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Free-Surface Time-Series Generation
for Wave Energy Applications
Alexis Mérigaud and John V. Ringwood, Senior Member, IEEE

Abstract—Finite-length, numerical simulations of Gaussian seas
are widely used in the wave energy sector. The most common
method consists of adding up harmonic sinusoidal components,
with random phases and deterministic amplitudes derived from
the target wave spectrum [deterministic amplitude scheme (DAS)].
In another approach, the component amplitudes are chosen ran-
domly with a variance depending on the spectrum [random am-
plitude scheme (RAS)]. It is now generally accepted that only
the latter method reproduces the true statistical properties of a
Gaussian sea. Compared to previous works, this study clarifies the
exact nature of the “statistical properties” that should be repre-
sented in the simulation process. Further analysis is carried out
to address unanswered questions highlighted in the existing lit-
erature, especially with respect to the statistical relationships be-
tween discrete successive simulation points, and the probability
law governing the average power estimator of a wave energy con-
verter (WEC) simulated with the generated wave time series. It is
shown that RAS exactly reflects how the WEC performance, con-
sidered over a finite duration, varies with respect to its long-term
average, whereas DAS has the advantage of providing accurate
estimates of the long-term average values using fewer, or shorter,
simulations; in particular, it is demonstrated that only one simu-
lation is sufficient when the WEC model is linear. Furthermore,
it is shown why alternative methods, based on nonharmonic su-
perposition of sinusoids, are not recommended. The effects of the
simulation method (RAS or DAS) upon the statistics of individual
oscillations in the time domain are also explored experimentally.
Finally, a table is provided that gives recommendations, depending
on the objective of the simulations.

Index Terms—Average power estimation, Gaussian sea, nu-
merical simulation, time-domain statistics, wave energy converter
(WEC), wave spectrum.

I. INTRODUCTION

THE numerical generation of ocean free-surface elevation
time series is important across many marine technology

fields. In particular, discrete-time, finite-duration simulations of
Gaussian seas with appropriate statistical properties are useful
in various offshore engineering applications.

In the field of wave energy, time-series generation is es-
pecially important for wave energy converter (WEC) design
and performance assessment—including control design—and
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for wave energy forecasting. The common practice consists of
adding a finite number of sinusoidal, harmonic Fourier compo-
nents with random phases and deterministic amplitudes. In the
following, this method will be referred to as deterministic ampli-
tude scheme (DAS). For a target spectral density function (SDF)
denoted S(f), and a finite realization of length T = NΔt, the
discrete sequence of simulated free surface elevation ηti

with
ti = iΔt, i = 1 . . . N , can be written as follows:

ηti
=

M/2∑

k=1

Ak cos(2πfk ti + φk ) (1)

where M/2 is the number of discrete frequency components
(typically, M = N ); fk = kΔf, k = 1, . . . ,M/2 and Δf =
1/MΔt; Ak =

√
2S(fk )Δf ; and φk is randomly chosen fol-

lowing a uniform distribution in [0; 2π].
DAS can be computed using fast Fourier transform (FFT)

and, thus, offers the advantage of computational efficiency and
simplicity; furthermore, it does not seem to introduce any bias
when used to estimate some specific average time-domain quan-
tities [1]. However, as first pointed out in [2], DAS does not
reproduce the statistical properties of a true Gaussian sea. For
example, wave group statistics may not be accurately repro-
duced. Besides, DAS exactly preserves the spectral moments of
the SDF at each realization [1], which practically means that the
spectral moment estimators evaluated in the time domain take
the very same value at each realization of the simulated process.
In contrast, when taking discrete measurements of a true Gaus-
sian process, the estimators based on a finite number of values
would present some variability, only converging toward the ac-
tual spectral moment values as N tends to infinity with Δt
constant. Therefore, running simulations with DAS cannot de-
liver proper statistical information such as, for example, the
dispersion of WEC performance around its average.

A number of other methods for free-surface time-series gen-
eration have been discussed in the literature and can be broadly
classified into other wave superposition methods and white noise
filtering. Among the former, the random amplitude scheme
(RAS) is as simple and computationally efficient as DAS and
allows for reproducing more realistically the properties of a
Gaussian process [1], [2].

The discrete sequence generated through RAS can be written
as follows:

ηti
=

M/2∑

k=1

ak cos(2πfk ti) + bk sin(2πfk ti) (2)
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where, this time, ak and bk are chosen as independent, nor-
mally distributed random variables with zero mean and variance
S(fk )Δf . The RAS discrete sequence can also be formulated
as

ηti
=

M/2∑

k=1

Ak cos(2πfk ti + φk ) (3)

where φk is randomly chosen following a uniform distribution
in [0; 2π]; and Ak follows a Rayleigh distribution with variance
2S(fk )Δf .

The two formulations are strictly equivalent—in fact, A2
k =

a2
k + b2

k .
Following the work presented in [1] and [2] and observing

that, in spite of recommended practice [3], most researchers
and engineers still mainly use DAS in an uninformed way, this
study advocates again the use of RAS as soon as probabilistic
information is needed on finite-length simulations—uncertainty
on performance, extreme values, etc.—and highlights the pre-
cautions that should be taken when using DAS. A number of
theoretical points that were not clarified in previous works [1],
[2] are also explicitly developed. The ambition of this paper is
to offer a clear and informed alternative between DAS and RAS,
the former being suitable in some specific cases when only an
average time-domain value is needed, while the latter perfectly
reproduces the properties of the actual Gaussian sea process
and thus provides the right tool for any probabilistic analysis of
finite-length simulations.

The structure of this paper is as follows. Section II formulates
the simulation problem in a clear and explicit way. It is shown in
Section III that RAS enables us to reproduce almost perfectly the
desired statistical properties of a Gaussian sea such as defined
in Section II. Section IV explores the statistical properties of
two important time-domain estimators, namely, the zeroth-order
spectral moment estimator and the average WEC power estima-
tor, showing in particular the impact of the chosen simulation
method (DAS or RAS) on the estimator statistical properties. It
is shown, in Section V, why using alternative methods, based
on nonharmonic sinusoid superposition, is not recommended.
In Section VI, numerical simulations confirm and illustrate the
results of Section IV, and present a few more experimental
results obtained with other time-domain statistics. Theoretical
and experimental results and their practical implications are dis-
cussed in Section VII. Finally, Section VIII provides conclusions
as well as recommendations to engineers and researchers who
need to simulate Gaussian free-surface elevation time series.

II. PROBLEM FORMULATION

A. Ocean Wave Elevation as a Stationary Gaussian Process

Ocean waves can be modeled as a stationary, zero-mean Gaus-
sian process in most conditions, i.e., as long as water depth is
sufficient and the wave condition is not too extreme. For more
justification and details on the range of validity of the Gaussian
sea description, see [4].

A Gaussian process is a specific category of stochastic pro-
cesses, in which every finite collection of measurements taken

at different points in time follows a multivariate normal distri-
bution. In particular, any single measurement taken at a given
point in time is a normally distributed random variable.

Furthermore, when the duration considered is small compared
to the typical rate at which the sea condition evolves in time, the
stochastic process of sea surface elevation can be considered as
being stationary. For a stochastic process in general, stationarity
means that all statistical properties of the process are invariant
by translation in time. For a Gaussian process, the stationarity
condition reduces to time invariance of the first- and second-
order statistical moments, which is called weak stationarity [4].
Finally, the sea surface Gaussian process is also considered to
be ergodic [4], which means that time averages of the process
are equal to ensemble averages.

Such a stationary ergodic Gaussian process is entirely char-
acterized by its mean (η̄ = 0) and its autocovariance function
(ACVF) Rηη defined as

Rηη (τ) = lim
T →∞

1
2T

∫ T

−T

η(t)η(t + τ)dt. (4)

The fact that Rηη only depends on τ stems from the pro-
cess stationarity. Furthermore, Rηη (τ) is an even function that
reaches its maximum in τ = 0, with Rηη (0) being equal to the
variance of the process.

