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ABSTRACT
Accurate and computationally efficient mathematical mod-

els are fundamental for designing, optimizing, and controlling
wave energy converters. Wave energy devices are likely to ex-
hibit significant nonlinear behaviour, over their full operational
envelope, so that nonlinear models may become indispensable.

Froude-Krylov nonlinearities are of great importance in
point absorbers but, in general, their calculation requires an
often unacceptable increase in model complexity and computa-
tional time. However, if the body is assumed to be axisymmetric,
it is possible to describe the whole geometry analytically, thereby
allowing faster calculation of nonlinear Froude-Krylov forces.

In this paper, a convenient parametrization of axisymmet-
ric body geometries is proposed, applicable to devices moving
in surge, heave, and pitch. In general, the Froude-Krylov inte-
grals must be solved numerically. Assuming small pitch angles,
it is possible to further simplify the problem, and achieve an al-
gebraic solution, which is considerably faster than numerical in-
tegration.

NOMENCLATURE
p Pressure.
γ Specific weight of the sea water.
η Free surface elevation.
a = Hw

2 Wave amplitude.
ω = 2π

Tw
Wave frequency.

∗Address all correspondence to this author.

χ = 2π

λ
Wave number.

h Water depth.
S(t) Instantaneous wetted surface.
Fg Gravity force.
WEC Wave energy converter.
FK Froude-Krylov.
LFK Linear method for computing FK forces.
VFK Algebraic nonlinear FK forces with vertical coordinates.
RFK Numerical nonlinear FK forces with rotating coordinates.

1 INTRODUCTION
Mathematical models are indispensable for designing, opti-

mizing, and controlling wave energy converters (WECs). Ideally,
such models are required to be both accurate and computation-
ally efficient. The most popular models are linear, which are
convenient for their short computation time, but accurate only
for small relative fluid/body motions. Conversely, wave energy
converters are likely to experience large movements, especially
under controlled conditions, in order to maximize the power ab-
sorption. Consequently, significant nonlinear effects may arise,
so that linear models become less reliable [1].

The inclusion of nonlinear terms in the equation of mo-
tion may improve the accuracy of the model, but with addi-
tional complexity and computational burden. In particular, it has
been shown, in the literature, that nonlinear Froude-Krylov (FK)
forces, which are the integral of the static and dynamic pressure
over the wetted surface of the device, are especially important
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for point absorbers [2]. Furthermore, nonlinear FK forces are re-
sponsible for purely-nonlinear phenomena, such as pitching in-
stability or parametric roll [3].

For geometries of arbitrary complexity, the computation of
nonlinear FK forces first requires the discretization of the sur-
face with a mesh, and then the employment of a time-consuming
remeshing routine, at each time step, in order to calculate the
instantaneous wetted surface of the device [4]. However, if the
body is assumed to be axisymmetric, it is possible to describe
the complete geometry analytically, thereby avoiding the use of
a mesh [5]. Note that such a hypothesis is not particularly restric-
tive, since the vast majority, if not the totality, of point absorbers
are designed to be non-directional, and are therefore axisymmet-
ric. Due to the analytical description of the geometry, the com-
putation of nonlinear FK forces is considerably faster than the
meshing approach.

In this paper, a convenient parametrization of axisymmet-
ric surfaces is proposed, applicable to devices moving in three
degrees of freedom, allowing an analytical description of non-
linear FK forces in surge, heave, and pitch. In general, the FK
integrals must be solved numerically using, for example, a trape-
zoidal rule. Assuming small pitch angles, it is possible to further
simplify the problem, and achieve an algebraic solution, which is
considerably faster than numerical integration. Hereafter, LFK is
used as the acronym for linear FK force, VFK for the algebraic-
nonlinear model (since it assumes a vertical geometry), and RFK
for the numerical-nonlinear model (since it considers a rotating
geometry).

