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Abstract—A non-linear frequency-domain (NLFD) methodol-
ogy has been recently proposed for the computationally-efficient
numerical simulation of wave energy converters (WECs), taking
into account non-linear effects in the device dynamics. The
primary objective of this paper is to contribute making the wave
energy academic and industrial community familiar with the
NLFD formulation, by giving researchers and engineers more
insight with respect to the practical issues related to the method,
as well as its possible application areas. The NLFD method is
briefly described, and the main associated practical issues are
detailed: robustness and convergence, duration and time-step
of the simulations, and finally random generation method for
the input wave signal. In terms of WEC dynamics, numerical
applications show that NLFD allows for handling strong non-
linear dynamics, provided that the WEC outputs remain smooth.
The method also allows for modelling cross-frequency energy
transfers. In contrast, NLFD does not seem suitable for the
non-smooth dynamics related to some specific PTO designs. The
small computational time associated with NLFD method makes
it particularly advantageous for applications involving a large
number of simulations, such as WEC parametric optimisation,
power assessment, and WEC dimensioning and reliability.

Index Terms—Wave energy converter, Non-linear model, Nu-
merical simulation, Frequency-domain, Newton method

I. INTRODUCTION

Computationally-efficient WEC modelling is essential in

applications requiring a large number of simulations, such as

power production assessment, parametric optimisation, or sta-

tistical studies. For such applications, high fidelity techniques

such as computational fluid dynamics (CFD) are inadequate

due to their prohibitive computational costs. Instead, simplified

physical models, generally based on linear wave theory, are

implemented (see, for example, Chapters 2-4 of [1]).

Amongst the latter, linear WEC models allow for a fast

computation of the WEC response in the frequency domain

(FD) [2], but their range of applicability is limited to cases

where a linear description of the WEC dynamics is accurate. In

many practical cases, non-linear modelling of hydrodynamical

forces, PTO forces or mooring line effects must be included.

In particular, the presence of power-maximising control tends

to magnify the non-linearities [3].

Time-domain (TD) numerical integration schemes are gen-

erally recommended in the cases where non-linear effects

must be taken into account [1]. However, TD integration is

significantly slower than linear FD computation, in particular

due to the computation of radiation memory terms [4].

Statistical linearisation through the spectral-domain (SD)

method [1], [5] allows for the inclusion of velocity-dependent

non-linear terms, such as viscous drag, to compute the spectral

density function (SDF) of the WEC outputs (displacement or

velocity) considered as a Gaussian process. SD linearisation

is significantly faster than time-domain integration, but the

linearisation methodology cannot be applied to static non-

linear terms [6]. Although the resulting linear approximation

is optimal in a statistical sense, the linear approximation for

non-linear forces makes the method inaccurate for the study

of WEC trajectories in the time-domain.

In previous work from the authors [6], a non-linear

frequency-domain (NLFD) simulation method has been intro-

duced for wave energy applications. In the NLFD formulation

[7], the dynamical equations are projected onto a basis of

trigonometric polynomials. The resulting non-linear vector

equation is solved through a gradient-based method. In the

cases considered in [6], namely, a flap-type WEC with a

viscous drag term and a heaving sphere with viscous drag,

non-linear restoring force and non-linear control, the proposed

technique allows for computing the non-linear WEC steady-

state response, both in the frequency domain and in the time

domain, at modest computational cost with respect to numer-

ical integration, without compromising the results accuracy.

The objective of this conference paper is to help making the

wave energy community familiar with the NLFD formulation,

showing its potential applications, as well as the practical

issues and limitations associated with the use of the method.

More precisely:

• The issues associated with the practical implementation

of the NLFD technique are detailed, and largely illus-

trated throughout the rest of the paper.

• The range of validity, where the NLFD formulation re-

mains efficient, is explored. To this aim, two WEC models

are considered: a reactively-controlled spherical heaving

point-absorber (HPA) with quadratic viscous drag and

a non-linear computation of Froude-Krylov forces, and

a cylindrical HPA subject to a Coulomb friction damp-
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ing force (resulting from a simplified hydraulic PTO

model). The former case, although exhibiting strong non-

linearities, can be handled in a computationally-efficient

way using NLFD. The latter WEC model, due to the

Coulomb-type damping term, has non-smooth outputs,

which don’t lend themselves easily to a harmonic descrip-

tion. Therefore, the second WEC model represents an

example of limit case where using NLFD is not relevant.

• Finally, a range of possible applications of the NLFD

framework, along with associated practical issues, is

introduced. Three examples are briefly described: WEC

parametric optimisation; WEC power assessment; and

finally WEC output statistical studies, for example, in the

scope of WEC constraint design or fatigue analysis.