Thanks to the ergodicity property of the process, Rηη can also
be defined as

Rηη (τ) = E[η(t)η(t + τ)]. (5)

Besides, let us define the SDF Sηη (f) of the process as

Sηη (f) = lim
T →∞

1
T
|HT (f)|2 (6)

where HT (f) =
∫ T

−T η(t)e−i2πf tdt.
The ACVF and the SDF of the weakly stationary sea surface

elevation process are Fourier transforms of each other, according
to the Wiener–Khintchine theorem

Sηη (f) = 2
∫ ∞

−∞
Rηη (τ)e−i2πf τ dτ (7)

and

Rηη (τ) =
1
2

∫ ∞

−∞
Sηη (f)ei2πf τ df. (8)

As a consequence, the statistical properties of the station-
ary, zero-mean Gaussian wave elevation process are entirely
described by its ACVF, or equivalently by its SDF.

In practice, the latter is more often available. Indeed, the wave
spectrum can be easily estimated by means of Fourier transforms
of a recorded wave elevation signal. Furthermore, the wave SDF
is very informative since it exhibits the frequency content of the
wave, which is useful to study the frequency response of ships or
offshore structures. Finally, meteorological models that include
ocean wave conditions also describe sea states by means of the
wave SDF.

However, as pointed out in [4], the mathematical tools for
stochastic analysis of Gaussian waves strongly rely on the fact
that SDF and ACVF are two equivalent ways of representing the
statistical properties of the sea surface as a stochastic process.



MÉRIGAUD AND RINGWOOD: FREE-SURFACE TIME-SERIES GENERATION FOR WAVE ENERGY APPLICATIONS 21

B. Discrete-Time Simulation

In numerical simulations, the very notion of a continuous-
time process has no actual meaning because whatever the level
of temporal resolution, discrete values are generated. While the
focus of this paper is finite-length, discrete-time simulations of
wave elevation, so far in this section only a continuous-time
stochastic process has been considered. Then, how should the
fidelity of the time-series generation method to the underlying
process be evaluated?

1) Measurements of a Gaussian Process—A Conceptual
Experiment: To answer this question, let us consider a concep-
tual experiment where N discrete measurements of the (actual)
sea surface elevation are taken at the very same location, at reg-
ular time interval Δt between two consecutive measurements.
It is assumed in Section II-A that the sea is a stationary, ergodic
Gaussian process. Let us consider the probability law jointly fol-
lowed by the N measurement values, indexed by i ∈ 1, . . . , N
so that ti = iΔt. From the definition of a Gaussian process, the
joint probability of the N measurements follows a multivari-
ate normal distribution of dimension N . This N -dimensional
Gaussian is characterized by its mean (0RN ) and its variance-
covariance matrix Σηη ∈ RN ×N

∀i, j ∈ {1, . . . , N},Σηη ,ij = E[η(ti)η(tj )]

= E[η(iΔt)η(jΔt)]

= Rηη ((j − i)Δt). (9)

The variance-covariance matrix of the measured process Σηη

is a symmetric, positive definite Toeplitz matrix. Its diagonal
elements are all equal to the variance of the process, i.e.,

∀i ∈ {1, . . . , N},Σηη ,ii =E[η(ti)2 ]=Rηη (0)=
∫ ∞

0
Sηη (f)df.

(10)
By denoting ri = Rηη (iΔt) for all i ∈ {0, . . . , N − 1}, and

recalling that Rηη is even, then each line of Σηη is a discretized,
time-shifted version of the ACVF, i.e.,

Σηη =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0 r1 r2 · · · rN −1

r1 r0 r1 · · · rN −2

...
. . .

...

...
. . .

...

rN −1 rN −2 · · · r1 r0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

2) Back to the Simulation Problem: For the simulation
method to be correct, the experiment, consisting of simulat-
ing N consecutive values of free-surface elevation, should be
equivalent to the conceptual experiment consisting of measuring
N consecutive samples of the “true” Gaussian process.

Finally, the simulation problem can be stated in a rigorous
way. A finite, discrete-time simulation method accurately re-
flects an actual Gaussian sea with known ACVF provided that
we have the following.

1) The simulated vector, denoted y ∈ RN , follows an N-
dimensional, zero-mean Gaussian distribution. In partic-

Fig. 1. SDF for a sea state with JONSWAP spectrum with Hm 0 = 2.45 m,
Tp = 9.8 s, and γ = 1.7.

ular, every single component of the vector must follow a
zero-mean Gaussian law.

2) The variance-covariance matrix of the simulated vector
Σyy is equal to, or at least a good approximation of Σηη =
(r|i−j |)i,j∈{1,...,N }.

While it was unclear, in previous works, what was exactly
meant by the “statistical properties” that the simulated process
should exhibit, the objectives are now explicitly formulated.
Since a Gaussian vector is entirely characterized by its mean
and variance-covariance matrix, no other property is needed in
addition to the two conditions stated above. Section III shows
why RAS meets such requirements.

III. RANDOM AMPLITUDE SCHEME AS A SUITABLE

GAUSSIAN SEA SIMULATION TOOL

A. Preliminary Observations

Let us first have a look at the ACVF of a typical Gaussian sea.
The sea state considered is described by a Joint North Sea Wave
Project (JONSWAP[5]) spectrum pictured in Fig. 1. The ACVF
corresponding to the same sea state is represented in Fig. 2, ob-
tained through numerical integration of the Wiener–Khintchine
relation of (8). Fig. 3 represents the discretized version of Rηη ,
for positive lags, and can then be seen as the first line of Σηη as
described in (11).

Three remarks are appropriate. First, the ACVF of typical
wave spectra consists of damped oscillations fading out to zero
after several tens of seconds. As far as the discrete ACVF is
concerned, it means that it is possible to define an integer K ∈
N+∗ such that ∀i ≥ K, ri ≈ 0. Under this condition, the process
to model is a stationary, K-correlated process, which means
that it is possible to describe it as a stationary moving-average
process of order K [6]. Second, inspired by Fig. 1, it can be
considered that the frequency range of the available spectrum is
high enough to include all the frequency content of interest; in
other words, for all f ≥ (M/2)Δf , Sηη (f) = 0. Finally, let us
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Fig. 2. Continous ACVF for the sea state represented in Fig. 1.

Fig. 3. Discrete ACVF for the sea state represented in Fig. 1, for positive lags.

recall that Sηη (f) is an even function, although only the positive
frequencies are usually shown.

B. Statistical Properties of the Random Amplitude Scheme
Generated Signal

Let us now simulate N consecutive values of the free-surface
elevation by applying RAS (2), based on the SDF Sηη (f), for
example, the one presented in Fig. 1. In the following, the vector
of simulated values is denoted y ∈ RN .

For now, let us not make any assumption on the number
of frequency components M so that possibly M 	= N . M is
an even number, typically a power of 2. Furthermore, M and
Δf are set in accordance with each other so as to cover the
whole range of frequencies contained in Sηη , and the maximum
frequency considered corresponds to the Nyquist frequency so
that

M

2
Δf = fmax =

1
2Δt

. (12)

Let ε be a vector of M independent identically distributed
Gaussian random variables with zero mean and unit variance:
∀i ∈ {1, . . . , M}, εi ∼ N (0, 1). The law of ε follows a multi-
variate Gaussian distribution with mean 0RM and a variance-
covariance matrix equal to the identity matrix IRM ×M .

Then, let us define A ∈ RN ×M by

Aij

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
Sηη (fj )Δf cos(2πfj ti), for j ∈

{
1, . . . ,

M

2

}

√
Sηη (fj )Δf sin(2πfj ti), for j ∈

{
M

2
+ 1, . . . ,M

}
.

(13)

The simulated free-surface elevation y is generated with RAS
as y = Aε. y is then clearly a linear transformation of a Gaus-
sian vector with zero mean; it is then also a Gaussian vector
with zero mean, and its variance-covariance matrix is equal
to Σyy = AIAT = AAT , where (·)T denotes the transpose. A
cumbersome but straightforward calculation shows that Σyy has
the same structure as Σηη , i.e.,

Σyy =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 s1 s2 · · · sN −1

s1 s0 s1 · · · sN −2

...
. . .

...

...
. . .

...

sN −1 sN −2 · · · s1 s0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

More precisely, assuming Sηη (f0) = Sηη (0) = 0, and since
Sηη (−f) = Sηη (f)

∀j ∈ {0, . . . , N − 1}, sj =

M
2∑

k=1

Sηη (fk )Δf cos(2πfkjΔt)

=
1
2

M
2∑

k=−M
2

Sηη (fk )ei2πfk jΔtΔf.

