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Abstract— We consider a distributed detection system for a
wireless sensor network over slow-fading channels. Each sensor
only has knowledge of quantized channel state information (CSI)
which is received from the fusion center via a limited feedback
channel. We then consider transmit power allocation at each
sensor in order to maximize a J-divergence based detection metric
subject to a total and individual transmit power constraints.
Our aim is to jointly design the quantization regions of all
sensors CSI and the corresponding power allocations. A locally
optimum solution is obtained by applying the generalized Lloyd
algorithm (GLA). To overcome the high computational com-
plexity of the GLA, we then propose a low-complexity near-
optimal scheme which performs very close to its GLA based
counterpart. This enables us to explicitly formulate the problem
and to find the unique solution despite the non-convexity of the
optimization problem. An asymptotic analysis is also provided
when the number of feedback bits becomes large. Numerical
results illustrate that only a small amount of feedback is needed
to achieve a detection performance close to the full CSI case.

Index Terms— Distributed detection, wireless sensor networks,
quantized power allocation, J-divergence, finite-rate feedback.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have captured lots
of attention recently. Due to low cost, robustness,

and high flexibility, WSNs are widely used in current event
monitoring systems. For example, small-scale, inexpensive,
and low-power sensors can be deployed over a region to
collect and possibly pre-process data about a particular phys-
ical phenomenon. With the fifth generation (5G) wireless
networks being deployed in near future, WSNs will form a
key technology and contribute to essential building blocks for
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emerging Internet of Things (IoT) architecture which offers a
new paradigm to connect all kinds of physical objects to the
Internet and provides important services to every aspect of
our lives, e.g., transportation, energy, smart city and health-
care [1], [2]. We adopt a WSN model that consists of a
fusion center (FC) that can communicate with each sensor.
Observations or local decisions from sensors are transmitted
through wireless channels to the FC which can jointly process
the data and make a global decision. Typically, sensors which
may be geographically wide spread are powered by small
batteries. Since the available energy of network is limited,
WSNs employ distributed detection systems from which only
the observation summary of each sensor is sent to the FC,
instead of sending all collected data.

A. Related Work

The design of a distributed detection system typically
involves the design of the decision rules at local sensors as
well as the fusion rule at the FC. In the literature, these
rules are applied based on different objectives. The idea of
‘send/no-send’ has been proposed by considering the local
likelihood ratio in [3]. While minimizing the error proba-
bility, sensors can choose to transmit data or keep silent to
save energy. Based on other performance criteria such as
Neyman-Pearson (N-P) or Ali-Silvey (A-S) distance metric,
local decision strategies have been also investigated in [4]–[6].
Channel aware decision fusion rule design has been studied
in [7] and [8]. The problem of optimizing detection per-
formance is investigated for a distributed binary detection
system in [9] which optimizes the performance based on
J-divergence (one of A-S distance metrics) for individual
and total transmitter power constraints on each sensor. These
results have also been extended to a multiple-hypothesis
scenario in [10]. The idea of distributed WSNs has also been
extensively applied towards cooperative detection of primary
users in cognitive radio (CR) to significantly improve the
spectrum sensing performance. It is known as “Cooperative
Spectrum Sensing (CSS)”, the performance of which is
characterized and evaluated by false alarm and detection prob-
abilities [11]–[15]. In [11], analytical detection performance of
an energy detector used for CSS is investigated over a multiple
cognitive relay network based on two fusion strategies: data
fusion and decision fusion. A new spectrum sensing scheme
based on spatial-temporal opportunity detection is proposed
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for a spectrum-heterogeneous cognitive wireless sensor net-
work [12]. In [13], Energy Harvesting (EH) capability is
incorporated in cognitive wireless sensor networks to enable
spectrum and energy efficient heterogeneous cognitive radio
sensor networks, whereas in [14], Patel et al. proposed
schemes for cooperative spectrum sensing in multi-user MIMO
cognitive radio networks considering the availability of both
perfect CSI and CSI with uncertainty with closed-form ana-
lytical expressions of the probability of detection and the
probability of false alarm. Recently, multiband cooperative
spectrum sensing and resource allocation framework for IoT
in cognitive 5G networks is presented in [15], to minimize
the energy consumption for spectrum sensing while satisfying
probabilities of detection and false alarm requirements.

