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Abstract—In this paper, an efficient approach for weighted
sum rate maximization (WSRMax) for zero-forcing (ZF) methods
with general linear transmit covariance constraints (LTCCs) is
proposed. This problem has been extensively studied separately
for some special cases such as for sum power or per-antenna
power constraints (PAPC). Due to some practical and regulatory
requirements, these power constraints alone are not in general
sufficient, which motivates the consideration of general LTCCs.
On the other hand, the zero-forcing (ZF) is a simple linear
precoding technique to mitigate inter-user interference. The
problem of WSRMax for ZF methods with LTCCs was studied
previously using a gradient descent algorithm with barrier
functions, but this method was also shown to converge slowly. To
derive an efficient solution to this problem, we first reformulate
it as an equivalent minimax problem using Lagrangian duality.
The obtained result in fact resembles BC-MAC duality but
is specialized for ZF methods. We then combine alternating
optimization and concave-convex procedure to efficiently compute
a saddle point of the minimax problem. The proposed method
is numerically shown to converge very fast and its complexity
scales linearly with the number of users.

Index Terms—MIMO, zero-forcing, alternating optimization,
linear transmit covariance constraints, minimax duality, closed-
form, concave-convex procedure.

I. INTRODUCTION

It is known that the capacity of a Gaussian multiple-input
multiple-output broadcast channel (BC) can be achieved by
using the dirty paper coding (DPC) technique [1]. However,
such a nonlinear coding strategy requires complex processing
in both encoders and decoders, and thus is not attractive for
practical applications. In this regard, linear precoding methods
have received much more attention due to their capability to
provide a good tradeoff between sum rate performance and
implementation complexity. Among those, zero-forcing (ZF)
is a promising alternative to DPC since it can attain a near-
optimal performance but with lower complexity, for MIMO
configurations with a large number of degrees of freedom.

Transmitter optimization is performed in accordance with
various power constraints. Much of the early research on this
topic was concerned with the sum power constraint (SPC)
[1], [2]. To account for the fact that the power amplifier of
each transmit antenna may have different nonlinear operation
region, subsequent studies considered a per-antenna power

constraint (PAPC) [3]–[7]. MIMO capacity with joint SPC
and PAPC was also investigated recently [8], [9]. In the
context of cognitive networks, one may impose interference
temperature constraints on a secondary user (SU) to limit
the interference generated at a primary user (PU) [10]. These
transmit power constraints are generally categorized as linear
transmit covariance constraints (LTCCs).

The problem of efficient transmitter optimization for MIMO
systems in general and for zero-forcing methods in particular
has not yet been fully studied in the existing literature. To the
best of the authors’ knowledge, the most related work to that
of the present paper was carried out in [10], where Huh et al.
proposed a gradient descent algorithm with barrier functions
to solve the problem of weighted sum rate maximization
(WSRMax) for ZF under multiple generic LTCCs. However,
the proposed method in [10] has two main drawbacks: (i) it is
only applicable to MISO systems, and (ii) it converges very
slowly.

To overcome the above shortcomings, we combine two
powerful optimization tools, namely concave-convex proce-
dure (CCP) and alternating optimization (AO), to derive a
computationally efficient algorithm to solve the considered
problem. Our major contributions can be summarized as
follows:
• We propose for the first time an efficient solution to the

WSRMax problem in multi-user MIMO channels with
ZF methods, subject to multiple generic LTCCs. The
proposed approach can also be extended to deal with
other precoding schemes such as successive zero-forcing
dirty paper coding (SZFDPC) [11], [12].

• We present the BC-MAC duality for multi-user MIMO
channels with ZF methods under multiple LTCCs, result-
ing in a minimax problem for which a strong duality
holds. Then, CCP and AO are applied to find the saddle
point of the minimax problem. Each iteration of the
proposed method can be solved efficiently by water-filling
algorithms, leading to its fast convergence rate.

• We carry out numerical experiments to compare the pro-
posed algorithm with the convex solver-based methods.
The numerical results demonstrate that our proposed
algorithm has low complexity, making it suitable to



characterize the performance of massive MIMO systems
under generic LTCCs.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively. IN defines an identity matrix of size N ; I and 0
define identity and zero matrices respectively, of which the size
can be easily inferred from the context. CM×N denotes the
space of M×N complex matrices; H† and HT are Hermitian
and ordinary transpose of H, respectively; Hi,j is the (i, j)th
entry of H; |H| is the determinant of H; rank(H) stands for
the rank of H. Furthermore, we denote the expected value of
a random variable by E[.], and [x]+ = max(x, 0).