(15)

One recognizes in (15) a Riemann approximation of integral
(8). When the frequency step Δf is refined, the approximation
gets closer and closer to the target discretized ACVF. Since one
considers a finite-duration time interval, and assuming that the
spectrum Sηη is a continuous function of f , the Riemann ap-
proximation converges, and for any desired degree of accuracy,
it is possible to find a frequency step Δf so that for all lags
within the simulation interval, the ACVF error is smaller than
the chosen threshold. However [7], unlike the actual discrete
ACVF sequence, (sj )j∈N is periodic with period M . Typically,
with N = M , (sj )j=1,...,M resembles a “folded” version of the
target ACVF sequence, (rj )j=1,...,M (see Fig. 4).

The ACVF of the signal being periodic is equivalent to the
signal itself being periodic—and indeed, any signal generated
through the superposition of harmonic sinusoids is periodic,
with a period equal to the inverse of the fundamental frequency
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Fig. 4. Target and simulated ACVF for M = N , Δf = 1/(NΔt), Δt =
1/1.28 ≈ 0.78 s, and T = NΔt = 200 s.

Fig. 5. Target and simulated ACVF for M = N , Δf = 1/(NΔt), and T =
NΔt = 800 s.

Δf . To avoid self-repetition of the signal within the simulation
window, along with poor matching to the target statistical prop-
erties, a first condition for RAS to work well is to set M ≥ N .

Setting M = N , one can observe in Fig. 4 that the discrete
ACVF of the generated signal agrees well with the target one,
except for the self-repetition issue for the lags close to N .
As far as ocean waves are concerned, as mentioned earlier in
Section III-A, it is possible to define K, such that the target
discrete ACVF is considered to be zero for lags greater than K.
As a consequence, the self-repetition issue only plays a role in
the joint probabilistic properties of the first K and the last K
generated samples (if M = N ). Thus, it may not be significant if
the simulation time is very long, such that M � K (see Fig. 5).
But in shorter signals, when M and K have the same order of
magnitude, the statistical properties of the generated signal are
significantly affected (see Fig. 6).

A simple way to circumvent the self-repetition issue is to
choose M such that the period of the generated signal exceeds

Fig. 6. Target and simulated ACVF for M = N , Δf = 1/(NΔt), and T =
NΔt = 50 s.

Fig. 7. Target and simulated ACVF for Δf = 1/(MΔt), M = N + K , and
T = NΔt = 400 s.

the simulation length by the correlation length of the signal; in
other words, M/(Δf) ≥ (N + K)Δt (see Fig. 7).

In summary, the law of the random vector generated with RAS
follows a multivariate, N -dimensional Gaussian distribution,
and its variance-covariance matrix is an excellent approximation
to Σηη provided that M ≥ K + N . The latter restriction can
even be removed for long simulations.

C. Additional Remarks

1) Restriction on M: The restriction M ≥ N + K is impor-
tant in theory; however, in practice, it may not be necessary, for
two reasons.

1) By simply letting M = N , as stated in Section III-B, the
undue autocorrelation is only significant for the first and
last points of the simulation so that in long simulations
the overall statistical properties of the simulated process
are barely affected.
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2) The wave elevation time series is more often used within
a time-domain simulation of a dynamical system, taking
the waves as an input. Typically, only the system steady
state is considered so that the first part of the simulation
is often discarded as corresponding to a transient time.
Thus, if the transient time considered is longer than the
autocorrelation length of the signal (i.e., there are more
than K discarded samples), then the periodicity of the
simulated signal is not an issue any more and one can
simply let M = N .

Finally, in the case that M really has to be restricted to be
greater than N + K, one may argue that the FFT then cannot
be used, and thus, RAS loses the advantage of computational
efficiency. But that would not be a relevant argument since, even
when M ≥ N , one can still generate y using FFT and simply
discard the unnecessary samples.

2) Exact Method: Since the process considered can be seen
as a moving average model of order K, it would also have been
possible to apply the so-called exact frequency-domain method
presented in [7], which would involve the following:

1) computing the discrete ACVF (ri) at a very high degree
of accuracy through numerical integration of (8);

2) computing (Sk ), the DFT of (ri);
3) simulating the signal using (2) but replacing Sηη (fk ) with

Sk .
Then, if K ≤ N ≤ M/2, the discrete ACVF of the generated

signal is exactly equal to the true ACVF ri obtained through
numerical integration.

However, applying RAS with typical M values, the ACVF
of the generated signal is already an excellent approximation to
the target one (in Figs. 4, 5, 7, and 14 presented in this paper,
the difference between both is invisible except for the last K
samples), so that it is preferable to use RAS, which is directly
based on the readily available SDF.

3) Subsets of the Generated Time Series: It should also be
mentioned that if N samples of free surface elevation are gen-
erated through RAS and N ′ consecutive samples are chosen
(N ′ < N ) from the N initial samples, the joint probability dis-
tribution of the N ′ samples also follows a multivariate Gaussian
law with the desired properties: It is equivalent to generate
N ′ samples with RAS directly, or to generate N > N ′ sample
through RAS and choosing N ′ consecutive samples.

4) Law of the Time Series Generated With Deterministic
Amplitude Scheme: In contrast to RAS, the vectors generated
through DAS do not even follow a Gaussian law: Based on (1),
the simplest way to see it is to note that the generated process is
bounded by the sum of Ak , k ∈ {1, . . . , M/2}.

In fact, DAS corresponds to a very specific subset of possible
RAS realizations, in which for all k in {1, . . . , M/2}, a2

k +
b2
k = 2S(fk )Δf . Then, some of the intersimulation variability is

lost.
Even though the vector generated through DAS does not fol-

low a multivariate Gaussian law, it is still possible to define
its variance-covariance matrix. The same calculations as in
Section III-B show that its variance-covariance matrix is
exactly the same as with RAS. Then, it can be said that for DAS
as for RAS, the intrasimulation signal variability is well repre-

sented, i.e., that the statistical correlation between the different
simulated points is correct for the two simulation methods.

IV. m0 AND P̄PTO ESTIMATORS

This section presents practical implications of the theoretical
results derived in Section III, in terms of common time-domain
statistics. As in [1], two statistics are examined here as follows.

1) The estimator m̂0 for the zeroth order spectral moment of
the signal (also equal to the signal variance).

2) The estimator P̂PTO of the average power production
P̄PTO of a WEC moved by the simulated waves. m0 is
related to important characteristics of the sea state, such
as:

a) the average stored energy per unit horizontal sur-
face E related to m0 through E = ρgm0 , where ρ
denotes the seawater density and g the gravitational
constant (see, for example, [8, ch. 4]);

b) the significant wave height Hm 0 , which is often
used in wave energy calculations, is related to m0
through a relationship that depends on the spectral
bandwidth (see [4, ch. 3]).

Furthermore, it will be shown in Section IV-C that P̂PTO can
be studied in the same way as m̂0 , which, therefore, constitutes
a useful preliminary.

The average power output is essential to assess WEC per-
formance, thus understanding the statistical behavior of P̂PTO
in finite-length simulations is crucial, for example, to deter-
mine how many simulations are necessary, or how long they
should be, to obtain an accurate estimate of P̄PTO . Further-
more, one may not only want to know the average power
output P̄PTO of the WEC, but also how the WEC perform-
ance over a finite duration fluctuates around its average value.

