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Power production assessment for wave
energy converters: Overcoming the
perils of the power matrix

Alexis Mérigaud and John V Ringwood

Abstract
Wave energy converter power production assessment, usually carried out using a power matrix, is essential for the
appraisal of new wave energy converter technologies and for the planning of specific wave energy projects. Errors in
power assessment may arise, both from an inaccurate description of the wave energy converter dynamics and from an
excessively simplified representation of wave spectra in the power matrix approach. Ideally, the wave energy converter
output should be computed in every individual sea state of the wave dataset considered, without the assumption of any
parametric spectral shape. However, computationally efficient methods are necessary to achieve such extensive wave
energy converter simulation. The non-linear frequency-domain technique is significantly faster than Runge–Kutta time-
domain simulations, without affecting the representation of radiation forces and non-linear dynamics. In this article, the
two main sources of errors in wave energy converter power assessment, namely the power matrix representation and
wave energy converter modelling inaccuracies, are jointly studied and put into perspective, using four case studies (two
wave energy converter systems in two locations). It is found that both types of errors can be of comparable magnitude.
The non-linear frequency-domain technique simulation technique is shown to be a computationally efficient tool, retain-
ing a realistic representation of the device dynamics while avoiding the use of a power matrix, thus preserving accurate
representation of both the sea states and the wave energy converter, at little computational expense. Aside from those
main results, the issue of the length and number of simulations, necessary to achieve average power estimates with suffi-
cient accuracy in every sea state, is addressed in detail.
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Introduction

At the current development stage of wave energy con-
verter (WEC) technologies, WEC power production
assessment is essential to evaluate and compare the
potential of various wave energy conversion technolo-
gies at different locations.1–8 In the future, power
assessment will also be instrumental in determining the
economic viability of specific wave energy projects. In a
wider sense, WEC power production assessment covers
studies concerning the variability of WEC production
over different time, and geographical, scales.7,9–12

The general methodology for power production
assessment consists of using historical wave data for a
specific location, over typically a year or more, and
simulating the WEC power output over the chosen
duration. The findings of Torsethaugen13 suggest that a

1-year period is insufficient and that a 10-year assess-
ment is necessary. At every time step of the period con-
sidered, that is, typically every 1–3 h, the power output
is computed from the knowledge of the wave
spectrum – or the wave elevation data if those are avail-
able at the location of interest. As a consequence,
power assessment involves the computation of the
WEC output in a large number of sea states, which is
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carried out, in the vast majority of studies, using the
power matrix (PM) representation of the device.

The PM is a concise WEC representation, showing
the WEC response, in terms of average power produc-
tion, as a function of two parameters describing the sea
state. Thus, in a PM, sea states are characterised by
means of only two parameters, generally the significant
wave height Hm0

and the peak wave period Tp, assum-
ing a parametric spectral shape such as a Joint North
Sea Wave Project (JONSWAP)14 or Bretschneider15

spectrum for the waves. The device output is computed
over a range of Hm0

, Tp pairs, each pair representing a
cell of the PM. Then, in a given sea state, the power
output is predicted by matching the Hm0

, Tp para-
meters of the spectrum with the corresponding cell of
the PM, using interpolation between neighbouring PM
cells, as necessary.

Furthermore, if only the annual power value is of
interest, the PM can simply be multiplied by the scatter
plot of the site considered,1 the value in each cell of the
scatter plot representing the probability of occurrence
of a given Hm0

, Tp pair. The PM approach therefore
has appealing computational properties, compared to
the performance of a WEC simulation for every indi-
vidual sea state.

The benefits of the PM are even more obvious when
the WEC dynamical description includes non-linear
effects, such as quadratic viscous drag terms, non-linear
power take-off (PTO) forces, a non-linear Froude–
Krylov force description or non-linear mooring effects.
In such cases, for a given spectrum, time-domain simu-
lations are the standard method of obtaining the WEC
output.16 The computational cost of time-domain simu-
lations is significant, in comparison to linear frequency-
domain WEC output calculations, which simply neces-
sitate a multiplication of the input wave spectrum by
the WEC linear transfer function. Therefore, while
computing the WEC output by means of time-domain
simulations, for all individual spectra of the period con-
sidered, would represent a significant computational
burden, filling in the cells of a PM and using the
(Hm0

, Tp) scatter diagram is much less demanding.
However, regardless of the linearity of the WEC

description, the PM approach can be subject to signifi-
cant limitations in terms of accuracy, since two-
parameter wave spectra cannot reflect the variety of
spectral shapes which can be encountered in real seas.
In particular, bi- or multi-modal sea states are poorly
represented with just two parameters. Given that the
more energetic sea states are closer to standard, theore-
tical spectral shapes, it could be assumed that the error
committed when using a PM is relatively modest.17

However, recent work2 tends to show that, depending
on the WEC type and location, using a PM approach,
and assuming a JONSWAP spectral shape, can result
in an error of up to 20% in terms of average annual
energy production, compared to computing the WEC
output using the actual spectra. On a sea state by

sea-state basis (i.e. for a given 3-h spectrum), the error
committed can amount to 200%.

In summary, there are two potential sources of error
in typical power production assessment computations:

� The dynamical description of the device can be
insufficiently realistic. In particular, linear
frequency-domain models, although computation-
ally efficient, fail in capturing non-linear dynamics,
especially under controlled conditions.18 Time-
domain models can be used in order to include
non-linear effects; however, time-domain simula-
tion over the entire set of sea states for an extended
period is computationally demanding. Therefore,
time-domain models are normally used to fill in
each cell of a PM,1,5 rather than to simulate the
WEC in every individual sea state.

� The sea-state description, through the two para-
meters of a PM, can also be the cause of incorrect
estimates.

Finally, within the scope of power production assess-
ment studies, four main types of WEC representations
can be identified and are shown in Figure 1:

1. A PM, with the entries determined from a linear
WEC model, hereafter referred to as PM-L;

2. A PM, with the entries determined from a non-
linear WEC model, or determined through experi-
mental measurements (PM-NL);1,5

3. A linear WEC representation, simulated in every
individual sea state without assuming any pre-
defined spectral shape (S-L), such as in De Andrés
et al.2 for a Portuguese location;

4. A non-linear WEC representation, simulated in
every individual sea state without assuming any
pre-defined spectral shape (S-NL).

PM-L requires negligible computational effort, but
accumulates the two sources of error described above,
that is, in the description of sea states and WEC
dynamics.

Figure 1. Four main categories of WEC representations for
power assessment, along with the associated accuracy and
computational cost.
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PM-NL, although describing the system dynamics
accurately, is subject to errors related to the misrepre-
sentation of the sea spectra. Since only the PM cells
have to be filled in, the computational cost of PM-NL
is moderate, even if time-domain simulations are used,
such as in Babarit et al.1 and Rusu and Onea.5

S-L, in contrast, represents the wave spectra accu-
rately, at the expense of the description of non-linear
WEC dynamics. The computational cost associated
with S-L is small, since linear power computation for
each individual spectrum is extremely fast.

There exists a ‘grey zone’ between PMs and full spec-
trum representation. For example, it has been suggested
to add more spectral parameters to the PM entries.
Such additional spectral parameters can characterise
the whole spectral shape, such as wave groupiness and
spectral bandwidth.19 Describing individual wave sys-
tems which compose the spectrum could also be consid-
ered.20 However, a multi-dimensional PM involves a
large number of cells to be filled in; for example, with
four parameters, assuming that the range of values for
each parameter is discretised into 10 intervals, the num-
ber of bins to fill in is in the order of 10,000.