The application of these three different approaches to the
FK force calculation (linear, algebraic-nonlinear, and numerical-
nonlinear) may depend on the particular purpose the mathemat-
ical model is intended for. For preliminary studies, shape opti-
mization, or WEC farm configuration analysis, many iterations
are required; therefore, the requirement for fast calculation pre-
vails over the accuracy requirement. In case of power produc-
tion assessment, or control optimization routines, a higher level
of accuracy is of great importance, at a significantly low com-
putational time; therefore, the algebraic-nonlinear approach may
be the most appropriate. Finally, higher degree of accuracy is
needed in order to compute maximum loads (for the design of
the mechanical properties of the structure and mooring lines), or
for verifying the likelihood of events such as instability or para-
metric roll. In such cases, the numerical-nonlinear method may
be preferred.

However, the choice between the LFK, VFK, and RFK,
strongly depends on the operational space spanned by the device
in its operating conditions, in particular the heave displacement
and the pitch angle. In fact, for small motions, linear assumptions
are reasonably valid, and all models effectively overlap. Con-
versely, when the device experiences large motions, typically in-
duced by the control strategy, important differences between the
models may arise.

The purpose of this paper is to provide a simple and com-
putationally convenient formulation for nonlinear FK forces for
axisymmetric wave energy converters, moving in surge, heave,
and pitch. A case study is then considered, inspired by the Cor-
Power device [6], in order to quantify differences in accuracy and
computation time for linear, algebraic-nonlinear and numerical-
nonlinear models. The remainder of the paper is organized as
follows: Sect. 2 presents the different methods to compute FK
forces, which are validated in Sect. 3. Some results and discus-
sions are presented in Sect. 4, and final remarks and conclusions
are given in Sect. 5.

2 FROUDE-KRYLOV FORCE
In the framework of linear potential theory, FK forces corre-

spond to the integral of the pressure of the undisturbed wave field
over the wetted surface of the device. Such a pressure is defined,
according to linear Airy’s theory, as:

p(x,z, t)= pst + pdy =−γz+γa
cosh(χ (z+h))

cosh(χh)
cos(ωt−χx+ϕ)

(1)
where pst =−γz is the static pressure, pdy the dynamic pres-

sure, γ the specific weight of the sea water, a the wave amplitude,
χ the wave number, ω the wave frequency, ϕ an arbitrary phase
(usually set to zero), h the water depth, defined according to a
right-handed inertial frame of reference Oxyz, with the origin at
the still water level (SWL), x pointing in the direction of prop-
agation of the wave, and z pointing upwards. The free surface
elevation η is defined as

η(x, t) = acos(ωt−χx+ϕ) (2)

Note that, for the irregular wave case, pdy and η are defined
as superposition of different frequency components, so that the
method, described in this paper for regular waves, is straightfor-
ward to generalize to irregular waves, as shown in [7]. Froude-
Krylov forces are computed by integrating the pressure, shown in
equation (1), over the instantaneous wetted surface S(t). In par-
ticular, static and dynamic FK force components can be defined,
respectively, as follows:

FFKs = Fg +
∫∫
S(t)

−γzndS (3a)

FFKd =
∫∫
S(t)

pdyndS (3b)
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TABLE 1: SUMMARY OF THE MAIN DIFFERENCES BETWEEN THE THREE FROUDE-KRYLOV MODELLING AP-
PROACHES FOR AXISYMMETRIC BUOYS.

LFK VFK RFK
Linear Froude-Krylov (FK) Algebraic nonlinear FK Numerical nonlinear FK

Wetted surface S(t) Constant Instantaneous Instantaneous
Pitch angle δ 0 0 δ

Free surface η (x, t) 0 η (t) η (x, t)
Computational time + ++ +++

where n=(nx,ny,nz) is the unit vector normal to the surface,
pointing outwards, and Fg is the gravity force. Likewise, FK
torques are defined as follows:

TFKs = r×Fg +
∫∫
S(t)

−γzr×ndS (4a)

TFKd =
∫∫
S(t)

pdyr×ndS (4b)

where r is the position vector, defined as (x,y,z), and × is
the cross product.

For a geometry of arbitrary complexity, it is not possible
to solve the FK integrals, from (3a) to (4b). Linear boundary-
element solvers linearize the problem around the still water level
(SWL: z = η = 0), therefore considering a constant wetted sur-
face.