A. m0 Estimator for the Actual Gaussian Process

The zeroth-order spectral moment m0 is equal to the wave
signal variance

m0 =
∫ ∞

0
Sηη (f)df = E[η(t)η(t)] = Rηη (0). (16)

Given N ′ regularly spaced sample points ηn , n ∈
{1, . . . , N ′}, the time-domain variance estimator is given by

m̂0 =
1
N ′

N ′∑

n=1

η2
n . (17)

It can be shown that the variance of such an estimator is given
as follows (see, for example, [9]):

σ2
m̂ 0

=
2
N ′

N ′∑

n=−N ′

(
1 − |n|

N ′

)
R2

ηη (nΔt). (18)

Alternatively, instead of considering individual samples, m0
can be estimated through an integral over [0;T ′] with T ′ =
N ′Δt so that

m̂0 =
1
T ′

∫ T ′

0
η2(t)dt. (19)
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Then, (18) becomes

σ2
m̂ 0

=
2
T ′

∫ T ′

−T ′

(
1 − |t|

T ′

)
R2

ηη (t)dt. (20)

The above expression is not straightforward to analyze for
small T ′ (or N ′); however, since Rηη (t) is zero for big lag
values, it can be seen that when T ′ is large, (20) results in

σ2
m̂ 0

≈ 2
T ′

∫ ∞

−∞
R2

ηη (t)dt (21)

which, by virtue of the Wiener–Khintchine theorem (7) and
Parseval’s theorem, can be restated as

σ2
m̂ 0

≈ 1
2T ′

∫ ∞

−∞
S2

ηη (f)df (22)

or, using symmetry of the spectrum

σ2
m̂ 0

≈ 1
T ′

∫ ∞

0
S2

ηη (f)df. (23)

Equation (23) is the formulation referred to in [1]. Logi-
cally, when m0 is estimated over a very long period T ′ of the
signal, each estimate is always almost exactly equal to m0 ,
and hence, the estimator variance tends to zero (in 1/T ′). In
contrast, when considered over a shorter time period, individ-
ual m0 estimates can differ significantly from their long-term
average m0 .

The fact that short-term m0 estimates exhibit a strong vari-
ability, compared to longer term estimates, can be illustrated
by means of real sea data. Wave elevation data, recorded in the
site of Belmullet, in Ireland, at a rate of 1.28 Hz, have been
provided by the Irish Marine Institute for the year 2010. For
the sake of illustration, a specific time period of 24 h is chosen,
during which the wave conditions show very little evolution so
that the wave elevation process can be more easily pictured as
a stationary Gaussian process, in spite of the relatively long
duration considered. The 24 h starting on March 28, 2010, at
2 A.M., meet such requirements, as illustrated in Fig. 8, where it
can be seen that the three-hourly wave spectrum undergoes very
little change throughout the day.

Fig. 9 shows how the variance estimate m̂0 varies more when
considered over a short duration, compared to a longer dura-
tion. When estimated every three hours, each m̂0 remains close
to the 24-h average (in accordance with the weak variability of
the three-hourly spectrum, pictured in Fig. 8). In contrast, m̂0
measured in every 10 min shows significant variability com-
pared to the 24-h average.

Of course, in practice, the wave conditions (characterized by
the wave spectrum) are never perfectly stationary, since the me-
teorological conditions do not stop evolving. As mentioned in
Section II, it is important to keep in mind that, for the wave
elevation process to be considered as stationary, the duration
under study must be small, compared to the rate at which mete-
orological conditions evolve.

Fig. 10 shows, in each 3-h window, the empirical variance
of the 10-min m0 estimate (i.e., all the 18 10-min m̂0 , within
each 3-h window, are used to estimate the empirical σ2

m̂ 0
). The

empirical σ2
m̂ 0

is compared to a theoretical one, obtained by

Fig. 8. Eight consecutive three-hourly wave spectra (Belmullet, Ireland,
starting March 28, 2010, 02:00).

Fig. 9. m̂0 estimated over 24 h, every 3 h and every 10 min (Belmullet,
Ireland, starting March 28, 2010, 02:00).

applying (23) to each three-hourly spectrum for T ′ = 10 min.
Assuming that the sea state is stationary over the whole day, the
empirical and theoretical σ2

m̂ 0
are also computed for the whole

24 h of data (again for T ′ = 10 min). It can be seen that the
empirical σ2

m̂ 0
, estimated every 3 h, does not exactly match the

theoretical one, which can be attributed to two reasons. First,
the empirical σ2

m̂ 0
is estimated based on a limited number of

points (18 in each 3 h of data) so that it exhibits some variability
compared to its average value (which is better approximated
by the 24-h value). Second, the sea condition is never exactly
stationary so that σ2

m̂ 0
presents some variability, not only due

to short-term estimations, but also due to the variability of the
sea state (relatively small in this dataset). This second effect is
reflected in the 24-h empirical σ2

m̂ 0
being slightly higher than the

theoretical one, which would be obtained if the sea conditions
were perfectly stationary.
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Fig. 10. Theoretical and empirical variance of the m0 estimate computed
every 10 min (Belmullet, starting March 18, 2010, 08:00).

Fig. 11. m̂0 estimated every 3 h and every 10 min (Belmullet, starting March
18, 2010, 08:00).

To illustrate the difference between the variability due to the
change in wave conditions (i.e., in the wave spectrum) and the
variability of the m0 estimate due to finite-duration sampling,
Fig. 11 shows another example, also recorded at the Belmullet
site, in which the meteorological conditions are strongly evolv-
ing. It can be seen that:

1) the three-hourly m̂0 estimate varies relatively slowly,
which corresponds to the gradual change of the wave
spectrum as a result of the weather evolution;

2) in contrast, m̂0 , estimated every 10 min, shows an addi-
tional, “noisy” variability, which adds to the slow pattern
resulting from the weather evolution. As illustrated ear-
lier in Fig. 9, the noisy variability would exist even if the
weather were not significantly evolving, and is the result
of recording finite-duration samples.

In coherence with (23), var[m̂0 ] is larger in more energetic
sea states. Similarly to Fig. 10, Fig. 12 shows, in each 3-h

Fig. 12. Theoretical and empirical variance of the m0 estimate computed
every 10 min (Belmullet, Ireland, starting March 18, 2010, 08:00).

window, the empirical and theoretical variances of the 10-min
m0 estimate. Empirical results differ from theoretical ones more
significantly than in Fig. 10, which can be explained by the sea
state evolving rapidly, thus giving the empirical m̂0 additional
variability within each 3-h period.

As seen in Figs. 10 and 12, the main limitation of empir-
ical observations is that it is impossible to perfectly separate
the effects of the sea state evolution from those due to the lim-
ited time duration over which spectral estimates are calculated.
Overall, it is difficult to quantify accurately how the empirical
statistical properties of an actual sea (such as var[m̂0 ]) should
compare to theoretical ones, and some degree of discrepancy
should always be expected between empirical and theoretical
results. Nevertheless, real sea observations still clearly validate,
at least qualitatively, the key points of this section.

B. m0 Estimator With Random Amplitude Scheme and
Deterministic Amplitude Scheme

Given N ′ generated points yn , n ∈ {1, . . . , N ′}, the time-
domain variance estimator is given by

m̂0 =
1
N ′

N ′∑

n=1

y2
n . (24)

Alternatively, it could be considered that the generated points
can be interpolated, and that an estimate of m0 in integral form,
similar to (19), is derived.

Let us first recall from Section III that, with RAS, the sim-
ulated process is Gaussian, with autocorrelation Ryy , identical
to Rηη until Ryy repeats itself. Therefore, taking T ′ inside the
range within which Ryy is valid (see Fig. 7), the exact same
equation as (18) is derived, and since Ryy = Rηη , the value of
σ2

m̂ 0
with the simulated process is exactly the same as with the

true process.
More generally, for both RAS and DAS, it is possible to

derive an analytical expression for σ2
m̂ 0

estimated over any T ′,
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but the corresponding calculations would be unnecessary bulky
for this paper. Instead, it is simple, and particularly interesting, to
consider the specific case where m0 is estimated over the whole
period of the simulated process so that Δf = 1/T = 1/(NΔf)
and T ′ = T . In the following, the probability law followed by
m̂0 is derived analytically, both in the RAS and DAS cases.

1) With Random Amplitude Scheme: Let us define zk , k ∈
{1, . . . , N} as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = 0

zk =
N

2
(ak − ibk ), for k ∈

{
1, . . . ,

N

2
− 1

}

zN
2

= 0

zk = z∗N −k , for k ∈
{

N

2
+ 1, . . . , N − 1

}

(25)
where ak and bk , k ∈ {1 . . . N/2}, are chosen as independent,
normally distributed random variables with zero mean and vari-
ance Sηη (fk )Δf , and ∗ denotes complex conjugate.