The paper layout is as follows: The NLFD method is

introduced in Section II, along with the main associated prac-

tical issues. The two WEC models considered (spherical and

cylindrical heaving point-absorbers) are described in Section

III. It is examined, in Section IV, to what extent the NLFD

method is suitable for the simulation of both devices. The HPA

with Coulomb damping is shown not to lend itself easily to

NLFD simulation. Three application examples for the NLFD

method (parametric optimisation, power assessment, statistical

studies) are detailed in Section V, for the spherical HPA.

Finally, the main results of the paper are summarised and

discussed in Section VI.

II. PRESENTATION OF THE NLFD SIMULATION METHOD

For the sake of simplicity, the NLFD method is presented

for WECs with one degree of freedom (DoF) only in the

present subsection. However, generalisation to more DoFs

(or to WECs or WEC farms composed of several interacting

bodies) does not pose any theoretical issue [8].

A. NLFD formulation of the WEC dynamics

Let us consider a 1-DoF WEC. The WEC generalised

position at a given instant is described by means of a sin-

gle coordinate ζ. The WEC dynamics are described by the

following equation:

gl(ζ, ζ̇, ζ̈, t)− fnl(ζ, ζ̇) = 0 (1)

In Eq. (1), gl includes inertial terms, and forces which

depend on ζ and its derivatives in a linear way. For example, if

all the hydrodynamic forces acting on the device are linearly

modelled, gl consists of the Cummins equation terms [9]:

gl(ζ, ζ̇, ζ̈, t) = (µ+µ∞)ζ̈+

t
∫

−∞

krad(t−τ)ζ̇(τ)dτ+khζ−fe(t)

(2)

where

• µ is the WEC inertia;

• kh is a hydrostatic stiffness coefficient;

• the radiation forces are computed as the sum of an inertial

term µ∞ζ̈ and a convolution product between the past

values of the velocity and the radiation impulse response

function krad;

• fe is the linear wave excitation force.

The term fnl contains the forces which non-linearly depend

on ζ and its derivative. Such a formulation applies to a wide

class of semi-analytical WEC models, and allows for the in-

clusion of various non-linear forces such as non-linear Froude-

Krylov forces, quadratic viscous drag, non-linear mooring line

effects, non-linear PTO force, etc. Obviously, if a part of the

hydrodynamic forces is non-linearly modelled in fnl (e.g. the

Froude-Krylov forces), the corresponding terms in (2) have to

be removed from the expression of gl.
A periodic, polychromatic wave signal is now considered.

The free-surface elevation is described as a truncated sum of

harmonic sinusoids:

η(t) =

N
∑

n=1

aη,n cos(ωnt) + bη,n sin(ωnt) (3)

where ωn = n∆ω, and ∆ω is the frequency step. The

coefficients aη,n and bη,n can be randomly generated from

a wave spectrum, or, alternatively, if the device response to

specific frequencies has to be analysed, the coefficients can be

non-zeros for just one or several values of n. The projection

of η onto the Fourier basis is then

E =
[

aη,1 . . . aη,N bη,1 . . . bη,N 0
]T

∈ R
2N+1

(4)

The device dynamical equation (1) is assumed to admit a

periodic, continuously-differentiable, steady-state solution, for

the periodic input wave signal given in (3). The period of

the input and output is then T = 1/∆ω and, for any arbitrary

degree of accuracy, all the system variables can be described as

truncated sums of sinusoids, similar to (3). As a consequence,

(1) can be projected onto the Fourier basis, resulting in:

MZ − Fe(E)− Fnl(Z,E) = 0R2N+1 (5)

where

• Z denotes the projection of the coordinate ζ onto the

trigonometric basis:

Z =
[

aζ,1 . . . aζ,N bζ,1 . . . bζ,N aζ,0
]T

(6)

• MZ is the projection of the linear terms of gl which

depend on ζ and its derivatives. In particular, using

Ogilvie’s relation [10], the linear time-domain radiation

terms simplify into the frequency-dependent radiation

added mass and damping Arad(ω) and Brad(ω). Typi-

cally, when both radiation and hydrostatic restoring forces

are linearly modelled, the components of M are given,

∀i, j ∈ J1...NK2, as

Mi,j =

{

−ω2
i (µ+Arad(ωi)) + kh, i = j

0, i 6= j

Mi+N,j+N = Mi,j

Mi,j+N =

{

ωiBrad(ωi), i = j

0, i 6= j

Mi+N,j = −Mi,j+N

and M2N+1,2N+1 = kh

(7)
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• The term Fe(E) denotes an additive force term. If the ex-

citation forces are linearly modelled, then Fe corresponds

to the excitation term of gl, and can be derived from E
using the linear excitation force transfer function. If the

totality, or a part of the excitation forces are non-linearly

modelled, Fe is an additive term which depends on E in

a linear or non-linear way.