Alternatively, the geometry can be discretized through a
mesh, computing the contribution to the force over each mesh
panel [4]. Such an approach is computationally expensive, due
to the recalculation, at each time step, of the instantaneous wetted
surface, and consequent remeshing of the geometry. For axisym-
metric buoys, a convenient parametrization of the wetted surface
can ease the calculation of the FK integrals. In particular, com-
putationally efficient algebraic solutions of the FK integrals exist
for vertical axisymmetric buoys [5]. Such a method is further
described in Sect. 2.2.

If the body is pitching as well, numerical integration is re-
quired. Such a method is further described in Sect. 2.1. Table 1
summarises the main different characteristics of LFK, VFK, and
RFK, highlighting different assumptions and, qualitatively, dif-
ferent computational time requirements. Quantitative accuracy

and computational time comparisons are presented in Sects. 3
and 4.

2.1 Nonlinear Froude-Krylov Force: Algebraic Inte-
gration

Both the algebraic (VFK) and the numerical (RFK) integra-
tion approaches rely on the assumption of axisymmetric geome-
try, which allows the analytical description of the whole wetted
surface. The geometry of a generic axisymmetric buoy with ver-
tical axis can be described in cylindrical coordinates, as follows:

FIGURE 1: AXISYMMETRIC VERTICAL DEVICE WITH
GENERIC PROFILE OF REVOLUTION f (ρ).
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x(ρ,θ) = xG + f (ρ)cosθ

y(ρ,θ) = f (ρ)sinθ

z(ρ,θ) = zG +ρ

, θ ∈ [−π,π)∧ρ ∈ [ρ1,ρ2]

(5)
where f (ρ) is a generic function of the vertical coordinate

ρ , describing the profile of revolution of the axisymmetric body,
as shown in Fig. 1. The centre of gravity (CoG) which, at rest,
is assumed to lie on the axis at (0,0,zCoG), moves about the x−
and z− axis of xG and zG, respectively.

The change of coordinates, from the Cartesian (x,y,z) to the
cylindrical (ρ,θ), requires the inclusion of

∥∥eρ × eθ

∥∥ in the inte-
gral, where eρ and eθ are unity vectors in the ρ and θ directions,
respectively. Furthermore, n can be expressed as eρ×eθ

‖eρ×eθ‖ . Sim-

plifying the denominator of n, it follows that the integral in (3b),
for example, becomes:

FFKd =
∫∫
S(t)

pdy(x,y,z)ndS =

θ2∫
θ1

ρ2∫
ρ1

pdy(ρ,θ)
(
eρ × eθ

)
dρ dθ

(6)
The cross product of the unity vectors is defined as follows:

eρ×eθ =

 f ′(ρ)cosθ

f ′(ρ)sinθ

1

×
− f (ρ)sinθ

f (ρ)cosθ

0

= f (ρ)

−cosθ

−sinθ

f ′(ρ)


(7)

Likewise, for the torque integrals:

r× (eρ × eθ ) =

 f (ρ)cosθ

f (ρ)sinθ

ρ

× f (ρ)

−cosθ

−sinθ

f ′(ρ)

 (8)

The integral in (6) can be algebraically solved, for a verti-
cal axisymmetric buoy, only if ρ2 (the top limit of integration)
is horizontal. Therefore, ρ2 is set constant, and equal to the free
surface elevation at the axis of the buoy. Such a condition is quite
accurate if the wave length is much longer than the characteristic
horizontal dimension of the device at the free surface elevation,
which is often the case. Finally, note that, for the computation of
nonlinear FK forces, it is advantageous to apply Wheeler stretch-
ing to the dynamic pressure in equation (1) [7].

