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Abstract

Toll-like receptor 7 (TLR7) plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV) and
Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more
comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor
molecule (TRAM) plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the
complex and initiation of IRF3 dependent type I interferon production as well as NF-kB dependent pro-inflammatory
cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that
TRAM2/2 murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not
TNFa, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7
mediated CCL5 and IFN-b, but not TNFa, gene induction. Furthermore, suppression of endogenous human TRAM
expression in human macrophages significantly impaired RV16 induced CCL5 and IFNb, but not TNFa gene induction.
Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNb and IFNa reporter genes. TLR7-
mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM2/2 cells. Finally, co-immunoprecip-
itation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions.
Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling
axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity.
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Introduction

TLRs function by recognizing conserved structural motifs, or

pathogen associated molecular patterns (PAMPs) derived from

infectious organisms and initiating an intracellular signaling

cascade which in turn brings about the appropriate innate and

adaptive immune response. Many aspects of their expression,

localisation, activation and downstream signaling are tightly

regulated by an ever expanding panel of both positive and

negative regulators [1]. One immediate method of regulation is

the recruitment of various Toll/Interleukin 1 receptor (TIR)

domain containing adaptor proteins – of which there are five [2].

MyD88 is required for all TLR signaling, except TLR3, and

causes pro-inflammatory cytokine production via activation of NF-

kB and the mitogen activated protein kinases (MAPKs). TRIF is

utilised by TLR3 and TLR4 causing interferon regulatory factor

(IRF) and NF-kB induction leading to the production of both

inflammatory cytokines and type I Interferon (IFN). Mal, also

known as TIRAP, functions as a sorting adaptor, recruiting

MyD88 to TLR2 and TLR4. Similar to Mal, TRAM functions to

recruit TRIF to TLR4 [2]. TRAM and TLR4 have been shown to

traffic between the plasma and endosomal membranes from where

they initiate pro-inflammatory and anti-viral signaling [3]. Further

downstream signaling complexes are designated as either MyD88

dependent or TRIF dependent (MyD88 independent). Finally,

SARM negatively regulates TLR3 and TLR4 signaling by

inhibiting TRIF recruitment [4]. More recently, novel roles for

the TLR adaptors have been delineated. For example, MyD88

and Mal have been shown to negatively regulate TLR3 signaling

[5,6]. Also, TRIF has been implicated in both the positive and

negative regulation of TLR5 signaling [7,8]. TRAM has been

shown to be required for maximal IL-18R signaling [9].

The endosomal TLRs, TLR7, TLR8 and TLR9 are part of an

evolutionary cluster believed to have arisen via an X-linked

duplication event approximately 150 million years ago [10]. TLR7

was initially shown to sense synthetic antiviral imidazoquinoline

derivatives such as imiquimod and resiquimod (R-848) [11,12]

and, thereafter, was shown to detect single stranded RNA (ssRNA)

derived from RNA viruses such as Influenza A and human

immunodeficiency virus (HIV). Notably, studies have also shown

that TLR7 can sense RNA derived from bacteria [13]. Expression

of TLR7 is somewhat restricted to tissues including the lung and

brain [10]. In resting cells, TLR7 is sequestered in the

endoplasmic reticulum and rapidly trafficks to the endolysosome

via UNC93B1 upon infection [14]. Infecting virus particles are

enveloped and internalised to the endolysosome where they

encounter TLR7. Upon activation, MyD88 binds to constitutively

expressed IRF7 leading to the formation of a multiprotein

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e107141

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0107141&domain=pdf


complex including IRAK1, IRAK4, TRAF6, TRAF3 and IKKa,

which in turn leads to the phosphorylation of IRF7 and

subsequent translocation to the nucleus [14]. Similar to the

trafficking of MyD88 to the endosome following TLR7 engage-

ment [15], TRAM has also been shown to traffick to the

endosome upon TLR4 engagement [3]. Given this and the newly

ascribed roles for the TLR adaptor proteins in TLR signaling

[6,16], we sought to explore whether TRAM plays a functional

role in TLR7 signaling. Using murine immortalised bone marrow

derived macrophages (iBMDMs) generated from TRAM-deficient

mice, we found that TLR7 mediated RANTES production was

suppressed when compared to wild type mice. Moreover,

suppression of human TRAM expression using RNA interference

in human macrophages resulted in a decrease in CCL5, IFN-b,

but not TNFa, expression following ssRNA virus human

rhinovirus 16 (HRV-16) infection. Mechanistically, we show that

TRAM myriostoylation, but not Mal, is required for TLR7

mediated activation of CCL5, IFN-a and IFN-b reporter gene

activity through a mechanism that involves the phosphorylation

and nuclear translocation of IRF3. To our knowledge, our study

shows for the first time that the TIR-adaptor domain containing

protein TRAM is required for maximal TLR7 mediated

RANTES and IFN-b production.