• Fnl(Z,E) is the projection of the non-linear forces fnl
onto the trigonometric basis, so that ∀i ∈ J1...NK:

Fnl,i(Z,E) =
2

T

T
∫

0

fnl(ζZ , ζ̇Z , ηE) cos(ωit)dt

Fnl,i+N (Z,E) =
2

T

T
∫

0

fnl(ζZ , ζ̇Z , ηE) sin(ωit)dt

Fnl,2N+1(Z,E) =
1

T

T
∫

0

fnl(ζZ , ζ̇Z , ηE)dt

(8)

where the subscript notation indicates that the periodic,

time-domain signals ζZ and its derivative depend on the

components of Z, in a way analogous to (3).

B. Solution method

The dynamical equations are now expressed as (5), which,

for a given input E, is a non-linear vector equation of the form

G(Z) = 0 (9)

A Newton method can be used to solve (9). In particular,

for a given vector Z, the Jacobian matrix JG(Z) of G can

be explicitly derived, as detailed in [7]. Then, an approximate

solution of (9) is found by iteratively solving

G(Z(n)) + JG(Z
(n))(Z(n+1) − Z(n)) = 0R2N+1 (10)

until ‖G(Z)‖2 becomes smaller than a given threshold.

C. Practical issues

The main practical issues associated with the use of the

NLFD method are described in this subsection. Most of them

will be exemplified in Sections IV and V.

1) Initialisation and convergence issues: The initialisation

is instrumental in achieving a fast convergence of the method.

Typically, solving for the linearised dynamical equation (set-

ting Fnl to zero or approximating it in a linear way) can pro-

vide a judicious starting point for the algorithm. In some cases,

however, other initial guesses can be considered. For example,

concerning a heaving point-absorber, the wave elevation itself

can be used as a starting point.

Solving (9) using a simple Newton method is subject to two

main drawbacks:

• Convergence cannot be guaranteed, especially if the start-

ing point of the algorithm is too far from the actual

solution [11]. Even for relatively simple non-linear func-

tions, such as polynomials in just one or two dimensions,

the domain of convergence of Newton method is a

complicated mathematical problem.

• The Jacobian JG(Z) may be badly conditioned, in which

case the inversion problem (10) cannot be solved.

In order to enforce convergence, and ensure that the iterative

problem (10) is well-conditioned, more sophisticated root-

finding algorithms can be considered. For example, the algo-

rithms available in the commercial software MATLAB1, are

the trust-region, the trust-region dogleg, and the Levenberg-

Marquardt methods. For such techniques, the explicit Jacobian

computation as in [7] remains valuable since, otherwise, the

Jacobian is evaluated less accurately through finite differences.

2) Number, length and time-step of the simulations: The Ja-

cobian computation, at each iteration of the algorithm, requires

2N +1 fast Fourier transforms (FFTs). As a consequence, the

computational time:

• depends on the size of the problem, in N2 ln(N);
• increases linearly with the number of iterations before

convergence is achieved.

Therefore, the size of the problem has to be as small as pos-

sible, without compromising the result accuracy. Specifically,

N is determined as N = T × fmax, where :

• The simulation length, T , which is also the period

of the generated signal, determines the frequency step

∆f = 1/T . Too short a signal means that the frequency

contents of inputs and outputs are poorly represented.

In contrast, a long signal deteriorates the NLFD com-

putational performance. Therefore, for the same total

simulated time, many, relatively short simulations, should

always be privileged over fewer, longer runs, under the

condition that the frequency discretisation is accurate

enough.

• The cut-off frequency fmax is related to the time step as

fmax = 1/(2∆t). Even if the input wave spectrum is zero

for frequencies above fmax, non-linearities may result in

the WEC outputs having significant non-zero components

beyond fmax. Therefore, if fmax is chosen too small (or

equivalently ∆t too big), high-frequency dynamics can-

not be properly represented, and the algorithm may fail

in finding a solution with an error ‖G(Z)‖2 lower than

the target threshold. In contrast, choosing an excessively

small time step represents an unnecessary computational

burden, when the corresponding high frequencies are not

present in the device dynamics.

3) Random input generation: Another important factor

to consider is the way the amplitudes of the input wave

components are randomly generated. In most works in the

wave energy sector, the coefficients aη,n and bη,n of (3)

are randomly generated, following a “deterministic ampli-

tude scheme” (DAS), as aη,n = cos(Φn)
√

2S(fn)∆f and

bη,n = − sin(Φn)
√

2S(fn)∆f , where S(f) is the spectral

density function of the wave elevation process, and each Φn

is randomly chosen following a uniform distribution in [0; 2π].