II. SYSTEM MODEL

Consider a K-user single-cell MIMO BC where the base
station (BS) and each user have N and Mk antennas, respec-
tively. Let Hk ∈ CMk×N be the channel matrix for user k.
Then, the received signal at user k is given by

yk = Hkxk +
∑

j 6=k
Hkxj + zk (1)

where xk ∈ CN×1 is the downlink signal for the kth user
and zk ~ CN (0, I) is the background noise. In this paper,
channel state information is perfectly known at both the BS
and users. For linear precoding we can express xk as xk =
Rksk, where Rk ∈ CN×Mk and sk ∈ CMk×1 denote the
precoding matrix and information-bearing signal, respectively.
We further assume that sk consists of independent zero-mean
and unit energy symbols, i.e., sk ∼ CN (0, I). For the ZF
technique, the inter-user interference to user k is suppressed
by designing Rk such that HjRk = 0 for all j 6= k. Thus, the
WSRMax problem for ZF precoding with LTCCs is formulated
as

maximize
{Sk�0}

∑K

k=1
wk log |I + HkSkH

†
k| (2a)

subject to HjSkH
†
j = 0, ∀j 6= k (2b)∑K

k=1
tr(EikSk) ≤ Pi, i = 1, 2, . . . , L (2c)

where Sk = E[xkx
†
k] = RkR

†
k is the input covariance matrix

for user k, Eik is the ith positive semidefinite matrix of user
k, Pi is the power constraint associated with {Eik}Kk=1, and
wk ≥ 0 is the weighting factor assigned to the kth user to
maintain some degree of fairness. In fact we have omitted the
constraint that rank(Sk) ≤ min(N,Mk) so that the precoder
Rk can be extracted from Sk. However, it was proved in
[13] that this relaxation does not affect the optimality. This
property is also obvious from the BC-MAC duality presented
later on. Note that (2c) is called the general LTCC since it
includes several transmit power constraints as specific cases.
For example, when Eik = I, L = 1, (2) becomes WSRMax
under SPC. If Eik = diag(ei), L = N , where ei is a vector
of all zeros except a value of one at the ith position, then the
resulting problem is WSRMax under PAPC. Each of these two
types of power constraints has been extensively studied.

Before proceeding further, let us first simplify (2) by
eliminating the zero-interference constraints. Denote Ȟk to

be the channel matrix of all users, except for user k, i.e.,
Ȟk = [H†1, . . .H

†
k−1,H

†
k+1, . . .H

†
K ]†. For ZF precoding to be

feasible, it should hold that N ≥
∑K
k=1Mk, which is assumed

in this paper [2]. Let Vk be a basis of the null space of Ȟk,
then (2) reduces to the following maximization problem

maximize
{S̃k�0}

∑K
k=1 wk log |I + HkVkS̃kV

†
kH
†
k|

subject to
∑K
k=1 tr(EikVkS̃kV

†
k) ≤ Pi, i = 1, . . . , L.

(3)
We note that for this general problem, (3) can be recast
as a MAXDET program [14] and solved by a dedicated
optimization package such as SDPT3 [15]. However, solving
(3) by generic convex solvers is not computationally efficient
for large-scale problems, nor does it provide useful insights
into the structure of the optimal input covariance matrices. In
particular, modern convex solvers are mostly based on interior-
point methods whose complexity increases rapidly with the
problem size, e.g., with the number of transmit antennas N
and/or the number of users K in the considered context.
For the special case of multi-user MISO systems, Huh et al.
presented a gradient descent algorithm with barrier functions
but it converges very slowly [10]. For large-scale MISO
systems, Huh et al. also proposed a low-complexity solution
but it cannot achieve the optimal performance. Therefore,
an efficient algorithm for general MIMO systems for ZF
precoding with LTCCs has remained an open problem. In the
following, we propose a low-complexity method to solve this
problem.