Another interesting method is the MaxDiss selection
technique, used in De Andrés et al.:2 the PM has three
entries, namely Hm0

, Tp and a broadness parameter e0.
Within the historical wave data at a specific location, a
limited number of spectra are chosen, which span the
range of (Hm0

, Tp, e0) triplets encountered at the site
under study. Then, instead of assuming a JONSWAP
spectral shape, the PM is built using the selected sea
states, combined with an interpolation technique. The
resulting PM is then based on a more faithful represen-
tation of the spectra which characterise the location, at
moderate computational cost. Although the WEC mod-
els studied in De Andrés et al.2 are linear, the technique
could be usefully applied to non-linear WEC descrip-
tions. However, regardless of the WEC dynamics, the
resulting WEC representation is site-specific, and the
procedure has to be carried out again for studies in
other locations.

S-NL should represent the ideal WEC power assess-
ment method, in terms of accuracy, since both the sea
state and the device are accurately represented, without
any approximation other than the limitations inherent
to any physical WEC model. However, it is generally
considered that non-linearities in the WEC model have
to be handled by means of time-domain simulations
(bottom right cell in Figure 1), which makes S-NL com-
putation over the whole dataset relatively intractable.

Nevertheless, other calculation methods exist, which
allow for computationally efficient estimation of the
WEC outputs while taking into account the system
non-linearities. In particular, the recently proposed
non-linear frequency-domain (NLFD) method21,22

enables the non-linear, steady-state system response to
a periodic, polychromatic wave signal, to be efficiently
and accurately computed. NLFD relies on the projec-
tion of the dynamical equations onto a basis of

harmonic sinusoids. The resulting set of non-linear
equations is then solved using a gradient-based algo-
rithm. NLFD can be successfully applied to WEC
simulation,22 since:

� Without requiring any approximation of the radia-
tion force, the computational gain is at least two
orders of magnitude lower than a typical second-
order Runge–Kutta (RK2) integration (using a
direct computation of the radiation force convolu-
tion product).

� Due to the quadratic convergence rate of the
gradient-based algorithm, the estimated WEC tra-
jectory can be made arbitrarily accurate at little or
no additional computational cost. The case studies
of Mérigaud and Ringwood22 show that time-
domain results converge to NLFD results, when
the time-domain integration step tends to zero.

When such computationally efficient calculation
methods are available, the benefits of using a PM-NL
are no longer obvious, with respect to a computation of
the WEC output for all the individual spectra, using a
frequency-domain formalism to solve for the non-linear
WEC motion (last column, middle row in Figure 1).

This article puts into perspective the two main
sources of inaccuracies in WEC power assessment:
those related to the WEC dynamical description, and
those due to the misrepresentation of the sea state in
the PM approach. Furthermore, it is shown that both
sources of error can be overcome simultaneously, by
computing the non-linear WEC output in all individual
sea states (S-NL) using the NLFD calculation method.

Two reactively controlled WEC systems, namely a
flap-type WEC and a spherical heaving point absorber,
are studied in two diverse locations off the Irish coast.
For each WEC system, two models are built: a line-
arised model, and a non-linear model which includes
device-specific non-linear forces. Then, for each WEC
system and each location, the annual power output can
be computed in four different ways: by filling-in a PM,
using either the linear WEC model (PM-L) or the non-
linear WEC model (PM-NL), or by computing the
WEC output in each individual spectrum, again using
either the linear WEC model (S-L) or the non-linear
WEC model (S-NL). All non-linear computations (in
PM-NL and S-NL) are carried out at a modest compu-
tational expense, using NLFD. In particular, S-NL is
shown to be achievable at reasonable computational
cost, while being able to capture both the non-linear
device dynamics and the complexity of real ocean wave
spectral shapes.

Finally, although the wave elevation data itself were
available for this specific study, the power assessment
methodologies considered are all based on a spectral
description of the sea states. Indeed, except for the
strongest storms and for shallow water, the Gaussian
model of ocean waves is accurate,23 and can then realis-
tically describe the wave excitation when WECs are in
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operation. Furthermore, long enough wave elevation
records are only available at specific locations where
measurement buoys have been operating consistently
for several years. In contrast, spectra can not only be
measured but also reconstructed in areas of interest by
means of advanced meteorological models, such as in
Gallagher et al.24 Therefore, power assessment methods
based on a spectral description of ocean waves are
more widely applicable.

The rest of this article is divided into five sections:
The section entitled NLFD simulation introduces the
NLFD technique, which is the core of the proposed
power assessment methodology. Then, WEC models,
supported by material in Appendix 1, presents the two
WEC systems, with their linear and non-linear variants.
Wave dataset describes the two wave datasets consid-
ered in the study, and section ‘Number and length of
simulations per sea state’ addresses the important issue
of the number of simulations to carry out for each sea
state. Power assessment results, using the four types of
device representation (PM-L, PM-NL, S-L and S-NL),
are shown and compared in section ‘Numerical results’,
for the two WEC systems and the two locations.
Finally, the main outcomes of the study are discussed
in the sections ‘Discussion’ and ‘Conclusion’.

NLFD simulation

NLFD representation of the dynamical equations

The NLFD simulation method underpins all the non-
linear, numerical investigations presented in this article.
It constitutes a useful way to enhance the computa-
tional efficiency in the context of extensive WEC power
calculations with non-linear dynamical models.

Let us consider a WEC with 1 degree of freedom
(DoF) x. A generic formulation for the dynamical
equation is

gl(x, _x, €x)� fnl(x, _x, t)+ fe(t)=0 ð1Þ

where
� gl includes the inertial terms (the presence of inertial

terms in gl is the reason why the notation g is used
instead of f), and the linearly modelled forces;

� fnl denotes forces which are modelled in a non-
linear way;

� fe denotes additive excitation forces (possibly
obtained from linear wave theory).

The formulation of equation (1) applies well to non-
linear extensions of the well-known Cummins equa-
tion.25 Although they are not theoretically consistent,
such descriptions allow for including the most signifi-
cant non-linear effects, such as viscous drag, mooring
line forces, non-linear Froude–Krylov forces and non-
linear PTO forces, while avoiding the computational

burden of computational fluid dynamics (CFD) and
the financial cost of physical experiments.16

Typically, if hydrodynamic radiation and hydro-
static restoring forces are linearly modelled, gl can be
expressed as

gl(x, _x, €x)= (m+m‘)€x+

ðt
�‘

krad(t� t) _x(t)dt+khx

ð2Þ

where

� m is the WEC inertia;
� kh is the hydrostatic stiffness coefficient;
� The radiation forces are computed as the sum of an

inertial term m‘
€z and a convolution product

between the past values of the velocity and the
radiation impulse response function krad.

If some terms of gl, for example, the restoring force,
are to be modelled non-linearly, they have to be moved
from gl to fnl.

Let us consider a periodic incoming wave or excita-
tion force signal, h(t) or fe(t), which can be described as
a weighted sum of harmonic sinusoids, such as

h(t)’
XN
k=1

ahkcos(vkt)+bhksin(vkt) ð3Þ

where 8k2 1;N½ �½ �, vk= kv0, v0 =2p=T, T is the time
period after which h is repeated, and the component
amplitudes ak and bk are derived from the wave
spectrum.