Assuming Sηη (fmax) = Sηη ((N/2)Δf) = 0 (which can be
obtained by making Δt smaller for example), it is easily shown
that, with RAS, yn is generated as

yn =
1
N

N −1∑

k=0

zk ei2π k n
N . (26)

Thus, y is the inverse discrete Fourier transform (DFT) of z.
Applying Parseval’s theorem (see, for example, [10]), we have
that

N∑

n=1

|yn |2 =
1
N

N −1∑

k=0

|zk |2 =
N

2

N
2∑

k=1

(a2
k + b2

k ) (27)

so that

m̂0 =
1
2

N
2∑

k=1

(a2
k + b2

k ). (28)

As a consequence, the average value of the m0 estimator is

μm̂ 0 =

N
2∑

k=1

Sηη (fk )Δf (29)

which corresponds to the Riemann approximation of (10).
The probability law, followed by the random scalar m̂0 , is a

quadratic form on a Gaussian random vector X ∈ RN

m̂0 =
1
2
XT X (30)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xk = ak , for k ∈
{

1, . . . ,
N

2

}

Xk = bk , for k ∈
{

N

2
+ 1, . . . , N

}
.

The variance of such a distribution is σ2
m̂ 0

= 1/4 × 2tr(Σ2
X ),

where ΣX is the variance-covariance matrix of the Gaussian

random vector X (see, for example, [11]) and tr denotes the
trace. This yields to

σ2
m̂ 0

=
N/2∑

k=1

S2
ηη (fk )Δf 2 . (31)

Equation (31) can also be formulated as

σ2
m̂ 0

=
1
T

N/2∑

k=1

S2
ηη (fk )Δf (32)

which, when Δf is small, is coherent with (23).
Assuming that N is big enough, which is the case for T values

above several tens of seconds, the sum in (32) will remain almost
constant as N increases [and approximately equal to the integral
of (20)]. Thus, when T increases, σ2

m̂ 0
decreases in 1/T . Then,

RAS reproduces the variability of m̂0 due to finite-duration
sampling of the underlying Gaussian process.

2) With Deterministic Amplitude Scheme: The results for the
DAS case can now be derived in a similar way. Indeed, it suffices
to view y as the result of an inverse DFT, as in (25), except that,
this time, ak and bk are generated as

ak = cos φk

√
2ΔfSηη (fk )

bk = − sin φk

√
2ΔfSηη (fk ) (33)

where ∀k ∈ {1, . . . , N/2}, and φk is randomly chosen follow-
ing a uniform distribution in [0; 2π].

As a result, it stems from (28) that m̂0 is not a random variable
anymore and takes the same value at each realization as

m̂0 =

N
2∑

k=1

Sηη (fk )Δf (34)

and

σ2
m̂ 0

= 0. (35)

This is a particular illustration of the fact that, as mentioned
in the introduction, DAS preserves all spectral moments at each
realization.

C. P̄PTO Estimator for a Linear Wave Energy Converter

In this section, a linear WEC model subject to simulated inci-
dent waves is considered. For the sake of simplicity, it is assumed
that the WEC is constrained to heave motion only. Furthermore,
the PTO is modeled as a linear damper so that the instantaneous
power captured by the PTO is given by PPTO(t) = CPTO ż2(t),
where ż(t) denotes the WEC heave velocity.

Thus, with N measured or simulated points for the heave
velocity, the estimator for the average WEC power output is
given by

P̂PTO = CPTO

N∑

n=1

ż2
n . (36)

Similarly to [1], let us define Hżη (f) the linear, frequency-
domain complex transfer function that relates the (input)
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free-surface elevation to the (output) WEC heave velocity. As
mentioned in [1], the output of a linear system driven by a Gaus-
sian process is a Gaussian process. Furthermore, the SDF of the
resulting Gaussian process—in our case Sż ż (f)—is given by

Sż ż (f) = Sηη (f)|Hżη |2(f). (37)

Considering the WEC in the true Gaussian ocean waves, ż
is then a Gaussian process, from where it follows, similarly to
Section IV-A, that finite-length estimates P̂PTO present some
variability with respect to the long-term average P̄PTO . The
same results as in Section IV-A can be derived, in particular
(23), replacing Sηη with Sż ż .

We are now interested in the properties of the simulated WEC
dynamics, either with RAS or with DAS. Since the system is
linear, its steady-state response to a sum of orthogonal frequency
components is the sum of the responses to each of the frequency
components. The steady-state response, e.g., in heave velocity,
to a specific frequency component Ak cos(2πfk t + φk ), is a
sinusoid with the same frequency fk , amplitude Ak |Hżη |(fk ),
and a phase shift Δφ(fk ) added to φk .

Let us now simulate the device steady-state response, either
with DAS or with RAS. As shown in (1) and (3), in both cases,
the simulated waves can be written as follows, the only differ-
ence being the way Ak are generated:

yn =
M/2∑

k=1

Ak cos(2πfk tn + φk ). (38)

The total steady-state heave velocity response of the device
is then given by

żn =
N/2∑

k=1

Ak |Hżη |(fk ) cos(2πfk tn + φ′
k )

=
N/2∑

k=1

A′
k cos(2πfk tn + φ′

k ) (39)

where φ′
k = φk + Δφ(fk ) (phases φ′

k then also follow a uniform
distribution in [0; 2π]); and A′

k = Ak |Hżη |(fk ). If η is gener-
ated through RAS, then A′

k are Rayleigh distributed with vari-
ance |Hżη |2(fk )Sηη (fk )Δf = Sż ż (fk )Δf . If η is generated

through DAS, then A′
k are equal to |Hżη |(fk )

√
2Sηη (fk )Δf =√

2Sż ż (fk )Δf .
In any case, in (39), one can recognize a harmonic superposi-

tion method (either RAS or DAS) applied to the heave velocity
Gaussian process characterized by its SDF Sż ż (f): either RAS,
if the A′

k are Rayleigh distributed, or DAS, if the A′
k are de-

terministic. In other words, using RAS (respectively DAS) to
generate y and then simulate the device steady-state heave ve-
locity response is equivalent to a direct application of RAS
(respectively DAS) to generate heave velocity time series from
the heave velocity SDF, Sż ż (f).

Using the results of Section IV-B, it is now easy to derive the
properties of the P̄PTO estimator.

1) With Random Amplitude Scheme:

P̂PTO =
CPTO

2

N
2∑

k=1

(a′
k 2 + b′k 2 ) (40)

where a′
k and b′k are independent zero mean, normally dis-

tributed with variance Sż ż (fk )Δf .
The average value of the P̄PTO estimator is

μP̂P T O
= CPTO

N
2∑

k=1

Sż ż (fk )Δf (41)

and the variance of the estimator is

σ2
P̂P T O

=
CPTO

T

N/2∑

k=1

S2
ż ż (fk )Δf. (42)

2) With Deterministic Amplitude Scheme:

P̂PTO = CPTO

N
2∑

k=1

Sż ż (fk )Δf (43)

and

σ2
P̂P T O

= 0. (44)

With DAS, the average power estimator P̂PTO takes the same
value in every simulation.

V. NONHARMONIC SUPERPOSITION METHODS

It may be considered that for long simulations, the compu-
tational cost of either DAS or RAS is prohibitive. However,
decreasing the number of frequency components below N/2 by
increasing the frequency step is not a suitable solution, since it
makes the generated signal (and its autocorrelation) repeat itself
within the simulation window.

Therefore, other methods, also based on the superposition of
sinusoids, have been suggested to avoid signal repetition. Their
basic principle is to choose the frequencies in a nonharmonic
way [12] so that even with a number of frequency components
much smaller than N/2, the signal does not repeat itself within
the simulation window. Such methods could be used either with
random or deterministic amplitudes of the nonharmonic wave
components and, therefore, can be referred to as NHRAS or
NHDAS.

Based on the following two simple arguments, using NHRAS
or NHDAS is not recommended.

1) Similarly to DAS, the vector generated through NHDAS
is not Gaussian and, thus, cannot properly model the target
Gaussian vector.

2) Similarly to RAS, the vector generated through NHRAS
is Gaussian. However, this time, the Gaussian vector is
degenerate, since it is of size N and it is obtained as a lin-
ear combination of M � N independent, standard Gaus-
sian random variables. Therefore, the variance-covariance
matrix of the generated vector cannot be identical to the
variance-covariance matrix Σηη of the true sampled signal
(11).
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Fig. 13. Discretization of the target SDF following the EA methodology.