III. PROPOSED ALGORITHM

A. Algorithm Description

In this section, we first transform (3) into an equivalent
problem in MAC, then apply AO and CCP to derive an
efficient algorithm. Specifically, the proposed algorithm is
based on the following theorem:

Theorem 1. The equivalent problem in the dual MAC of the
problem (3) in the BC is the following minimax problem

min
λ≥0

max
{S̄k�0}

∑K
k=1 wk log

|V†
k

(∑L
i=1 λiEik

)
Vk+H̃†

kS̄kH̃k|

|V†
k

(∑L
i=1 λiEik

)
Vk|

subject to
∑K
k=1 tr(S̄k) = P

pTλ = P
(4)

where H̃k = HkVk, λ = [λ1, λ2, . . . , λL]T and p =
[P1, P2, . . . , PL]T . Let (λ∗, {S̄∗k} ) be the saddle point of (4).
Then, the optimal solution S̃∗k to (3) is given by

S̃∗k = (V†kΛ
∗
kVk)−

1
2 UkX

†
kS̄
∗
kXkU

†
k(V†kΛ

∗
kVk)−

1
2 (5)

where Λ∗k =
∑L
i=1 λ

∗
iEik, and UkΣkX

†
k is the compact

singular value decomposition of (V†kΛ
∗
kVk)−1/2H̃†k.

We remark that the above theorem is the generalization of
the duality result in [16], [17] and its proof can be found in
the Appendix.

Problem (4) is in fact a concave-convex program. Explicitly,
the objective function in (4) is convex with respect to λ



and concave with respect to {S̄k} [18]. Since the objective
function is twice-differentiable, a saddle point exists. A naive
approach to finding a saddle-point of (4) is to alternate between
minimization and maximization. However, the convergence of
such pure iterative alternating optimization is not guaranteed.
Existing solutions to such a minimax problem as (4) are
based on interior-point methods [6], [10]. Unfortunately, these
methods do not scale well with the problem size, and thus are
not suitable for large-scale MIMO systems. In the following,
we show that (4) can be solved efficiently by combining AO
and CCP in a novel way.

The proposed algorithm alternately optimizes {S̄k} and λ
but a monotonic convergence is ensured. At the nth iteration
of the proposed method, {S̄nk} is found to be the solution to
the following maximization problem:

max
∑K
k=1 wk log |V†kΛ

n
kVk + H̃†kS̄kH̃k|

s.t.
∑K
k=1 tr(S̄k) = P ; S̄k � 0, k = 1, . . . ,K

(6)

where Λn
k =

∑L
i=1 λ

n
i Eik. That is, to find {S̄nk} we fix λ.

The above problem is actually the one of WSRMax under
a single SPC, which admits a water-filling solution [2]. We
skip the details for the sake of brevity and refer the interested
reader to [2] for further details.

In the next step, we fix {S̄nk} and solve for the optimal
λ which minimizes the objective in (4). However, we do
not optimize the objective directly as this does not guarantee
convergence. Instead, we minimize an upper bound of the
objective. In fact, this approach is motivated by the concept of
CCP which generates a monotonic decrease of the objective.
In this way, the concave part of the objective is linearized to
obtain an upper bound. More explicitly, we apply the concavity
property of the log-determinant function [18, p. 73] to the
numerator of (4) to obtain the following inequality

log |V†kΛkVk + H̃†kS̄kH̃k| ≤ log |Φn
k |

+ tr
(
VkΦ

−n
k VH

k

(
Λk −Λn

k

)) (7)

where Φn
k , V†kΛ

n
kVk + H̃†kS̄

n
kH̃k, and Φ−nk ,

(
Φn
k

)−1
.

Thus, at the nth iteration of the proposed algorithm, Λn+1
k is

the solution to the following problem

min
∑K
k=1 wk

(
tr
(
VkΦ

−n
k V†kΛk

)
− log |V†kΛkVk|

)
, g(λ)

s.t. pTλ = P,λ � 0
(8)

We remark that the feasible set of (8), denoted by Θ ,
{pTλ = P ;λ ≥ 0}, is a simplex. Since the projection on
a simplex can be done efficiently [19], we can apply the
gradient projection or conjugate gradient projection method to
solve (8). The overall algorithms to solve the minimization (8)
and WSRMax are summarized in Algorithm 1 and Algorithm
2, respectively. The convergence proof of Algorithm 2 is
provided in the next subsection which in fact follows the
similar arguments as those of [20], [21]. We also note that our
proposed method can be easily modified to deal with the WSR-
Max problem for SZFDPC with multiple LTCCs. Specifically,
we simply replace Ȟk = [H†1, . . .H

†
k−1,H

†
k+1, . . .H

†
K ]†

(defined immediately before (3)) by Ȟk = [H†1, . . .H
†
k−1]†

and the remaining steps are the same.

