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A B S T R A C T

Non-linear, power-maximising control of wave energy converters (WECs) can be achieved within a receding-
horizon control framework, whereby an upper loop calculates a reference trajectory in real-time, ensuring
maximal power absorption under operational constraints, while a tracking loop drives the device along the
generated trajectory. This paper articulates the four fundamental components of such a control strategy: reference
generation calculations, tracking loop, and wave excitation estimation and forecasting. The upper-loop optimisation
problem is efficiently solved through a Fourier spectral method, taking into account non-linear dynamics and
constraints. Tracking is achieved through a linear state feedback, combined with a non-linear feed-forward term.
An extended Kalman filter is used for excitation force estimation, based on noisy WEC position and acceleration
measurements. Finally, wave excitation forecasts are based on a linear predictor, whose coefficients are derived
from the wave spectrum (on a sea-state-by-sea-state basis). The practical issues and trade-offs, which arise when
the four components listed above are combined within a practical implementation, are investigated by means of
realistic numerical simulations, using a WEC model comprising a combination of static and velocity-dependent
non-linear forces.

1. Introduction

Power-maximising control has the potential to significantly improve
the economic competitiveness of WECs (Ringwood, Bacelli, & Fusco,
2014). However, the practical implementation of real-time WEC control
faces significant technical barriers, including the following:

• Due, in particular, to radiation force memory effects, the op-
timal control law for WEC power maximisation is, in general,
non-causal, i.e. the knowledge of future wave excitation is re-
quired (Falnes, 2002);

• As stressed in Penalba Retes, Mérigaud, Gilloteaux, and Ringwood
(2015), hydrodynamic non-linearities tend to be highlighted under
actively controlled conditions compared to, for example, passive
linear damping. In addition, non-linear dynamics may also stem
from the characteristics of the power take-off (PTO) machinery
or from other physical components, such as the mooring system.
Therefore, a realistic WEC control system should be able to
accommodate non-linear effects where appropriate;

• Operational constraints must be taken into account, to prevent the
WEC or PTO system from exceeding its physical limitations.

Receding-horizon control provides a relevant framework to address
these challenges, via the following characteristics:
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• Taking into account wave excitation forecasts over a finite time
horizon, the optimal control force or WEC trajectory is calculated
in real time, and updated as new wave input forecasts become
available (Gieske, 2007);

• The optimal control force or trajectory calculation, which is in
essence an optimisation problem, can take into account non-linear
WEC dynamics and operational constraints.

The general receding-horizon WEC control philosophy is illustrated in
Fig. 1, showing the reference WEC velocity (optimal velocity prediction)
updated at two consecutive time steps. The true optimal velocity is the
one which would maximise power absorption, if the true wave excitation
signal was perfectly known over an infinite time horizon. As illustrated
in the figure, the optimal velocity, which is calculated within a finite-
horizon window, differs from the true optimal velocity.

Due to the consecutive updates of the reference trajectory or control
input, a receding-horizon control scheme involves sequential use of
an efficient optimisation algorithm. Regardless of whether such an
algorithm generates a reference trajectory, control force, or both, it will
be termed ‘reference generator’ (RG).

Receding-horizon WEC control strategies are reviewed in Faedo,
Olaya, and Ringwood (2017). The majority of studies use linear or non-
linear model predictive control (MPC) as a RG, where the variables
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Fig. 1. Receding-horizon WEC control philosophy — optimal velocity trajectory updates
at two consecutive time steps. Solid blue (resp. orange): true wave excitation (resp.
true optimal WEC trajectory). Dashed blue (resp. red): predicted wave excitation (resp.
predicted optimal WEC trajectory). Dotted red: actual trajectory followed by the WEC
(trying to track the predicted optimal trajectory).

(state variables, control input) are discretised in time, and the RG
yields a sequence of control inputs over the receding time window. The
computational difficulties associated with a real-time implementation
of MPC are highlighted by a number of authors (for example Li, Weiss,
Mueller, Townley, & Belmont, 2012, Richter, Magana, Sawodny, &
Brekken, 2013, Tona, Nguyen, Sabiron, & Creff, 2015), and tend to
reduce the time-horizon which can be effectively used as a receding
window length.

Alternatively, recent years have witnessed the development of spec-
tral (S) and pseudo-spectral (PS) techniques for WEC control applica-
tions (Faedo et al., 2017) which, instead of resorting to a time discreti-
sation, describe the optimisation variables using sets of basis functions
of various kinds. Fig. 2 shows several examples of such basis functions,
in comparison to the (more usual) time discretisation (i.e. zero-order
hold, or ZOH, in the figure), for the approximation of a signal 𝑓 which
could be, for example, the wave excitation force contained within the
receding window. As can be seen in Fig. 2b, all other methods require
less basis functions than ZOH for the same level of signal fidelity. This
is a well-known property of spectral methods: for a sufficiently smooth
target function, the accuracy of the spectral approximation improves
more than linearly with the number of basis functions (Boyd, 2001).

S and PS methods have shown some promise in efficiently solving
the WEC control problem (Bacelli, Genest, & Ringwood, 2015; Bacelli
& Ringwood, 2014; Genest & Ringwood, 2017; Li, 2015; Mérigaud &
Ringwood, 0000a, 2017). In addition to the computational benefits
resulting from a potentially smaller number of variables involved in the
RG optimisation (since, as seen in Fig. 2b, less functions are required
to accurately describe input signals and variables), spectral and pseudo-
spectral techniques also provide a natural way to modulate the degree
of smoothness of reference trajectories or control inputs.

In particular, assuming a Fourier spectral control (FSC) formulation
– i.e. using harmonic sinusoids as a functional basis – (Mérigaud & Ring-
wood, 0000a) details how the solution speed of the FSC problem can be
significantly improved by explicit computation of the gradient and Hes-
sian of the objective function. However, such a functional basis assumes
periodicity of the wave input, while the finite-length wave excitation
signal contained in the receding window is, in general, non-periodic

Fig. 2. (a) shows the approximation of a signal 𝑓 using different sets of orthogonal
functions — reproduced from (Genest & Ringwood, 2017). (b) shows the approximation
error as a function of the number of basis functions. HRCF: half-range Chebyshev Fourier
basis functions; Fourier: Fourier basis functions; Legendre: Legendre polynomials; ZOH:
zero-order hold.

(in the example of Fig. 2, the Fourier basis yields larger approximation
errors than HRCF and Legendre polynomials). Nevertheless, applying a
windowing function to the finite-length wave excitation signal, spanned
by the receding horizon, prior to the corresponding control calculation,
can make the Fourier description appropriate (Auger, Mérigaud, &
Ringwood, 0000). In this paper, a FSC solution method, applied to the
windowed wave signal, is used as the RG optimisation algorithm. More
detail is given in Section 3 about the FSC solution technique, and its
practical implementation in a receding-horizon fashion.

In a receding-horizon WEC control implementation, as mentioned
above, the RG calculations may directly provide the required control
input (Faedo et al., 2017) (typically, the PTO force). Alternatively, the
RG may compute a reference WEC trajectory (in terms of WEC position
and/or velocity), which is subsequently followed by means of a tracking
loop (TL), making use of feedback control (Fusco & Ringwood, 2014).
The latter indirect approach could offer several potential benefits:

• It has been highlighted in Mérigaud and Ringwood (2017) and
Nielsen, Zhou, Kramer, Basu, and Zhang (2013) that, under some
conditions, calculations of the optimal WEC trajectory are inde-
pendent of inertial terms and (linear or non-linear) static forces.
Therefore, RG calculations naturally exhibit robustness to mod-
elling errors in inertial and static terms, and, by ignoring such
modelling terms where appropriate, may be made more efficient.
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• The TL can make use of well-known tools from linear or non-
linear feedback control, to ensure good tracking of the reference
WEC motions, and possibly robustness to modelling errors (Fusco
& Ringwood, 2014).

In contrast, computing the optimal control force directly requires accu-
rate modelling of all the WEC dynamics (Mérigaud & Ringwood, 2017).

However, in reality, the actual control force for trajectory tracking
may consist of some combination of feed-forward and feedback-like
terms, such as in the back-stepping procedure used in Davidson, Genest,
and Ringwood (2017). Conversely, in MPC approaches, where the
RG computes the control input, the current state of the device (in
terms of position and/or velocity) is generally taken into account in
the RG optimisation problem, which implicitly introduces a form of
feedback effect into the control law. In the control framework proposed
in this paper, the RG primarily computes a reference WEC trajectory
but, regarding the trajectory tracking, a simple state feedback term is
combined with a feed-forward control input (also resulting from the RG
optimisation), aimed at mitigating the task of the reactive control action.

Regardless of the RG calculation method, estimates and forecasts
of the wave excitation signal are necessary. Nevertheless, the issue of
wave force estimation (WE) and forecasting (WF), and their interaction
with control performance, are rarely addressed in receding-horizon
WEC control studies, where the wave force is generally assumed to be
perfectly known over the receding horizon considered.

A few exceptions can be found in Andersen, Pedersen, Nielsen, and
Vidal (2015), Brekken (2011), Cavaglieri, Bewley, and Previsic (2015),
Hals, Falnes, and Moan (2011), Li et al. (2012), Tona et al. (2015) and
de la Villa Jaén, Santana, et al. (2014), where WF is explicitly taken
into account. In Li et al. (2012), and other works by the same authors, as
well as in Cavaglieri et al. (2015), the WF technique assumes availability
of measurement equipment, measuring the wave field surrounding the
WEC. But, in most cases, Andersen et al. (2015), Brekken (2011), Hals
et al. (2011), Tona et al. (2015), and de la Villa Jaén et al. (2014),
WF is carried out assuming perfect measurements of the past excitation
values, extrapolated into the future using some time-series regression
technique. In particular, auto-regressive (AR) models are used by several
authors (Brekken, 2011; Tona et al., 2015; de la Villa Jaén et al., 2014).
The issue of the optimisation of the AR coefficients, at regular intervals,
is identified as a subject for investigation (Brekken, 2011; Tona et al.,
2015). Finally, WF has been addressed in more detail in Fusco and
Ringwood (2010), independently from its use within real-time control.

Recent work (Mérigaud & Ringwood, 0000b) shows that, assuming
stationary, Gaussian waves, and for a given measurement configuration,
i.e. for a given set of measurement instants and locations, relative to
the instants and locations at which the variable (wave elevation or
excitation force) is predicted:

• the optimal predictor is linear, and
• its coefficients can be directly identified from the wave spectrum

(and thus should only be updated as the wave condition evolves,
e.g. every half-hour).