2.2 Nonlinear Froude-Krylov Force: Numerical Inte-
gration

The analytical description of the rotated axisymmetric body,
pitching at an angle δ about an axis parallel to the y-axis, and
passing through CoG = (xG,0,zCoG + zG), can be obtained by
applying a rigid rotation matrix to the vertical coordinate system
in (5), giving:


x(ρ̂,θ) = f ( ρ̂

cosδ
)cosθ cosδ + ρ̂ tanδ − zCoG sinδ + xG

y(ρ̂,θ) = f ( ρ̂

cosδ
)sinθ

z(ρ̂,θ) =− f ( ρ̂

cosδ
)cosθ sinδ + ρ̂ + zCoG(1− cosδ )+ zG

(9)
where ρ̂ is a temporary parameter, which will be substituted

shortly, in order to solve the following problem: with the current
formulation of z(ρ̂,θ), it is not straightforward (or possible, in
some cases) to extract the value of the integral limits, ρ̂1 or ρ̂2, in
order to satisfy an arbitrary condition z(ρ̂,θ) = z∗. In particular,
it is impossible to define the value of the top limit ρ̂2 such that
z∗ = η = acos(ωt−χx(ρ̂,θ)+ϕ).

It is therefore convenient to re-parametrize the surface, using
a new parameter, such that z(ρ,θ) = ρ , so that any arbitrary con-
ditions can be easily imposed, just as ρ2 = z∗. By applying the
substitution z = ρ in (9), the new coordinate system is defined,
as follows:


x(ρ,θ) = f ( h(ρ,θ)

cosδ
)cosθ cosδ +h(ρ,θ) tanδ − zCoG sinδ + xG

y(ρ,θ) = f ( h(ρ,θ)
cosδ

)sinθ

z(ρ,θ) = ρ

(10)
where h(ρ,θ) is a functional depending on the particular

geometry. Typical examples are given:

- Cylinder, with f (ρ) = R:
h(ρ,θ) = ρ +Rcosθ sinδ + zCoG(cosδ −1)

- Cone, with f (ρ) = mρ +q:
h(ρ,θ) = ρ−zG+qcosθ sinδ+zCoG(cosδ−1)

1−mcosθ tanδ

Using equation (10), the unity vectors eρ and eθ can be cal-
culated, and the nonlinear FK integrals can be defined. Such
integrals must be solved numerically using, for example, a trape-
zoidal rule. The computational time depends on the numerical
scheme utilized, and on the relative and absolute tolerances used
to approximate the integral, which have been set to 0.1 and 100,
respectively, based on the numerical value of the expected forces
and on a sensitivity analysis. Furthermore, it is convenient to
compute the static and dynamic FK forces together, in order to
reduce the number of integrals to be solved. Finally, we can note
that computing the integral with the coordinate system in (10) is
faster than using the coordinates in (9).
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FIGURE 2: VALIDATION, IN LINEAR CONDITIONS, OF THE RFK METHOD ( ), COMPARED WITH LINEAR RESULTS
FOR THE CORPOWER BUOY ROTATED BY 15◦ ( ). FOR COMPARISON, THE VFK METHOD IS PRESENTED ( ),
WHICH REFERS TO A VERTICAL BUOY.

Eventually, the actual value of the computational time de-
pends on the complexity of the geometry. Indeed, real buoys
may be a combination of different sections, typically cylinders
and cones, as in the case shown in Table 1. Each section of the
buoy requires an individual integral. For the CorPower geome-
try, which is described in Sect. 3, it is found that the numerical
integration scheme is, on average, about 80 times slower than
the algebraic integration, where the computational time of the
VFK method is of the order of magnitude of 10−4s. However, it
is important to point out that all the calculations are performed
in Matlab, which is between one and two orders of magnitude
slower than lower level coding languages [8].

3 VALIDATION
Several checks have been performed, in order to ensure the

code to be correct and reliable. The surface of several simple
geometries, generated with either the vertical or the rotated cylin-
drical coordinates, has been visually inspected, with particular
care on the ability to correctly represent the intersection between
the rotated buoy and the free surface elevation. All the algebraic
calculations have been checked via the symbolic calculation soft-
ware Wolfram Mathematica [9], and effectively compared with
numerical integration. Furthermore, surface and volume inte-
grals have been computed, in order to calculate the surface and

volume of sample geometries (cylinders and cones), either verti-
cal or rotated.

