemma 15
shows that
(FAC0,FAC0)-uniform-PMCAM0

−d ⊆ non-uniform-AC0, for acknowledger, recogniser>1,
and recogniser membrane systems.
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4 The computational power of semi-uniform fami-

lies

In prior work [37], we have shown that semi-uniform families of recogniser>1 mem-
brane systems characterise NL. We give an alternative proof here to demonstrate
techniques that we will use in later sections for uniform families.

Theorem 17 ([37]). FAC0-semi-uniform-PMC∗AM0
−d = NL, for both acknowledger

and recogniser>1 membrane systems.

Proof. Lemmas 18 and 19 give the proof for acknowledger and recogniser>1 membrane
systems.

Lemma 18 ([37]). FAC0-semi-uniform-PMC∗AM0
−d ⊆ NL, for acknowledger, recogniser>1

and recogniser membrane systems.

Proof. Let Π be a semi-uniform family of acknowledger, recogniser>1 or recogniser
membrane systems that recognisesL ∈ FAC0-semi-uniform-PMC∗AM0

−d. Let h : {0, 1}∗ 7→
Π be the semi-uniformity function of Π, that is, on input x ∈ {0, 1}∗, Πx = h(x)
accepts iff x ∈ L. We present a non-deterministic logspace Turing machine M that
recognises L.

The computation ofM proceeds as follows: FirstM , on input x, non-deterministically
chooses a single object from C1, the initial configuration of Πx, and stores (a string
representation of) the object and its containing membrane on its work tape. Then
M enters a loop where at each iteration it non-deterministically chooses one of the
rules applicable to the object on its work tape. If the rule is of type (a) or (e) (Defini-
tion 6) then M replaces the current object on the work tape (the membrane remains
unchanged) with a non-deterministically chosen object from the right hand side of
the rule. If the rule is of type (b) or (c) then the object on the work tape is replaced
by the object on the right hand side of the rule and the membrane on the work tape
is replaced by the parent (type (c)) or child membrane (type (b)) of the current mem-
brane. If during the computation the work tape is found to store the object yes in
the env membrane then M(x) halts and accepts. Otherwise, if there are no rules
applicable to the object and membrane on the work tape, and it is not yes in env,
then M(x) halts and rejects.

Suppose that x ∈ L and so Πx = h(x) accepts. This implies that there is one (or
more) objects in the initial configuration of Πx that will, by the application of rules to
this object and its successors, become the object yes in the env membrane by the end
of the computation of Πx (this claim follows from the kind of rules we allow—they are
essentially context free—and can be formally proven using dependency graphs [21]).
Indeed, this observation holds for all three kinds of membrane systems: acknowledger,
recogniser>1 and recogniser. By non-deterministically choosing an object in the initial
configuration, and non-deterministically choosing the rules that are applied to this
object and its successors we ensure that there is a computation of M(x) for each
possible sequence of rule applications of Πx for each object in the initial configuration
Πx (this follows from Lemma 13). Therefore at least one computation of M(x) will
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produce the object yes in the env membrane and so M(x) accepts, by confluence.
That is, if Πx accepts then M accepts on input x.

Suppose that x /∈ L and so Πx = h(x) rejects. This implies that there is no
valid computation of Πx where an object in the initial configuration evolves to yes

in the env membrane. Indeed, this observation holds for all three kinds of membrane
systems: acknowledger, recogniser>1 and recogniser. In this case all computation
branches of M(x) will reach an object to which no further rules are applicable (that
is not yes ) and so will halt in the rejecting state. That is, if Πx rejects then M rejects
on input x.

To simulate the computation of Πx in logspace, M(x) recomputes relevant loga-
rithmic sized pieces of h(x) = Πx via the classic technique for composing logspace
algorithms (see Chapter 4.3 of [7]) each time it needs information about Πx, i.e. initial
configuration, rules, or membrane structure. From the statement, h is computable in
FAC0. This means that the number of unique objects and labels in Πx are polynomial
in n = |x| and so each can be uniquely identified in binary with a string of length
logn. M(x) uses a constant number of logn sized binary strings to encode the cur-
rent object and membrane, as well as some counters and temporary storage needed
to re-compute h(x).