Materials and Methods

Cell Culture and Reagents
HEK293-TLR7 cells were a generous gift from Professor Stefan

Bauer, University of Marburg. Wild type and TRAM2/2 iBMDM

cells were provided by Professor Luke O’Neill, Trinity College

Dublin. All cells were grown in DMEM, high glucose (Sigma)

supplemented with 10% fetal calf serum, 1% penicillin-strepto-

mycin, 1% sodium pyruvate and maintained at 37uC in a

humidified atmosphere of 5% CO2. G418 (250 mg/ml) was added

to maintain the HEK293-TLR7 cells. Lipopolysaccharide from E.
coli, Serotype EH100(Ra) (Alexis), high molecular weight

Poly(I:C), CLO97 and R848 were purchased from Invivogen.

The siRNA oligonucleotides were synthesised by Sigma-Aldrich

using the following sequences: TRAM sense, 59-UUG-

GAUAUUUAUAAUGGGUTT-39, and antisense, 59-AC-

CCAUUAUAAAUAUCCAATT-39. Negative ‘scrambled’ control

sequences were 59-UAUAAUUCAAUCACACAACTT-39 (sense)

and 59-GUUGUGUGAUUGAAUUAUATT-39 (antisense). Hu-

man rhinovirus 16 (HRV16) was a gift from Professor Steve

Goodbourn, University of London.

Expression Vectors/Recombinant Plasmids
The reporter gene constructs IFN-b-luciferase, IFN-a-luciferase

and RANTES-luciferase were as previously described [16]. The

Flag-TRIF was as described [17]. The plasmids pcDNA3:

MyD88-cmyc, Flag-TRAM and TRAM-G2A were generously

provided by Professor Luke O’Neill (Trinity College Dublin).

Sources of macrophages
TRAM2/2 mice were constructed as described [18]. WT and

TRAM mice were on a C57BL/6 background. All mice were

confirmed as being homozygous mutants by PCR genotyping of

DNA. All the animal protocols used in this study were approved by

the Ethical Committee at the National University of Ireland,

Maynooth and in accordance with the Animals (Scientific

Procedures) Act, 1986, UK. iBMDMs were generated as

previously described [19].

First Strand cDNA synthesis
Total RNA was isolated from all types of cells using TRI

REAGENT according to the manufacturer’s instructions (Sigma).

Thereafter, total RNA was converted to first strand cDNA as

described (25). Briefly, 1 mg RNA was incubated with 2 ml random

hexamer primers (500 mg/ml) at 70uC for 5 min. Thereafter, the

additional reaction components were added in the following order:

5 ml of 56RT buffer (Fisher), 1.3 ml of 10 mM dNTP (New

England Biolabs), 0.5 ml RNase Inhibitor (Fisher), 0.5 ml MMLV

Reverse transcriptase (Fisher) and nuclease-free water to a total

volume of 25 ml. The tubes were incubated at 37uC for 40 min

and at 42uC for 40 min followed by heating to 80uC for 5 min.

Real-time PCR
Total cDNA was used as starting material for real-time RT-

PCR quantitation with SYBR Green JumpStar Taq ReadyMix

(Sigma) on a real-time PCR system (Light Cycler 480; Roche). For

the amplification of the specific genes the following primers were

used; hIFN-a, forward, GAAATACTTCCAAAGAATCACTCT

and reverse, GATCTCATGATTTCTGCTCTGACA; mTNFa,
forward, CATCTTCTCAAAATTCGAGTGACAA and reverse,

TGGGAGTAGACAAGGTACAACCC; hTNFa, forward,

CCCAGGGACCTCTCTCTAATCA and reverse,

AGCTGCCCCTCAGCTTGAG, mCCL5, forward, GGAGAT-

GAGCTAGGATAGAGGG and reverse TGCCCATTTTCC-

CAGGACCG; hCCL5, forward, TGTGGTA-

GAATCTGGGCCCTTCAA and reverse,

TGCCTGTTTCTGCTTGCTCTTGTC. For each mRNA

quantification, the housekeeping gene GAPDH was used as a

reference point using the following primers, mGAPDH forward,

GCACAGTCAAGGCCGAGAAT, and reverse,

GCCTTCTCCATGGTGGTGAA; hGAPDH forward, TCGA-

CAGTCAGCCGCATCTTCTTT, and reverse, AC-

CAAATCCGTTGACTCCGACCTT. It was confirmed that the

expression of GAPDH was not affected by the various treatments.