Linear boundary element (BEM) codes can be used to vali-
date the static and dynamic FK integrals; using very small mo-
tions and wave amplitudes, the nonlinear models should overlap
with linear results. Hereafter, a particular device is taken into ac-
count for the computation of FK forces, based on the CorPower
device [6], whose shape is shown in Table 1. Based on [10], the
device specifications are shown in Fig. 3.

The BEM code WAMIT [11] is used to calculate the linear
surge, heave, and pitch hydrodynamic stiffness and the linear dy-
namic FK force for the vertical device. The nonlinear static FK
forces are calculated with the VFK and RFK method, using very
small displacements, 0.01m and 0.01rad, while the nonlinear dy-
namic FK forces are computed with waves of different periods
Tw, and height Hw = 0.01m. The three models (LFK, VFK, and
RFK) return the very same results, validating the method in lin-
ear conditions. Note that, in general, the RFK method converges
to the VFK method when the pitch angle is zero.

A second configuration is run in WAMIT, considering the
geometry statically rotated by 15◦ around its centre of gravity, in
order to compute the hydrostatic stiffness and FK force linearized
around a non-zero pitch angle, and validate the RFK method for
a rotated geometry. Figure 2 shows the validation of the dynamic
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FIGURE 4: FK FORCES FOR THE CORPOWER BUOY, FIXED AT zG =−1.5m AND δ =−15◦, AS SHOWN IN THE FIGURE ON
THE LEFT, SUBJECT TO A WAVE WITH Hw = 2m AND Tw = 10s, ACCORDING TO LFK ( ), VFK ( ), AND RFK ( ).

FIGURE 3: SHAPE AND DIMENSIONS OF THE CASE
STUDY BUOY, INSPIRED BY THE CORPOWER DEVICE.

FK force amplitude coefficients and phase lags, with respect to
the free surface elevation.

On the one hand, the LFK and RFK models are almost per-
fectly overlapping, both for the amplitude and phase. The slight
differences are due to an approximation that the BEM code in-

troduces, due to the meshed geometry, as supposed to the actual
analytical geometry, considered in RFK. On the other hand, the
VFK curve describes the dynamic forces for the vertical geom-
etry instead. From the comparison between VFK and RFK, it is
interesting to notice that there is a phase difference in all three
degrees of freedom. While the phase is constant for the vertical
buoy (VFK), it is frequency-dependent for the rotated one (RFK).

Furthermore, it can be noted that the amplitudes of surge
and heave are the almost the same, while are significantly dif-
ferent for the pitch torque. Such a difference can be explained
considering which translation forces (surge and/or heave) con-
tribute to the formation of the pitch torque: for a vertical buoy,
the heave forces have, overall, no contribution to the torque, due
to the axisymmetric geometry. In fact, the pitch profile has the
same shape of the surge one. Conversely, for a rotated buoy, both
surge and heave contribute to the pitch torque, which resembles
the profile of the surge curve at low periods (large surge, small
heave), and vice versa at high periods (small surge, large heave).
Similar considerations can be seen for the phase lags.

4 RESULTS AND DISCUSSION
The relative disparity in accuracy between the three methods

(LFK, VFK, and RFK) depends on four different factors: two
concerning the position of the device (zG and δ ), and two con-
cerning the wave characteristics (Hw and Tw). Therefore, regular
waves are considered, in order to study the specific dependence

6 Copyright © 2018 by ASME



on Hw and Tw. Most importantly, higher waves induce larger
variations in the wetted surface during the wave cycle, inducing
more significant nonlinearities. On the other hand, the LFK and
VFK methods converge for small values of zG; similarly, VFK
and RFK converge for small values of δ . Given the typical oscil-
latory response of a WEC, differences between models vanish in
that part of the response cycle corresponding to a zero crossing,
while they are maximal at the peaks and troughs of the oscilla-
tion.

In order to understand how linear and nonlinear models vary
and differ from each other, and how they depend on zG and δ ,
surge, heave, and pitch, static and dynamic FK forces are com-
puted, for several different regular waves, having fixed the de-
vice in a particular position. An example of the such forces
is presented in Fig. 4. The following ranges are considered:
Tw ∈ [4s,15s], with 1s step; Hw ∈ [0.5m,3m], with 0.5m step;
zG ∈ [−3m,3m], with 0.25m step; δ ∈ [−15◦,15◦], with 1.5◦

step. Static and dynamic FK forces are examined in Sects. 4.1
and 4.2, respectively.