It is assumed that the motion of the WEC, subject to
the wave signal h, has a periodic steady-state solution,
which can also be described through a projection onto
the same trigonometric basis so that

x(t)’mx+
XN
k=1

axkcos(vkt)+bxksin(vkt) ð4Þ

This way, the dynamical equation (1) can be pro-
jected onto the basis of trigonometric polynomials,
resulting in a non-linear vector equation

MX� F(X)� Fe =0 ð5Þ

where

� Gl(X)=MX is the matrix transcription of the lin-
ear terms of gl. In particular, the linear time-
domain radiation terms simplify into the frequency-
dependent radiation added mass and damping
Arad(v) and Brad(v). For example, when both radia-
tion and hydrostatic restoring forces are linearly
modelled, 8i, j2 1, . . . ,N½ �½ �2
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Mij =
�v2

i (m+Arad(vi))+kh, i= j
0, i 6¼ j

�
Mi+N, j+N =Mi, j

Mi, j+N =
viBrad(vi), i= j
0, i 6¼ j

�
Mi+N, j = �Mi, j+N

and M2N+1, 2N+1 = kh

ð6Þ

� F(X) is the projection, similar to equation (3), of the
non-linear forces fnl onto the harmonic basis so that
8i2 1, . . . ,N½ �½ �

Fi(X)=
2

T

ðT
0

fnl(xX, _xX, t)cos(vit)dt

Fi+N(X)=
2

T

ðT
0

fnl(xX, _xX, t)sin(vit)dt

ð7Þ

where the subscript X indicates that the time-domain
periodic trajectory x depends on the set of coefficients
contained in X;

� Fe represents the projection of additive force terms.
For example, Fe can correspond to the linear excita-
tion forces resulting from the wave signal h.

Solution method

Defining H(X) : =MX� F(X)� Fe, equation (5) is a
non-linear vector equation which can be expressed as

H(X)=0 ð8Þ

The Jacobian of H can be computed, which makes it
possible to use Newton’s algorithm to solve for
H(X)=0. The Newton procedure is iterated until
k H(X)k2 is smaller than some given threshold n. The
computation of the Jacobian of the non-linear term,
F(X), at each iteration, necessitates 2N fast Fourier
transforms (FFTs). Details of the solution method and
the gradient computation can be found in Spanos
et al.21 Further discussion about the NLFD method, in
particular in terms of a comparison with time-domain
results and computational performance, can be found
in Mérigaud and Ringwood.22

As already stressed in the section ‘Introduction’, it
has to be noted that NLFD is not an approximation of
the results obtained with time-domain integration. On
the contrary, results presented in Mérigaud and
Ringwood22 tend to show that time-domain results
obtained from RK2 integration get closer and closer to
NLFD results when the integration step goes to zero.

Finally, it is important to keep in mind that the cal-
culation of the non-linear forces equation (7) and their
gradient, at each iteration of Newton’s method, implies
that the non-linear forces can be expressed as analytical
and differentiable functions of x.

WEC models

Here, two generic WEC systems are considered: a flap-
type oscillating wave-surge converter and a spherical
heaving point absorber. Two mathematical model types
are used to describe each system: a linear one, and a
non-linear one, which includes more realistic dynamical
effects.

The difference between results of the linear and non-
linear models represents the error encountered when
excessively simplifying the WEC description.

Flap-type WEC

The first device considered is a flap-type WEC, for
which the radiation, hydrostatic restoring force and
excitation forces are modelled linearly. The flap is sub-
ject to a quadratic viscous drag term with moment

fv( _x)= � Cv _xj _xj ð9Þ

where x denotes the angular displacement of the flap,
and Cv is given, as in Bacelli,26 by

Cv =
1

8
rCdLH

4 ð10Þ

where H and L are the vertical and horizontal dimen-
sions of the flap, r is the density of sea water and
Cd =1:9 is the drag coefficient of a plate orthogonal to
the flow.

The linear frequency-domain hydrodynamic coeffi-
cients are computed using the hydrodynamic software
NEMOH.2

In the linear version of the flap WEC system, the
quadratic viscous damping term is simply omitted. A
linear approximation for the viscous damping term
would necessitate, for each simulation, the use of an
iterative linearisation procedure, referred to as spectral
domain method in Folley.16

The PTO force consists of two terms. The first one
is a linear damping term �BPTO _x, and the second one
is a restoring term �KPTO _x, which, similarly to reactive
control, allows the device to resonate in the incident
waves. KPTO and BPTO are optimised for every Hm0

, Tp

pair in the operational space (i.e. each cell of the PM),
assuming a JONSWAP spectrum with g =3:3, result-
ing in a two-dimensional (2D) look-up table. The opti-
misation is carried out based on the linear model, by
simply evaluating a range of discrete KPTO,BPTO pairs.
For each spectrum of the datasets, the Hm0

, Tp pair of
the spectrum is matched, using interpolation, with the
corresponding KPTO, BPTO pair in the look-up table.

The parameter settings which resulted in (linear) WEC
angular position exceeding 45� were discarded so that in
some cases the ‘best’ parameters are sub-optimal from
the point of view of power production, but enable the
device to remain within meaningful physical constraints.

Finally, the linear and non-linear PMs for the flap,
over its operational range (Hm0

44m), are shown in
Figure 2. Significant differences can be observed
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between the PMs of the two models because the viscous
drag term plays a significant role, especially in the most
energetic sea states, where typical angular velocities are
larger.

Spherical heaving point absorber

The secondWEC considered is a spherical heaving point
absorber, with a 5-m diameter. The motion is con-
strained to heave only. The buoy density is chosen to be
half that of sea water so that, at rest, the position of the
gravity centre is z=0. The radiation force fr( _z, €z) and
diffraction forces fdiff(t) are linearly modelled. The radia-
tion frequency-domain coefficients Ar(v) and Br(v) are
computed using the hydrodynamic software NEMOH
(https://lheea.ec-nantes.fr/doku.php/emo/nemoh/start),
as well as the diffraction transfer function.

The Froude–Krylov force, which is the sum of the
static pressure force and the incident dynamic pressure
force, is modelled non-linearly, taking into account the
position of the device with respect to the free surface.
The hydrodynamic model is then similar to the one
developed in Gilloteaux,27 and used in Mérigaud
et al.28 and Penalba Retes et al.18 There are, however,
three significant differences with respect to the
approaches used in Penalba Retes et al.,18 Gilloteaux27

and Mérigaud et al.:28

� The dynamic pressure field is modified following a
Wheeler et al.29 stretching approach so that the

total incident pressure, measured at the free sur-
face, is exactly zero.

� The sphere is considered to be significantly smaller
than the typical wave length so that, over the sphere
wetted surface, the pressure field dependence on the
horizontal coordinates is omitted. Furthermore, it
is considered that the intersection between the
device and the free surface is always on a horizontal
plane, considering that h is everywhere equal to its
value at the origin of the horizontal plane.

� The integration of the pressure over the instanta-
neous wetted surface is carried out analytically, as
in Giorgi and Ringwood.30

The implementation, within NLFD, of the hydrody-
namic model briefly described in this section, requires fur-
ther steps, which are described in detail in Appendix 1.

The heaving sphere device is also subject to a quadratic
viscous drag force, which depends on the relative velocity
of the device with respect to the free surface, as follows

fv( _z� _h)= � Cv( _z� _h)j _z� _hj ð11Þ

The control force, similarly to the flap-type WEC,
consists of two terms, a linear damping term � BPTO _z,
and a restoring term �KPTO _z where KPTO is a ‘negative
stiffness’ coefficient. Schematically, the role of the
restoring term in the control force is to partly compen-
sate for the natural hydrodynamic stiffness of the
device so that the resonant frequency is brought closer
to the peak wave period. However, since the Froude–

Figure 2. Linear (top) and non-linear (bottom) power matrices for the flap-type WEC (W).
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Krylov forces are non-linearly modelled, the restoring
term of the control is adapted, as in Mérigaud and
Ringwood,22 by introducing a saturation, in a form
consistent with non-linear hydrostatic restoring forces
for a spherical buoy, as illustrated in Figure 3. The
modified control restoring term is given as

f�PTO
res

(z)=

KPTO

R2

1

3
z3 � R2z

� �
z2½�R;R�

� 2

3
KPTOR z5R

2

3
KPTOR z4� R

8>>>>><
>>>>>:

ð12Þ

In this way, the desired stiffness properties around
the average device position are well preserved, and the
non-linear modification avoids the occurrence of
unstable motions.22

In the linear version of the sphere model, no viscous
drag is included, and all the hydrodynamic forces are
modelled linearly, through a linear hydrostatic restor-
ing force, a linear excitation force and linear radiation
forces. Accordingly, the PTO restoring force is kept
linear.