Real-time PCR data were analysed using 2–DDCT method as

described [20].

siRNA transfection
THP1 cells were differentiated using Phorbol 12-myristate 13-

acetate (PMA; 40 nM) for 48 hr. The medium was then replaced

with fresh RPMI. After 4 hr, cells were transfected with siRNA to

target the suppression of TRAM. Briefly, for each well in a 12 well

plate, 200 nM of siRNA was transfected into 1.46106 cells in 1 ml

of medium using 4 ml of lipofectamine (Life Technologies) per

well. After 48 hr, the efficiency of TRAM knockdown was assessed

by Real Time-PCR using human TRAM forward TCCACAGT-

GATGCCTACTGATGCT and reverse primers ATGCAGAT-

GAGAGGTGGACCCATT and GAPDH forward

AGCTTGCTGGTGAAAAGGAC and reverse primers TTA-

TAGTCAAGGGCATATCC.

Transfection and co-immunoprecipitation
HEK293-TLR7 cells (1.46106 cells/well; 6-well plate) were

allowed to reach 70% confluency upon which cells were co-

transfected with 3 mg Flag-TRAM and 3 mg EV or 3 mg Flag-

TRAM and 3 mg Myc-MyD88 using Lipofectamine 2000. After

24 hr, cells were either left unstimulated or stimulated with

CLO97 (5 mg/ml) for 15, 30 and 60 min as indicated. Thereafter,

cells were lysed in 200 ml low stringency buffer (LSB) (50 mM

HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA pH 7.6, 1% NP-

40, 0.5% sodium deoxycholate supplemented with 1 mM PMSF,

1 mM DTT, 1 mM NaVO3, 5 mM EGTA and protease inhibitor
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cocktail). Cellular debris was removed by centrifugation and

then 20 ml of the remaining whole cell lysate (WCL) was

removed, mixed with an equal volume of 5x Laemmli loading

buffer, boiled for 10 min and stored at –20uC until required for

WCL analysis. Next, 1 mg of anti-Flag M2 monoclonal

antibody (Sigma, F3165) was added to the remaining cell

lysates followed by incubation overnight at 4uC with gentle

shaking. Next, 25 ml Protein A/G beads (Santa Cruz) were

added followed by incubation overnight at 4uC with gentle

shaking. Samples were then washed 4 times with unsupple-

mented LSB followed by the addition of 50 ml of 5x Laemmli

loading buffer and boiling for 10 min. Samples were subjected

to SDS-PAGE gel electrophoresis and immunoblot analysis

using the indicated antibodies.

Reporter Assays
HEK293-TLR7 cells (46105 cells/well; 96 well plate) were

transfected with 60 ng/well luciferase reporter gene plasmid for

CCL5, IFN-b and IFN-a as previously described (9) and co-

transfected with the expression vector pcDNA3:TRAM-G2A

using Lipofectamine 2000 as described by the manufacturer (Life

Technologies). In all cases, 40 ng/well of phRL-TK reporter gene

was co-transfected to normalize data for transfection efficiency.

After 24 hr, cells were stimulated with CLO97 (5 mg/ml) as

indicated. Thereafter, cell lysates were prepared and reporter gene

activity was measured using the Dual Luciferase Assay system

(Promega) as described (27). Data was expressed as the mean fold

induction 6 S.D. relative to control levels, for a representative

experiment from a minimum of three separate experiments, each

performed in triplicate.

Cytokine analysis
iBMDMs (16106 cells per well) were stimulated with various

TLR ligands. After 24 hr, the cell supernatants were removed and

analysed for TNFa and RANTES cytokine release as indicated by

the manufacturer (Peprotech).

Extraction of Cellular Nuclear Fraction
iBMDMs were stimulated with R848 (1 mg/ml), Poly(I:C)

(25 mg/ml) or LPS (100 ng/ml) for 0–2 hr. After ligand

stimulations, the cells were collected and nuclear extracts were

prepared using the nuclear Extraction Kit as described by the

manufacturer (Cayman Chemical). Thereafter, the nuclear

fraction was subjected to immunoblot analysis using anti-IRF3

(Santa Cruz, sc-9082) and anti-Lamin A/C (Cell Signaling,

2032s) antibodies.

pIRF3 and IkBa immunoblot analysis
Cells were stimulated with Poly(I:C) (25 mg/ml), LPS (100 ng/

ml) and R848 (1 mg/ml) as described and whole cell lysates were

subjected to SDS-PAGE followed by immunoblot analysis with an

IkBa (Cell Signaling Technology), an anti-phospho-IRF3 (Cell

Signaling Technology), an anti-IRF3 (Santa Cruz) and anti-b-

actin (Sigma) antibodies.