1https://uk.mathworks.com/help/optim/ug/equation-solving-algorithms.html
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However, as explained in [12] and [13], in order to truly

represent the randomness of a Gaussian sea sampled over a fi-

nite time duration, aη,n and bη,n should be chosen, following a

“random amplitude scheme” (RAS), as aη,n = αn

√

S(fn)∆f
and bη,n = βn

√

S(fn)∆f , where each αn and βn is randomly

chosen following a standard normal distribution.

Although RAS is statistically correct, and thus may be

required for the study of specific statistical properties of the

WEC inputs or outputs, DAS has the advantage that power

estimates (calculated over the whole period of the generated

signal) present a significantly smaller variance than with

RAS2. However, it has to be ensured that the power estimates

using DAS do not introduce any significant bias, with respect

to RAS results.

Finally, regardless of the use of either DAS or RAS, the

statistical effect of the signal periodicity upon the outputs of

interest has to be carefully taken into account. If necessary,

the first or last part of each simulation may be discarded, in

order to avoid the unrealistic correlation between the first and

last points of the simulation [13].

III. NUMERICAL WEC MODELS

A. Heaving point-absorber with non-linear Froude-Krylov

forces

The WEC considered in this subsection is a spherical

heaving point-absorber, subject to reactive control, and for

which Froude-Krylov pressure forces are integrated over the

instantaneous wetted surface. This case study illustrates the

capability of the NLFD formalism to handle strong static and

velocity-dependent non-linear effects.

The only degree of freedom is in heave, and ζ denotes

the vertical coordinate of the device gravity centre (ζ = 0
in hydrostatic equilibrium).

The radiation and diffraction forces are modelled in a

linear way, using hydrodynamic coefficients obtained from the

hydrodynamic software NEMOH3.

Assuming infinite water depth, static and dynamic Froude-

Krylov forces are integrated analytically over the instantaneous

wetted surface of the sphere, similarly to [14]. However, a

more efficient implementation of the method into the NLFD

formalism involves a finite-order development of the dynamic

Froude-Krylov forces, described in more detail in the appendix

of [15]. Furthermore, a Wheeler stretching is applied to the

expression of the pressure field as a function of depth, so that

the total of the static and incident pressures is actually zero at

the free surface.

Finally, for a given irregular wave train characterised by

complex amplitudes A(ω) and wave numbers k(ω), the static

Froude-Krylov force can be expressed as:

~Fs(ζ
′, t) = ρgπ

[2

3
R3−R2ζ ′+

1

3
ζ ′3−η(t)(R2−ζ ′2)

]

~uz (11)

2The variance of the estimate obtained using DAS is even zero when the
WEC model is linear [13]

3https://lheea.ec-nantes.fr/doku.php/emo/nemoh/start

and the dynamic Froude-Krylov forces can be developed as

~Fdyn(ζ
′, t) =

[

I−1(t)ζ
′ + I−2(t)−

∞
∑

n=0

Jn(t)ζ
′n
]

~uz (12)

where ζ ′ denotes the position of the gravity centre relatively

to the free surface, and ∀n ∈ Z,

In(t) = 2πρg

∞
∫

0

ℜ{A(ω)eωt}k(ω)ndω (13)

and, ∀n ∈ N,

Jn(t) =
2πρg

n!

∞
∫

0

ℜ{A(ω)eωt}

× (
R

k(ω)
+

1

k(ω)2
)e−k(ω)Rk(ω)ndω,

(14)

For a given, finite set of random complex wave amplitudes,

the terms I−1(t), I−2(t) and Jn(t) are computed prior to

simulation, by means of FFTs. In practice, the magnitude of Jn
decreases quickly with the order n, which makes it sufficient

to develop (12) up to n = 2 or n = 3 only.

Viscous effects are modelled through a quadratic term of

the form fv(ζ̇) = −Bv|ζ̇|ζ̇.

The PTO force is composed of two terms: a linear damping

term −BPTO ζ̇, and a non-linear static restoring term of the

form us(ζ). The latter is a reactive control term, adapted to

the case where the WEC cross-sectional area is not constant:

us(ζ) =











KPTO

R2 ( 13ζ
3 −R2ζ) ζ ∈ [−R;R]

− 2
3KPTOR ζ ≥ R

2
3KPTOR ζ ≤ −R

(15)

As explained in [6] and [15], similarly to linear reactive

control, us enables to tune the device dynamics to the incident

wave period, on a sea-state by sea-state basis, while allowing

the control force and device motions to remain within reason-

able limits, in most cases. Fig. 1 shows the non-linear static

control force, as well as a non-linear static restoring force for

a spherical point-absorber.