Therefore the technique used in Mérigaud and Ringwood (0000b),
retained in this study (see Section 6), and thereafter termed spectrum-
based predictor (SBP), simply assumes that the wave spectrum is known,
and requires no data-based identification procedure. For this paper, no
measurements are assumed in the vicinity of the WEC; instead, only past
values of the estimated excitation force are used for the forecasts.

WE may be carried out through measurements of physical quantities,
directly related to the incoming wave force, such as the pressure
distribution along the WEC hull, using a number of pressure sensors (Ab-
delkhalik, Zou, Bacelli, Robinett, Wilson, & Coe, 2016), or up-wave free-
surface elevation measurements (Cavaglieri et al., 2015; Guo, Patton, &
Jin, 2017). Alternatively, the excitation force can be estimated, solely
based on measurements of WEC dynamics, which are usually available
via the WEC control system (Peña-Sanchez, Garcia-Abril, Paparella, &

Ringwood, 2018). However, the interaction between real-time control
and WE has to be investigated in detail (although WE is carried
out in-line in Brekken (2011), no measurement noise or modelling
uncertainties are considered). Therefore, in this paper, and based on
somewhat minimal assumptions on available measurement equipment,
the excitation force is estimated through an Extended Kalman Filter
(EKF), based solely on measured WEC dynamics, namely position and
acceleration (which, in practice, would be obtained using a position
sensor and an inertial measurement unit, respectively). The effect of
measurement noise level is also investigated.

Overall, the paper aims to answer the following question: With
rather pessimistic assumptions regarding the problem complexity (non-
linear dynamics, linear and non-linear constraints) and available mea-
surements (only noisy position and acceleration measurements are
available), and with a realistic receding-horizon set-up articulating the
four components (WE, WF, RG, TL), what can reasonably be achieved
using state-of-the art control calculation techniques? Are the results far
from the true optimal power, which would be achieved in idealised
conditions, i.e. if the excitation force was known for an infinite time
horizon and if the device was able to perfectly track the true optimal
trajectory?

Finally, the design components of the control architecture presented
in this paper are pictured in Fig. 3, without detailed specification of
the techniques chosen for each task (RG, TL, WE and WF). The specific
choices made concerning each of the four components are discussed
in more detail in the corresponding sections indicated in Fig. 3. The
authors believe that the proposed framework is reasonably general, and
that various techniques can be investigated in future work, to replace
some of the specific choices presented in this paper. More importantly
than the techniques chosen, the interactions between RG, TL, WE and
WF are the main focus of this paper.

The rest of this paper is organised as follows: Section 2 describes
the general class of WEC models considered in this study. Sections 3 to
6 detail the specific solutions chosen for RG calculations, TL, WE and
WF. Section 7 describes the WEC model and numerical set-up developed
for the practical assessment of the proposed control framework. The
corresponding numerical results are given in Section 8, showing the
interplay between the four components of the control structure. Finally,
conclusions and directions for future work are given in Section 9.

2. WEC dynamical model

Consider a 1-DoF WEC, whose generalised position is described
by means of a scalar coordinate 𝑧. Assume that Newton’s second
law, describing the WEC dynamics, can be written in the following
form:

𝑚𝑧̈ = 𝑙(𝑧, 𝑧̇) + 𝑛(𝑧, 𝑧̇) + 𝑢(𝑡) + 𝑒(𝑡) (1)

where:

• 𝑚𝑧̈ represents the system inertia (possibly, taking into account the
radiation infinite-frequency added mass);

• 𝑙(𝑧, 𝑧̇) represents forces which depend on 𝑧 and 𝑧̇ in a linear way.
For example, if all the hydrodynamic forces acting on the device
are linearly modelled, 𝑙 consists of the terms of the well-known
Cummins’ equation (Cummins, 1962):

𝑙(𝑧, 𝑧̇) = ∫

𝑡

−∞
𝑘𝑟(𝑡 − 𝜏)𝑧̇(𝜏)𝑑𝜏 + 𝑠ℎ𝑧 (2)

where 𝑠ℎ is a hydrostatic stiffness coefficient, and the radiation
force memory terms are computed as a convolution product
between the past values of the velocity and the radiation impulse
response function 𝑘𝑟;

• 𝑛(𝑧, 𝑧̇) is an analytical expression, containing the forces which are
non-linearly modelled as a function of 𝑧 and 𝑧̇. Obviously, if a part
of the hydrodynamic force (for example, the hydrostatic restoring
term) is non-linearly modelled within 𝑛, the corresponding terms
have to be removed from 𝑙 in Eq. (2);

147



A. Mérigaud, J.V. Ringwood Control Engineering Practice 81 (2018) 145–161

Fig. 3. Generic structure for a receding-horizon WEC control implementation 𝑧, 𝑧ref, 𝑧est: actual, reference and estimated WEC trajectories; 𝑤: measurement noise; 𝑦𝑚: measured WEC
outputs; 𝑒, 𝑒est: actual and estimated excitation forces; 𝑢ff: feed-forward control input; 𝑢: total control input. Note that, if present and/or future excitation forces are assumed directly
available, WF and/or WE are not needed.

• The control input 𝑢(𝑡) is the force exerted by the PTO system on
the WEC;

• 𝑒(𝑡) is an additive wave excitation term, which generally consists
of the linear wave excitation or diffraction force.

Note that the formulation in Eq. (1), and the mathematical develop-
ments in Section 3, can be straightforwardly extended to more general
types of non-linear effects, of the form 𝑛(𝑧, 𝑧̇, 𝑧̈, 𝑡), where the dependence
on 𝑡 allows for modelling a non-linear relationship between the forces
and a wave input signal (e.g. non-linearities taking into account the
free-surface elevation at the device location). However, for the sake of
clarity and conciseness, such a possibility is not further pursued in this
paper.

3. Receding-horizon control calculations using Fourier basis func-
tions

The performance of the proposed control structure heavily relies on
the quality of RG calculations (i.e. how close the reference trajectory
evaluated by the RG algorithm is to the actual optimal trajectory),
and on the RG computational efficiency, in particular in the presence
of non-linear forces and constraints (if the RG optimisation cannot be
carried out fast enough, no real-time implementation can be reasonably
considered). Therefore, RG calculations can be seen as the core of the
proposed receding-horizon control structure.

The technique retained in this work is based on a FSC method (Méri-
gaud & Ringwood, 0000a) whereby, assuming a periodic wave input,
the steady-state optimal control problem is solved through a projection
of the wave input and optimisation variables onto a Fourier basis.
Non-linear forces, as well as linear or non-linear constraints can be
considered within the FSC formulation, with high efficiency (Mérigaud
& Ringwood, 0000a).

The FSC method is now presented, along with its articulation in a
receding-horizon fashion.

3.1. Fourier spectral formulation of the unconstrained control problem

The optimal, power-maximising control problem is considered for a
periodic wave input expanded into a Fourier series as:

𝑒(𝑡) ≈ 𝑒0 +
𝑁
∑

𝑘=1
𝑒2𝑘−1 cos(𝜔𝑘𝑡) + 𝑒2𝑘 sin(𝜔𝑘𝑡) (3)

where 𝜔𝑘 = 𝑘𝛥𝜔, 𝛥𝜔 = 2𝜋∕𝑇 is the frequency step, 𝑇 is the period of the
wave excitation signal, and 𝑁 is the number of harmonics considered
— the cut-off frequency is then 𝜔𝑐 = 2𝜋𝑁∕𝑇 .

The instantaneous power, transmitted from the waves to the PTO
system, is −𝑧̇(𝑡)𝑢(𝑡). The control problem, over [0; 𝑇 ], consists of transmit-
ting as much power as possible from the waves to the PTO system, under
the requirement that the dynamical equation (1) is satisfied. Adopting
the formalism of a minimisation problem yields:

min𝑃 (𝑧, 𝑢) = 1
𝑇 ∫

𝑇

0
𝑧̇(𝑡)𝑢(𝑡)𝑑𝑡

s.t. 𝑚𝑧̈ = 𝑙(𝑧, 𝑧̇) + 𝑛(𝑧, 𝑧̇) + 𝑢(𝑡) + 𝑒(𝑡) (4)

As in Bacelli and Ringwood (2014), the variables 𝑧 and 𝑢 can be
approximated using the same basis of harmonic sinusoids used in Eq.
(3), as:

𝑧(𝑡) ≈ 𝑧̂0 +
𝑁
∑

𝑘=1
𝑧̂2𝑘−1 cos(𝜔𝑘𝑡) + 𝑧̂2𝑘 sin(𝜔𝑘𝑡)

𝑢(𝑡) ≈ 𝑢̂0 +
𝑁
∑

𝑘=1
𝑢̂2𝑘−1 cos(𝜔𝑘𝑡) + 𝑢̂2𝑘 sin(𝜔𝑘𝑡) (5)

Define 𝐞̂, 𝐳̂ and 𝐮̂ in R2𝑁+1, the vectors composed of the Fourier
coefficients of 𝑒, 𝑧 and 𝑢 respectively, defined as in Eqs. (3) and (5).
Define a block-diagonal matrix 𝛀 ∈ R(2𝑁+1)×(2𝑁+1):

𝛀 =

⎛

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0
𝛀1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛀𝑁

⎞

⎟

⎟

⎟

⎟

⎠

(6)

where ∀𝑘 ∈ {1...𝑁}, 𝛀𝑘 =
(

0 𝜔𝑘
−𝜔𝑘 0

)

The projection of the velocity 𝑧̇ onto the Fourier basis is obtained
from 𝐳̂ as ̂̇𝐳 = 𝛀𝐳̂. As shown in Bacelli and Ringwood (2014), the
objective function of (4) can then be expressed as

𝑃 (𝐳̂, 𝐮̂) = 1
2
𝐳̂T𝛀T𝐮̂ (7)

Furthermore, as explained in Mérigaud and Ringwood (2017) and
Mérigaud and Ringwood (0000a), the dynamical equation (1) is also
projected onto a Fourier basis, so that 𝐮̂ is expressed as a function of the
other variables as:

𝐮̂(𝐳̂) = 𝐌𝐳̂ − 𝐧̂(𝐳̂) − 𝐞̂ (8)

where:

• 𝐧̂(𝐳̂) represents the 𝑁th-order Fourier expansion of 𝑛(𝑧, 𝑧̇), where
𝑧(𝑡) and 𝐳̂ are related as in Eq. (5);

• The frequency-domain projection of the linear terms 𝑚𝑧̈− 𝑙(𝑧, 𝑧̇) in
(1) is given, in matrix form, as 𝐌𝐳̂.
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Typically, when radiation and hydrostatic restoring forces are lin-
early modelled, 𝐌 is a block-diagonal matrix:

𝐌 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑠ℎ ⋯ 0
𝐌1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐌𝑁

⎞

⎟

⎟

⎟

⎟

⎠

(9)

where ∀𝑘 ∈ {1...𝑁},

𝐌𝑘 =
(

−(𝑚′ + 𝑎𝑟(𝜔𝑘))𝜔2
𝑘 + 𝑠ℎ 𝜔𝑘𝑏𝑟(𝜔𝑘)

−𝜔𝑘𝑏𝑟(𝜔𝑘) −(𝑚′ + 𝑎𝑟(𝜔𝑘))𝜔2
𝑘 + 𝑠ℎ

)

where 𝑎𝑟 and 𝑏𝑟 are the frequency-dependent radiation added mass and
damping, respectively, and 𝑚′ is the device inertia (this time, without
taking into account the infinite-frequency radiation added mass).