For illustration, the following paragraphs will consider in
more detail the random-amplitude version of the so-called equal-
area (EA) method, which consists of choosing frequency steps
so that the spectral energy at each frequency component is the
same (see, for example, [12] or [13, ch. 10]). The total spectral
energy m0 is divided into M/2 equal parts so that

ΔE =
2m0

M
. (45)

Accordingly, the frequency range [0; 1/(2Δt)] is divided
into M/2 intervals, defined as Ik = [fk − ((Δfk )/2); fk +
((Δfk )/2)], k ∈ {1, . . . , M/2}, and such that (see Fig. 13)

∀k ∈
{

1, . . . ,
M

2

}
,

∫

Ik

Sηη (f)df = ΔE. (46)

Then, EARAS is formulated as

ηti
=

M/2∑

k=1

ak cos(2πfk ti) + bk sin(2πfk ti) (47)

where ak and bk are chosen as independent, normally distributed
random variables with zero mean and variance ΔE.

A. Autocorrelation Function

Using similar demonstrations to those presented in
Sections III and IV, it can be shown that the variance-
covariance matrix of the Gaussian vector obtained through
EARAS has the same structure as in (14); however,
this time, the sequence sj is different from the target
autocorrelation function (otherwise, the Gaussian vector would
not be degenerate). More precisely, the discrete autocorrelation
sequence is given by

∀j ∈ 0, . . . , N − 1, sj = ΔE

M
2∑

k=1

cos(2πfkjΔt). (48)

Fig. 14. Autocorrelation functions of the target Gaussian process, RAS-
simulated process, and EARAS-simulated process.

Equation (48) can also be formulated as

sj =
1
2

M
2∑

k=−M
2

k 	=0

Sk ei2πfk jΔtΔfk (49)

where Sk = ΔE/Δfk . For small j’s, (49) can be seen as a
Riemann approximation of integral (8); however, all the com-
ponents of the sum are periodic, with different periods, but with
the same magnitude ΔE. For lag values well inside the simu-
lation duration, the discrete ACVF is significantly polluted, as
shown in Fig. 14 (and experimentally pointed out in [14]). In the
EA example shown on Figs. 13 and 14, the frequency range is
divided into M/2 = 30 intervals. By increasing the number of
intervals, the amplitude of the noisy oscillations in the autocor-
relation function decreases, but then, the only benefit of using
EARAS, which was to use fewer frequency components than
RAS, is lost.

It is interesting to note that, for lag values close to M , the
ACVS obtained from the EARAS method more closely matches
the correct one than RAS does. However, with RAS, it is still
possible to isolate the part of the signal (e.g., the first ) where the
ACVF is not polluted while, with EARAS, the ACVF remains
polluted, regardless of the part of the signal considered.

B. m0 Estimator

If EARAS allowed for simulating arbitrarily long signals from
only a limited number of frequency components, one would ex-
pect that m̂0 , estimated from the generated signals, would ex-
hibit the same properties as m̂0 estimated from the true process.
In particular, for big values of T ′, σ2

m̂ 0
should follow (23).

Let us consider a signal generated through EARAS. Let us
also assume that the signal is interpolated, so that m0 can be
estimated in integral form as in (19). One can show that the
variance of the m0 estimator is given in a similar way to (20),
with Rηη replaced with the (polluted) autocorrelation function
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of the generated signal as follows:

σ2
m̂ 0

=
2
T ′

∫ T ′

−T ′

(
1 − |t|

T ′
)
R2

yy (t)dt. (50)

Ryy (τ) is a continuous-time version of (48) and (49)

Ryy (τ) =
ΔE

2

M
2∑

k=−M
2

k 	=0

cos(2πfkτ). (51)

Injecting (51) into (50), and carrying out the integration ana-
lytically, yields to

σ2
m̂ 0

=
ΔE2

T ′2

M
2∑

k=−M
2

k 	=0

M
2∑

l=−M
2

l 	=0

Λk,l(T ′) (52)

where

∀(k, l),Λk,l =

⎧
⎪⎪⎨

⎪⎪⎩

1−cos
(
2π (fk +fl )T ′

)
(
2π (fk +fl )

)2 , if k 	= −l

T ′2

2
, if k = −l.

(53)

For a fixed frequency discretization {f1 , . . . , fM/2}, it is clear
from (53) that all the terms inside the double sum in (52) are
bounded, except those such that k = −l. Therefore, when T ′

becomes large, in (52) all the terms such that k 	= l tend to zero,
leaving only

σ2
m̂ 0

≈ M

2
ΔE2 . (54)

Reminding that (M/2)ΔE = m0 , (52) can be rewritten as

σ2
m̂ 0

≈ 2
M

m2
0 . (55)

Then, instead of fading out to zero following a law in 1/T ′,
when T ′ becomes large var[m̂0 ] converges to a constant value
depending only on m0 and on the number of frequency compo-
nents M/2.

C. Conclusion

In view of the arguments presented in the rest of Section V,
the following can be said.

1) NHDAS and NHRAS do not compare favorably to DAS
and RAS respectively in terms of intrasimulation proper-
ties, since the statistical relationships between simulation
points are incorrectly modeled;

2) unlike RAS, the intersimulation properties of NHRAS do
not accurately reflect finite-duration records of a Gaussian
sea, presented in Section IV-A.

The computational gain of using NHRAS or NHDAS is then
clearly obtained at the expense of the statistical properties of
the generated signal. It does not seem possible to simulate the
correct signal statistical properties without including at least
N/2 frequency components (for a constant cutoff frequency
1/2Δt).

Fig. 15. Empirical distribution of m̂0 = (1/N )
∑N

i=1 η2
i obtained from

10 000 simulations of T = 600 s.

VI. NUMERICAL EXPERIMENTAL VALIDATION

A. Wave Time-Domain Statistics

In this section, the effect of the simulation method on vari-
ous wave statistics is illustrated, using a JONSWAP SDF with
Hm 0 = 2.46 m (m0 = 0.3765 m2), Tp = 9.8 s and γ = 1.7.
Around 10 000 simulations of T = 600 s were run, using both
RAS and DAS. In each simulation, individual waves are counted
through zero up-crossing, and wave statistics are computed.

Fig. 15 illustrates the theoretical results shown in Section IV-
B: While the variance estimator of the finite-length generated
signal presents some variability with RAS (and so would be
the case if one were measuring real free-surface elevation in a
finite duration), it is not the case with DAS, for which the vari-
ance estimator of the generated signal always takes the same
value exactly equal to m0 . Furthermore, using (31), the theo-
retical variance of the m0 estimator with RAS is found to be
σ2

m̂ 0
= 0.0025 m2 so that the standard deviation, expressed as

a percentage of m0 , is 13.35%, which is confirmed with good
accuracy by experimental results (see Table I).

Figs. 16–18 show histograms for wave height statistics
in the 10 000 simulations. In each simulation, the aver-
age height of the 1/3 and 1/10 highest waves is com-
puted, as well as the maximum wave height. For H33% and
H10% , the resulting distributions present a Gaussian-looking
shape, with significantly larger spreading for simulations
realized through RAS. For both DAS and RAS, the distribu-
tion of maximum wave heights exhibits a similar shape and
variance.

Fig. 19 shows the histogram of the average wave steepness
values, which also presents a Gaussian shape with significantly
larger spreading for the RAS simulations.

Finally, Table I summarizes the main results obtained. The
results suggest that using DAS does not affect average values
for the statistics studied, including extreme values (maximum
wave height and steepness of the highest wave). However, the
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TABLE I
EMPIRICAL MEAN μ AND PERCENTAGE STANDARD DEVIATION (100% × σ/μ)

OBTAINED FROM 10 000 SIMULATIONS OF T = 600 S

Mean Standard deviation (%)

RAS DAS RAS DAS

Variance estimator
(σ 2

m̂ 0
, m 2 )

0.3769 0.3765 13.2 0.0

Average height of the
1/3 highest waves
(H3 3 % , m)

2.333 2.337 7.1 1.9

Average height of the
1/10 highest waves
(H1 0 % , m)

2.888 2.898 8.0 4.1

Maximum wave
height (Hmax, m)

3.562 3.590 12.4 10.8

Average wave period
(Tmean, s)

7.350 7.354 4.6 3.6

Average wave
steepness (Smean)

0.0192 0.0192 5.7 3.9

Average steepness of
the 1/3 highest waves
(SH 3 3 % )

0.0210 0.0210 7.7 4.7

Average steepness of
the 1/10 highest
waves (SH 1 0 % )

0.0295 0.0295 17.8 16.6

Steepness of the
highest wave
(SH max)

0.0311 0.0312 22.7 21.7

Fig. 16. Empirical distribution of H33% obtained from 10 000 simulations of
T = 600 s.

results obtained for H33% , H10% , Tmean, and Smean show that
DAS leads to a significant underestimation of the variance of
the corresponding wave statistics.