A linear version of the spherical HPA is also implemented

(with linear hydrostatic restoring force and excitation force,

and with linear reactive control). More detail about the sphere

hydrodynamic model can be found in the Appendix of [15].

The presence of a reactive control term requires that some

care be taken, when physically interpreting the simulation

results. In the linear case, for example, if the PTO reactive

term is set at a higher value than the hydrostatic stiffness,

the total stiffness of the system is negative, which can lead

to unrealistic motions. With non-linear Froude-Krylov forces

and restoring terms, similar limitations must be expected, as

will be illustrated in V-A, although the physical interpretation

is significantly more complicated.
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Fig. 1. Linear and non-linear hydrostatic restoring force and PTO restoring
force models

B. Heaving point-absorber with Coulomb damping

The second WEC studied is a heaving cylinder, connected

to a hydraulic PTO system. The hydrodynamic model of the

cylinder is represented linearly, with frequency-domain coeffi-

cients computed using the hydrodynamic software NEMOH4.

The behaviour of the hydraulic PTO system is derived by

[16], in the simple case where the PTO resisting force Φ is

assumed to be constant. In this condition, the PTO force acting

on the device acts as a Coulomb damper: when the WEC is

moving, the PTO exerts a resisting force fPTO = −Φsign(ζ̇)
(“slip condition”). However, whenever the WEC velocity goes

to zero, the device stops moving (“stick condition”) until the

sum of all hydrodynamic forces overcomes Φ.

WEC motions corresponding to such a physical model are

non-smooth, and thus do not lend themselves easily to a

representation through a finite harmonic series. In a time-

domain simulation, the stick condition can be forced by

means of a simple if condition. In the NLFD formulation, the

PTO force is more problematic. In particular, the derivative

∂fPTO/∂ζ̇, required to compute the Jacobian JG, is not de-

fined in ζ̇ = 0. Therefore, the function fPTO(ζ̇) = −Φsign(ζ̇)
can be approximated by means of a function

f∗
PTO(ζ̇) = −Φ tanh(αζ̇), (16)

where the parameter α determines the accuracy of the

approximation.

IV. NUMERICAL SIMULATION RESULTS: NLFD

CAPABILITIES AND LIMITATIONS

A. Spherical heaving point-absorber

The spherical heaving point-absorber is simulated in two

conditions:

• a monochromatic, sinusoidal input wave with a 8 s period

and a 2 m amplitude;

• a JONSWAP [17] spectrum with Hs = 2 m and Tp = 8 s.

4https://lheea.ec-nantes.fr/doku.php/emo/nemoh/start

In both cases, the PTO parameters BPTO and KPTO are

manually set up so as to ensure resonance of the device in the

incoming wave - and hence magnify the non-linear effects.

Two simple initial guesses are considered for the solution

of the dynamical equations: the output for the linear WEC

model, and the free surface itself. Interestingly, the former

generally yields faster convergence (in only 2 iterations) but, in

a small minority of cases, causes the simple Newton algorithm

to fail in converging. This is because the solution of the linear

model leads to large-amplitude WEC motions (the device

being at times entirely emerged): with such extreme initial

solutions, it might happen, either that the Jacobian JG(Z)
be ill-conditioned, or that the initial solution be outside the

domain of convergence of the Newton algorithm. In contrast,

choosing the free surface as initial solution allows for system-

atic convergence of the method (generally in 3 iterations), and

is then selected.

In order to choose the parameters T and fmax (see II-C), the

polychromatic case is considered. It is found that increasing

T beyond 120 s does not bring any significant change in

power estimates, and that ∆t = 1/2fmax = 0.6 s suffices to

capture the device dynamics. Therefore the cut-off frequency is

1/2∆t ≈ 0.83Hz, and the frequency step is 1/T = 0.0083Hz,

so that the frequency range (from 0 to 0.83 Hz) is discretised

into 100 frequencies.

With the settings described above in terms of initial solution

and problem size, the NLFD algorithm converges quickly.

Running a large number of simulations, it is found that the

time per simulation is between 0.017 and 0.018 s (using a 3.50

GHz, 8-core Intel R© processor), so that obtaining the equiva-

lent of one hour of WEC output (i.e. 30 short simulations)

only takes approximately 0.5 s. For comparison, employing

a second-order Runge-Kutta (RK2) method, with a time-step

of 0.01 s and using direct computation of radiation forces, is

found to be between 50 and 60 times slower.