Therefore L is decided by a non-deterministic logspace Turing machine.

Lemma 19 ([37]). NL ⊆ FAC0-semi-uniform-PMC∗AM0
−d, for acknowledger and

recogniser>1 membrane systems.

Proof. Let L ∈ NL. That is, there is a non-deterministic logspace Turing machine M
with one or more accepting computation paths exactly for input words x ∈ L ⊆
{0, 1}∗.

We show that there is an FAC0 semi-uniform family of polynomial-time membrane
systemsΠ that recognises L. We now describe a function h : {0, 1}∗ → Π, computable
in FAC0, such that if x ∈ L then h(x) = Πx accepts, otherwise Πx rejects.

Consider the configuration graph GM,x for M on input x ∈ {0, 1}∗, which is
FAC0 computable from M and x (see Section 2.2 and Lemma 5). Also consider the
Turing machine NM (and its configuration graph GN,x) that on input x accepts only
if all computations of M reject on input x, that is, x /∈ L. NM uses the standard
un-reachability algorithm [24, 56] for non-deterministic logspace.

The function h(x) constructs the configuration graph GM,x and modifies it to
produce a membrane system Πx as follows. O, the set of unique objects of Πx has
an object encoding each vertex in the configuration graphs GM,x and GN,x as well as
two extra objects, yes and no . The initial configuration of Πx has a single membrane
labelled env that contains two objects: ci which encodes the initial configuration of
M(x); and cj which encodes the initial configuration of NM (x). The edges of the
configuration graphs GM,x and GN,x are encoded as object rewriting rules in the
membrane system. If vertex u has k edges to vertices v1, . . . , vk then h(x) encodes
all k edges as a single type (a) rule: [u → v1, . . . , vk ]env. Let vertex (object) ca
encode the accepting configuration of the Turing machine M , and let h(x) include
the rule [ ca → yes ]env. Likewise for the vertex (object) cb that encodes an accepting
configuration of the Turing machine NM , h(x) includes the rule [ cb → no ]env.
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We now argue that each member Πx = h(x) of the semi-uniform family Π, accepts
iff x ∈ L.

Suppose x ∈ L, therefore Turing machine M(x) accepts. This implies that config-
uration graph GM,x has the property that there is a directed path from the vertex ci
representing the initial configuration, to the accept vertex ca. The assumption also
implies that NM (x) must reject, and so configuration graph GN,x does not have a
directed path from the object cj encoding its initial configuration to cb, its accept
configuration. Since Πx = h(x) directly encodes the configuration graphs as objects
and rules then the existence of a path from ci to ca implies that the membrane system
will produce the object yes during its computation. The absence of a path from cj
to cb implies that the membrane system will not produce the object no during its
computation. Therefore Πx accepts if x ∈ L.

Suppose x /∈ L, therefore no computation paths of Turing machine M(x) accept.
This implies that configuration graph GM,x has the property that there is no directed
path from the vertex ci representing the initial configuration, to the accept vertex
ca. The assumption also implies that NM (x) must accept, and so configuration graph
GN,x has a directed path from the object cj encoding its initial configuration to cb, its
accept configuration. Since Πx = h(x) directly encodes the configuration graphs as
objects and rules then the existence of a path from cj to cb implies that the membrane
system will produce the object no during its computation. The absence of a path
from ci to ca implies that the membrane system will not produce the object yes

during its computation. Therefore Πx rejects if x /∈ L.
Since each configuration graph is acyclic and has p(|x|) nodes where p is some

polynomial function, it follows that the membrane system itself is of polynomial size
and halts in polynomial time. The configuration graph can be computed in FAC0 by
Lemma 5.

In conclusion, function h defines a semi-uniform family of polynomial time AM0
−d

recogniser>1 (and so also acknowledger) membrane systems that accept the language
in L ∈ NL.