In practice, as illustrated in Section IV-A, an actual, finite-
duration wave record in a given sea-state could present wave
statistics that depart significantly from their mean, long-term
values that would be obtained by using an infinitely long wave
record of the same sea state. While RAS reproduces this effect
with the appropriate magnitude, DAS fails in doing so.

B. Power Production Statistics

This section is dedicated to the effect of the simulation method
upon power production statistics for a linearly modeled WEC.
The methodology, and results presented, is very similar to the

Fig. 17. Empirical distribution of H10% obtained from 10 000 simulations of
T = 600 s.

Fig. 18. Empirical distribution of Hmax obtained from 10 000 simulations of
T = 600 s.

Fig. 19. Empirical distribution of Smean (average wave steepness) obtained
from 10 000 simulations of T = 600 s.
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Fig. 20. P̄PTO estimator and its variance with RAS and DAS for different
simulation durations.

ones shown in [1]; therefore, this section will be kept short.
However, unlike in [1], here it is confirmed, through numerical
experiments, that the power estimator presents zero variance
when DAS is used to generate the incident wave, as was demon-
strated in Section IV-C.

The WEC considered is a cylinder constrained to heave mo-
tion. As in the linear model of [1], the time-domain equation
of motion takes the form of the Cummins integro-differential
equation and the PTO is modeled as a linear damper.

Using both RAS and DAS, the device is simulated in the
sea state studied in Section VI-A, for different time durations.
About 100 simulations are run for each time duration and wave
simulation method. The empirical mean and variance of the
average power estimator (P̂PTO ) are computed and compared
with theoretical values. The results are shown in Fig. 20.

An important point to mention here is the way the transient
part of the simulation is dealt with. Indeed, for (35) to be true,
P̂PTO has to be computed over the steady-state signal only. To
achieve this, a transient time is introduced at the beginning of the
simulations so that Ttot = Ttransient + T . However, the number
of frequencies is chosen so that the signal is periodic, with period
T , i.e., Δf = 1/T . The part of the η signal corresponding to the
transient time then repeats itself at the end of the total signal, as
illustrated in Fig. 21. But the transient part is discarded when
computing P̂PTO . This way, the average power output estimator
is evaluated over a whole period T of the generated signal.
The results of Fig. 20 agree well with theoretical predictions
of Section IV. With RAS, the variance of the average power
output estimator follows the 1/T law predicted by theory (and
its standard deviation follows the corresponding 1/

√
T law).

With DAS, the value of the average power output estimator is the
same, regardless of the choice of phases, which results in a zero
variance of the estimator, in accordance with theory. Therefore,
RAS enables the accurate representation of the fluctuations of
short-term device performance around the average, while DAS
directly gives the average value in only one simulation.

Let us note that for the DAS to result in zero variance of the
power estimator—and then an immediate accurate estimate of
the average power estimator—it is essential that the wave signal

generated is of period T and not Ttot (as is the case in [1]): In the
latter case, the distribution of the total signal energy between
the two parts of the signal (Ttransient and T ) depends on the
choice of phases so that the P̄PTO estimator does not present
negligible spreading any more.

Finally, it can be seen from Fig. 20 that the time-domain nu-
merical estimates of P̄PTO with DAS do not exactly coincide
with their theoretical value. The slight offset can be attributed to
the numerical approximations inherent to numerical integration.
In particular, in Cummins equation, the radiation force convo-
lution product may be particularly sensitive to the integration
step and to the length of the convolution domain.

VII. DISCUSSION

Whatever the simulation method chosen, it is preferable to
have some insight on the consequences that this decision will
have on the statistical properties of the simulation results. There-
fore, we believe that this study can be useful to help researchers
and engineers make informed decisions with regard, for exam-
ple, to the number and length of the simulations necessary to
obtain an accurate power estimate, or to comprehensively cover
the device operational space.

Based only on the arguments presented in Section III, it is not
obvious that DAS should be simply discarded as a simulation
method. RAS is certainly a more faithful representation of a
Gaussian sea than DAS, since it reproduces the fact that the
statistics of a finite-duration wave record deviate from the long-
term statistics that would be obtained with an infinite-length
record.

But it could also be said that DAS is more representative of
a given wave spectrum, since statistics obtained from only one
simulation are closer to the long-term statistic that would be
obtained from an infinite-length record—it is the case above all
for spectral moments that are exactly preserved at each realiza-
tion. Intuitively, it means that with DAS, “big” waves present in
the simulation are somehow balanced by “small waves” so that
the wave height distribution over a finite-duration simulation is
always close to the long-term wave height distribution. In con-
trast, with RAS, it is possible that in some simulations, “big”
waves, (respectively “small” waves) are significantly over- or
underrepresented compared to the long-term wave height dis-
tribution. DAS could then be considered as a quicker way than
RAS to capture the characteristics of a given sea spectrum.

Ultimately, the choice of simulation method should be gov-
erned by the intended objectives.

A. WEC Performance Estimation

At least in the case of a linear WEC, DAS immediately gives
an accurate, unbiased estimate of the power output, provided
that the latter is evaluated over the whole period of the generated
signal. Furthermore, results presented in [1] suggest that, even
in the case of a weakly nonlinear WEC, P̂PTO values from DAS
remain unbiased and have a modest spread compared to the RAS
case. Hence, in the situation of a linear or weakly nonlinear
WEC model, DAS is the quickest method to obtain a reliable
estimate of the WEC average power output. However, it should
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Fig. 21. Methodology to remove the transient part of the simulation.

be ascertained whether DAS resulting in unbiased estimates
remains true for configurations presenting strong nonlinearities:
perhaps situations could be imagined where, due to nonlinear
dynamics, control strategy, and position or velocity constraints,
DAS produces biased estimates of the average power output.

In any case, DAS does not give any idea of the spread of
the WEC performance considered over a finite duration in an
actual sea. In contrast, the statistical information provided by
running several simulations with RAS can be relevant, for ex-
ample, at the design stage, when comparing two WEC designs
and/or control strategies; running only one simulation of each of
the two configurations compared may not be sufficient to assess
which one performs the best. It may also appear that the perfor-
mance of one WEC configuration, in a given sea state, presents
much more variability than the other configuration. WEC per-
formance variability should enter into account when choosing
the appropriate WEC design. Only simulations through RAS
that represent the true variability of the short-term statistics can
properly highlight such effects.

Within the scope of power assessment studies, even if DAS
always gave unbiased average power estimates, it would not
properly represent the wave power output variability, which
could have some impact for grid integration studies for example.
Let us consider a power assessment study in which the WEC is
simulated in half-hourly wave spectra. The sea condition evolves
relatively slowly over time. If DAS is used to simulate the WEC
in each sea state, and if the WEC model is linear, the half-
hourly average power value obtained evolves as slowly as the
wave condition (thick line in Fig. 22). The history of half-hourly
power obtained this way would then represent a sort of “average
case” for each successive spectrum. But in real conditions, half-
hourly records would present more variability, and so would
half-hourly average power values. Only simulations through
RAS can account for the realistic half-hourly variability (thin
lines in Fig. 22). Using the proper simulation method (RAS) is
then essential to correctly represent the medium-term variability
of absorbed power. Finally, let us note that the “thick curve” in
Fig. 22 could be obtained by averaging many of the “thin curves”
obtained from half-hourly RAS simulations.

In the operational stage, when WECs will have been deployed
at sea, understanding the statistical behavior of the WEC out-
put in a given sea condition, and for a finite duration, will be
crucial for online reporting and monitoring, and for power pro-
duction forecasts. For example, if the wave condition is forecast
or measured, say, on a half-hourly basis, also must be the WEC

Fig. 22. Illustrative example of half-hourly average power chronicle, with
DAS and RAS.

outputs, to forecast power production, or to detect any abnor-
mal performance deviation indicative of incipient damage. In
this respect as well, only RAS can properly model and predict
the variability of the WEC half-hourly outputs around expected
values.