1) Response to monochromatic waves: The response of a

linear WEC model to a monochromatic wave is a sinusoid with

the same frequency as the input wave. In contrast, with non-

linear WEC models, there can be transfers of energy across

frequencies. The NLFD methodology allows for modelling

such non-linear cross-frequency transfers, which is illustrated

as follows: the spherical heaving point-absorber is simulated,

using NLFD, in a monochromatic input wave (with a 2-m

amplitude and a period approximately equal to 8 s). The output

of NLFD is given as a vector containing all the Fourier com-

ponents of the periodic, steady-state solution. Therefore, the

amplitude of the sinusoidal components at each frequency can

be readily computed, and compared with the linear response.

Fig. 2 shows the frequency-domain amplitude components

for the input wave elevation and for the WEC motion, obtained

from the linear and non-linear WEC models. Of course, the

input contains only one non-zero component, and so does the

linear WEC motion. The linear WEC motion amplitude is

twice the one of the wave, showing the resonance achieved

by the reactive control. The non-linear WEC response also

shows resonance at the wave frequency, with an amplitude
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Fig. 2. Linear and non-linear WEC frequency-domain response to a
monochromatic input wave

Fig. 3. Linear and non-linear WEC frequency-domain response to a JON-
SWAP spectrum

significantly larger than the wave - but not as large as the linear

response. Furthermore, non-zero components can be observed

outside the input wave frequency. Only two are clearly visible

on Fig. 2 (located at multiples of the input frequency), but

closer examination shows that a significant number of other

frequency components are non-zero. Hence, NLFD allows for

modelling the cross-frequency transfers due to the presence of

non-linear forces.

2) Response to polychromatic waves: Similarly to the

monochromatic case, the frequency-domain response of the

device to a JONSWAP spectrum can be estimated, using just

a couple of NLFD simulations. The amplitude responses for

both the linear and non-linear WEC models are shown in Fig.

3, where it can be seen that the presence of non-linearities

significantly distorts the output amplitude spectrum.

Finally, applying a simple FFT to the frequency-domain

outputs of the NLFD algorithm, the WEC motions can be

analysed in the time domain. As an illustration, Fig. 4 com-

pares the time-domain response of the non-linear spherical

WEC, obtained through NLFD and through RK2, as well as

the response of the linear WEC model.

The strong discrepancy between the linear and non-linear

results shows the importance of modelling non-linear effects

in this specific case (with reactive control making non-linear

effects more significant). The non-linear WEC responses,

obtained through numerical integration and NLFD, only differ

during the transient time (since, with NLFD, only the steady-

state response is computed).

B. Heaving point-absorber with non-smooth motion

The cylindrical HPA is simulated in a JONSWAP spectrum

with Hs = 1m and Tp = 8s. For the NLFD computation, the

sign function is approximated as in (16), with different α val-

ues, while in the time-domain integration, the stick condition

is implemented by means of an if loop. The simulation time

is set to T = 100s. ∆t is set to a relatively small value of

0.25 s to allow for approximating non-smooth motions.

When the occurrence of stick condition becomes significant,

i.e. for relatively high values of α and Φ, the simple Newton

algorithm fails in converging. Therefore, the more robust trust-

region dogleg method, readily-implemented in the commercial

software MATLAB, is used to solve for (9).

Fig. 5 shows the time-domain integration results, as well as

the NLFD results for a small and a high value of α. It can

be seen that with α = 10s/m, the approximation is poor with

respect to the correct dynamics (obtained through time-domain

integration). With higher values of α (such as α = 200s/m

in this example), the approximation improves significantly,

although still departing from the correct dynamics at times.

In terms of computational time, with α = 10s/m, the NLFD

method is two times faster than RK2 integration, but with

α = 200s/m, the NLFD computational time is twice the one of

RK2. For NLFD to approximate better the correct, sharp-edged

motions, the parameter α should be increased, as well as the

cut-off frequency, at additional computational cost. Overall,

NLFD is not a suitable simulation method for WECs with

such non-smooth outputs.

V. EXAMPLES OF APPLICATIONS

In this section, we show how the NLFD method can be used

for different types of applications: parametric optimisation,

statistical studies, and power assessment. Only the spherical

point-absorber is considered.

A. Parametric optimisation

In this subsection, the NLFD method is used in order to

optimise the non-linear PTO parameters BPTO and KPTO in

a JONSWAP sea state with Hs = 2m and Tp = 8s. A simple

exhaustive search approach is used, within which a discrete

range of KPTO and a range of BPTO values are defined, and

the WEC power output is evaluated for each KPTO, BPTO

pair.