Note that the above proof fails for recogniser membrane systems since if there
is more than one accepting computation (or in the rejecting case, more than one
rejecting computation) then multiple copies of the object yes (or no ) are produced
in violation of the definition of recogniser membrane systems.

5 The computational power of uniform families of

acknowledger membrane systems

In this section we focus on acknowledger membrane systems (Definition 9) where the
accepting condition is met by the presence of one or more yes object in the environ-
ment in the last step of a computation, and the absence of yes implies rejection. We
give a characterisation of uniform families of acknowledger membrane systems:

Theorem 20. (FAC0,FAC0)-uniform-PMCAM0
−d = FAC0

dtt(tallyNL), for acknowl-
edger membrane systems.
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The proof of this result is the combination of Lemmas 21 and 22. Before giving
the lemmas we first introduce the following FAC0 computable functions that will be
used in the proofs.

Pairing function We require an injective function that pairs two binary strings
into one and is extremely easy (FAC0) to compute. We use the pairing function
that interleaves the bits of two binary string arguments a and b. For example, the
binary strings a = a2a1a0 and b = b2b1b0 are paired as the interleaved string 〈a, b〉 =
b2a2b1a1b0a0. The circuits for interleaving and de-interleaving have only a single
input gate layer and a single output gate layer (and so have 2 layers). The wiring
between each input and output gate can be shown to be DLOGTIME-uniform.

Binary to Unary There is a constant depth circuit family where circuit Cn takes as
input some word w ∈ {0, 1}n and outputs 1x where x is the positive integer encoded in
the first ⌈log2 n⌉ bits of w [14]. It can be shown that this circuit family is DLOGTIME

uniform and so this conversion from short binary strings to unary is in FAC0.

Unary to Binary There is a constant depth circuit family where circuit Cn takes
as input some word w = 0n−x1x where 0 ≤ x ≤ n, and outputs the binary encoding
of x [14]. It can be shown that this circuit family is DLOGTIME uniform and so unary
to binary conversion is in FAC0.

Lemma 21. (FAC0,FAC0)-uniform-PMCAM0
−d ⊆ FAC0

dtt(tallyNL), for acknowledger,
recogniser>1 and recogniser membrane systems.

Proof. Let L ∈ (FAC0,FAC0)-uniform-PMCAM0
−d. That is, there exist two functions

e, f ∈ FAC0, such that e maps x ∈ {0, 1}∗ to a multiset of membrane system objects
(the input), and f maps u ∈ {1}∗ to a membrane system, f(1|x|) = Π|x| ∈ Π, such
that Π|x| accepts input e(x) iff x ∈ L.

We claim that L is FAC0 disjunctive reducible to a unary language T , where T is
decided by a non-deterministic logspace Turing machine T .

Let T be the set of words of the form 1〈o,|x|〉 where, for all |x| ∈ N and then for
all o ∈ O|x|, membrane system Π|x| ∈ Π accepts if object o in the input membrane
eventually evolves to the object yes in the env membrane (where O|x| is the set
of objects of Π|x|, where both x and o are encoded in binary, 〈·, ·〉 is the binary

interleaving function defined at the start of Section 5, and 1b denotes the unary word
over {1} of length b for a binary number b). Turing machine T decides words in T by
first converting the input word to binary and then reversing the pairing function to
find oi and |x|. T then proceeds by simulating Π|x| in non-deterministic logspace using
a similar method as described in Lemma 18, that is, by storing a constant number
of objects and membranes on its work tape and recomputing f(1|x|) as needed (the
main difference is that T uses oi as its starting object instead of non-deterministically
choosing one). As in Lemma 18, T accepts if there exists a valid computation in Π|x|

where oi in the input membrane becomes yes in the env membrane. T rejects if there
are no valid computations that lead to a yes object in the env membrane. Therefore
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T is a tally language decided by a non-deterministic logspace Turing machine and so
T ∈ tallyNL.