4.1 Static Froude-Krylov forces
The static surge FK force (Fs

st ) is zero for both LFK and
VFK since, for a vertical buoy, regardless the instantaneous wet-
ted surface, static pressure contributions at diametrically oppo-
site points cancel out. Note that, in the case of VFK, such a
result is the consequence of the flat surface elevation assump-
tion. Indeed, using the RFK model for a vertical buoy would
return a non-zero Fs

st , since the actual (not flattened) free surface
is considered.

For a rotated geometry, Fs
st is non-zero since part of the ge-

ometry pierces the water and, therefore, does not have a diamet-
rically opposite point. In particular, it can be noted, from Fig. 4,
that the frequency of Fs

st is about twice the wave frequency. In
fact, Fs

st is zero twice as often as η is zero: firstly, when η has
its peak/trough on the buoy axis, so that pst is symmetric with
respect to the y− z plane; secondly, when η is zero on the buoy
axis, so that pst is symmetric with respect to the x− y axis. In
both cases, the contributions from diametrically opposite points
cancel out. However, such variations have small importance,
since the static surge FK force is always one or two orders of
magnitudes smaller than the heave force.

As shown in Fig. 4, the static heave FK force (Fh
st ) is linear,

for the VFK model, when η intersects the cylinder section, while
becoming nonlinear in the cone section, since the cross sectional
area is not constant. A more general representation on how Fh

st
varies can be achieved using an “equivalent” stiffness, where Fh

st
is divided by zG. Figure 5 shows such an equivalent stiffness for
a particular wave, at δ = 15◦, and varying zG. Results for the
nonlinear VFK and RFK models are represented by areas, since
Fh

st is not constant.
The VFK model coincides with the LFK for small vertical
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·105
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VFK VFKLFK
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z G
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FIGURE 5: EQUIVALENT STATIC HEAVE FROUDE-
KRYLOV FORCE FOR THE CORPOWER BUOY, ROTATED
OF δ = −15◦, SUBJECT TO A WAVE WITH Hw = 2m AND
Tw = 10s, ACCORDING TO LFK ( ), VFK ( ), AND
RFK ( ).

displacements, since η intersects the buoy only at the cylinder
section, while differences are found at larger zG. Conversely,
RFK is always nonlinear, since the actual rotated geometry is
considered. Note that a larger equivalent stiffness for small zG
does not mean a larger error; in fact, the difference appears larger
just because Fh

st is divided by a smaller zG.
The nonlinearity/variability of Fh

st , for both the VFK and
RFK models, depends on which buoy section is engaged by η . In
particular, larger errors are introduced by the top cone (engaged
when zG is large and negative), which has a more pronounced
slope than the bottom cone (engaged when zG is large and posi-
tive), since the rate of change of the cross sectional area of the top
cone is greater. Note that similar graphs can be drawn for differ-
ent Tw and Hw. While the equivalent heave stiffness is largely in-
sensitive to the wave period, larger wave heights introduce larger
errors, since larger changes of the wetted surface appear.

Finally, the static pitch FK torque (F p
st ) is considered. Figure

6 presents F p
st for different zG and δ , for a sample wave of Tw =

10s and Hw = 2m. Only positive pitch angles are shown, since
results are symmetric. Given the variability of nonlinear F p

st , as
shown in Fig. 4, the mean torque is presented, along with error
bars, whose length is equal to the standard deviation of the static
torque, over one wave period. Overall, the variability is quite
small, compared to the mean values, apart from a very negative
zG, where the highly nonlinear top cone intersects η .

Obviously, the RFK model significantly overlaps with the
LFK model for very small zG, and diverges from it with when the
absolute value of either δ or zG increases. Furthermore, for ver-
tical displacements larger than 1.75m, the static torque changes
sign, contributing to drive the buoy away from the equilibrium
position, as opposed to acting as a restoring torque, which is the
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case in a linear model.
Finally, as in Fig. 5, Fig. 6 shows a significantly insensitivity

of F p
st to Tw, while larger values of Hw cause slightly smaller

absolute mean values of F p
st , and slightly increased variability.