Data analyses
Statistical analysis was carried out using the unpaired Student’s t

test using Graphpad Prism 5 programme. P-values of less than or

equal to 0.05 were considered to indicate a statistically significant

difference where * indicated p,0.05 and ** indicates p,0.005.

Results

TRAM is required for TLR7 mediated RANTES production
Previous studies conducted by our group have shown novel roles

for the TIR-domain containing adaptors MyD88 and Mal/

TIRAP in TLR signaling [5,6]. Specifically, we have shown that

MyD88 and Mal play a negative role in TLR3 mediated type I

IFN production, via inhibition of IRF3 and IRF7 respectively

[5,6]. Given these findings, we sought to explore whether an

understudied TLR adaptor protein, TRAM, may have a hitherto

unappreciated role in TLR signaling, distinct from it’s know role

in TLR4 signaling. To investigate the role of TRAM in TLR7

signaling, we opted to use three alternative TLR7 stimuli, namely

R848, CLO97 and a physiologically relevant virus, namely

HRV16. Initially, we measured TLR7-mediated RANTES and

TNFa production by ELISA in TRAM2/2 and WT cells and

demonstrate that levels of RANTES were suppressed in TRAM2/2

iBMDMs when compared to WT iBMDMs following stimula-

tion with the TLR7 ligand, R848 (Fig. 1A). In contrast,

comparable levels of R848 mediated TNFa secretion were

evident in WT and TRAM2/2 iBMDMs (Fig. 1B). Moreover,

comparable RANTES and TNFa production was evident in

TRAM2/2 iBMDMs when compared to WT cells following

stimulation with Poly(I:C), but not LPS (Fig. 1A, B). As

expected, impaired levels of RANTES and TNFa secretion

were evident in MyD882/2 iBMDMs compared to WT

iBMDMs following stimulation with R848 (Fig. 1A). Next, the

role of TRAM in the transcriptional regulation of TLR7

mediated RANTES and TNFa was explored. Correlating with

ELISA data, real-time PCR data revealed that R848 mediated

CCL5 induction was significantly decreased in TRAM2/2

iBMDMs when compared to WT cells (Fig. 1C). As a control,

we show that R848 mediated CCL5 and TNFa induction was

suppressed in MyD882/2 cells compared to WT iBMDMs

(Fig. 1C, D). As expected, comparable CCL5 and TNFa
induction was evident in TRAM2/2 iBMDMs when compared

to WT cells following stimulation with Poly(I:C), but not LPS

(Fig. 1C, D). Together, these data suggest that TRAM is

required for TLR7 mediated CCL5 gene induction.

To preclude the possibility of species dependent differences in

TRAM functionality in the context of TLR7 signaling, TRAM

expression was suppressed in human macrophages using siRNA

technology (Fig. 2A) and thereafter, TLR driven cytokine

production was assessed. Specifically, human monocytic THP1

cells were differentiated into macrophages using PMA, followed by

suppression of TRAM expression using TRAM-specific siRNA or

control non-specific scramble siRNA for 60 hr and stimulation

with R848, LPS or Poly I:C for 8 hr. Correlating with data

generated using TRAM2/2 murine iBMDMs, suppression of

TRAM expression in human macrophages resulted in a significant

decrease in R848 and LPS, but not Poly(I:C) mediated CCL5

induction when compared to cells transfected with the scrambled

control siRNA (Fig. 2B). In contrast, comparable R848 and

Poly(I:C) mediated TNFa induction was evident in WT and

TRAM2/2 cells (Fig. 2C). As TLR7 mediated induction of

CCL5, but not TNFa mRNA was impaired in TRAM deficient

cells, this indicated that TRAM was leveraging TLR7 signaling

not via NF-kB, but perhaps via the IRF pathway and thus may

also affect transcription of the IFN-b gene [6,21]. Hence, the role

of TRAM in the transcriptional regulation of IFN-b was also

examined wherein it was found that suppression of TRAM

expression resulted in a significant decrease in R848 and LPS, but

not Poly(I:C) mediated IFN-b induction when compared to

control cells (Fig. 2D).

TRAM Is Required for TLR7 Mediated RANTES Production
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To investigate the physiological role of TRAM in the

modulation of virally induced CCL5 and IFN-b induction,

TRAM expression was suppressed in differentiated THP1 cells

and cells were then treated with the ssRNA virus [16], HRV16

followed by assessment of CCL5, TNFa and IFN-b gene

induction. It was found that suppression of TRAM using siRNA

technology suppressed RV16 induced CCL5 and IFN-b induction

without significantly affecting TNFa gene induction when

compared to controls (Fig. 2A–D). Taken together, these data

indicate that TRAM is required for TLR7-mediated and virally

induced human CCL5 and IFN-b gene induction.