B. Survival Mode

In severe sea conditions, many WECs will be able to stop
producing power and to adopt a configuration that preserves
them from being significantly damaged. The choice of entering
survival mode is based on the expected sea condition, for ex-
ample, on the value of the significant wave height Hm 0 . Setting
the adequate threshold for survival mode is the result of a trade-
off between the objectives of power production maximization
and survivability [15]. Eventually, the decision of entering safe
mode would depend on the evaluation of the danger presented
by a given sea condition to the structural integrity of the device.

Results presented in Section VI-A (Figs. 15–17 in particular)
suggest that DAS partly “hides” the possibility of encountering a
high density of large waves within a short amount of time (upper
tail of the H33% distribution of Fig. 16 obtained with RAS).
Thus, to faithfully represent the possible danger of operating in
a given sea condition for a given duration, it could be preferable
to run several simulations based on RAS rather than DAS.
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TABLE II
SUGGESTED SIMULATION METHOD DEPENDING ON THE OBJECTIVE CONSIDERED AND THE TYPE OF WEC

WEC model characteristics

Objective considered Linear or weakly nonlinear Strongly nonlinear

Estimate average power output for a given spectrum DAS RAS
Model the variability of the WEC performance considered over a finite duration RAS RAS
Study complex long-term statistics (e.g., on individual oscillations) DAS RAS
Study complex statistics (e.g., on individual oscillations) considered over a finite duration RAS RAS

However, it should also be noted that due to a smaller dis-
persion of results, similarly to power output estimators, DAS
is quicker than RAS in giving accurate values for some wave
statistics, such as H33% .

The average Hmax value (measured over the typical duration
of a storm, for example) could allow for assessing the severity
of a sea condition, similarly to the so-called most probable
maximum individual wave height [16], and hence be used as a
criterion to enter survival mode.

Hmax can also be used at the WEC design stage to estimate
extreme loads on the device. Indeed, extreme loads are likely
to correspond to the highest wave Hext encountered throughout
the WEC design lifetime. Hext can be estimated, for example,
by first determining the most extreme sea state that can likely be
encountered at the WEC location, and then, using the maximum
wave height Hmax that will be observed in this extreme sea
state, over a typical storm duration [17]. From this perspective,
it can be noted that the Hmax histograms, obtained through RAS
and DAS, do not show any significant difference (see Fig. 18).
However, the question of the most appropriate methodology to
assess WEC survivability is outside the scope of this paper.

Finally, let us also stress that statistics on the WEC response
similar to the wave height statistics presented in Section VI-
A, such as the average value of the 33% or 10% widest WEC
oscillation, could also be studied, and would exhibit results
analogous to those obtained for wave height statistics, at least
with a linear WEC.

C. Computational Time

With modern computers, there is little chance that compu-
tational effort could be a significant impediment to the use of
RAS or DAS. First of all, the FFT formulations of RAS and
DAS allow for a complexity of the order of N ln N , which is
only problematic for very large values of N , i.e., with very long
simulations and a very refined time step. Furthermore, the com-
putational time required to generate free-surface elevation time
series is likely to be negligible, compared to the significant com-
putational cost of many time-domain nonlinear WEC models.

Additionally, there is no obvious reason for running very
long simulations of a WEC for the same wave spectrum. In
particular, from the point of view of the WEC output statis-
tics, and putting aside the transient time, running a very long
RAS-based simulation of length KN (TCPU ∝ KN ln KN )
is equivalent to running K shorter RAS-based simulations of
length N (TCPU ∝ KN ln N ). Therefore, if a very large amount
of statistical data (say, N ) has to be obtained from a WEC model

in a given wave spectrum, it can be beneficial to obtain the de-
sired data through many, relatively short simulations, so that
the computational burden due to the wave generation increases
proportionally to N , instead of N ln N .

Finally, it is often the case that the desired time step, for
the free-surface time series (typically 10−3s), is orders of
magnitude smaller than the time step corresponding to the
maximum frequency of interest present in the wave spectrum
(typically 1 s): Δt � 1/(2fmax). To be able to use FFT to
compute the wave elevation, it is necessary to fill-in the SDF
with zeros for frequencies between fmax and 1/(2Δt). But,
by doing so, the signal probability space is not extended since,
either with RAS or DAS, the additional sinusoidal components
have zero amplitude. So, it can be computationally beneficial,
and neutral for the signal statistical properties, to first generate
a time series through FFT with time step 1/(2fmax), and
then obtain the missing points through a relevant interpolation
method. A quick numerical investigation tends to show that, by
combining FFT and cubic spline interpolation, the difference
with the signal obtained through direct FFT is negligible, and
that the computational time can be reduced of at least one order
of magnitude. More work would be necessary to accurately
quantify the resulting error and computational gain.

VIII. CONCLUSION AND RECOMMENDATIONS

It has been shown that RAS almost perfectly simulates the
experiment consisting of recording successive, regularly spaced
wave elevation samples for a finite duration. In this respect, it
is preferable to DAS, which unrealistically produces the same
spectral moments at each realization.

More precisely, answers have been brought to the questions
stressed at the end of [1] with regard to the probability law
followed by the average power estimator and to the statistical
relationships between discrete successive simulation points.

The signals generated with RAS and DAS are periodic. It has
been shown that avoiding periodicity, by using fewer, nonhar-
monic frequency components, necessarily results in a deterio-
ration of the statistical properties of the generated signal (with
respect to the target sea state). Instead, if periodicity is an issue
in the application considered, it is suggested to simply discard
the initial or final k samples of the signals generated through
RAS or DAS, where k is the number of lags beyond which the
autocorrelation of the target spectrum is considered to be zero.

The consequences of the simulation method on time-domain
statistics have been explored theoretically and experimentally.
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With RAS (and in a true Gaussian sea) finite-length estimators
for the wave signal energy, or for the WEC average power
output, present a variance that is inversely proportional to the
simulation length. Eventually, by running many simulations, or
by increasing the simulation length, the value considered can be
obtained with the desired accuracy. Furthermore, RAS exactly
reflects how short-term WEC performance varies with respect
to its long-term average, i.e., the value that would be obtained
if the same Gaussian sea state were to last forever.

With DAS, only one simulation is necessary to obtain the aver-
age energy of the wave signal or, with a linear WEC, the average
WEC power output. Even in a case where the WEC is weakly
nonlinear, fewer simulations than with RAS, or equally a shorter
simulation duration, are necessary to achieve the same degree of
accuracy for the average WEC power estimate. However, DAS
does not reproduce the variability of the short-term WEC per-
formance in an actual sea. In addition, it might be possible that
in some cases involving a strongly nonlinear WEC, DAS would
result in biased power estimates. In contrast, regardless of the
WEC model, it is certain that running WEC simulations based
on RAS allows for unbiased estimates of the average WEC
power output, and for realistic assessment of how the WEC
power output may vary when measured over a finite duration.

Regarding more complex statistics related to individual oscil-
lations of the signal (H33% , etc.), whether the signal is the wave
itself or a WEC output such as position, velocity, or force, no
analytical solutions can be easily derived for theoretical study.
However, numerical experiments tend to show that while only
a few simulations DAS results in statistics closer to long-term
statistics, RAS shows how statistics may vary when estimated
on a finite duration. As was already suggested in [1], cover-
ing the whole wave input probability space, by using several
RAS-based simulations, could be especially important to study
the device safety and survivability, considered with respect to
a given sea state and a given time duration. In particular, DAS
does not allow the observation of densities of big waves as high
as RAS does.

In summary, by running several simulations with RAS, it can
be ensured that the whole operational space of the device is
covered with respect to a given sea spectrum and a finite time
duration. Table II summarizes the main recommendations that
can be provided in view of the results presented in this paper.

Finally, with respect to the computational burden of either
DAS or RAS, in the unlikely case where time-series genera-
tion represents a significant fraction of the simulation time, two
ideas are suggested to reduce their computational cost: replace
large simulations by groups of shorter simulations, and combine
FFT with spline interpolation to obtain generated points with a
refined time resolution.
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