Combining with (7), the minimisation problem of (4) becomes

min𝑃 (𝐳̂) ∶= 1
2
𝐳̂T𝛀T𝐮̂(𝐳̂) (10)

which can be solved using gradient-based optimisation techniques
(Mérigaud & Ringwood, 0000a). The only variables are the components
of 𝐳̂. The solution 𝐳̂ of (10) is the optimal steady-state solution for the
problem of (4), within the chosen functional space, i.e. amongst the
solutions which can be described as 𝑁th-order Fourier series.

The simplifications made to obtain Eq. (10) require that the control
input 𝑢 is the PTO force itself, and can be explicitly written as a function
of the other variables through the dynamical equation in (8). In cases
where such a simplification is not possible, the dynamic equation must
be expressed as a set of equality constraints, as in Bacelli and Ringwood
(2014). The reader is referred to Mérigaud and Ringwood (0000a) for
more detail.

3.2. Handling inequality constraints

Optimal WEC control must allow for handling operational limitations
on the device dynamics. Inequality constraints can be expressed in the
time domain at a discrete set of 𝑁𝑐 collocation points 𝑡𝑖, 𝑖 ∈ [[1;𝑁𝑐 ]].
Consider a set of linear or non-linear inequality constraints, of the form

𝑐𝑚(𝑧(𝑡𝑖), 𝑧̇(𝑡𝑖), 𝑢(𝑡𝑖), 𝑡𝑖) ≤ 0 (11)

where 𝑚 ∈ [[1;𝑀𝑐 ]] and 𝑀𝑐 is the number of constraints to be satisfied
at each time step.

Assuming that ∀𝑚, 𝑐𝑚 is differentiable, and introducing the non-
negative Lagrange multipliers 𝜆𝑚(𝑡𝑖) associated with the non-linear
constraints, the first-order optimality condition (Bazaraa, Sherali, &
Shetty, 2013), for problem (10) with constraints (11), is written as:

⎧

⎪

⎨

⎪

⎩

∇𝑃 (𝐳̂) +
𝑀𝑐
∑

𝑚=1

𝑁𝑐
∑

𝑖=1
𝜆𝑚(𝑡𝑖)∇𝑐𝑚(𝑡𝑖) = 0R2𝑁+1

∀𝑚,∀𝑖, 𝜆𝑚(𝑡𝑖)𝑐𝑚(𝑡𝑖) = 0

(12)

where the ∇ operator denotes the gradient with respect to the compo-
nents of 𝐳̂, and for brevity 𝑐𝑚(𝑡𝑖) denotes 𝑐𝑚(𝑧(𝑡𝑖), 𝑧̇(𝑡𝑖), 𝑢(𝑡𝑖), 𝑡𝑖).

The constrained problem is solved using an interior-point (IP) algo-
rithm, implemented via the Matlab fmincon function. The gradient (12)
of the objective function, as well as its Hessian, can be computed ex-
plicitly and efficiently, as detailed in Mérigaud and Ringwood (0000a),
resulting in significant computational gain compared to an evaluation
of the derivatives through finite differences.

3.3. Receding-horizon implementation

The use of FSC calculation techniques presented in this section, in
a receding-horizon framework, necessitates specific adaptation due, in
particular, to the fact that the excitation force signal, as seen by the RG
algorithm within the finite receding horizon is, in general, non-periodic.
Receding-horizon calculations using Fourier basis functions are studied
in Auger et al. (0000), from which the methodology presented here is
adapted. The two main adjustments, required by the FSC method, are
as follows (Auger et al., 0000):

• The receding time interval, of duration 𝑇𝑤, is defined so that the
mid-point of the interval (as opposed to its beginning) roughly
coincides with the present time, i.e. the time at which the reference
trajectory (RT) is updated;

• The section of wave excitation, ‘seen’ by the RG algorithm within
the receding horizon, is windowed by means of a Tukey func-
tion (Harris, 1978), in order to make the RG input periodic with
no discontinuity at the window ends.

The former adjustment is in contrast to usual predictive control
set-up, whereby the present time is at the beginning of the receding
window (Richalet, Lavielle, & Mallet, 2004). The underlying philosophy,
governing the choice made here, is to provide an evaluation, as accurate
as possible, of the steady-state, optimal WEC trajectory, regardless
of where the WEC actually is at the current time, while the task of
moving the device towards and along the optimal trajectory is left
to the TL. Therefore, when solving the optimisation problem within
the receding window, there are no initial or final states to take into
account. Furthermore, assuming perfect knowledge of both past and
future excitation signals, the optimal, steady-state WEC trajectory, at
the present time 𝑡, depends equally on past and future values of the
excitation signal, and therefore there is no reason to ‘favour’ the future
over the past, or vice versa. This approach has clearly proven capable
of providing an accurate evaluation of the optimal, steady-state WEC
trajectory (Auger et al., 0000).

The RG algorithm updates the RT at regular time instants, say
every 𝛥𝑇𝑅𝐺 seconds. The RG procedure, followed at each update instant
(i.e. every 𝛥𝑇𝑅𝐺 seconds), is illustrated in Fig. 4, and can be approxi-
mately detailed as follows:

(a) Consider a given update instant, where the RG calculations are
carried out, and the corresponding receding time interval of length
𝑇𝑤, comprising both past and future excitation signal values (for
the sake of simplicity, in this example it is assumed that both past
and future values of 𝑒(𝑡) are perfectly known).

(b) The excitation signal, within the receding time interval of width
𝑇𝑤, is multiplied with a Tukey window.

(c) The resulting signal, 𝑒𝑤(𝑡), is projected onto the Fourier basis cor-
responding to the receding time interval, i.e. using a fundamental
frequency 𝜔1 = 2𝜋∕𝑇𝑤, and with a cut-off frequency 𝜔𝑁 = 𝑁𝜔1
which can be adjusted in order to control the degree of smoothness
of the optimised trajectory. Using the Fourier projection 𝐞̂𝑤 of
𝑒𝑤(𝑡), Problem (10) (possibly with constraints (11)) is then solved
to yield 𝐳̂𝑤 and the corresponding trajectory 𝑧𝑤(𝑡) (of period 𝑇𝑤).

(d) Finally, only a small section of 𝑧𝑤(𝑡), with length 𝛥𝑇𝑅𝐺, is ap-
pended to the end of the current version of the RT 𝑧ref(𝑡), so as
to provide the RT until the next update.

In reality, given the complexity of the non-linear optimisation prob-
lem solved by the RG algorithm, it would be unrealistic to consider
that the RG calculations can be carried out instantaneously, and thus
that the new section of 𝑧ref can become effective at the RG update
instant. Instead, some calculation time, 𝛥𝑇𝑐 , is allowed, as illustrated
in Fig. 4: the RG calculations starting at time 𝑡𝑅𝐺 are used to compute
𝑧ref(𝑡) for 𝑡 ∈ [𝑡𝑅𝐺 + 𝛥𝑇𝑐 ; 𝑡𝑅𝐺 + 𝛥𝑇𝑐 + 𝛥𝑇𝑅𝐺]. With such a configura-
tion, the RG calculations can be considered compatible with real-time
implementation if the calculation time is lower than 𝛥𝑇𝑐 . Of course, the
allowed calculation time 𝛥𝑇𝑐 must be smaller than the update time 𝛥𝑇𝑅𝐺.
Therefore, a faster RG algorithm allows for more frequent updates of the
reference trajectory.

Note that the RT, obtained by concatenating the results of successive
RG calculations, may exhibit discontinuities at the switching instant
between two successive sections (visible in the bottom graph of Fig. 4).
Such discontinuities could result in sudden switching of the control
input. Therefore, the updates of 𝑧ref(𝑡) can, in fact, be computed in
an overlapping fashion, and a smooth transition ensured between
consecutive solutions, as explained below, by means of a transition
function.
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Fig. 4. Receding-horizon implementation of Fourier PS WEC control.

Denote 𝑧ref(𝑡, 𝑘) as the RT, calculated at the update instant 𝑡𝑅𝐺 =
𝑘𝛥𝑇𝑅𝐺 (bold segment in the bottom graphs of Fig. 4). Instead of covering
𝑡 ∈ [𝑡𝑅𝐺 + 𝛥𝑇𝑐 ; 𝑡𝑅𝐺 + 𝛥𝑇𝑐 + 𝛥𝑇𝑅𝐺], as in the simplified example of Fig. 4,
𝑧ref(𝑡, 𝑘) may in fact cover 𝑡 ∈ [𝑡𝑅𝐺 +𝛥𝑇𝑐 ; 𝑡𝑅𝐺 +𝛥𝑇𝑐 +2𝛥𝑇𝑅𝐺]. Thus, each
time interval [𝑘𝛥𝑇𝑅𝐺 +𝛥𝑇𝑐 ; (𝑘+1)𝛥𝑇𝑅𝐺 +𝛥𝑇𝑐 ] is in fact covered by both
𝑧ref(𝑡, 𝑘), computed at 𝑘𝛥𝑇𝑅𝐺, and 𝑧ref(𝑡, 𝑘−1), computed at (𝑘−1)𝛥𝑇𝑅𝐺.