TRAM is required for TLR7-induced CCL5, IFN-a and IFN-b
reporter gene activity

Following the correct folding of TLR7 within the endoplasmic

reticulum (ER) lumen, it is trafficked through the Golgi by the

conventional secretory pathway and then routed to endosomes

where it can encounter its ligand [22,23]. TRAM has previously

been shown to localise to the plasma membrane and Golgi in

resting cells but can also traffic independently of TLR4 to

endosome membranes via a bipartite sorting motif [3]. TRAM is

regulated by myristoylation, which is required for the adaptor

molecule to be localized within plasma membrane and mutation of

the myristoylation motif abolishes its functional activity [3,24].

With this in mind, we examined whether expression of a

myristoylation defective TRAM protein, TRAM-G2A, affected

TLR7 mediated transcription factor activation. To this end,

HEK293 cells stably transfected with TLR7 (HEK293-TLR7) to

render them TLR7 ligand responsive were transiently transfected

with the CCL5, IFN-a and IFN-b reporter gene constructs and

increasing amounts of TRAM-G2A. After 24 hr, cells were

stimulated with the TLR7 ligand, CLO97. We found that

transfection of HEK293-TLR7 cells with TRAM-G2A dose-

dependently inhibited CLO97 induced activation of the CCL5,

IFN-a and IFN-b reporter genes (Fig. 3A–C). As a control, we

show that dominant negative Mal-P125H did not significantly

affect CCL5, IFN-a and IFN-b reporter gene activity in HEK293-

TLR7 cells (Figure 3D–F). Taken together, these data show that

TRAM, but not Mal, is required for optimal TLR7 mediated

CCL5 and IFN-b reporter gene activity.

TRAM is required for TLR7 mediated IRF3 activation and
interacts with MyD88 in a TLR7 dependent manner

Given that our data suggests a role for TRAM in the

transcriptional regulation of TLR7 mediated RANTES and

IFN-b, but not TNFa, we hypothesised that this may reflect an

underlying specificity in terms of transcription factor utilisation via

a TLR7-TRAM signaling axis. As TRAM has previously been

shown to be required for TLR4 mediated IRF3 activation in

macrophages [3], we examined whether TLR7 engagement may

also result in the activation of IRF3 in macrophages and, more

importantly, whether this effect is mediated in a TRAM-

dependent manner. To test this, iBMDMs from WT and

TRAM2/2 mice were stimulated with the TLR7/8 ligand R848

for 30, 60 and 120 min. Thereafter, immunoblot analysis was

performed using an anti-phospho IRF3 antibody to assess IRF3

Figure 1. R848 mediated RANTES, but not TNF-a production, is significantly decreased in TRAM2/2 iBMDMs. (A, B) Immortalised
iBMDMs from WT, TRAM2/2, and MyD882/2 mice were treated with R848 (1 mg/ml), Poly (I:C) (25 mg/ml) or LPS (100 ng/ml) for 16 hr as indicated.
Thereafter, RANTES (A), and TNF-a (B) were measured by ELISA as described in Materials and Methods. Results presented are from a single experiment
and are representative of at least three independent experiments performed in triplicate (mean 6 SE). (C, D) Immortalised iBMDMs from WT,
TRAM2/2 and MyD882/2 mice were treated with R848 (1 mg/ml), Poly(I:C) (25 mg/ml), or LPS (100 ng/ml) for 5 hr. Thereafter, total RNA was isolated,
converted to first-strand cDNA, and used as a template for quantitative real-time RT-PCR as described in Materials and Methods. Quantitative real-
time PCR was used to assay the expression levels of CCL5 (C), and TNF-a (D). Results presented are the mean values from at least three independent
experiments performed in duplicate (mean 6 SE) where GAPDH was used to normalize all samples.
doi:10.1371/journal.pone.0107141.g001
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phosphorylation status with increased phosphorylation indicating

enhanced IRF3 activity. The TLR7/8 ligand R848 induced the

phosphorylation of IRF3 in a time dependent manner (Fig. 4A). In

contrast, R848 dependent phosphorylation of IRF3 was not

evident in TRAM2/2 iBMDMs. To support our hypothesis that

TRAM is required for R848 mediated IRF3, but not NF-kB,

activation, we examined R848 mediated IkBa degradation, a

marker of NF-kB activity, in WT and TRAM2/2 iBMDMs.