Algorithm 1: The gradient projection algorithm for solv-
ing (8).
Input: λ0 , ε1 > 0.

1 Initialize m := 0, and τ1 = 1 + ε1.
2 while τ1 > ε1 do
3 Calculate the gradient ũm = −∇g(λm).
4 Choose an appropriate positive scalar ρm and create

λ̃m = λm + ρmũm.
5 Project λ̃m onto Θ to obtain λ̄m.
6 Choose appropriate step size νm using the Armijo

rule [22] and set λm+1 = λm + νm(λ̄m − λm).
7 Compute τ1 = |∇g(λm)T (λm+1 − λm)|.
8 m := m+ 1.
9 end

Output: λm as the optimal solution to (8).

Algorithm 2: The proposed algorithm for solving (3).

Input: λ0 feasible to Θ, ε2 > 0.
1 Initialize n := 0, and τ2 = 1 + ε2.
2 while τ2 > ε2 do
3 Compute Λn

k =
∑L
i=1 λ

n
i Eik

4 Apply the water-filling algorithm to solve (6). Denote
the optimal solution by {S̄nk}.

5 For n ≥ 1, compute
τ2 = |f(λn, S̄n)− f(λn−1, S̄n−1)|.

6 For each k, set Φn
k = (V†kΛ

n
kVk + H̃†kS̄

n
kH̃k).

7 Solve (8) to find λn+1 using Algorithm 1.
8 n := n+ 1.
9 end

Output: {S̄nk}Kk=1 and apply the BC-MAC
transformation to compute optimal {S̃nk}Kk=1.

B. Convergence Analysis

We will prove that Algorithm 2 produces a strictly de-
creasing objective following similar arguments to those in
[20], [21]. Let f(λ, {S̄k}) be the objective of (4). Recall that
Λn
k =

∑L
i=1 λ

n
i Eik is the optimal solution to the minimization

(8), thus the following inequality holds:

f(λn, {S̄nk}) =

K∑
k=1

wk

(
log |Φn

k | − log |V†kΛ
n
kVk|

)
≥

K∑
k=1

wk

(
log |Φn

k |+ tr
(
VkΦ

−n
k V†k

(
Λn+1
k −Λn

k

))
− log |V†kΛ

n+1
k Vk|

)
. (9)

Since log |V†kΛkVk + H̃†kS̄kH̃k| is jointly concave with Λk

and {S̄k}, and {S̄k} is the optimal solution to the maximiza-
tion (6), it is easy to check that



K∑
k=1

wk

(
log |Φn

k |+tr
(
VkΦ

−n
k V†k

(
Λn+1
k −Λn

k

))
−log |V†kΛ

n+1
k Vk|

)
≥

K∑
k=1

wk

(
log |V†kΛ

n+1
k Vk + H̃†kS̄

n+1
k H̃k| − log |V†kΛ

n+1
k Vk|

)
︸ ︷︷ ︸

f(λn+1,{S̄n+1
k })

.

(10)

Combining these inequalities yields

f(λn, {S̄nk}) ≥
K∑
k=1

wk

(
log |Φn

k |+ tr
(
VkΦ

−n
k V†k

(
Λn+1
k −Λn

k

))
− log |V†kΛ

n+1
k Vk|

) (a)

≥ f(λn+1, {S̄n+1
k }).

(11)

We notice that (a) is strict if {Λn
k} 6= {Λ

n+1
k } or equivalently

λn 6= λn+1. Thus, the sequence {f(λn, {S̄nk})} is strictly
decreasing unless it has converged. The convergence of the
iterates to a limit point which is a saddle point can also be
proved. However we omit the details due to space limitations.