Define a non-decreasing transition function 𝜆(𝑥), defined on [0; 1]
and taking values in [0; 1], such that 𝜆(0) = 0 and 𝜆(1) = 1. For
𝑡 ∈ [𝑘𝛥𝑇𝑅𝐺 + 𝛥𝑇𝑐 ; (𝑘 + 1)𝛥𝑇𝑅𝐺 + 𝛥𝑇𝑐 ], the RT 𝑧ref(𝑡) is computed by
weighting 𝑧ref(𝑡, 𝑘 − 1) and 𝑧ref(𝑡, 𝑘) as follows:

𝑧ref(𝑡) =𝜆(
𝑡 − 𝑘𝛥𝑇𝑅𝐺 − 𝛥𝑇𝑐

𝛥𝑇𝑅𝐺
)𝑧ref(𝑡, 𝑘)

+
(

1 − 𝜆(
𝑡 − 𝑘𝛥𝑇𝑅𝐺 − 𝛥𝑇𝑐

𝛥𝑇𝑅𝐺
)
)

𝑧ref(𝑡, 𝑘 − 1) (13)

The transition function can be linear, or, to also ensure continuity of
the 1st-order derivatives, sigmoidal such as 𝜆(𝑥) = 1

2 + 1
2 sin(𝜋(𝑥 − 1

2 )),
as illustrated in Fig. 5. Fig. 6 illustrates how, using such a sigmoidal
weighting function, a smooth transition is ensured between consecutive
RG calculations. In Fig. 6, update instants 𝑘𝛥𝑇𝑅𝐺 are indicated by
coloured markers, which also distinguish the corresponding sections
𝑧ref(𝑡, 𝑘). Unlike the RT 𝑧ref in the bottom graph of Fig. 4, the RT
𝑧ref now smoothly transitions across consecutive RG solutions. The

Fig. 5. Smooth transition function: 𝜆(𝑥) = 1
2
+ 1

2
sin(𝜋(𝑥 − 1

2
)).

Fig. 6. Sections 𝑧ref(𝑡, 𝑘) calculated at update instants 𝑘𝛥𝑇𝑅𝐺 , for four consecutive update
instants (dashed lines), and 𝑧ref(𝑡) obtained as in Eq. (13) (solid line). For each 𝑘, section
𝑧ref(𝑡, 𝑘) and calculation instant 𝑘𝛥𝑇𝑅𝐺 are indicated using the same marker.

sigmoidal transition function of Eq. (13) is used throughout the rest
of this paper. However, as will be further exemplified in Section 8, if
the difference between successive updates is too sharp, the proposed
transition method cannot prevent the occurrence of fast changes in 𝑧ref,
but avoids discontinuities.

Other possibilities, in terms of RG , have been investigated by the
authors:

• Instead of smoothing the RG results ex-post, their continuity can
be ensured by the RG algorithm directly. More specifically, an
equality constraint is added, requiring that the reference position,
velocity and acceleration are continuous at the transition time
between the previous and current RG updates. Such a constraint
avoids discontinuities between successive updates, and hence
obviates the need for any smoothing function. Such a variant is
termed Continuous Reference Generation (CRG).

• Alternatively, a choice can be made not to apply any smoothing
between successive RG updates, which is termed Discontinuous
Reference Generation (DRG).

As will be briefly discussed in Section 8, CRG and DRG both
showed significant disadvantages with respect to the RG methodology,
presented previously in this section.

Finally, note that the practical issues, related to the discrete updates
of the RG calculation, would be strongly mitigated if accurate wave
excitation forecasts were available over a longer time horizon: in such a
case, RG calculations may be carried out at more distant time intervals;
furthermore, discrepancies between successive updates (which result
in the observed discontinuities) would also be significantly smaller.
However, this possibility is not investigated here, because the general
philosophy of this work relies on minimal assumptions with respect to
available measurement equipment.

4. Trajectory tracking loop

A hierarchical control structure (Fusco & Ringwood, 2014), articu-
lating state feedback with RG trajectory calculations, provides natural
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Fig. 7. Structure of the non-linear feed-forward and feedback TL. 𝑧, 𝑧ref , 𝑧est: actual,
estimated and prescribed trajectory; 𝑤: measurement noise; 𝑦𝑚: measured WEC output;
𝑒: excitation forces; 𝑢fb, 𝑢ff, 𝑢: feedback, feed-forward and total control forces.

robustness to some modelling errors, since, as investigated in Mérigaud
and Ringwood (2017) and Nielsen et al. (2013), optimal trajectory
results are independent of some modelling terms, unlike direct force
calculation. In addition, state feedback itself is relatively insensitive to
WEC modelling errors since, by making the feedback gains large enough,
the steady-state tracking error can be made arbitrarily small (Fusco &
Ringwood, 2014).

However, large gains could also put high demand on the PTO,
especially during transient events. In particular, as seen in Section 3, the
RT is adjusted at regular time intervals, which can result in relatively
abrupt changes in 𝑧ref. Such fast variations are clearly undesirable
artefacts, because they are not inherently related to the actual optimal
WEC trajectory, but are rather due to its imperfect approximation by
the receding-horizon calculations. More importantly, they could result
in large excursions of the control input if the feedback gains are large.
Such considerations are discussed in Section 8.2.

Furthermore, in practice (as detailed further in Section 5), the
system states are not perfectly known, but instead are measured and/or
estimated. Large feedback gains also imply a greater sensitivity to
measurement noise, of both control input and tracking performance.

In summary, it is desirable to have large control gains in order to
ensure accurate tracking of the RT under modelling uncertainties, but
some specific issues, arising from the practical controller implementa-
tion, also suggest mitigating the value of the control gain. Such trade-offs
are illustrated in Section 8.2.

Therefore, it is suggested, in this work, to combine a state feedback
term with feed-forward estimation of the necessary steady-state control
input, also calculated by the RG algorithm, as illustrated in Fig. 7. For a
given trajectory 𝑧ref, calculated at the RG level, a feed-forward, nominal
control input 𝑢ff is evaluated, using Eq. (1) (or equivalently Eq. (8)).
𝑢ff is applied to the WEC in addition to a feedback term, 𝑢fb. The total
control force can then be written as:
𝑢(𝑡) = 𝑢ff(𝑡) + 𝑢fb(𝑡)

= 𝑢ff(𝑡) − 𝑘1(𝑧est(𝑡) − 𝑧ref(𝑡)) − 𝑘2(𝑧̇est(𝑡) − 𝑧̇ref(𝑡)) (14)

where 𝑘1 and 𝑘2 can be computed, for example, using pole assignment.
Thus, the role of the state feedback is merely to stabilise the WEC around
the RT, and to compensate for possible errors in 𝑢ff.

Note that, in Eq. (14), the three terms which originate from the
RG level, namely 𝑢ff(𝑡), 𝑧ref(𝑡) and 𝑧̇ref(𝑡), are all calculated using the
transition formula of Eq. (13) which, in essence, amounts to smoothing
the control law 𝑢(𝑡) across successive RG updates.

Other TL possibilities have also been considered by the authors. In
particular:

• The TL may solely rely on feedback control, with no feed-forward
term. The absence of feed-forward (pro-active) control action,
however, necessitates higher requirements on the feedback (re-
active) control action, thus necessitating larger control gains to
achieve satisfactory tracking performance.

Fig. 8. Kalman filtering for position and velocity estimation.

• Regardless of whether a feed-forward term is used, the state
feedback terms on position and velocity errors constitute, in fact,
proportional–derivative (PD) control. Position and velocity error
terms may be complemented with an integral term on position
error, thus resulting in a proportional–integral–derivative (PID)
controller. The addition of integral action, with a consequent
phase lag, is found to be essential if no feed-forward term is used.

The associated numerical results are not reported in detail in this work,
and will only be briefly summarised in Section 8.

5. Excitation force estimation

In this paper, WE is carried out by means of an EKF, solely based on
measurements of the WEC acceleration and position. Such an approach
requires a state-space representation of the WEC dynamics, in which
the excitation force must be included. However, due to the complexity
of adding acceleration terms among the system states, WE is carried out
in two steps:

• A simple Kalman filter, with no model of the WEC dynamics, is
used to estimate 𝑧 and 𝑧̇ from noisy position and acceleration mea-
surements (hereafter denoted 𝑧𝑚 and 𝑧̈𝑚), assuming availability of
a position sensor and an inertial measurement unit.

• Subsequently, the estimates of 𝑧 and 𝑧̇ are used as direct measure-
ments in the EKF, as detailed in Section 5.2.

The approach is similar to that in Abdelkhalik et al. (2016), where
velocity is obtained by integrating position, before being used as a direct
measurement in an EKF.

5.1. KF for position and velocity estimation

The following state-space representation is considered:

𝐱̇ = 𝐀𝐱 (15)

where

𝐱 =
⎛

⎜

⎜

⎝

𝑧
𝑧̇
𝑧̈

⎞

⎟

⎟

⎠

,𝐀 =
⎛

⎜

⎜

⎝

0 1 0
0 0 1
0 0 0

⎞

⎟

⎟

⎠

(16)
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Such a simple representation is adequate, considering that the KF
dynamics will be much faster than those of the excitation force and WEC
system.

Eq. (15) is discretised using a zero-order hold (ZOH) assumption.
Taking into account position and acceleration measurements, as well as
process and measurement noise, Eq. (15) becomes:

𝐱[𝑘 + 1] = 𝐀′𝐱[𝑘] + 𝐰[𝑘]
𝐲[𝑘] = 𝐂𝐱[𝑘] + 𝐯[𝑘] (17)

where 𝐀′ is the discrete-time ZOH version of 𝐀, 𝐰[𝑘] and 𝐯[𝑘] are
Gaussian random vectors of appropriate dimensions, and

𝐂 =
(

1 0 0
0 0 1

)

(18)

Fig. 8 shows the performance of the proposed KF (in this example,
no control is applied to the WEC). As can be seen in Fig. 8, position
and velocity estimates are reasonably accurate, in spite of significant
measurement noise. The velocity and position resulting from the KF are
treated by the EKF as true measurements.