Similar to the flap case, KPTO and BPTO are opti-
mised for each Hm0

, Tp couple, based on the linear
device model. Again, the optimisation is simply carried
out through an exhaustive search approach, by asses-
sing a whole range of parameter settings until the best
combination is found.

The parameter settings which resulted in (linear)
WEC motions exceeding the device dimensions were
discarded so that in some cases the ‘best’ parameters
are sub-optimal from the point of view of power pro-
duction, but enable the device to remain within mean-
ingful physical constraints.

The non-linear effects, due both to the device geo-
metry and to the viscous drag term, are amplified
under the effect of reactive control. Therefore, the
non-linear device dynamics significantly affect the

WEC trajectory, resulting in the power output to be
significantly smaller than what was expected from the
linear model.

The adverse effect of the non-linear dynamics on
power production is visible in Figure 4, by looking at
the differences between the linear and non-linear PMs.

Wave dataset

Wave data processing

The WECs are studied in two locations, subject to sig-
nificantly different wave conditions. It is essential to
choose locations where full-wave spectra can be derived,
without further assumptions about the spectral shape.
The Irish Marine Institute has wave elevation measure-
ment buoys operating at several locations off the coast
of Ireland. Two of those locations were considered for
this study: Belmullet, off County Mayo and Galway
Bay. For each location, the Marine Institute kindly
provided 1 year of wave data (http://www.marine.
ie/Home/site-area/data-services/real-time-observations/
wave-buoys Belmullet buoy: Wave DataWell Wave
Rider ‘Berth B’, Lat. 54.2339, Long. 210.1429, year
2010; Galway Bay buoy: DataWell Wave Rider, Lat.
53.2308, Long. 29.2609, year from March 2012 to
February 2013).

Although the buoys record many variables, for the
purpose of this study, only free-surface elevation data
were used, and processed in order to obtain 3-h spectra.
Wave elevation data are organised into files corre-
sponding to 30min of wave elevation recorded at a rate
of 1.28Hz. Unfortunately, for both locations, there is a
significant proportion of missing data, roughly 30–
40%, corresponding to times where the buoys were not
operating properly. Therefore, not all the seasonal
variability of the meteorological conditions can be
reflected in the data included in this study, and thus no
seasonal analysis can be carried out.

Each 30-min wave elevation data file is processed, so
as to obtain a 30-min wave spectrum estimate, in sev-
eral steps:

� The 30min of data are split into overlapping 3-min
segments;

� In each segment, the signal is windowed through a
tapered cosine function (or Tukey window);31

� The spectral density function (SDF) is estimated for
each segment, by means of an FFT;

� Finally, the SDF estimates in all segments are aver-
aged to obtain the 30-min SDF.

A few remarks are appropriate. First, the number of
frequencies in the SDF is determined by the character-
istics of the individual data segments. In particular, the
cut-off frequency is determined as fmax=(1=2Dt)
= (1=2)fs =0:64Hz, and the frequency step is equal to
Df =(1=T)=0:0056Hz, where T is the duration of
individual data segments. Second, it was found that the

Figure 3. Linear and non-linear hydrostatic restoring force and
PTO restoring force models.
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methodology and settings used here to produce half-
hourly spectra are very similar to those used within the
WaveRider measurement buoys themselves, for
the same purpose (http://www.datawell.nl/Support/
Documentation/Manuals.aspx). Finally, when wave
data were processed, measurement outliers can be eas-
ily detected: for example, a few consecutive measure-
ments indicating a zero free-surface elevation clearly
indicate that the buoy is not correctly operating.
Similarly, a sudden ‘jump’ of several meters in an oth-
erwise calm sea cannot be realistic. Such outliers always
result in a significant pollution of the spectral estimate.
Therefore, and since they only represented a small
amount of the data, the polluted 30-min records were
simply discarded from the analysis. For Belmullet,
there were practically no outliers. For Galway bay,
they represented less than 2% of the 30-min spectra.

Further to the processing of the individual 30-min
record, the time resolution of the power assessment
methodology was chosen as 3 h. Indeed, too short a
duration (e.g. 30min) means that individual spectra
capture a lot of the inherent randomness of Gaussian
seas, in addition to the meteorological variability.

Conversely, too long durations (e.g. 12 h) imply that
wave records, corresponding to possibly significantly
different meteorological conditions, are averaged
together into the same spectrum; in other words, the
variability due to changes in meteorological conditions
is not properly captured. For more details about the
randomness of Gaussian seas, see for example.32 Even
though there exists no perfect method to separate the
effect of meteorological changes from the random
variability of Gaussian seas (at ‘constant’ meteorologi-
cal conditions), a 3-h duration is deemed to be an
appropriate compromise, and is used in other studies,
for example, De Andrés et al.2

As a result, every group of six consecutive 30-min
spectra is averaged, to provide 3-h SDF estimates.
Whenever one of the six spectra is missing, only the
others are taken into account in the average.

Overall, although there should, in theory, be 2920 3-
h spectra in each year, the total number of spectra in
which the WECs are simulated is significantly smaller
(Table 1). The main reason, by far, is missing data (the
equivalent of several months in both locations).
However, the number of 30-min segments discarded

Figure 4. Linear (top) and non-linear (bottom) power matrices for the spherical WEC (W).

Table 1. Number of spectra in Belmullet and Galway Bay.

Number of 3-h spectra Belmullet Galway Bay

Within a year 2920 2920
After removing missing data and outliers 1721 2046
Total within operational range (Hm0

44 m) 1568 2046
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because of the presence of outliers in the wave time-
series had a negligible impact on the number of 3-h
spectra. Finally, the operational space of the two
devices is limited to Hm0

44m, resulting in the discard-
ing of a few additional spectra for the Belmullet
location.

Comparison of the wave data in the two locations

The two chosen locations were considered for several
reasons: first, measurement data are available (as stated
earlier in wave data processing). Second, both locations
are WEC test sites (for one-fourth scale devices in
Galway bay, and for full-scale devices in Belmullet). In
addition, the location in Galway Bay, sheltered by the
Aran Islands, does not only result in wave spectra
being less energetic than those recorded off Belmullet,
but also affects typical spectral shapes. Therefore,
although only considering two sites, a significant diver-
sity of wave conditions can be observed. For a more
detailed study of the wave conditions in Galway bay,
see, for example, Barrett.33

The typical differences between the spectra recorded
in Belmullet, and those recorded in Galway bay, are
illustrated in Figures 5 and 6. Each dot on the scatter
plots corresponds to a 3-h spectrum. For each sea state,
characterised by the spectrum S(f), three different para-
meters are annotated:

� The significant wave height, here defined as
Hm0

=4
ffiffiffiffiffiffi
m0
p

, where m0 =2t‘0S(f)df (recall that,
with this definition, Hm0

generally differs from
H33%, which is the average height of the 33% high-
est waves. Hm0

and H33% coincide only in the case
of a narrowband spectrum23);

� The mean wave energy period, defined as
Te =m�1=m0;

� The e0 parameter, often referred to as broadness
parameter or spectral bandwidth,2,19 computed as

e0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m0m�2=m2

�1)� 1
q

. This latter parameter is a

measure of the spectral bandwidth, which is
strongly related to wave groupiness, that is, the
probability to observe groups of consecutive waves
bigger than a given threshold. Wave groupiness is
believed to have a strong influence on WEC power
production. Also note that a higher e0 value tends
to indicate a wider spreading of the spectral energy
content across frequencies. Therefore e0 has been
suggested by De Andrés et al.2 and Saulnier et al.19

as an additional parameter, along with Hm0
and Tp,

to characterise the sea state and the WEC output
more accurately.