Comparable R848 mediated IkBa degradation was evident in WT

and TRAM2/2 iBMDMs suggesting that TRAM is not required

for TLR7 mediated NF-kB activity (Fig. 4B). As additional

controls, we show comparable Poly(I:C) mediated phosphorylation

of IRF3 in WT and TRAM2/2 iBMDMs (Fig. 4B) and as

expected, LPS mediated IRF3 phosphorylation was abolished in

WT and TRAM2/2 iBMDMs (Fig. 4A). As IRF3 phosphoryla-

tion in required for its nuclear translocation, we examined whether

loss of TRAM similarly affected TLR7 mediated nuclear

translocation of IRF3. Correlating with the IRF3 phosphorylation

data, stimulation of WT iBMDMs with R848 mediated increases

in the level of nuclear IRF3, as evident 30–60 min post stimulation

(Fig. 4C). In contrast, R848 did not induce the nuclear translo-

cation of IRF3 in TRAM2/2 iBMDMs. As a control, we

demonstrate comparable Poly(I:C) mediated IRF3 nuclear trans-

location in WT and TRAM2/2 iBMDMs (Fig. 4C). Taken

together, these data strongly suggest that IRF3 is activated

following TLR7 engagement and that TRAM is required for this

process.

A recent study demonstrated that TRAM can act as a linker

molecule between MyD88 and the IL-18 receptor (IL-18R),

allowing IL-18 signaling to be transduced in a manner similar to

how TRAM interlinks between TLR4 and TRIF [9,25]. Using

overexpression studies, the group demonstrated a ligand-indepen-

dent interaction between TRAM and MyD88 with dissociation

occurring following activation of the IL-18R with exogenous IL-18

[9]. Also, a separate study demonstrated that TRAM does not

directly interact with TLR7 in resting cells but does interact with

TLR4 [26]. Given these findings, it is plausible to speculate that

TRAM may participate in TLR7 signaling though a mechanism

that involves an interaction with MyD88, rather than TLR7. To

test this hypothesis, co-immunoprecipitation studies were per-

formed wherein HEK293-TLR7 cells were co-transfected with

Flag-tagged TRAM and Myc-tagged MyD88 for 24 hr, followed

by stimulation with CLO97 for 0–60 min. Here, we demonstrate

that whilst MyD88 and TRAM do not interact in the absence of

ligand stimulation, an interaction between TRAM and MyD88

was evident following TLR7 engagement using CLO97 (Fig. 5,

compare lane 3 with lanes 4–6).

Discussion

The TIR-domain containing adaptor protein TRAM has until

recently, been associated exclusively with TLR4 signaling, acting

as a linker molecule to bridge TLR4 with TRIF, towards

activation of MyD88 independent anti-viral signaling [1]. More

recently, a novel role has been attributed to TRAM in IL-18

signaling wherein TRAM was shown to act as a linker molecule

between MyD88 and IL-18R thus enabling downstream inflam-

matory cytokine production [9]. Also, a separate study demon-

strated that TRAM2/2 mice exhibited a greater susceptibility to

TLR2-driven Francisella tularensis infection when compared to

WT mice indicating a possible, yet to be dissected, role for TRAM

in TLR2 signaling [27]. Currently, MyD88 is the only TIR-

domain containing adaptor protein purported to modulate TLR7

Figure 2. Suppression of endogenous human TRAM expression decreases R848 mediated CCL5 and IFN-b, but not TNF-a expression.
(A–D) THP-1 cells were differentiated with PMA for 48 hr followed by transfection with either scrambled control or TRAM siRNA to target the
suppression of TRAM. After 60 hr, cells were stimulated with R848 (3 mg/ml), Poly(I:C) (25 mg/ml), LPS (1 mg/ml) or Rhinovirus-16 (MOI: 5 for 80 hr) for
8 hr, unless otherwise stated. Next, total RNA was isolated, converted to first-strand cDNA and used as a template for quantitative real-time RT-PCR as
described in Materials and Methods to assay the expression levels of TRAM (A), CCL5 (B), TNF-a (C) or IFN-b (D). The data presented is the mean 6 SE of
two independent experiments each performed in duplicate (mean 6 SE).
doi:10.1371/journal.pone.0107141.g002
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signaling [1,12]. Previous indications of a role for TRAM in

TLR7/8 signalling have suggested that TRAM may be involved in

driving TLR7 mediated NF-kB activation [25]. Another study,

using macrophages from TRAM-deficient mice, indicated that

TRAM did not play a role in TLR7 mediated production of the

NF-kB controlled cytokines TNFa and IL-6 [18]. Therefore, while

a role for TRAM in TLR7/8 signalling has previously been

alluded to, it remains controversial.