C. Complexity Analysis

In this section, we analyze the complexity of the proposed
algorithm by counting the number of flops [23], [24]. For
simplicity, we assume that all the receivers have the same
number of antennas i.e. Mk = M . Algorithm 2 performs the
water-filling algorithm and eigenvalue decomposition to solve
(6), which needs K(N − (K − 1)M)3 + K(4(N − (K −
1)M)2M−8(N−(K−1)M)M2) flops [24]. In addition, the
gradient computation in finding λ requires (N − (K−1)M)3

flops. The complexities of other steps are negligible and
can be eliminated. Thus, the total per-iteration complexity of
Algorithm 2 is O(KN3) flops. Noticeably, the complexity of
the proposed algorithm increases linearly with the number of
users, which is desirable for dense networks.

IV. NUMERICAL RESULTS

In this section we numerically evaluate the performance of
the proposed algorithm. In particular, we consider the case
where both SPC and PAPC are considered at the BS. For
notational convenience, we denote the SPC and the total power
of PAPC as PT and PA =

∑N
i=1 Pi, respectively. Also, we

are interested in the trivial case where min{Pi} < PT < PA.
In fact, if min{Pi} ≥ PT , then the PAPC can be removed
without loss of optimality. Similarly, if PT ≥ PA, then the
SPC can be eliminated. The power constraint for PAPC is set
equally for all the transmit antennas, i.e., Pi = PA/N , for
i = 1, . . . , N . All users are equipped with the same number
of receive antennas i.e., Mk = M . Unless stated otherwise, the
number of receive antennas M and the error tolerances (i.e.,
ε1, ε2) are set to 2 and 10−6 respectively, for all simulations.
Each result is obtained by averaging over 1000 i.i.d. channel
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Fig. 1. Cumulative distribution function of the number of iterations to
converge under joint SPC and PAPC. The number of transmit antennas N = 4,
number of receive antennas M = 2 and number of users K = 2.

realizations. Other relevant simulation parameters are specified
for each setup. System simulations were written in MATLAB
and executed on a 64-bit desktop that supports 8 Gbyte RAM
and Intel CORE i7.

In the first simulation, we plot the cumulative distribution
functions (CDF) of the number of iterations taken by Algo-
rithm 2 to converge. The low and high SNR scenarios as well
as different power ratios i.e., PT /PA are studied. The CDF for
each scenario is obtained over 1000 channel realizations. We
can clearly see in Fig. 1 that 95% of the cases, Algorithm 2
terminates within 30 and 10 iterations for low and high power
regions, respectively.

In Table I, we report the average run time for solving
(3) by several approaches over 1000 channel realizations.
As mentioned earlier, we can reformulate the considered
problem as a MAXDET problem and then use a dedicated
solver such as SDPT3 [15] to solve it optimally. For the



TABLE I
AVERAGE RUN TIME (SECONDS) COMPARISON FOR PT /PA = 0.8 AND

PA = 10 dBW, M = 2,K = 4. THE RUN TIME IS AVERAGED OVER 1000
CHANNEL REALIZATIONS.

No. of Tx. antennas N 16 32 64 128

Su
m

ra
te Algorithm 2 0.290 1.298 9.645 97.183

MOSEK 0.422 9.828 × ×

SDPT3 1.427 13.992 × ×

W
SR

M
ax Algorithm 2 0.406 1.794 10.383 122.073

SDPT3 1.424 14.092 × ×
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Fig. 2. Average sum rate of different precoding methods under different
power constraints with the number of transmit antennas N = 32, the number
of receive antennas M = 2; PT = 0 dBW for SPC, PA = 0 dBW for PAPC,
PT /PA = 0.8 and PA = 0 dBW for joint SPC and PAPC.

special case of the sum rate maximization problem, (3) can be
further reformulated as a semidefinite program for which more
powerful solvers e.g., MOSEK [25] can be invoked. Note that
we execute these solvers through the parser YALMIP [26]. In
Table I, ‘×’ stands for a case of extremely large computation
time or a failure due to insufficient memory. Table I clearly
shows that Algorithm 2 requires the lowest computation time
among all approaches in comparison. In particular, the generic
convex solvers i.e., SDPT3 and MOSEK only work effectively
for small N . This result can be explained by the fact that
interior-point-based solvers have a complexity that increases
rapidly with the problem size.