There are 18 values for KPTO, and 13 values for BPTO.

Furthermore, for the average power estimate to be reliable, 10
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Fig. 4. Time-domain response for the linear WEC model, and time-domain response of the non-linear WEC model computed using NLFD and TD integration

Fig. 5. Time-domain response for the cylindrical point-absorber

simulations of length 120 s are run for each PTO combination.

Thus, there are in total 2340 simulations to run (corresponding

to more than 3 days of cumulative simulation time).

The result, in terms of average power output for each PTO

setting, is shown on Fig. 6. The time per simulation is 0.018

s, for a total time of 40 s. 3 or 4 iterations are generally

necessary to achieve convergence. However, for strong reactive

term values and small damping values, close to the optimal

setting, the simple Newton algorithm can fail in converging.

For those KPTO, BPTO combinations where convergence

is not achieved, closer analysis is carried out by considering

time-domain results: the NLFD results (not converged) are

shown on Fig. 7, along with the trajectory obtained through

RK2. The results suggest that some specific PTO settings tend

to make the WEC system unstable. Therefore, the convergence

issue in the NLFD algorithm can be related to the instability

of the physical model, and cannot necessarily be overcome by

means of a basic time-domain integration method.

As in Section IV-B, the more robust trust-region dog-

leg method, readily-implemented in the commercial software

MATLAB, can be used to solve the NLFD problem, when the

simple Newton method fails. However, the average computa-

Fig. 6. Average WEC power across the KPTO, BPTO space
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Fig. 7. Time-domain response for the spherical HPA for unstable PTO settings

Fig. 8. Average WEC power across the KPTO, BPTO space (robust
solution)

tional time per simulation becomes approximately 4 to 5 times

larger than for the simple Newton algorithm. Therefore, the

two methods are rather used in a complementary fashion, the

robust trust-region method being only used as a last resort,

when the simple Newton algorithm has not converged. The

computational time per simulation can thus be contained to

approximately 0.03 s.

Finally, an additional improvement consists of choosing the

initial solution of each NLFD simulation in a more clever way.

Indeed, the same 10 sets of random phases can be used for all

the PTO combinations (i.e. all the KPTO, BPTO combinations

are evaluated in the same wave signals). For a given set of

random phases, i.e. the same input wave signal, the solutions

of the dynamical equation for two neighbouring PTO settings

are likely to be close to each other. In order to exploit this idea,

the optimisation is now implemented in the following form:

For each set of random phases, and for each BPTO value,

KPTO is gradually incremented, and (9) is solved, using as

initial solution the result for the previous KPTO value (or the

free-surface itself for the first KPTO value).

In this way, the average number of iterations is reduced,

and the computational time per simulation is brought down

from 0.03 to approximately 0.025 s, which makes it possible

to carry out the exhaustive search, in a robust way, in less than

one minute. The corresponding results, now computed over the

whole parametric space, are shown in Fig. 8. In comparison,

RK2 is estimated to be approximately 40 times slower (and is

not robust to “extreme” PTO settings around the optimum).

B. Power assessment

Another purpose for which numerous simulations are nec-

essary is WEC power assessment. The general methodology

consists of using historical wave data for a specific location,

over typically a year or more, and estimating the average WEC

power output during the chosen duration. At every time step of

the period considered, i.e. typically every 1-3 hours, the power

output is computed from the knowledge of the wave spectrum.

As a consequence, power assessment involves the computation

of the WEC output in a large number of sea states, which is

carried out, in most studies, using the power matrix device

representation.

However, power matrices assume that all sea states can be

represented as parametric spectra, such as JONSWAP [17] or

Bretschneider [18]. As pointed out in [19], the resulting error

in power output calculations can be significant for some WEC

types and locations. Computationally efficient power output

calculation in each individual spectrum can avoid such errors.

As an illustration, Fig. 9 compares, for 3-hourly sea states,

the output predicted by a power matrix, with the output

estimated in the actual sea states by means of NLFD sim-

ulations. The wave data was recorded in 2010 in Belmullet,

and provided by the Irish Marine Institute5. The WEC model

considered is the same spherical HPA, with reactive control,

as in [15]. The use of a power matrix leads to significant error,

both on a sea-state by sea-state and on an annual basis. As in

[19], the broadness parameter ǫ0 is indicated on the figure, to

show that the error committed using a power matrix tends to

be larger for broader spectra, i.e. those which depart the most

from standard spectral shapes.

5http://www.marine.ie/Home/site-area/data-services/real-time-
observations/wave-buoys
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Fig. 9. Power output in each sea state, using a power matrix vs simulations
in the actual spectra

In terms of computational time, the NLFD technique makes

it possible to evaluate the power output, for all the 1500 three-

hourly spectra of the data set, in no more than 3 minutes.