5.2. EKF for excitation force estimation

A non-linear state-space model of the WEC is obtained by modelling
the radiation memory terms of Eq. (2) in a state-space form of dimension
𝑑𝑟 (Perez & Fossen, 2009), where the input to the radiation state-space
model is the WEC velocity 𝑧̇, and the output 𝑓𝑟 is the radiation memory
term:
𝐱̇𝑟 = 𝐀𝑟𝐱𝑟 + 𝐁𝑟𝑧̇

𝑓𝑟 = −𝐂𝑟𝐱𝑟 (19)

where 𝐀𝑟 ∈ R𝑑𝑟×𝑑𝑟 , 𝐁𝑟 and 𝐂𝑟 are matrices of appropriate dimensions,
and 𝑓𝑟 is the radiation memory force in Eq. (2). 𝐀𝑟, 𝐁𝑟 and 𝐂𝑟 may
be obtained using different techniques, but here, the recently proposed
moment-matching approach (Faedo, Peña-Sanchez, & Ringwood, 2018)
is used. In particular, the property that the quality of the radiation state-
space approximation monotonically improves with the chosen order is
found appealing.

Furthermore, the excitation force is also included in the state-space
representation, assuming some linear internal dynamics, so that:

𝐱̇𝑒 = 𝐀𝑒𝐱𝑒
𝑒 = 𝐂𝑒𝐱𝑒 (20)

where 𝐀𝑒 ∈ R𝑑𝑒×𝑑𝑒 and 𝐂𝑒 are matrices of appropriate dimensions.
Following the ideas of Ling (2015), also investigated in Peña-Sanchez

et al. (2018), the excitation forces are represented as a set of harmonic
oscillators, but other techniques may be used. However, note that there
is no need, within the scope of this work, for a particularly faithful
model of the excitation force dynamics, since no WEC modelling errors
are considered. In fact, even an over-simplified representation of the
excitation force dynamics (e.g. as a constant, or as a system with a
constant derivative) was found able to yield acceptable WE — in such
a case, the EKF almost entirely relies on the modelled WEC dynamics
to provide an excitation force estimate. If modelling errors were to
be considered, a more consistent representation of excitation forces
would be required, such as in Scruggs, Lattanzio, Taflanidis, and Cassidy
(2013). Even so, WE robustness to modelling errors would deserve to be
investigated.

Finally, the state-space model, augmented with radiation and exci-
tation force terms, is written as
𝐱̇ = 𝐟 (𝐱) + 𝐁𝑢

𝐲 = 𝐂𝐱 (21)

with

𝐱 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑧
𝑧̇
𝐱𝑟
𝐱𝑒

⎞

⎟

⎟

⎟

⎟

⎠

,𝐁 =

⎛

⎜

⎜

⎜

⎜

⎝

0
1∕𝑚
𝟎𝑑𝑟×1
𝟎𝑑𝑒×1

⎞

⎟

⎟

⎟

⎟

⎠

,𝐂 =
(

1 0 𝟎1×𝑑𝑟 𝟎1×𝑑𝑒
0 1 𝟎1×𝑑𝑟 𝟎1×𝑑𝑒

)

(22)

and 𝐟 (𝐱) can be decomposed into linear and non-linear terms as

𝐟 (𝐱) = 𝐀𝐱 + 𝐧(𝐱) (23)

where

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 𝟎1×𝑑𝑟 𝟎1×𝑑𝑒
− 𝑠

𝑚 − 𝑏
𝑚 −𝐂𝑟

𝑚
𝐂𝑒
𝑚

𝟎𝑑𝑟×1 𝐁𝑟 𝐀𝑟 𝟎𝑑𝑟×𝑑𝑒
𝟎𝑑𝑒×1 𝟎𝑑𝑒×1 𝟎𝑑𝑒×𝑑𝑟 𝐀𝑒

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(24)

and

𝐧(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎝

0
𝑛(𝐱1 ,𝐱2)

𝑚
𝟎𝑑𝑟×1
𝟎𝑑𝑒×1

⎞

⎟

⎟

⎟

⎟

⎠

(25)

where 𝑛 is defined as in Eq. (1). The terms − 𝑠
𝑚 and − 𝑘

𝑚 represent any
linear stiffness and damping terms respectively. For example, if the
hydrostatic restoring force is linearly modelled, 𝑠 corresponds to 𝑠ℎ, the
hydrostatic stiffness.

The continuous-time state-space model of Eq. (21) is discretised,
assuming a ZOH and the Euler integration rule. Note that the ‘measure-
ments’ 𝐲[𝑘] for position and velocity are, in fact, the estimates from the
KF presented in Section 5.1.

6. Excitation force forecasting

A cost-effective approach to short-term wave forecasting consists of
treating the wave signal as a time series (Fusco & Ringwood, 2010),
using past measurements at the point of interest (in this case, the
WEC location) to predict the incoming signal. This section, adapted
from (Mérigaud & Ringwood, 0000b), shows how the Gaussian descrip-
tion of ocean waves can be used to provide a simple, statistically-optimal
predictor. While, in Mérigaud and Ringwood (0000b), wave elevation
observations are used to compute wave elevation predictions, in this
work, excitation force observations (e.g. obtained as in Section 5.2) are
used to compute excitation force predictions. In other words, the variable
of interest is the excitation force (instead of wave elevation).

Consider the wave elevation, 𝜂, modelled as a stationary, ergodic
Gaussian process (Ochi, 2005), with spectral density function (SDF)
𝑆𝜂𝜂(𝜔). Assuming linear hydrodynamic interactions, the excitation force
𝑒 is also a stationary, ergodic Gaussian process. Defining 𝐻𝜂𝑒(𝜔) the
transfer function relating 𝜂 to 𝑒, the excitation force process has a
SDF 𝑆𝑒𝑒(𝜔) = |𝐻𝜂𝑒(𝜔)|

2𝑆𝜂𝜂(𝜔) (Papoulis & Pillai, 2002). The process 𝑒
is entirely characterised by its mean (𝑒 = 0) and its auto-covariance
function (ACVF) 𝑅𝑒𝑒(𝜏) for 𝜏 ∈ R:

𝑅𝑒𝑒(𝜏) = E[𝑒(𝑡)𝑒(𝑡 + 𝜏)] (26)

𝑅𝑒𝑒(𝜏) can be computed from 𝑆𝑒𝑒(𝜔) by means of a Fourier transform,
by virtue of the Wiener–Khintchine theorem (Ochi, 2005).

Following the definition of a Gaussian random process, any finite,
discrete ensemble of wave excitation values, taken at various points in
time, forms a multivariate, Gaussian random vector. Considering that
the wave elevation is sampled, say, every second, define 𝐩 as the vector
of the last 𝑁𝑝 recorded values (indexed by 𝑚 ∈ [[1;𝑁𝑝]]), and 𝐪 the
(unknown) vector of the next 𝑁𝑞 excitation force values (indexed by
𝑛 ∈ [[1;𝑁𝑞]]).

Altogether, the 𝑁𝑝+𝑁𝑞 points form a multivariate Gaussian random
vector, 𝐯 ∈ R𝑁𝑝+𝑁𝑞 . Its mean is 0R𝑁𝑝+𝑁𝑞 and its variance–covariance
matrix, denoted 𝚺𝐯𝐯, can be entirely derived from the correlation values
between any pair of points in time, or the wave spectrum, i.e. 𝚺𝐯𝐯𝑖,𝑗 =
𝑅𝑒𝑒(𝑡𝑗 − 𝑡𝑖).

𝚺𝐯𝐯 can be written as:

𝚺𝐯𝐯 =
(

𝚺𝐪𝐪 𝚺𝐪𝐩
𝚺𝐩𝐪 𝚺𝐩𝐩

)

(27)
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Fig. 9. Actual vs. predicted excitation force, using past measurements over 10, 40 and
80 s, respectively JONSWAP spectrum (𝐻𝑚0

= 1 m, 𝑇𝑝 = 9 s).

where 𝚺𝐪𝐩 = 𝚺T
𝐩𝐪. Using 𝜇𝐩 = 𝜇𝐪 = 0, the conditional distribution of 𝐪|𝐩

is multivariate Gaussian (see for example Eaton, 2007) with mean:

𝜇𝐪|𝐩 = 𝚺𝐪𝐩𝚺−1
𝐩𝐩𝐩 (28)

and variance:

𝚺𝐪|𝐩 = 𝚺𝐪𝐪 − 𝚺𝐪𝐩𝚺−1
𝐩𝐩𝚺𝐩𝐪 (29)

The best predictor of 𝐪, in a least mean-square sense, is given as

𝐪̃ = 𝜇𝐪|𝐩 = 𝚺𝐪𝐩𝚺−1
𝐩𝐩𝐩 (30)

The prediction matrix, 𝐐 ∶= 𝚺𝐪𝐩𝚺−1
𝐩𝐩 , which maps 𝑁𝑝 measured

values to 𝑁𝑞 predicted values, needs only be computed once for a
given sea condition, i.e. as the wave spectrum evolves significantly,
for example every 30 min. Therefore, the only operation to be carried
out in real time is the matrix multiplication 𝐪̃ = 𝐐𝐩. The mean-square
prediction error 𝜖2(ℎ), for each prediction horizon ℎ, is given by the
diagonal terms of 𝚺𝐪|𝐩. For a given order 𝑁𝑝, any other forecasting
method is sub-optimal with respect to the law derived in Eq. (30), to
evaluate the 𝑁𝑞 predicted points.

Finally, it has to be noted that, in practice, the observed excitation
values come from the estimator of Section 5.2, and therefore the values
observed in vector 𝐩 are noisy. Assuming that estimation errors are white
noise, they can be readily taken into account, by adding the appropriate
variance level to the diagonal terms of 𝚺𝐩𝐩.

Figs. 9 and 10 give examples of WF performed by the SBP when,
respectively, 10, 40 and 80 s of past, measured excitation force values
(vector 𝐩) are used for WF over the next 15 s of excitation force signal
(vector 𝐪). The wave condition is a JONSWAP spectrum (Hasselmann,
Barnett, Bouws, Carlson, Cartwright, Enke, et al., 1973), with 𝐻𝑚0

= 1
m and 𝑇𝑝 = 9 s, and the WEC is the spherical heaving point-absorber
(HPA) which will be detailed in Section 7. Fig. 10 shows the goodness
of fit (GoF) of the prediction corresponding to the three measurement
configurations, computed as

𝐺(ℎ) = 1 −

√

𝜖2(ℎ)
E[𝑒2]

(31)

Note that the results of Fig. 10 do not depend on the specific
instance of the prediction, but represent the average performance of the
predictor. As can be seen in Figs. 9 and 10, significant improvement is
achieved by considering 40 s of past values instead of 10, while it seems
that little accuracy benefits can be expected by using a longer history
(e.g. 80 s) of the past values to perform WF. The example of Figs. 9 and

Fig. 10. Average goodness of fit of the excitation force prediction, using past measure-
ments over 10, 40 and 80 s, respectively JONSWAP spectrum (𝐻𝑚0

= 1 m, 𝑇𝑝 = 9 s).