In general, it can be seen that the sea states in
Galway Bay are less energetic than the sea states in
Belmullet, with typical significant wave heights being
smaller by a factor of approximately 4. Furthermore,
the mean energy period is also smaller in Galway com-
pared to Belmullet, by a factor of approximately 2.

The e0 parameter, however, is in general signifi-
cantly bigger in Galway Bay than in Belmullet, which
can be explained by the spectra in Galway Bay having
more various shapes than the ones in Belmullet, due
in particular to the presence of the Aran Islands.
Therefore, the spectra observed in Galway Bay are
not simply a downscaled version of the Belmullet
ones; they are also significantly distorted with respect
to standard, uni-modal spectral shapes – which gener-
ally have a small e0 value.

It is also interesting to observe that there is generally
an inverse correlation between the level of energy in the
sea states (here characterised by the significant wave
height) and e0. This can be explained by the fact that
fully developed sea states, which are the most energetic
and are better described by means of parametric spec-
tral shapes, have a small e0 value, most of the spectral
energy being strongly concentrated around the spec-
trum peak frequency.

Figure 6. Scatter plot at the Galway Bay location.Figure 5. Scatter plot at the Belmullet location.
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Number and length of simulations per sea
state

Number of simulations and computational
requirements within the NLFD framework

An important aspect of WEC power production assess-
ment, neglected in most studies (with the notable excep-
tion of Saulnier et al.34 and other works by the same
author), is the number and length of the simulations,
necessary to obtain power output estimates, with a
desired confidence interval.

Indeed, a finite-length realisation of a given sea spec-
trum can result in power estimates which significantly
depart from the long-term average power output.
Longer simulations, or equivalently a larger number of
them, provide a more accurate power estimate, at the
expense of more computational effort. It is therefore
necessary to find the proper trade-off between the esti-
mate accuracy and the corresponding computational
effort, taking into account the specific requirements of
each study.

In this study, the simulation method used, NLFD,
has very specific implications. Due to the solution
method, two main parameters affect the computational
time of one given simulation: the number of iterations
before convergence is achieved, and the central process-
ing unit (CPU) time required by each iteration. The lat-
ter, due to the computation of the gradient of the non-
linear forces, depends on the size of the problem in
N2ln(N), where 2NDt =T is the duration of the simu-
lated, periodic signal. Therefore, while it is statistically
equivalent to run one simulation of length T=1000 s,
or to run 10 simulations of length T=100 s, the two
situations differ with respect to the computational time:
if the sampling time is Dt =1s, the computational time
in the first situation is proportional to 10002

ln(1000)=3ln(10) � 106 while, in the second situation,
it is only proportional to 1031002ln(100)=
2ln(10) � 105.

As a consequence, using NLFD makes it preferable
to run many, relatively short, rather than fewer, large
simulations. However, excessively short simulations
imply that Df =1=T is not refined enough so that the
frequency content of the spectrum may be poorly
resolved.

Finally, two parameters must be set in a sensible
way: the length of each simulation, which guarantees
an accurate frequency discretisation, and the number
of simulations, which reduces the uncertainty on power
estimates.

Length of the simulations

The issue of the simulation length is investigated in
detail, considering a variety of JONSWAP spectra with
a range of (Hm0

, Tp) pairs spanning the operational
range of the WECs considered. JONSWAP spectra are
a conservative choice, since their energy is sharply

concentrated around the peak frequency, and therefore
the sensitivity of the power estimates to the frequency
discretisation can be expected to be stronger than in
spectra with a larger bandwidth.

For each spectrum, various signal durations T are
considered. For every T, the average power is estimated
for both linear and non-linear WEC models (running a
large number of simulations in the latter case). The
results of this convergence study are shown in Figure 7.

For the linear models, the sensitivity of the power
estimate to the simulation length (i.e. to the refinement
of the frequency discretisation) is more pronounced
than for the non-linear models. However, linear compu-
tations being computationally cheap, a relatively long
simulation time (600 s) can be chosen. The results of the
non-linear models are less sensitive to the frequency dis-
cretisation. A period of 200 s is chosen, allowing for
accurate power estimates while preserving the computa-
tional benefits of the NLFD simulation method.

Methodology to determine an appropriate number of
simulations

After choosing a given simulation length, an adequate
number of simulations per sea state must be found. The
appropriate answer depends on the method through
which the wave elevation time-series are randomly gen-
erated. As highlighted in Saulnier et al.34 and further
studied in Mérigaud and Ringwood,32 there are two
harmonic superposition methods to generate random,
finite-length samples from a target sea spectrum:

� In the ‘deterministic-amplitude scheme’ (DAS), a
set of random phases fk is drawn, and the time-
series is generated as

h(t)=
XN
k=1

Akcos(vkt+fk) ð13Þ

� With DAS, each generated signal contains the exact
same amount of energy, equal to m0T. This method
is not theoretically correct since it does not repro-
duce the actual variability of a Gaussian process
sampled over a finite duration. Nevertheless, in the
context of WEC power calculations, the small var-
iance of the average power, from one simulation to
the next, allows for using relatively few simulations
to obtain an accurate estimate for the long-term
average power. However, the fact that DAS departs
from the theoretical statistical properties of actual
Gaussian seas may introduce a bias in non-linear
power computation results32,34 although it does not
seem to be the case for the non-linear WEC model
studied in Saulnier et al.34 Therefore, preliminary
tests should be carried out, prior to choosing DAS,
to ensure that the resulting power estimates are not
significantly biased.
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� The ‘random-amplitude scheme’ (RAS) is the theo-
retically consistent simulation scheme.35 The for-
mulation is similar to equation (13), except that the
Ak coefficients, instead of being deterministic, are
randomly generated following a Rayleigh distribu-
tion with variance 2S(vk)Df. With RAS, the gener-
ated signals do not all contain the same amount of
energy, reproducing accurately the statistical prop-
erties of a Gaussian sea surface elevation process
recorded over a finite duration. Although RAS is
perfectly realistic, the results of individual simula-
tions are significantly more variable than with
DAS, thus requiring a larger number of simulations
to achieve accurate power estimates. Hence, DAS is
preferable in most cases, provided that DAS results
are not biased. Nevertheless, in other applications
such as extreme design loads, a proper stochastic
representation (RAS) is essential.

A preliminary study was carried out in order to
determine what time-series generation method was pre-
ferable, and how many simulations were necessary to

achieve accurate estimates of the average power from
each spectrum. The methodology retained is to make
decisions in a conservative manner, based on an ‘unfa-
vourable’ spectrum with respect to the accuracy of
power estimates, that is, a spectrum for which the sig-
nal energy varies a lot from one simulation to another.

For a wave spectrum S(f), and for signals with dura-
tion T longer than a few tens of seconds, the average
power of the wave signal, estimated over T, has a var-
iance approximately equal34 to

s2½m̂0�=
1

T

ð‘
0

S( f )2df ð14Þ

In addition, it can be assumed that more variance in
the energy content of the generated wave signals (large
s2½m̂0�) implies more variance in the WEC power out-
put estimate (large s2½P̂�), which can be justified in a
simple manner: indeed, a more or less energetic wave
signal is likely to result in a similarly higher or lower
WEC power output. Therefore, for a given spectrum

Figure 7. Convergence studies to determine appropriate simulation lengths, for JONSWAP spectra with various (Hm0
, Tp) values.
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S( f ), if the energy content of generated free-surface sig-
nals presents a large variability from one simulation to
another, so will the WEC power output.