4.2 Dynamic Froude-Krylov forces
In order to discuss differences between the three models

in calculating dynamic FK forces, the normalized root mean
squared error (NRMSE) is used. Such an error is computed
with respect to the RFK model, which is effectively retained as
the benchmark. The normalization is performed with respect to
the maximum absolute value of either the torque, for the pitch
torque, or the magnitude of the vectorial sum of surge and heave,
for surge and heave forces. In this way, the error of each linear
force component is weighted with its impact on the total force
(namely errors on surge are less important than errors on heave,
since the heave force is typically much larger than the surge one).
Results are shown in Fig. 7 and 8.

Indeed, it can be seen that errors in surge are smaller than
those in heave and pitch. Figure 7 shows that the VFK model
is much better than the LFK model, especially for larger zG, and
is largely symmetric with respect to zG. However, there is small
influence of δ . Figure 8 shows that errors increase at smaller
Tw, mainly due to the phase difference discussed in Sect. 3, and
shown in Fig. 2. Furthermore, the surge error becomes more
relevant, at small Tw, because the surge force increases for shorter
waves. Indeed, since the surge force depends more on the wave
length than the wave height, the error is less sensitive to Hw.

With reference to the dynamic FK force in heave, shown

in Fig. 7, it can be noted that the VFK model is much better
than the LFK model for negative zG (where the top cone is en-
gaged), while quite similar errors are evident for small or positive
zG (where either the cylindre or the bottom cone are engaged).
Considering Fig. 8, similarly to the surge errors, heave errors in-
crease at smaller Tw, mainly due to larger phase difference (see
Fig. 2). Moreover, larger errors are found at larger Hw, since the
wave height is the main driver of the heave force.

Finally, errors in pitch torque, in Fig. 7, are large for almost
all zG and δ , apart from very small pitch angles, for both the LFK
and VFK models. However, both in Fig. 7 and Fig. 8, the VFK
model is better than the LFK model.

5 CONCLUSION
This paper discusses the importance and relevance of nonlin-

ear Froude-Krylov force representation for axisymmetric wave
energy converters, moving in surge, heave, and pitch. The as-
sumption of an axisymmetric device makes the analytical de-
scription of the surface of the device possible, therefore avoiding
the use of time-consuming mesh-based approaches. In particular,
two computationally convenient methods are proposed: one us-
ing a numerical integration scheme, the other algebraically solv-
ing the Froude-Krylov integrals, relying on the assumption of
small pitch angles.

As a case study, the CorPower wave energy device is consid-
ered. After validation, a parametric study is performed, in order
to discuss the accuracy and differences between different mod-
els. Overall, it is found that significant nonlinearities in surge
and heave appear when the fluid intersects the conical sections
of the buoy, therefore mainly depending on the heave position
zG, and the wave height Hw. However, nonlinearities in surge,
even though they are present, seem to be of little relevance, due
to their smaller amplitude, compared to heave FK forces. On the
contrary, nonlinearities in pitch appear to be important for a wide
range of device positions (zG and δ ) and waves (Tw and Hw).

In order to discuss the true importance of nonlinear effects,
the response of the WEC must be considered, so that the effective
dynamics of the system are taken into account, and only the ac-
tual operational space of the device is investigated. Future work
will deal with the simulation of the WEC response, subject to
regular and irregular waves, and depending on different control
strategies, which are likely to enhance nonlinear effects.

Furthermore, as future work, it should be possible to build
a hybrid nonlinear Froude-Krylov model to compute each force
with an appropriate model, in order to achieve a homogeneous
level of accuracy. As an example, one plausible option is to use
a linear model for surge, an algebraic-nonlinear model for heave,
and a numerical-nonlinear model for pitch. The objective is to
define a parsimonious model, which achieves the best compro-
mise of accuracy and speed, focusing the computational effort
only where needed.
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