10 does not consider the case where the observed excitation force values
are noisy.

It should be pointed out that, like the SBP, the AR-based WF
technique (Brekken, 2011; Fusco & Ringwood, 2010; Peña-Sanchez
et al., 2018; Tona et al., 2015) is also consistent with the assumption
of Gaussian, linear waves, but differs in two respects from the SBP:

• With the AR model, the WF structure is linear for the one-step-
ahead predictor, and WF at further time steps are carried out
iteratively. In contrast, SBP directly yields one linear predictor for
each time horizon.

• AR coefficients are generally identified using past data, while SBP
directly identifies the prediction coefficients from the spectrum,
without requiring any data-based identification procedure. In
theory, if properly identified, the AR coefficients should coincide
with the coefficients of the SBP, for the 1-step-ahead predictor.

7. WEC model and simulation framework

7.1. WEC model and constraints

For the practical application of the control architecture and tech-
niques proposed in this paper, the WEC model considered is the same
5 m diameter, spherical HPA as in Mérigaud and Ringwood (2017),
illustrated in Fig. 11. The vertical position 𝑧 of the WEC gravity center,
𝐺, with respect to the still water level, is assumed to be the only degree
of freedom. The sphere density is half of the water density so that,
at rest, 𝐺 is on the plane 𝑧 = 0. The radiation and excitation forces
are represented linearly, and the frequency-domain coefficients for
radiation and excitation forces are computed using the hydrodynamic
software NEMOH.1 Furthermore, in the numerical simulation, radiation
forces are computed by means of a convolution product, as in Eq. (2)
(where the radiation kernel 𝑘𝑟(𝜏) is also obtained from NEMOH).

The hydrostatic restoring force is non-linearly modelled, taking into
account the actual position of the device with respect to the plane 𝑧 = 0,
as in Nielsen et al. (2013):

𝑓ℎ𝑠(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝜋𝜌𝑔( 13 𝑧
3 − 𝑅2𝑧) 𝑧 ∈ [−𝑅;𝑅]

− 2
3𝜋𝜌𝑔𝑅

3 𝑧 ≥ 𝑅
2
3𝜋𝜌𝑔𝑅

3 𝑧 ≤ −𝑅

(32)

where 𝑅 = 2.5 m is the sphere diameter and 𝑔 the acceleration due
to gravity. Furthermore, a quadratic viscous drag term is added to the
model, of the form 𝑓𝑣(𝑧̇) = −𝑏𝑣𝑧̇|𝑧̇|. Thus, the non-linear terms of Eq. (1)
are expressed as:

𝑛(𝑧, 𝑧̇) = 𝑓ℎ𝑠(𝑧) + 𝑓𝑣(𝑧̇) (33)

1 https://lheea.ec-nantes.fr/doku.php/emo/nemoh/start.
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Fig. 11. A spherical heaving point absorber with centre of gravity 𝐺, radius 𝑅 = 2.5 m,
and density equal to 50% of that of sea water.

Thus, as in Mérigaud and Ringwood (2017), a mix of static and
velocity-dependent forces is considered. Two constraint configurations
are explored:

• Variant 1: with position and velocity limitations (|𝑧|𝑚𝑎𝑥 = 2.4 m,
|𝑧̇|𝑚𝑎𝑥 = 2.4 m/s), chosen to prevent the device from being either
fully submersed or fully ‘‘dry’’;

• Variant 2: Like Variant 1, with the additional constraint of passiv-
ity, i.e. unidirectional power flow.

Variant 2 is particularly demanding, since it involves a highly non-linear
constraint, and because a relatively large number of collocation points
for the satisfaction of the inequality constraint (see Section 3.2), must
be specified.

7.2. Control performance assessment

In order to assess the impact of the various parameters and tech-
niques considered in this work, several receding-horizon control vari-
ants are examined:

C1 Assuming perfect knowledge of present and future excitation force;
C2 Assuming perfect knowledge of present excitation force but (im-

perfect) WF, carried out as in Section 6;
C3 Assuming (imperfect) WE carried out as in Section 5, and (imper-

fect) WF carried out as in Section 6. Different measurement noise
levels are examined. As in Fig. 3, C3 is illustrated in Fig. 12, this
time with the detail of the chosen techniques presented in Sections
3 through 6.

Two other points of comparison are provided:

• When possible, the optimal (steady-state) trajectory and power
output are calculated off-line, over the whole simulation duration,

using the FSC technique detailed in Section 3. If the simulation
duration is 𝑇𝑠𝑖𝑚, the generated excitation force signal is periodic
with period 𝑇𝑠𝑖𝑚, and the techniques of Section 3 can be applied,
with a fundamental frequency, for the Fourier basis, defined as
𝜔1 = 2𝜋∕𝑇𝑠𝑖𝑚. The corresponding optimisation problem is, of
course, significantly more demanding than that solved in any
given receding window. Without the passivity constraint, the off-
line calculation can be carried out in a few seconds only, for a
simulation duration 𝑇𝑠𝑖𝑚 = 200 s. With the passivity constraint,
however, off-line calculations cannot always be carried out within
a reasonable amount of time. Therefore, the simulation time for
the passive case is restricted to 𝑇𝑠𝑖𝑚 = 180 s, which reduces
the number of cases where the overall optimal results cannot be
provided.

• Finally, the power obtained using an optimally-tuned constant,
passive linear damper is also calculated for each sea state con-
sidered.

7.3. Numerical simulation and control set-up

Given the large number of parameters to consider in the proposed
control architecture, it was not possible to carry out simulations across a
large range of sea states. Only five JONSWAP spectra (Hasselmann et al.,
1973) are used, with the same 𝐻𝑚0

= 1 m and 𝑇𝑝 = 6, 7, 8, 9 and 10 s,
representative of a location such as Galway Bay (Mérigaud & Ringwood,
0000c) (given the relatively small dimensions of the device considered,
such a location, with modest sea states, would be adequate).

Simulations are carried out using a 2nd-order Runge–Kutta integra-
tion method. The time-scales associated with the simulation and the
different blocks of the control structure are detailed as follows:

• The simulation time-step is 𝛥𝑇𝑅𝐾 = 0.01 s, which allows for
accurate results given the relatively slow dynamics of typical
ocean waves.

• For simplicity, the same time-step is used for the KF and EKF
estimators introduced in Section 5: 𝛥𝑇𝑅𝐾 = 𝛥𝑇𝑊𝐸 (both KF and
EKF calculations are carried out significantly faster than 0.01 s,
so that the choice 𝛥𝑇𝑊𝐸 = 0.01 s is compatible with real-time
implementation).

• Again for simplicity, the control force (comprising a feed-forward
and a feedback term, as explained in Section 4) is applied with a
time step 𝛥𝑇𝑢 = 𝛥𝑇𝑊𝐸 = 𝛥𝑇𝑅𝐾 . Zero-order-hold is assumed over
the duration 𝛥𝑇𝑈 .

• The forecasting method, introduced in Section 6, uses a time-
step of 𝛥𝑇𝑊𝐹 = 0.5 s, and takes into account 100 s of past
values to determine the WF: 𝛥𝑇𝑊𝐹 corresponds to a Nyquist
frequency of 1 Hz, which allows the frequency content of ocean
waves to be captured, while taking 100 s of past values is more
than sufficient to obtain the best possible forecasts (Mérigaud &
Ringwood, 0000b). Thus, the vector of observed values 𝐩 contains
samples every 0.5 s from 𝑡 − 100 to 𝑡, i.e. 1 + 100∕0.5 = 201
samples (where 𝑡 is the present time, at which WF is carried out).
The size of the predicted vector depends, of course, on the time
horizon considered — for example, if the next 10 s are being
forecast, the predicted vector 𝐪 contains 20 values. The prediction
matrix 𝐐 is then of size 20 × 201. The prediction, carried out
before each RG update by means of a simple matrix multiplication,
represents a negligible computational burden with respect to the
RG calculation itself.

• The time step 𝛥𝑇𝑅𝐺, at which the control calculations are carried
out (see Section 3), can be adjusted depending on the case
considered, in particular depending on the complexity of the RG
control calculations, and on the quality of the excitation forecasts.
Ideally, small values are preferable, because they allow for new
excitation forecasts to be taken into account as soon as they
become available, and because they imply that the discrepancies
between two successive RG updates are smaller, hence mitigating
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Fig. 12. Receding-horizon WEC control structure and methods 𝐳 = (𝑧, 𝑧̇), 𝐳ref = (𝑧ref , 𝑧̇ref), 𝐳est = (𝑧est , 𝑧̇est): actual, reference and estimated WEC trajectories; 𝐰 = (𝑤𝑧 , 𝑤𝑧̇): position and
acceleration measurement noise; 𝐲𝑚 = (𝑧𝑚 , 𝑧̈𝑚): measured WEC outputs; 𝑒, 𝑒est: actual and estimated excitation forces; 𝑢fb, 𝑢ff, 𝑢: feedback, feed-forward and total control input.

discontinuities in the reference trajectories. However, 𝛥𝑇𝑅𝐺 must
also be compatible with real time RG calculations. Throughout
the rest of this paper, 𝛥𝑇𝑅𝐺 is set to 0.25 s, which is a satisfactory
compromise. In all cases, the allowed calculation time 𝛥𝑇𝑐 (see
Section 3) is set to 0.2 s.

The settings for the receding-horizon RG calculations have been
manually tuned, and are detailed as follows: The receding window
length, 𝑇𝑤, and the cut-off frequency of the RG calculation, are im-
portant drivers for controller performance. Overall, it is found that,
with a bi-directional power flow, a window length 𝑇𝑤 = 3𝑇𝑝, where
𝑇𝑝 is the peak wave period, and a cut-off frequency for the Fourier
basis, 𝑓𝑐 = 0.5 Hz, are a reasonable compromise, between quality of
the generated trajectory and computational speed. In the passive case
(also significantly more computationally demanding), 𝑇𝑤 = 2𝑇𝑝 seems
a sufficient window length, but a significantly higher cut-off frequency
is required in order to obtain acceptable results; the effect of the cut-off
frequency will be investigated further in Section 8.