Given equation (14), the spectra which present the
highest s2½m̂0� are both the most energetic, and
amongst them, the ones whose energy content is
sharply concentrated around a peak frequency.
Energetic sea states with a sharply concentrated energy
content are fully developed ones, and are well described
by means of standard parametric spectral shapes.
Therefore, choosing a JONSWAP spectrum with a high
Hm0

value guarantees that s2½m̂0� is high. Finally, it is

found that, for the same Hm0
, JONSWAP spectra with

higher Te values have a larger s2½m̂0�. Based on those
simple qualitative arguments, and given the operational
space considered in this study (Figures 5 and 6), a
JONSWAP spectrum with Tp =12 s and Hm0

=4m is
believed to represent an appropriate spectrum for the
preliminary study.

For the chosen JONSWAP spectrum, 1000 simula-
tions of duration T=200 s were run for the non-linear
flap-type WEC and for the non-linear spherical heaving
point absorber, both with RAS and DAS. In each case,
the average power value and the variance of the power

Figure 8. Flap, Belmullet.

Table 2. Mean and variance of power estimates, and 95% confidence interval (in % of the mean) for N = 10 and N = 50 simulations of
200 s.

Flap Sphere

DAS RAS DAS RAS

m½P̂� 1.73 3 106 1.71 3 106 5.43 3 104 5.40 3 104

s2½P̂� 2.82 3 109 2.19 3 1011 9.7 3 105 1.45 3 108

95% CI (N = 10) m62:2% m619% m61:3% m615%
95% CI (N = 50) m60:9% m67:8% m60:5% m66:3%

DAS: deterministic-amplitude scheme; RAS: random-amplitude scheme.
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estimate were evaluated, as shown in Table 2. Using
basic statistical results, one can infer the half-width of
the 95% confidence interval for various numbers of
simulation runs. In Table 2, the 95% confidence inter-
val is shown as a percentage of the average, for N=10
and N=50. Since DAS does not seem to introduce any
significant bias, it is found preferable to generate the
time-series using DAS rather than RAS. With DAS,
choosing N=10 provides estimates with sufficient
accuracy (for both devices, the half-width of the 95%
confidence interval is smaller than 2.5%). In contrast,
although using RAS is theoretically more realistic, it

would require a large number of simulations to obtain
accurate power estimates.

Finally, note that the above considerations, concern-
ing the ideal number of simulations, are only relevant
to the simulation of non-linear WEC models. Indeed,
as shown in Mérigaud and Ringwood,32 DAS, applied
for the simulation of a linear WEC model, always
results in the same power value, which is the long-term
average. Therefore, just one single DAS simulation is
necessary to estimate the long-term average power for
a linear WEC model.

Numerical results

Numerical performance

For each of the two sites and two WEC systems consid-
ered, power production assessment is carried out in four
different ways: PM-L, PM-NL, S-L and S-NL. All the
non-linear computations, that is, to fill-in the non-linear
PMs, and to compute the power output in every indi-
vidual sea state with the non-linear models, are carried
out using the NLFD method.

For each location, the number of 3-h spectra is of
the order of 2000. The PM-L and PM-NL approaches
only necessitate interpolation of each Hm0

, Tp couple

Figure 9. Flap, Galway Bay.

Table 3. Numerical performance of non-linear power
assessment (S-NL).

Flap Sphere

Nb of spectrum per loc. ~2000 ~2000
Nb of sim. per loc. ~20,000 ~20,000
tCPU/sim. (NLFD) ~0.006 s ~0.09 s
tCPU/loc. (NLFD) ~2 min ~3 min
tCPU/sim. (RK2) ~2.4 s ~2.4 s
Estimated tCPU/loc. (RK2) ~13h00 ~13h00

CPU: central processing unit; NLFD: non-linear frequency-domain; RK2:

second-order Runge–Kutta.
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in the linear and non-linear PMs, respectively, while for
the S-L approach, the average power output is deter-
mined using only one single realisation of the sea state.
Therefore, none of the three methods necessitates more
than a couple of seconds to cover the whole dataset at
each location (All numbers concerning the computa-
tional performance are given for a 3.5GHz, 8-core
Intel� process).

For the S-NL case (Table 3), the number of 200-s
simulations run for each spectrum is 10, as deter-
mined in the preliminary study detailed in section
‘Number and length of simulations per sea state’. The
total number of NLFD simulations for each location
and WEC system is then of the order of 20,000. For
the flap, the NLFD method takes only approximately
2min to cover the whole range of simulations for each
location. The time necessary to carry out the 20,000
simulations for the spherical point absorber is slightly
higher, of the order of 3min, which remains relatively
modest.

The reason why the NLFD simulations are slower
for the sphere than for the flap is that, in the sphere
case, more iterations are needed for the Newton method
to converge, due to more significant non-linearities.

Overall, using NLFD computations, S-NL appears
to be within easy computational reach, while overcom-
ing the limitations of PM-L, PM-NL, and S-L. A few
time-domain simulations were run for the same WEC
models, using a simple RK2 scheme with direct integra-
tion of the radiation force convolution, and the time
per simulation was estimated to be higher than 2 s (for
an integration time step of 0.01 s). The total time neces-
sary to perform the 20,000 simulations in each sea state
would then have been at least 13h00. More efficient
time-domain simulation methods could be chosen, by
resorting to a state-space approximation of the radia-
tion terms.36 However, unlike NLFD, the resulting
computational gains would be at the expense of the
solution accuracy.

Detailed results per location and WEC system

Power assessment results are detailed for each site and
WEC system, in Figures 8–13. Recall that the reference
point of comparison, to assess the accuracy of all other
methods, is the S-NL configuration, where the device is
modelled non-linearly and simulated in every individual
sea state, using NLFD.

Figure 10. Sphere, Belmullet.
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In Figures 8–11, relevant comparisons between the
four power assessment methods (PM-L, PM-NL, S-L
and S-NL) are visualised by means of scatter plots, in a
way identical to the results presented in De Andrés
et al.2 Each scattered point represents one 3-h spectrum,
and has horizontal and vertical coordinates represent-
ing the power output computed through the two meth-
ods being compared. Therefore, the distance between
each point and the diagonal axis represents the discre-
pancy between the power output computed using the
two different methods. Furthermore, the colour indi-
cates the value of the e0 parameter of the spectrum
considered.

By looking at the comparison between the figures
obtained through a PM, and those resulting from com-
putations in actual wave spectra (scatter plots of PM-L
against S-L, and PM-NL against S-NL), for all devices
and locations, it can be seen that the error due to the
PM representation is significant for both devices and
locations, and tends to be larger for wave spectra hav-
ing a larger e0 parameter. Such a correlation between
the e0 parameter and the error resulting from the PM
approximation is consistent with the results shown in
De Andrés et al.2 Since the range of e0 values is much

more restricted in Belmullet, the effect of the spectral
shape is proportionally more visible in Galway Bay, as
can be seen by considering the ‘PM-NL’ error bars in
Figure 13.

Interestingly, in Figures 8–11, the top and bottom
plots look relatively similar to each other, which implies
that the errors due to the use of a PM are similar,
whether the device is linearly or non-linearly modelled.
The same goes for the left- and right-hand side plots,
suggesting that the errors due to linear WEC modelling
remain similar, whether the WEC power output is com-
puted through a PM or using actual spectra. In each of
the four figures, the central graph illustrates the overall
errors, encountered using a linear approximation of the
WEC dynamics, and an excessively simplified sea-state
representation through a PM.