Given that previous studies undertaken by our group have

delineated new roles for the TLR adaptor molecules TIRAP and

MyD88 in TLR signaling and that TRAM remains a hitherto,

relatively uncharacterised molecule in terms of its functionality in

innate immunity, we opted to explore whether TRAM affected

TLR signaling pathways, distinct from its known role in TLR4

and TLR2 signaling. To this end, we provide data that

convincingly attributes a role for TRAM in TLR7 mediated

production of RANTES and IFN-b, but not TNFa. Given that

our study demonstrates that TLR7 mediated induction of IRF-

dependent type I IFN and CCL5 genes are modulated by TRAM,

it is plausible to speculate that TRAM may affect the functionality

of IRFs. Regarding the role of IRFs in antiviral immunity, studies

have suggested that IRF3 and IRF7 are the master regulators of

type I IFN production [28,29], wherein both molecules may act in

concert to orchestrate a protective anti-viral immune response

[29,30]. Further, studies have also revealed that IRF5 and IRF7

are involved in TLR7 signaling [31,32], though cell-type

dependent disparities exist in terms of their relative contribution

to anti-viral immunity [28]. Given these studies, coupled to the

unavailability of phospho-IRF5 antibodies, we opted to measure

TLR7 mediated IRF3 activity by immunoblot analysis using

phospho-specific IRF3 antibodies as previously described by our

group [16]. In contrast to a previous study which showed that

IRF3 was not involved in TLR7 signaling [32], our study clearly

demonstrates a time dependent induction of IRF3 phosphoryla-

Figure 3. Dominant negative TRAM (TRAM-G2A) negatively regulates TLR7-mediated CCL5, IFN-a and IFN-b reporter gene activity.
(A–F) HEK293-TLR7 cells were cotransfected with vectors encoding either a luciferase reporter gene for CCL5 (A, D), IFN-a (B, E) or IFN-b (C, F) and
either empty vector (pcDNA3; 40 ng) or increasing amounts of an expression vector encoding TRAM-G2A (10, 20, 40 ng) or Mal-P125H (10, 20, 40 ng)
as indicated. After 24 hr, cells were stimulated with CLO97 (5 mg/ml). A total of 40 ng/well phRL-TK (TK-Renilla-luciferase) reporter gene was co-
transfected simultaneously to normalize data for transfection efficiency After 24 hr, cell lysates were harvested and assessed for luciferase reporter
gene activity. In all cases, results are expressed as mean 6 SE for triplicate determinants of single experiments. Each experiment was performed a
minimum of 3 times with a representative chosen for graphical purposes. Statistical analysis was performed using unpaired student t-test.
doi:10.1371/journal.pone.0107141.g003
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tion following TLR7 engagement. Our study also demonstrates

that TLR7, but not TLR3, mediated phosphorylation of IRF3 is

impaired in TRAM2/2 cells when compared to WT iBMDMs.

To support this hypothesis, we tested whether TRAM affected the

concomitant nuclear translocation of IRF3. We show that levels of

TLR7 mediated nuclear translocation of IRF3 are impaired in

TRAM2/2 iBMDMs when compared to WT cells. In contrast,

comparable levels of nuclear IRF3 were evident following

stimulation of WT and TRAM2/2 cells with the TLR3 ligand,

Poly(I:C). Taken together, these data suggested to us that IRF3 is

Figure 4. R848 mediated IRF3 activation, but not IkBa degradation, is abolished in TRAM2/2 iBMDMs. (A, B) WT and TRAM2/2 iBMDMs
were stimulated with R848 (1 mg/ml) Poly(I:C) (25 mg/ml) or LPS (100 ng/ml) for 30, 60 and 120 min. Next, the cell lysates were harvested and
phospho-IRF3 signaling was assessed by immunoblot analysis with total protein serving as a loading control. Additionally, WT and TRAM2/2 iBMDMs
were stimulated with R848 (1 mg/ml) and immunoblot analysis was performed using an anti IkBa antibody with b-Actin serving as a loading control.
The results presented are representative of at least three independent experiments. (C) Alternatively, WT and TRAM2/2 iBMDMs were stimulated with
R848 (1 mg/ml) and Poly(I:C) (25 mg/ml) for 0–120 min as indicated. Next, the nuclear fractions were generated and levels of nuclear IRF3 were
assessed by immunoblot analysis with Lamin A/C serving as loading control. The results presented are representative of at least three independent
experiments, except for Poly(I:C), which is representative of 2 independent experiments.
doi:10.1371/journal.pone.0107141.g004

Figure 5. TLR7 mediated association of TRAM with MyD88. HEK293-TLR7 cells were seeded into a 6-well plate at a density of 1.46106 cells/
well and incubated for approximately 24 hr at 37uC. Cells were then co-transfected with vectors encoding TRAM-Flag, MyD88-myc or empty vector
(EV). After 24 hr, cells were either left unstimulated or stimulated with CLO97 (5 mg/ml) for 15, 30 and 60 min as indicated. Next, cell lysates were
prepared as described in Materials and Methods. An aliquot (20 ml) was removed for whole cell lysate (WCL) analysis. Thereafter, the lysates were
subjected to immunoprecipitation (IP) using an anti-Flag antibody followed by western blot analysis using the indicated antibodies. Results are
representative of three independent experiments.
doi:10.1371/journal.pone.0107141.g005
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involved in TLR7 signaling through a mechanism that involves

TRAM.