Finally, note that the receding-horizon solution 𝐳̂𝑤,𝑘, obtained by the
RG algorithm, at update time 𝑘𝛥𝑇𝑅𝐺, is used as a starting guess for the
solution of the RG problem at update time (𝑘+1)𝛥𝑇𝑅𝐺, after appropriate
time-shifting by 𝛥𝑇𝑅𝐺. Such a starting point generally reduces the
number of iterations for the interior point algorithm to converge, and
thus results in considerable computational savings.

All simulations and control calculations are carried out in a Matlab2

environment, using a computer equipped with a 3.50 GHz, 8-core Intel®
processor.

8. Numerical results

8.1. Measurements and estimation

Figs. 13a and 13b examine the performance of the KF and EKF
for state estimation and WE, under two, arbitrarily chosen noise level
scenarios: respectively small (𝜎𝑧 = 0.025, 𝜎𝑧̈ = 0.1) and larger (𝜎𝑧 =
0.05, 𝜎𝑧̈ = 0.2). Furthermore, two types of dynamics are considered:
uncontrolled (on the left hand-side of each figure), and controlled (right
hand-side).

For the uncontrolled case, 𝑢(𝑡) is simply set to zero, so that the WEC
moves freely in the waves. For the controlled condition, the optimal
trajectory 𝑧ref = 𝑧𝑜𝑝𝑡 is computed off-line over a wave signal of period
𝑇𝑠𝑖𝑚 = 200 s (assuming perfect knowledge of 𝑒(𝑡)), allowing for bi-
directional power flow. Then, in a simulation, the WEC is stirred along
𝑧𝑜𝑝𝑡 using the TL of Section 4. Thus, the impact of measurement noise can
be illustrated, in controlled conditions, while avoiding any complicated
interaction with RG calculations.

Reactive control implies larger WEC motion, and therefore the
impact of measurement noise can appear to be less significant under

2 https://uk.mathworks.com/.

controlled conditions (if the measurement noise magnitude remains
the same). This is particularly visible by contrasting the top-left and
top-right graphs in Fig. 13b. Unsurprisingly, additional measurement
noise results in more noisy excitation force estimates, as can be seen
by comparing the bottom graphs of Figs. 13a and 13b. The impact of
measurement noise and WE errors, on the complete control loop of
Fig. 12, will be further illustrated in the numerical results of Sections
8.2 and 8.3.

8.2. Reference trajectory and tracking

Figs. 14a and 14b illustrate the importance of appropriate TL set-
tings, and their interaction with the RG control calculations. Three
trajectories are represented on the upper graphs of both Figs. 14a and
14b: the RT, generated as explained in Section 3; the actual trajectory,
followed by the WEC as a result of the non-linear feed-forward and linear
state feedback described in Section 4, and the optimal WEC trajectory,
computed off-line using the totality of the 200 s of simulation. The
middle graphs show the optimal control force, the feed-forward control
force 𝑢ff computed as a result of the RG optimisation, and the actual
control force, resulting from both 𝑢ff and 𝑢fb. The bottom graphs show
the actual excitation force, and that estimated by the EKF (Section 5.2).
The time span indicated (from 300 s to 350 s) is because the time-domain
simulation is, in fact, carried out in two successive 200-s periods of the
generated excitation signal, thus allowing for a steady-state analysis
between 𝑡 = 200 s and 𝑡 = 400 s. The measurement noise is the smaller
one (𝜎𝑧 = 0.025, 𝜎𝑧̈ = 0.1), presented in Section 8.1.

In Fig. 14a, the control gains 𝑘1 and 𝑘2 (see Eq. (14)) are set so that
the closed-loop system (with a 2nd-order approximation of the WEC
model) has both poles, 𝑝1 and 𝑝2, equal to −4. Such a choice results in
relatively large values for the control gains, especially 𝑘1 (𝑘1 ≈ 600000),
which makes the controller over-react to the short-term dynamics of the
RT. In the example of Fig. 14a, this is particularly visible between 𝑡 = 310
and 315 s, but in other parts of the signal the good TL performance
is achieved at the price of significant excursions in the control signal.
The rapid WEC oscillations have a detrimental impact on WE (bottom
graph), which, in turn, affects RG calculations, as seen from the rapid
oscillations exhibited by the RT in the top graph. The resulting control
force oscillations have large amplitudes and are clearly unacceptable.

In Fig. 14b, the control gains are adjusted so that 𝑝1 = 𝑝2 = −2.
Although 𝑧ref is, at times, more loosely followed, thus possibly resulting
in small excursions outside the constraints (see for example 𝑡 = 347), the
control force dynamics and WE are now acceptable. It can also be seen
that the feed-forward control input (𝑢ff), represented as a dotted line in
the middle graph, is the dominant term in the total control force, with
feedback playing a minor role.

For the remainder of the numerical results presented in this section,
the choice 𝑝1 = 𝑝2 = −2 is maintained: even though better trade-offs
could probably be found, such a choice yields satisfactory results over
the range of conditions considered, and simplifies the analysis.
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Fig. 13. Actual and estimated values for position, velocity, acceleration and excitation force (along with position and acceleration measurements).

As mentioned in the end of Section 4, other TL options, different
from the proposed feed-forward and state feedback of Eq. (14), may
be considered. Adding an integral term in the reactive part of the
control action was found to be a valid option — even though it
did not significantly change results with respect to the TL controller
retained. In contrast, removing the feed-forward part of the controller,
𝑢ff, was found detrimental. Without 𝑢ff, large feedback control gains
were necessary for accurate trajectory tracking, both in a PD and PID
configuration. As a consequence, however, the resulting control signal
𝑢 showed unacceptably large excursions.

Finally, note that the high-frequency oscillations observed in Fig.
14a, and to a lesser extent in Fig. 14b, result from the interaction
between the TL and the RG. Changing the RG update rate, or managing
transitions between updates in a manner other than the one proposed
in Section 3.3, would yield different results. In particular, the two
alternative possibilities mentioned in the end of Section 3.3, namely
CRG and DRG, have been briefly investigated:

• With CRG, the reference trajectory is indeed smooth across suc-
cessive updates; however the equality constraint, expressing the
continuity of the reference trajectory, makes the optimisation
significantly more difficult, and thus incompatible with real-time
calculations. More importantly, the reference trajectory calculated
with CRG is further from the actual optimal trajectory, than that
calculated without the continuity constraint. This can be inter-
preted as follows: with CRG, the errors generated, in computing
the reference trajectory at update time 𝑡 = 𝑘𝛥𝑇𝑅𝐺, have an impact
on the calculations made at the next update, at 𝑡 = (𝑘+1)𝛥𝑇𝑅𝐺. In
contrast, if no continuity constraint is added (as is the case for the

results presented in this paper), the RG solution at 𝑡 = (𝑘+1)𝛥𝑇𝑅𝐺
is completely decoupled from that at the previous update, and thus
is not ‘contaminated’ by previous errors.

• With DRG, no smoothing or continuity constraints are applied to
the successive RG solutions. The resulting performance, in terms of
power output, is similar to the performance of the controller with
smoothing, but the corresponding control signal 𝑢(𝑡), computed as
in Eq. (14), is non-smooth, which is clearly undesirable.

8.3. Controller performance

With appropriate settings for the TL, the controller performance,
in terms of power absorption, is assessed over the range of sea states
considered, both with and without the possibility of bi-directional power
flow between the WEC and PTO system.

With bi-directional power flow
Fig. 15 shows the average steady-state absorbed power, for the

different variants detailed in Section 7.2, assuming that a bi-directional
power flow is allowed. For Variant C3, two measurement noise level
scenarios are considered: small (𝜎𝑧 = 0.025, 𝜎𝑧̈ = 0.1) and larger (𝜎𝑧 =
0.05, 𝜎𝑧̈ = 0.2). The noise level, which has to be taken into account
in the SBP (see Section 6), should be adapted to the level of noise
observed in the WE (bottom graphs in Figs. 13a and 13b). Better still,
similarly to spectrum-based prediction, information on the spectrum
could be used to filter noise out of the estimated excitation signal, hence
possibly improving the quality of the input 𝑒𝑤 of the RG calculations.
However, such developments are beyond the scope of the current work,
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Fig. 14. Optimal, reference and actual WEC trajectory (top); optimal, non-linear feed-forward, and total control force (middle); actual and estimated excitation force (bottom).

and instead, setting the noise level proportionally to 𝜎𝑥 (motivated by
the fact that more measurement noise results in more errors in the
excitation estimates) appears to be a reasonable choice. The receding-
horizon length is set to 𝑇𝑤 = 3𝑇𝑝.

Unsurprisingly, Fig. 15 shows that reactive control allows for a 2- to
4-fold increase over power absorption with respect to a simple linear
damper, in the range of wave conditions considered. The receding-
horizon control configuration, regardless of whether the excitation force
is perfectly known or has to be estimated from the WEC dynamics,
results in sub-optimal power absorption, although generally well within
90% of the optimal. In the cases examined, the effect of measurement
noise tends to be more pronounced for waves with longer periods (9–
10). For shorter wave periods (6–8 s), there is very little difference in
power absorption between the different receding-horizon variants C1–
C3. Consistently with previous studies (Auger et al., 0000; Li et al.,
2012), the relatively poor WF performance (see Section 6) does not
seem to significantly affect the results. This can be explained by the fact
that the low-frequency components, which are crucial for wave energy
absorption, are better predicted than their high-frequency counterparts.

For the cases considered here, the average computational time,
necessary to solve each optimisation problem, is between 0.07 and 0.12 s
depending on 𝑇𝑝, which is compatible with real-time implementation
(below 𝛥𝑇𝑐).

To investigate the effects of TL inaccuracies, Fig. 16 provides, for the
two noise levels considered, a comparison between the actual receding-
horizon results (solid lines), and those obtained assuming perfect track-
ing of the generated RT (dashed lines). The effect of TL imperfections is
found to be relatively modest in terms of power absorption. However,
as seen in Fig. 14b, tracking inaccuracies can result in small excursions
outside the prescribed WEC constraints, which could need to be further
addressed.

Fig. 15. Absorbed power with optimal control (computed off-line) and in various
receding-horizon control configurations. A bi-directional power flow is allowed.

With uni-directional power flow
When passivity is required, RG computation is significantly more

demanding. Furthermore, the RT resulting from the RG optimisation

157



A. Mérigaud, J.V. Ringwood Control Engineering Practice 81 (2018) 145–161

Fig. 16. Absorbed power with optimal control (computed off-line) and in different
receding-horizon control configurations. A bi-directional power flow is allowed.