We now define the function τ ∈ FAC0, that maps from {0, 1}∗ to the set of tuples
of unary words, and later prove that if x ∈ L then τ(x) ∩ T 6= ∅, otherwise if x /∈ L
then τ(x) ∩ T = ∅. Let τ(x) = (u1, . . . , uq(|x|)), where q(|x|) is the number of object

types oi in e(x), and ui = 1〈oi,|x|〉. Note that the set of unique words in τ(x) is a
bijection onto the set of objects e(x) so q(|x|) is polynomial in |x|. Since e, the pairing
function, binary-unary conversions, as well as calculation of q(|x|) are in FAC0, it is
not difficult to see that τ ∈ FAC0.

We now prove that τ is a disjunctive reduction from L to T . Suppose x ∈ L, this
implies that at least one of the objects in e(x), when placed in the input membrane
of Π|x| evolves to a yes object in the env membrane by the end of the computation
of Π|x|. Then, by the definition of τ , if x ∈ L then ∃o ∈ τ(x) such that o ∈ T .

Let x /∈ L, this implies none of the objects in e(x), when placed in the input
membrane of Π|x|, evolve to a yes object in the env membrane by the end of the
computation of Π|x|. Then, by the definition of τ , if x /∈ L then ∄o ∈ τ(x) such that
o /∈ T .

Lemma 22. FAC0
dtt(tallyNL) ⊆ (FAC0,FAC0)-uniform-PMCAM0

−d, for acknowledger
membrane systems.

Proof. Let L ∈ FAC0
dtt(tallyNL). That is, there exists a unary language T ⊆ {1}∗

that is recognised by a non-deterministic logspace Turing machine T , and a function
r ∈ FAC0 that maps x ∈ {0, 1}∗ to a set of unary words such that r(x) ∩ T 6= ∅ if
x ∈ L, and r(x) ∩ T = ∅ otherwise. Let q′(|x|) = max({max(|r(w)|) | w ∈ {0, 1}|x|}),
that is, the length of largest word produced by r on any input of length |x|. Note
that q′(|x|) is computable by f since r ∈ FAC0.

We present an FAC0 uniform polynomial-time AM0
−d membrane family Π that

recognises L. The family is composed of two functions: the uniformity function
f : {1}∗ → Π; and e that maps from binary words to the multiset of unique objects
in the appropriate member of Π.

Each member Π|x| = f(1|x|) of Π has one single membrane, env, that is both the

environment and the input membrane. On input 1|x|, the function f produces a con-
figuration graphGT ,u for machine T on input 1u for each u ∈ {1, 2, . . . , q′(|x|)}. (Note
that this is a generalization of the technique used in the proof of Lemma 19.) Since
we have unary input words we can include the input word as part of the configuration
to ensure that there is a unique input configuration for each GT ,u.

Each of the q′(|x|) configuration graphs are converted to membrane rules and
objects, using the same technique (without the second Turing machine that solves
un-reachability) from the proof of Lemma 19, of a single membrane system Π|x|. In
summary, the vertices of the configuration graphs become objects in Π|x| and the edges
in the graph become type (a) rules. There is a type (a) rule that maps the object
encoding the accepting configuration of T to yes . We do not include the second
Turing machine that solves un-reachability from Lemma 19. T is a logspace machine
and so its configuration graph is of polynomial size, it follows that the membrane
system is of polynomial size. It is relatively straightforward to verify that f ∈ FAC0.
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The input encoder e(x) simulates r(x) to find the set of unary words (u1, . . . , uk),
then outputs an object ci,u for each u ∈ r(x), which encode the vertex of the config-
uration graph corresponding to the initial configurations of Turing machine T input
u. Since r ∈ FAC0 it is not difficult to see that e ∈ FAC0.

We now show that the membrane system Π|x| on input e(x) accepts if x ∈ L and
otherwise rejects.