For the flap, in Belmullet (Figure 8), the errors due
to the use of a PM are significant, resulting in overesti-
mating the average annual power by more than 20%
(Figures 12 and 13). The errors due to the linear device
modelling are, however, of an even larger order of mag-
nitude, and are increasingly significant in more ener-
getic sea states (PM-L/PM-NL and S-L/S-NL
comparisons on Figure 8) where viscous effects are

Figure 11. Sphere, Galway Bay.
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amplified. The resulting average power overestimation
is of approximately 60%.

In Galway Bay, where the sea states are less ener-
getic, the effect of viscous drag is less significant, result-
ing in linear results matching the non-linear with
reasonable accuracy (Figures 9, 12 and 13). In con-
trast, the effect of describing the flap device by means
of a PM, whether it be linearly or non-linearly evalu-
ated, has a clearly visible impact on power assess-
ment, both on a sea state by sea-state basis (Figure 9)
and on an annual basis (approximately 35% overesti-
mation of the average annual power, as shown in
Figures 12 and 13).

For the spherical point absorber, in Belmullet, it can
be seen in Figures 10, 12 and 13 that the errors, due to
a linear approximation of the device dynamics, are
approximately five times larger (’35%) than those
committed using a PM instead of computing the WEC
output in actual sea states (’7%).

In Galway Bay, the two error sources are of a similar
order of magnitude: PM-NL results in overestimating the
annual power output by 25%–30%, while S-L yields an
overestimation in the order of 45%. The error encoun-
tered by accumulating the two sources of errors, that is,
with PM-L, is more than the sum of the errors resulting
from the two approximations considered separately.

The reason why the discrepancies, between the linear
and non-linear model results, are so significant for both
devices is that the reactive control strategy enables the
WECs to resonate in all sea states, including those that
are less energetic, thus magnifying the non-linearities
due to the device geometry or to quadratic viscous drag.
The latter is particularly significant for the flap in the
Belmullet location.

The control strategy may also heighten the errors
due to the use of a PM, especially in Galway Bay.
Indeed, with the PTO stiffness term, the devices both
become of a resonant type, particularly sensitive to
excitation forces around a design frequency. The PTO
parameters are optimised, assuming a JONSWAP spec-
tral shape – for which the energy is sharply concen-
trated around the peak frequency – while actual spectra
in Galway Bay present a much larger spread of wave
energy across frequencies. Therefore, the power output
is significantly smaller in actual wave spectra than
assuming a standard JONSWAP spectrum.

Finally, in order to ensure that the conclusions of
this study are not specific to the chosen control method,
power production assessment was also carried out for
the same two devices and locations, this time using a
simple passive linear damper, optimised for every
Hm0

, Tp condition. Only the error in terms of annual

Figure 12. Annual power production for the different WECs, locations, and WEC representations.
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average power is shown in Figure 14. It can be observed
that although the two types of errors are significantly
smaller than in the case with reactive control, both can
be significant. The errors due to the PM representation
are larger in Galway Bay (approximately 20%) than in
Belmullet (approximately 7%). In contrast, the errors
due to the inaccurate description of the WEC dynamics
are more important in Belmullet than in Galway Bay,
due to the occurrence of more energetic sea states.

Discussion and conclusion

Number and length of simulations

The issue of the number and length of simulations per
sea state deserves to be seriously addressed in every
power production assessment study. RAS simulations
are theoretically correct, since they exhibit the actual
properties of a finite-length realisation of a Gaussian
process. However, using RAS simulations can result in
a large variance of the power estimates, thus requiring
an accordingly large number of simulations to obtain
an estimate with acceptable accuracy. DAS, in contrast,
results in a significantly smaller variance of the power

estimates. Therefore, although DAS is not theoretically
consistent with Gaussian process theory, the method
can be useful to obtain power estimates within a rea-
sonable number of simulations. Nevertheless, it has to
be ensured that DAS does not produce a biased power
estimate.

As a consequence, it is recommended that a prelimi-
nary study is systematically carried out based, for
example, on a JONSWAP spectrum S�( f ) with high
Hm0

and Tp values, which constitutes an unfavourable
case from the point of view of the power estimate var-
iance. The output of such a preliminary study could
consist of:

� A choice of method (RAS or DAS), DAS being jus-
tified only if it does not seem to introduce any sig-
nificant bias;

� A number of simulations – for a fixed simulation
length;

� For the chosen number of simulations, a conserva-
tive estimate of the uncertainty on power calcula-
tions, for example the half-width of the 95%
confidence interval – obtained with the spectrum
S�( f ).

Figure 13. Relative error in annual power production (with respect to S-NL results).
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The PM and power assessment errors

Even with only two WECs and two locations, a wide
range of scenarios in terms of power production assess-
ment can be considered.

For some locations and WEC types, PM may result
in a relatively good approximation of power produc-
tion, for example in the Belmullet location for the con-
trolled sphere. However, that is not true anymore for
locations where spectra depart significantly from stan-
dard spectral shapes, in which case a more refined
approach, such as simulation in every individual spec-
trum, is necessary.

Consistent with the results of De Andrés et al.,2 a
larger spectral spreading often implies a larger error
due to the PM approach. Nevertheless, even in loca-
tions where spectra have a limited spreading, the errors
can be significant.

For resonant-type devices, which deliver better output
when wave energy is sharply concentrated around a spe-
cific frequency, the errors related to the PM can be par-
ticularly large, resulting in a significantly overestimated
power assessment, both in individual sea states and on an
annual basis. As a consequence, the presence of reactive
control, which tends to make the device resonant, height-
ens the errors induced by the PM representation.

However, even for devices which are not controlled,
in locations with relatively low energy and large e0

values, the approximation due to the PM can become
the most significant source of error (such as the two
uncontrolled device in Galway Bay).

Regardless of the wave spectral shape, describing
non-linear system dynamics accurately is essential for
power assessment. Non-linear effects become particu-
larly significant in energetic sea states, or when the
device undergoes large amplitude motion under the
effect of power-maximising control.

In the cases presented in this study, both the linear
WEC dynamical representation and the sea-state descrip-
tion through a PM tend to yield an overestimation of the
WEC output, compared to more realistic calculations.
Therefore, the errors due to the two approximations sum,
and result in even larger errors, visible in the comparisons
between PM-L and S-NL. However, situations could be
imagined, where the two sources of approximation offset
each other, thus minimising the overall error.

In summary, the errors encountered, using a PM rep-
resentation on one hand, and describing the system
dynamics linearly on the other hand, can both be signif-
icant, and of a similar order of magnitude. The presence
of control heightens all the differences observed; how-
ever, both types of error remain significant in uncon-
trolled conditions.

Therefore, it is essential to improve upon the PM
approach, while preserving the accuracy of the system

Figure 14. Relative error in annual power production (with respect to S-NL results), with passive linear damping.
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dynamical description, which is made possible by the
existence of appropriate simulation tools.

NLFD as a suitable tool for fast and accurate power
assessment

As stated in sections ‘Introduction’ and ‘NLFD simula-
tion’, NLFD is significantly faster than RK2 time-
domain integration, without resulting in any important
approximation of the WEC dynamics.

Although other computation methods can be con-
sidered, NLFD simulations, based on a well-calibrated
number of relatively short simulations for each individ-
ual sea state of the dataset, can make the S-NL
approach computationally feasible, which overcomes
the drawbacks of both PM-NL and S-L in terms of
accuracy. For velocity-dependant non-linearities, such
as quadratic viscous drag, iterative linearisation proce-
dures are also interesting candidates.16,22

Alternatively to simulations in every sea state,
other approaches, such as the MaxDiss selection tech-
nique,2 can also help refining power estimates, with
the limitation that the resulting device representation
is site-specific. Combining the MaxDiss selection
technique with NLFD simulations could interestingly
cumulate the computational advantages of both
methods.