Fig. 17. Top graph: absorbed power in a receding-horizon control configuration (small
meas. noise), with different cut-off frequencies 𝑓𝑐 . Only a uni-directional power flow is
allowed. Middle graph: average reactive power resulting from constraint violation. Bottom
graph: average RG computation time (𝛥𝑇𝑐 is indicated through a dotted line).

may not ensure passivity between the constraint collocation points.
Furthermore, increasing the number of collocation points also increases
the control problem size, and therefore is detrimental to the computa-
tional performance of RG calculations. In addition, noise and imperfect

Fig. 18. Top graph: absorbed power with optimal control (computed off-line) and in
various receding-horizon control configurations. Only a uni-directional power flow is
allowed. Bottom graph: average reactive power resulting from constraint violation in the
different configurations. Optimal calculation: 𝑓𝑐 = 0.8 Hz; rec. hor. calculations: 𝑓𝑐 = 1.2
Hz.

tracking may also lead to local violation of the passivity constraint.
Therefore, the control force is modified in real time, so as to enforce
passivity at the TL level, as follows:

𝑢′ =

{

𝑢 if − 𝑧̇est𝑢 > 0
0 if − 𝑧̇est𝑢 ≤ 0

(34)

which is more compactly written as 𝑢′ = 𝟏R+{−𝑧̇est𝑢}𝑢, where 𝑧̇est is the
estimated WEC velocity and 𝑢 = 𝑢fb + 𝑢ff, as explained in Section 4.

As mentioned earlier in Section 7.3, the receding window length is
set to 𝑇𝑤 = 2𝑇𝑝. Fig. 17 shows the sensitivity of the receding-horizon
control results to the cut-off frequency 𝑓𝑐 of the RG calculations, in
terms of absorbed power 𝑃 , passivity constraint violation (measured as
𝑃𝑟), and average RG calculation time. The measurement noise level is
assumed small (𝜎𝑧 = 0.025, 𝜎𝑧̈ = 0.1). The simulation time is 𝑇𝑠𝑖𝑚 = 180
s. If 𝑓𝑐 is set too low (e.g. 0.5 Hz), the receding-horizon controller does
not outperform a simple linear damper. Significant improvements are
obtained by increasing the number of harmonics: for 𝑓𝑐 = 1.6 Hz,
the improvement in power absorption amounts to 30–50% of the
best passive linear damper results. However, the average computation
time for RG calculations increases substantially with the number of
harmonics, and actually exceeds 𝛥𝑇𝑐 = 0.2 s for 𝑓𝑐 = 1.6 Hz (bottom
graph). Therefore, for this case study, 𝑓𝑐 = 1.2 Hz is found to be an
appropriate compromise. Finally, note that 𝑓𝑐 has little influence on the
effective violation of the passivity constraint (middle graph).

The top graph of Fig. 18 shows the average steady-state absorbed
power, obtained in a wave excitation signal of 𝑇𝑠𝑖𝑚 = 180 s, for the
different configurations detailed in Section 7.2. For the receding-horizon
variants C1–C3, 𝑓𝑐 is set to 1.2 Hz, based on the results of Fig. 17. The
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Fig. 19. Time-domain control results: optimal, reference and actual position 𝑧 (upper left plot) and velocity 𝑧̇ (lower left); optimal and actual control force 𝑢′ (upper right); optimal and
actual power absorption (lower right). JONSWAP spectrum (𝐻𝑚0

= 1 m, 𝑇𝑝 = 9 s). Passivity enforcement as in Eq. (34).

bottom graph shows the average reactive power 𝑃𝑟, resulting from local
violation of the passivity constraint.

Note that, in Fig. 18, no passivity enforcement is applied to the
optimal control trajectory. Furthermore, while in this example the RG
calculations are carried out with a cut-off frequency 𝑓𝑐 = 1.2 Hz, optimal
calculations considering the 180 s wave signal in its entirety, with the
same cut-off frequency, were not always achievable within a reasonable
amount of time. Therefore, a cut-off frequency of 𝑓𝑐 = 0.8 Hz is used
instead. Optimal calculations, using the total wave signal, result in up
to a 75% increase in absorbed power, with respect to the best passive
damping. However, the passivity condition is not satisfied between
collocation points, thus resulting in some reactive power being provided
to the WEC, as measured by 𝑃𝑟 in the bottom graph. For the optimal
control results computed off-line, 𝑃𝑟 is of the order of 1% of the average
absorbed power 𝑃 , which can be considered reasonably small: as a point
of comparison, when reactive power is allowed (Section 8.3), 𝑃𝑟 is of the
order of twice the value of 𝑃 .

Results obtained in a receding-horizon configuration, with 𝑓𝑐 =
1.2 Hz, are less favourable, in terms of absorbed power, than the
optimal results computed off-line. However, passivity is successfully
enforced at the TL level, reducing 𝑃𝑟 by a factor of more than 10, with
respect to off-line computation. The presence of measurement noise is
observed to have a significant effect, on both average absorbed and
reactive power. More specifically, higher measurement noise also causes
greater error in 𝑧̇est, which, given the form of Eq. (34), makes passivity
enforcement less accurate. Overall, the gains obtained in the receding-
horizon configurations of Fig. 18, with respect to a simple passive linear
damper, are of the order of 20–30%.

Finally, Figs. 19 and 20 examine passive control results in the
time domain. In Fig. 19, obtained for a JONSWAP spectrum with

𝐻𝑚0
= 1 m and 𝑇𝑝 = 9 s, the actual WEC trajectory is compared with

the reference generated by the RG algorithm, and with the optimal
trajectory computed off-line. As in Fig. 18, the comparison with the
optimal trajectory has limited validity, because the cut-off frequency for
the optimal calculation is 𝑓𝑐 = 0.8 Hz, vs. 𝑓𝑐 = 1.2 Hz for the receding-
horizon calculations, and because the optimal trajectory yields more
reactive power. It can be noted, however, how starkly the RT in Fig. 19
differs from that computed off-line.

Although passivity enforcement via Eq. (34) practically eliminates
any reactive power flow, while still allowing for acceptable tracking of
the RT, the resulting control force 𝑢′ is, at times, subject to sharp transi-
tion — which is not dissimilar, in terms of control input requirements, to
the bang–bang type control obtained in some other WEC control studies
(for example Li et al., 2012).

However, it may be desirable to require a smoother control force.
Therefore, it is suggested here to replace the indicator function 𝟏𝐑+ of
Eq. (34) with a smooth approximation using a hyperbolic tangent, so
that:

𝑢′ = 1
2
[tanh(−𝑘𝑧̇est𝑢) + 1]𝑢 (35)

where 𝑘 is some proportionality coefficient tuned, in this specific
example, to 𝑘 = 0.001. The resulting trajectory, control force and power
outputs can be seen in Fig. 20. While reactive power is also practically
eliminated, the actual control force is now significantly smoother.

9. Conclusions

The proposed control framework contains four important compo-
nents of a receding-horizon control architecture, namely reference
trajectory calculations, tracking loop, estimation and forecasting. The
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Fig. 20. Time-domain control results: optimal, reference and actual position 𝑧 (upper left plot) and velocity 𝑧̇ (lower left); optimal and actual control force 𝑢′ (upper right); optimal and
actual power absorption (lower right). JONSWAP spectrum (𝐻𝑚0

= 1 m, 𝑇𝑝 = 9 s). Passivity enforcement as in Eq. (35).

overall controller performance, as well as the interplay between the
four control components, are examined, based on a simple WEC model
including a combination of static and dynamic non-linear forces, under
constrained configurations, and taking into account imperfect mea-
surement of the WEC dynamics. Furthermore, where possible, optimal
control calculations, taking into account the complete input wave signal,
are provided as a point of comparison, as well as the results from an
optimally-tuned passive, constant linear damper.

RG calculations using a Fourier spectral method prove to be compu-
tationally attractive, and are successfully adapted to a receding-horizon
framework. The TL, consisting of a combination of a feedback term with
a non-linear feed-forward control force, allows for reasonably accurate
trajectory tracking. The estimation and forecast errors, obtained respec-
tively through the extended Kalman filter and the SBP method, do not
seem to strongly affect the controller performance.

Strong interactions can be observed between the different com-
ponents of the control structure. In particular, the dynamics of the
RT, resulting not only from the RG optimisation, but also from the
articulation of consecutive updates, should be taken into account when
designing the TL and WE.

Overall, when reactive power flow is allowed, the receding-horizon
framework allows for power absorption of the order of 90% of the
optimal (and 2–4 times the best linear damper results), even with
measurement noise.

When passivity is required, obtaining an ‘optimal’ point of compar-
ison is significantly more complicated, mainly due to the high compu-
tational demand associated with passive control optimisation, over the
whole simulation duration. However, the receding-horizon controller
seems able to improve the average absorbed power significantly – of
the order of 20–40% – with respect to the best linear damper, while

being real-time compatible in a Matlab implementation. Even better
results may be achievable by increasing the number of harmonics in the
Fourier spectral RG calculations. This, however, could also unreasonably
increase the computational requirements of the RG calculations. There-
fore, it might be interesting to investigate the use of different, possibly
discontinuous, basis functions (see for example Henriques, Lemos, Eça,
Gato, & Falcão, 2017).

In view of the results presented in this paper, further work and
research orientations can be suggested:

• The quality of the RT could be improved, in particular regarding
the transition between consecutive updates. In particular, it should
be ensured that high-frequency dynamics, which unavoidably
arise from a discrete sequence of trajectory updates, do not
interfere with the TL. In addition, concerning more specifically
the case with a passivity constraint, a more appropriate set of basis
functions could perhaps yield better results.

• In turn, an improved quality of the RT should ease the task of the
TL.

• The aforementioned issues, due to the discrete updates of the RT,
would be strongly mitigated if more accurate WE and WF were
achievable, because less frequent updates would be necessary, and
because there would be less difference between two successive
updates. This work, however, suggests that such improvements
are only achievable by incorporating more measurements, such
as wave elevation in the vicinity of the WEC, or pressure sensors,
into the estimation and forecasting algorithms.

• The WE method, presented in this paper, relies heavily on an ac-
curate description of the (non-linear) hydrodynamic model in the
state-space description. The design of a WE, robust to modelling
errors, could be the subject of further study.
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