Suppose x ∈ L. This implies that at least one word in r(x) is in the tally set T and
so T accepts on at least one of these inputs. The input membrane of Π|x| contains
e(x) which includes the object ci,u which encodes the configuration graph vertex that
represents the initial configuration of Turing machine T on input 1u. In the proof
of Lemma 19 we show how the construction of Π|x| is such that there is a sequence
of rules from the input object ci,u to the yes object and so Π|x| on input e(x) will
accept.

Suppose u /∈ L. This implies that none of the unary words r(x) are in the tally
set T and that T does not have any accepting computations on any of the words 1j

in r(x). So, as in the proof of Lemma 19, this implies that none of the objects in e(x)
in the input membrane of Π|x| can evolve to the object yes in the env membrane.
In this case the membrane system Π|x| on input e(x) will halt without yes object; a
rejecting computation for an acknowledger membrane system.

Therefore the pair of functions f and e provide a uniform family of polynomial
time AM0

−d membrane systems that accept L ∈ FAC0
dtt(tallyNL).

6 The computational power of recogniser>1 mem-

brane systems

In this section we further investigate how the details in the definition of acceptance
and rejection for recogniser membrane systems affect the computational power of
uniform families of AM0

−d systems.
In Section 5 we consider acknowledger membrane systems (Definition 9) where the

absence of a yes object in the environment in the last step of any computation of a
membrane system is sufficient to say that the system rejected its input. However, if
we restrict to recogniser>1 membrane systems, which must produce one or more yes
objects in the case of an accepting computation and one or more no objects in the case
of a rejecting computation (Definition 8) it is no longer clear if our characterisation of
(FAC0,FAC0)-uniform-PMCAM0

−d for acknowledger systems can still hold. The best
lower-bound we find is FAC0

m(tallyNL), and we obtain upper-bounds of FAC0
dtt(tallyNL)

and FAC0
ctt(tallyNL).

In the semi-uniform case the upperbound FAC0-semi-uniform-PMC∗AM0
−d ⊆ NL

is unaffected by the restriction from acknowledger to recogniser>1 membrane systems.
It also turns out that these more restricted recogniser>1 membrane systems have
the same NL lower-bound on their power as acknowledger membrane systems (see
Lemma 19).

Lemma 23. (FAC0,FAC0)-uniform-PMCAM0
−d ⊆ FAC0

ctt(tallyNL), for recogniser>1

and recogniser membrane systems.
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Proof. (Sketch) This proof closely follows that of Lemma 21 so we just highlight the
differences. In the proof of Lemma 21 the language T is the set of words 1〈o,|x|〉 where
membrane system f(1|x|) = Π|x| accepts if object o in the input membrane eventually
evolves to the object yes in the env membrane. In this proof we consider the language
T ′ that is the set of words 1〈o,|x|〉 where in the membrane system Π|x| the object o
does not evolve to the object no in the env membrane, in any computation. Via
Lemma 13, this language is well-defined, i.e. can defined in terms of o and |x|. Also,
Turing machine T from Lemma 21 (that solves reachability) can be modified [24, 56]
to give T ′ (that solves unreachability) that accepts the language T ′. That is, T ′

accepts if no object with the desired, and easy to check, property can be evolved by
rule applications.

In Lemma 21 we defined the function τ ∈ FAC0, that maps from {0, 1}∗ to the set
of tuples of unary words. Recall that τ(x) maps to a list that contains a unary string
1〈o,|x|〉 for each o in e(x). We now prove that τ is a conjunctive reduction from L to
T ′.

Assume x ∈ L, this implies that no object in Π|x| with input e(x) eventually
evolves to no in the env membrane. Hence x ∈ L implies that ∀w ∈ τ(x), w ∈ T ′.

Assume x /∈ L, this implies that at least one object in the initial configuration of
Π|x|(e(x)) eventually evolves a no object in the env membrane in each computation
of Π|x|. Hence x /∈ L implies that ∃w ∈ τ(x) such that w /∈ T ′.

Lemma 24. FAC0
m(tallyNL) ⊆ (FAC0,FAC0)-uniform-PMCAM0

−d, for acknowledger
and recogniser>1 membranes systems.