Next, we sought to further investigate the mechanism utilised by

TRAM to modulate the TLR7 mediated IRF3 functionality.

Whilst it is known that MyD88 interacts with both TLR7 and

TRAM [9,25], and that TRAM does not directly interact with

TLR7 in unstimulated cells [26], the dynamics of the association

between TRAM and MyD88 in the context of TLR7 are

unknown. In contrast to IL-18R signaling, our co-immunoprecip-

itation study revealed that the interaction between MyD88 and

TRAM is facilitated by receptor engagement though TLR7.

Regarding the co-immunoprecipitation itself, the level of MyD88

that is detected following TLR7 engagement varies commensurate

with the level of a non-specific band at 40 kDa. Whilst we are

unable to state that the strength of the interaction between MyD88

and TRAM is modulated over time, we can conclusively state that

MyD88 and TRAM do interact in a manner that is dependent on

TLR7 activation. The complete absence of Myc-MyD88 in lane 3

(unstimulated) and the presence of Myc-MyD88 in lanes 4–6

(CLO97 stimulated) is, we believe, evidence that TRAM and

MyD88 do interact, and cannot be explained by a slight increase

in the intensity of the non-specific 40 kDa band in the lane 5 when

compared to the other lanes. Thus, we believe that MyD88 and

TRAM interact through a mechanism that requires TLR7

engagement. Regarding localization, studies have shown that

TRAM is located at the plasma membrane and in the cytoplasm of

resting cells and trafficks to the endosome upon TLR4 activation

[3,33]. Pathogen challenge may facilitate the endosomal localiza-

tion of TRAM and concomitant interaction with the ‘TLR7

signalsome’. MyD88 also trafficks from the cytoplasm of resting

cells to endosomal compartments upon TLR7 and TLR9

activation [34,35]. As TRAM has been shown to interact with

IRF3 [25], it is plausible to speculate that TRAM may facilitate

the recruitment of IRF3 to the endosomally localized

TLR7:MyD88 signaling complex. Further, the contrasting role

of TRAM in IL-18 receptor and TLR7 signaling highlights the

importance of delineating the role played by signaling molecules in

varying biological milieu.

The majority of our current knowledge regarding the role

played by TLR7 in anti-viral signaling emanates from studies

conducted using plasmacytoid dendritic cells (pDCs) as they

secrete comparably higher levels of type I IFN relative to

macrophages and conventional dendritic cells [36–38]. TLR7

mediated production of both type I IFN and inflammatory

cytokines requires MyD88 and indeed IRAK4 and TRAF6.

Downstream, the signaling bifurcates wherein type I IFN secretion

has a requirement for IRAK-1 while the IKK complex (IKKb, c)

is required to drive NF-kB activation and concomitant proin-

flammatory cytokine production [37,38]. Comparatively, limited

studies have focused on understanding the dynamics of TLR7

mediated IFN signaling in macrophages. To our knowledge, our

study is the first to describe a hitherto unappreciated role for

TRAM in anti-viral cytokine induction mediated by the TLR7

pathway. Contra to an absolute requirement for MyD88 in TLR7

signaling, it is notable that the loss of TRAM does not abolish

TLR7 signaling [12]. Interestingly, preliminary results from our

laboratory suggest that TRIF, but not Mal, is also involved in

TLR7 mediated RANTES, but not TNFa, production (data not

shown). It would therefore be of interest to further explore the role

of TRIF, a TLR adaptor linked with anti-viral immunity, in TLR7

signaling. In addition, studies from our laboratory also suggest that

TRAM, but not Mal, is involved in TLR9 mediated RANTES,

but not TNFa, production (data not shown). Whilst TRAM is

required for TLR4 mediated anti-viral signaling, TLR4 mediated

MyD88-dependent signaling remains intact in TRAM deficient

cells. Also, IL-18 signaling can still occur in TRAM deficient cells,

albeit impaired [9]. Accordingly, therapeutic targeting of TRAM

may offer a strategy towards the suppression of antiviral signaling

whilst preserving MyD88 dependent signaling. In conclusion, our

study provides TRAM as a novel modulator of TLR7 mediated

IRF3 activation serving as an additional element to tailor the host

immune response to viral infection that mediates their effects

through TLR7.
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