Finally, let us stress that the length of the dataset
(1 year) considered here, and the fact that a significant
fraction of the data are missing, makes the dataset
insufficient for accurate WEC power assessment, which
would require significantly longer periods, covering the
wave resource variability on both seasonal and annual
scales. However, the relative benefits of the proposed
approach, in terms of accuracy and computation time,
generalise to longer datasets.
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32. Mérigaud A and Ringwood JV. Free-surface time-series

generation for wave energy applications. IEEE J Oceanic

Eng. Epub ahead of print 26 April 2017. DOI: 10.1109/

JOE.2017.2691199.
33. Barrett SN. Floating wave energy converters: wave mea-

surement & analysis techniques. PhD Thesis, University

College Cork, Cork, 2015.
34. Saulnier JB, Ricci P, Clément A, et al. Mean power out-

put estimation of WECs in simulated sea-states. In: Pro-

ceedings of the 8th European wave and tidal energy

conference (EWTEC 2009), Uppsala, 7–10 September

2009, vol. 710.
35. Tucker M, Challenor P and Carter D. Numerical simula-

tion of a random sea: a common error and its effect

upon wave group statistics. Appl Ocean Res 1984; 6(2):

118–122.
36. Armesto JA, Guanche R, Del Jesus F, et al. Comparative

analysis of the methods to compute the radiation term in

Cummin’s equation. J Ocean Eng Mar Energ 2015; 1(4):

377–393.

Appendix 1

Non-linear dynamical model for the spherical heaving
point absorber

The hydrodynamic model used for the sphere is a non-
linear extension of static and dynamic Froude–Krylov
forces, inspired by the approach, first developed in
Gilloteaux,27 later used in other studies such as
Mérigaud et al.28 and Penalba Retes et al.,18 and which
consists of integrating static and incident pressure
forces over the instantaneous wetted surface of the
device.

The sphere is restricted in heave, along the axis ~uz
defined by x= y=0. As mentioned in WEC models,
three main differences have to be stressed with respect to:27

� The dynamic pressure field is modified following a
Wheeler stretching approach29 so that the total
incident pressure, measured at the free surface, is
exactly zero.

� The sphere is considered to be significantly smaller
than the typical wave length so that, over the
wetted surface of the sphere, the pressure field only
depends on depth and time. Furthermore, the inter-
section between the device and the free surface is
given in a simplified way, considering that, at a
given instant t, the undisturbed free-surface height
is uniformly equal to its value in x= y=0.

� Pressure integration over the instantaneous wetted
surface is carried out analytically, like in Giorgi
and Ringwood,30 instead of the panel method of
Gilloteaux.27

With the above assumptions, the approach of
Gilloteaux27 can be incorporated into the NLFD
framework in a computationally efficient way, as
detailed further in this section.

The static pressure force can be expressed as

ps(z)= � rgz ð15Þ

For a monochromatic wave in infinite water depth,
the dynamic incident pressure is written as

pdyn(z, t,v)=<frgA(v)ejvt+k(v)zg ð16Þ

where k(v)=v2=g is the wave number, and A(v)
denotes the complex wave amplitude.

With the Wheeler stretching approach, the dynamic
pressure is reformulated, replacing z with z = z� h, the
relative elevation with respect to the free surface

pdyn(z, t,v)=<frgA(v)ejvt+k(v)zg ð17Þ

The total incident dynamic pressure, due to the
superposition of waves of different frequencies, is then

pdyn(z, t)= rg

ð‘
0

<fA(v)ejvtgek(v)zdv ð18Þ
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It can be seen that, taken at the free surface (z =0),
the static pressure equation (15) becomes ps = � rgh,
and the dynamic pressure equation (18) reduces to
pdyn= rgh so that the total of the incident and static
pressure is zero at the free surface.

The total force due to the static pressure over the
immersed surface Sim of the body is

~FsðtÞ ¼ �
Ð

P2Sim
�rgzP~ndS

¼
Ð

P2Sim
rgzP~ndSþ

Ð
P2Sim

rghðtÞ~ndS

¼ rgV imðtÞ~uz � rghðtÞSintðtÞ~uz

ð19Þ

where V im denotes the immersed volume of the body,
Sint denotes the area of the intersection between the
body and the free surface (considered to be horizontal),
and~uz is the unit vertical vector, pointing upwards.

For a sphere in heave with radius R and density r=2,
denoting zG the position of the sphere gravity centre rel-
atively to the free surface, equation (19) can be analyti-
cally derived as

~Fs(zG, t)=rgp
2

3
R3 � R2zG+

1

3
z3G � h(t)(R2 � z2G)

� �
~uz

ð20Þ

The total incident pressure force over the body can
be written as

~Fdyn ¼ �
Ð

P2Sim
pdynðzPÞ~ndS

¼ �
Ð

P2Sim
rg

Ð‘
v¼0
<fAðvÞejvtgekðvÞzdv~ndS

¼ �rg
Ð‘

v¼0
<fAðvÞejvtgð

Ð
P2Sim

ekðvÞz~ndSÞdv

ð21Þ

For a sphere, the integral over the immersed surface
can be analytically derived, yieldingÐ

P2Sim
ekðvÞz~ndS ¼ 2p½� zG

kðvÞ � 1
kðvÞ2

þð R
kðvÞ þ 1

kðvÞ2Þe
�kðvÞRekðvÞzG �~uz

ð22Þ

Let us define, for nr�

InðtÞ ¼ 2prg

ð‘
0

<fAðvÞejvtgkðvÞndv ð23Þ

and

JðzG; tÞ ¼ 2prg
Ð‘
0

<fAðvÞejvtg

3 R
kðvÞ þ 1

kðvÞ2

� 	
e�kðvÞRekðvÞzGdv

ð24Þ

Thus, equation (21) can be expressed as

~Fdyn(zG, t)= ½I�1(t)zG+I�2(t)� J(zG, t)�~uz ð25Þ

At each iteration of the NLFD algorithm, as
explained in NLFD simulation, equation (7), the

computation of non-linear forces and their derivatives
necessitates an analytical expression of the forces as a
function of the system variables in the time domain.
However, using expression (25) into (7) would lead to a
computationally expensive double integration over v

and t.
Thus, for a computationally efficient use within the

NLFD algorithm, it is interesting to carry out a devel-
opment of J(zG, t), using a polynomial expansion of the
exponential term, ezG . Defining

JnðtÞ ¼
2prg

n!

ð‘
0

<fAðvÞejvtg

R

kðvÞ þ
1

kðvÞ2

 !
e�kðvÞRkðvÞndv

ð26Þ

Equation (25) can be formulated as

~Fdyn(zG, t)= I�1(t)zG+I�2(t)�
X‘

n=0

Jn(t)z
n
G

" #
~uz ð27Þ

so that the dynamic pressure force can be expanded to
any arbitrary order nmax to reach a target degree of
accuracy.

In this way, for a given periodic sea-state realisation
(i.e. a set of complex amplitudes A(v)), the functions
I�1(t), I�2(t) and Jn(t) are computed by means of FFTs
prior to the start of the NLFD iterations. Then, at each
iteration of the Newton method, the non-linear forces
and their derivatives are computed in a simple polyno-
mial form. Figure 15 shows the first three terms of the
sum in equation (27), taken in the limit case zG =R,
for a periodic wave signal derived from a typical
JONSWAP spectrum (Hm0

=2, Tp =10). As can be
seen on Figure 15, the magnitude of the functions Jn(t)
decreases rapidly with the order n so that, in practice,
there is no noticeable difference between the results
obtained with nmax=2 or nmax=3. In this article,
nmax=3 is chosen.

Figure 15. Terms Jn(t)z
n
G of expansion (27), taken at zG = R, for

a typical JONSWAP spectrum (Hm0
= 2 m, Tp = 10 s).
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