Proof. Let L ∈ FAC0
m(tallyNL). That is, there exists a unary language T ⊆ {1}∗

that is recognised by non-deterministic logspace Turing machine T , and a function
r ∈ FAC0 that maps x ∈ {0, 1}∗ to a unary word such that r(x) ∈ T iff x ∈ L. Let
q(|x|) = max({|r(w)| | w ∈ {0, 1}|x|}), that is, the largest word produced by r on any
input of length |x|. Note that q(|x|) is computable by f since r ∈ FAC0.

We present an FAC0 uniform polynomial-time AM0
−d membrane family Π that

recognises L. The family is composed of two functions: f : {1}∗ → Π, and e that
maps each binary word to a multiset of objects from the appropriate member of Π.

Each member Π|x| = f(1|x|) of Π has one single membrane, env, that is both

the environment and the input membrane. On input 1|x| the function f produces
one configuration graph GT ,u for machine T (that accepts T ) on each input 1u,
1 ≤ u ≤ q(|x|), and one configuration graph GN,u for machine NT (that accepts the
compliment of T ) on each input 1u, 1 ≤ u ≤ q(|x|). (Note that this is a generalization
of the technique used in the proof of Lemma 19.)

Each of the 2q(|x|) configuration graphs are modified to give a set of rules and
objects of a single membrane system Π|x| using the same technique as used in the
proof of Lemma 19. In summary, the vertices of the configuration graphs become
objects in Π|x| and the edges in the graph become type (a) rules. There is a rule
mapping the object encoding the accepting configuration of T to yes and rule map-
ping object encoding the accepting configuration of NT to no . Both T and NT are
logspace machines and so their configuration graphs are of polynomial size and so the
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membrane system is of polynomial size. It is relatively straightforward to verify that
f ∈ FAC0.

The input encoder e(x) simulates r(x) to find 1u, then outputs two objects ci,u
and cj,u which encode the vertex of the configuration graph corresponding to the
initial configurations of Turing machines T and NT respectively on input 1u = r(x).
Since r ∈ FAC0 it is not difficult to see that e ∈ FAC0.

We now show that the membrane system Π|x| on input e(x) accepts if x ∈ L and
otherwise rejects.

Suppose x ∈ L. This implies that the word r(x) = 1u is in the tally set T
and so at least one computation of T accepts 1u. It also implies that there is no
computation of NT that accepts on input 1u. The input membrane of Π|x| contains
e(x) which includes ci,u encoding the configuration graph vertex that represents the
initial configuration of Turing machine T on input 1u. In the proof of Lemma 19 we
show how Π|x| has the property that there is a sequence of rules from the input object
ci,u to the yes object and so Π|x|(e(x)) will accept. Likewise there is no path from
cj,u to no .

Suppose u /∈ L. This implies that the word r(u) = 1j is not in the tally set T
and that therefore there is no accepting configuration of T on input 1u, however,
there is at least one accepting computation of NT on the same input. In the proof
of Lemma 19 we show how the construction of Πn is such that there is a sequence of
rules from the input object cj,u to the no object and so Πn(e(x)) will reject. Likewise
there is no path from ci,u to yes .

Therefore the pair of functions f and e provide a uniform family of polynomial
time AM0

−d membrane systems that accept any language in FAC0
m(tallyNL).

7 Open Problems

The power of recogniser membrane systems. In Sections 4 and 5 of this paper
we characterise the power of acknowledger membrane systems (Definition 9), which
are a generalisation of recogniser membrane systems. In Section 6 we give upper and
lower bounds on the power of the more restricted recogniser>1 membrane systems
(Definition 8), which are closer in power to standard recogniser membrane systems.
We also give upper bounds on the power of uniform and semi-uniform recogniser
membrane systems (Definition 7), as well as showing that these classes are distinct.