C. Statistical studies

WEC design should aim at maximising power production,

while ensuring WEC survivability and limiting capital costs.

To this end, in addition to average power extraction, a variety

of other statistical measures of the WEC dynamics can be

useful at the WEC design stage. When defining the WEC

operational range and dimensioning its components, accurate

knowledge of the statistical distribution of specific variables,

such as displacement, velocity, forces, or instantaneous power,

in given sea conditions, constitutes important information.

For example, in studies such as [19], [20], the device

response amplitude operator (RAO) or its operational range (in

terms of sea condition) are limited, based on the probability

of exceeding some position threshold. The calibration of such

limitations could be usefully informed by a more accurate

consideration of the WEC non-linear dynamics, as illustrated

in Fig. 10(a), which shows the empirical probability density

function of the WEC position in a JONSWAP sea state with

Hs = 2m and Tp = 8s. In a similar fashion, Figs. 10(b)

and 10(c) could be used to define the dimensions of the PTO

system and of the generator.

WEC reliability assessment, for example in the framework

of a failure mode effects analysis (FMEA) [21], could also take

profit from extensive WEC simulation in order to estimate the

probability of failure of various components. Other statistics,

such as cycle counting, are also instrumental in detailed WEC

structural design, for fatigue analysis in particular (see Chapter

14 of [1]), and can also be derived empirically from numerous

WEC simulations in design sea states.

(a) SDF of the WEC position

(b) SDF of the PTO force

(c) SDF of the instantaneous absorbed power

Fig. 10. Empirical probability density function (PDF) of various physical
variables, obtained using 120× 500 = 60, 000 s of simulation

VI. DISCUSSION AND CONCLUSIONS

A. NLFD and practical issues

It has been shown how a NLFD formulation can be used

to transform the dynamical equation into a non-linear vector

equation, which can be efficiently solved using gradient-based

zero-finding algorithms. The main practical issues associated

with the use of the NLFD simulation method are the possible

convergence problems of the chosen solution algorithm, the

settings related to problem sizing (length and sampling time

of the input periodic signal), and the method for random wave

input generation.

In particular, to take full advantage of the NLFD formu-

lation in terms of computational time, many, relatively short

simulations should always be favoured over fewer, longer ones

(for the same total simulated time); however, it has to be

ensured that the corresponding frequency discretisation does

not introduce any significant error in the WEC output.

Where necessary, robustness issues can be overcome

through more sophisticated root-finding algorithms than a
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simple Newton method, at the expense of less computational

efficiency.

B. Range of capabilities

In terms of WEC dynamics, NLFD allows for handling

strong non-linear dynamics, provided that the WEC outputs

remain smooth, i.e. continuously differentiable. The method

also allows for modelling cross-frequency energy transfers.

In contrast, the NLFD does not seem suitable for the non-

smooth dynamics related to some specific PTO designs. More

generally, a detailed analysis of PTO components is likely

to include high-frequency dynamics, for which the NLFD

formulation may not be particularly relevant in comparison

to time-domain numerical integration.

Finally, considering the Coulomb damping (Section IV-B)

and the parametric optimisation (Section V-A) examples, it

is interesting to note that it seems to be more difficult for

the algorithm to find a solution to the non-linear dynamical

equation, when the underlying physical model becomes more

“extreme”, nay unstable. In particular, the algorithm may not

converge if the dynamical equation do not admit a steady-state

solution. Thus, the existence and significance of the NLFD

results depend on the consistency of the underlying analytical

physical model, which must then be carefully designed.

C. Application examples

The small computational time associated with NLFD

method makes it particularly suitable for applications involv-

ing a large number of simulations.

In parametric optimisation, the modest computational time

of NLFD brings the exploration of a wide range of parameters

within computational reach, while preserving a suitable repre-

sentation of non-linear effects. Furthermore, for small, gradual

variations in the parameters, and using the same input waves,

it is possible to use the NLFD solution as initial condition

for a neighbouring set of parameters, which can considerably

enhance the computational performance.

For WEC power assessment, using NLFD to carry out

extensive WEC simulation, in every individual sea state, can

usefully avoid the errors associated with the use of a power

matrix, while taking into account non-linear dynamics, at a

limited computational expense.

NLFD simulations could also bring more insight into studies

related to the WEC dimensioning and reliability: the modifica-

tions of the output statistics induced by non-linear effects can

be duly represented; furthermore, a large set of time-domain

trajectories can be easily obtained in a short amount of time,

which can be used for fatigue analysis.
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