Finally, we study the performance of the average sum rate
of different precoding methods, including ZF, SZFDPC under
various power constraint settings i.e., SPC, PAPC, and joint
SPC and PAPC. For each of the precoding methods, the
average sum rate with SPC is highest, followed by that with
the PAPC. The sum rate with joint SPC and PAPC is lowest
since adding more constraints to the transmitter optimization
problem reduces the size of the feasible set. We can also see

that when the number of users increases, the performance of
ZF methods decreases quickly. The reason is that the spatial
multiplexing gains of ZF methods are greatly reduced when
the number of users increases.

V. CONCLUSIONS

We have proposed an efficient algorithm for the WSRMax
problem with ZF methods in multi-user MIMO channels
subject to LTCCs. The considered problem has been refor-
mulated as a minimax problem using the Lagrangian duality,
and then AO and CCP are applied to obtain a semi-closed-
form solution. We have benchmarked our proposed algorithm
against generic optimization packages. The numerical results
have demonstrated that the proposed algorithm is much faster
and is able to deal with large-scale MIMO systems.

APPENDIX
PROOF OF THEOREM 1

Following the arguments in [12], we can prove the duality
in Theorem 1. More explicitly, we first write the partial
Lagrangian function of (3) as follows

L({S̃k},a) =

K∑
k=1

(wk log |I + H̃kS̃kH̃
†
k| − tr(CkS̃))

+ pTa (12)

where Ck = V†kAkVk, Ak =
∑
i aiEik, a =

[a1, a2, . . . , aL]T . Letting Ŝk = C
1/2
k S̃kC

1/2
k , we can rewrite

L({S̃k}, {Ak}) as:

L({Ŝk},a) =

K∑
k=1

(wk log |I + H̃kC
−1/2
k ŜkC

−1/2
k H̃†k|

− tr(Ŝk)) + pTa. (13)

Denote UkΣkX
†
k to be the singular value decomposition of

HkC
−1/2
k , i.e., UkΣkX

†
k = HkC

−1/2
k , we can obtain the

dual objective

D({Ak}) = max
Ṡk�0

K∑
k=1

(wk log |I + C
−1/2
k H̃†kṠkH̃kC

−1/2
k |

− tr(Ṡk)) + pTa (14)

where the relationship between Ŝk and Ṡk is given by Ŝk =
XkU

†
kṠkUkX

†
k [12]. Therefore, the dual problem is given as

min
a≥0

max
{Ṡk}�0

K∑
k=1

(wk log
|V†kAkVk + H̃†kṠkH̃k|

|V†kAkVk|
− tr(Ṡk)) + pTa. (15)

Now, by introducing a new optimization variable δ > 0, (15)
can be shown to be equivalent to

min
a≥0,δ>0

max
{Ṡk}�0

∑K
k=1 wk log

|V†
kAkVk+H̃†

kṠkH̃k|
|V†

kAkVk|
− δP

+pTa

subject to tr(Ṡ) ≤ δP.
(16)



Defining

S̄k =
Ṡk
δ

(17)

λ =
a

δ
; Λk =

∑
i

λiEik (18)

and substituting these new optimization variables S̄k and λ
into (16), we obtain

min
λ≥0,δ>0

max
{S̄k}�0

∑K
k=1 wk log

|V†
kΛkVk+H̃†

kS̄kH̃k|
|V†

kΛkVk|
+ δ(pTλ− P )

subject to
∑K
k=1 tr(S̄k) ≤ P

(19)
or, equivalently

min
λ≥0

max
{S̄k}�0

∑K
k=1 wk log

|V†
kΛkVk+H̃†

kS̄kH̃k|
|VH

k ΛkVk|

subject to
∑K
k=1 tr(S̄k) ≤ P

pTλ ≤ P.

(20)

Since the objective is decreasing with respect to each λi
for a fixed S̄k and increasing with respect to each S̄k, the
inequalities of (20) can be made to be equalities without loss
of optimality. As a result, we arrive at

min
λ≥0

max
{S̄k}�0

∑K
k=1 wk log

|V†
kΛkVk+H̃†

kS̄kH̃k|
|VH

k ΛkVk|

subject to
∑K
k=1 tr(S̄k) = P

pTλ = P.

(21)

which proves the theorem.
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