However, we have not characterised the power of AM0
−d recogniser membrane

systems (Definition 7) with the kind of tight uniformity conditions used in this paper.
In such systems, in an accepting computation exactly one yes object, or in a rejecting
computation exactly one no object, is produced at the final step. A consequence of
this is that our techniques for showing lower bounds on the power of acknowledger
and recogniser>1 systems (Sections 4, 5 and 6) in terms of non-deterministic logspace-
bounded Turing machines do not immediately carry over to recogniser systems.

As future work, we suggest that recogniser systems could be characterised via
unambiguous non-deterministic logspace-bounded Turing machines [6]. An unam-
biguous machine accepts an input if and only if it has exactly one accepting com-
putation. Perhaps the class of problems solved by semi-uniform families of recog-
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niser AM0
−d systems, i.e. FAC0-semi-uniform-PMC∗AM0

−d, does not contain NL-
complete problems since the system cannot control how many yes objects it pro-
duces? Perhaps these semi-uniform recogniser systems can solve s-t connectivity for
“mangrove” graphs, i.e. graphs where there is exactly one path between each pair of
vertices which is contained in unambiguous logspace [6]? Formally, we conjecture that
FAC0-semi-uniform-PMC∗AM0

−d = RUSPACE(log n) [6]. We also conjecture that for
the analogous uniform families of recogniser systems (FAC0,FAC0)-uniform-PMCAM0

−d =
FAC0

m(RUSPACE(logn)). If proven, our conjectures, taken together with previous re-
sults [6], would give a restatement of the relationship between the classes L, unam-
biguous logspace and NL in the membrane computing model, as well as the other
classes shown in Figure 1.

Tight uniformity conditions for other classes of membrane systems. In
this paper and others [33, 34, 35, 36, 37], we have put forward the idea of exploring
the power of membrane systems under tight uniformity conditions. Others have
since carried on this line of investigation [46]. Besides the main result in this paper
(exhibiting systems where uniformity is a strictly weaker notion than semi-uniformity)
this has led to various other characterisations of the power of a variety of classes of
membrane systems and a teasing apart of their power. A number of other varieties of
membrane systems (e.g. [20, 40]) characterise the complexity class P, but where the
lower-bound actually depends on the use of P uniformity. As future work, it would
be interesting to investigate these, and other, systems under suitably tight notions of
uniformity or semi-uniformity.

Upper-bounding tallyNL. While we know that tallyNL ( NL it would be interest-
ing to find other classes to upper bound tallyNL. It is known that if a sparse language
is complete for NL then NL ⊆ DLOGTIME uniform-TC0 [13, 23]. Is it possible to show
that tallyNL ⊆ DLOGTIME uniform-TC0?

Classes reducible to tallyNL. We conjecture that FAC0
m(tallyNL) is strictly con-

tained in FAC0
dtt(tallyNL). Giving an exact characterisation of recogniser>1 membrane

systems studied in Section 6 may provide some insights into this. We also conjecture
that FAC0

dtt(tallyNL) 6= FAC0
ctt(tallyNL). A lead to solve this may come from Ko [26]

who showed that Pctt(tally) 6= Pdtt(tally).

Acknowledgements

Thanks to an anonymous reviewer for a thorough reading and helpful comments. This
paper appears in a special issue dedicated to Mario de Jesús Pérez-Jiménez on this
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[16] Condon, A., Hu, A. J., Maňuch, J., Thachuk, C.: Less haste, less waste: on
recycling and its limits in strand displacement systems, Journal of the Royal
Society – Interface focus, 2(4), 2012, 512–521.

[17] Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of Chemical
Reaction Networks, in: Algorithmic Bioprocesses, Springer, 2009, 543–584.

[18] Dabby, N., Chen, H.-L.: Active self-assembly of simple units using an insertion
primitive, SODA: Proceedings of the Twenty-fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2012.

[19] Furst, M. L., Saxe, J. B., Sipser, M.: Parity, circuits and the polynomial-time hi-
erarchy, Theory of Computing Systems (formerly Mathematical Systems Theory),
17(1), 1984, 13–27.
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