Most of the existing research assumes that each sensor
has full channel state information (CSI) available. However,
acquisition of accurate CSI in such wireless scenarios is dif-
ficult and imposes unrealistic overheads. Thus, recent studies
have considered sensors with no CSI, partial CSI or imperfect
CSI. In [16]–[18], the fusion decisions are made based on
the statistics of fading. Similarly, local decision rules are also
studied with the presence of channel statistics in [19] and [20].
A decentralized detection problem with imperfect estimated
CSI is studied in [21]–[23], where the minimum mean square
error (MMSE) technique has been employed for channel
estimation. In [24], Venkategowda et al. investigated precoding
schemes for decentralized estimation of scalar and vector
parameters in a coherent multiple access channel based WSN
with the availability of only imperfect estimated CSI. However,
channel estimation based on training may not be suitable
for frequency division duplexing (FDD) systems due to the
highly uncorrelated forward and reverse channels [25]. The
incorporation of feedback from fusion center to each sensors
in distributed detection networks, has been considered in the
literature over decades [26, Sec. 4.4], [27]–[30]. Introduc-
tion of this additional communication capability, where the
sensors use this feedback information to adapt their decision
rules, improves overall system performance. Since the channel
information cannot be fed back with infinite precision, it is
natural to investigate the effects of quantization in channel
feedback. Therefore, a viable solution is to use a limited
feedback technique, where sensors can adapt the transmitted
signals according to the received quantized CSI feedback from
the fusion center [31]–[37].

In [31], a decentralized detection system has been consid-
ered, in which the FC separately quantizes the channel phase
of each sensor uniformly, and then transmits the corresponding
index to each sensor. Further, a limited feedback scheme has
also been investigated in [32] where the FC divides sensors
into different priority groups based on the channel quality,
and sends only the group indices as the guideline for sensors
to perform adaptive transmission. In [33] and [34], power-
efficient sensor transmission and quantization schemes are
derived based on quantized CSI fed back from the FC to the
sensors, while the power allocation codebook is designed inde-
pendently of sensors’ CSI. However, these limited feedback
schemes could only provide sub-optimal solutions. To boost
the system performance, it is indispensable to jointly design

channels partitions and quantized power allocation schemes
in WSN. In [35], Wang and Dey studied such problem and
proposed a number of computationally efficient near-optimal
power allocation algorithms for minimizing the distortion
outage probability of a clustered WSN with quantized channel
feedback. Similar to limited feedback strategies proposed
in [38] in the context of cognitive radio, [36], [37] jointly
designed channels quantization and power codebook for linear
distributed estimation of WSN, using the generalized Lloyd
algorithm (GLA) with the variance of linear unbiased estimator
as distortion functions. But, no rigorous or tractable analysis
was provided. To the best of our knowledge, the joint sensor
channel quantization and power codebook design problem has
not been investigated thoroughly in the context of distributed
detection, and hence is the focus of our work.

B. Problem Statement and Contribution

In this paper, we consider a binary distributed detection sys-
tem where a finite number of sensors communicate with the FC
over slow-fading orthogonal multiple-access channels (MAC).
The motivation for orthogonal MAC schemes is to avoid the
perfect synchronization between all sensors and the FC, but
only require pairwise synchronization between each sensor and
the FC. We then study optimal power allocation schemes for
sensors, when only quantized CSI is available at sensors. The
system performance is evaluated based on the J-divergence
metric [9], which is maximized with both individual and total
transmitter power constraints at sensors. Further, we focus on
a joint design of the optimal quantization regions consisting
of a vector space of all sensors’ CSI and the corresponding
optimal power codebook solved offline at the FC based on
the channel statistics of sensors. This codebook is known
a priori by both the transmitter and receiver. We assume that
the FC can perfectly estimate the full CSI of all sensors. In
real-time, given a particular channel realization, the FC maps
the current instantaneous channel information to one of the
quantization regions and then sends the corresponding region
index to the sensors via a no-delay and error-free link with
finite-rate feedback. Each sensor then chooses the associated
power codebook element based on received index to adapt its
transmission strategy. Our main contributions of this paper are
as follows:

• Despite the difficulties of finding a global optimal
solution for the considered optimization problem (non-
convex), we locally solve the problem by applying an
appropriate Generalized Lloyd Algorithm (GLA) with
a Lagrangian based distortion function [38] to jointly
design the power codebook and quantization regions.

• The offline design of GLA based quantizer usually
requires a large number of training samples coupled with
a prolonged convergence time and high computational
complexity. To overcome these drawbacks, we then pro-
pose a suboptimal solution by making an approximation
on channel quantization regions. This enables us to
explicitly formulate the problem and find the optimal
power codebook with less computational cost. Although
the problem is still non-convex after the approximation,
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Fig. 1. Distributed detection system with limited feedback.

we are able to find the unique solution, and derive
insightful properties of the optimal power codebook for
each sensor.

• Asymptotic approximations for the J-divergence when the
number of feedback bits grows large are also derived.

The rest of the paper is organized as follows. Section II
provides the system model and the problem formulation.
Section III develops a locally optimal quantized power
allocation scheme based on a Lagrangian based modified
GLA, a suboptimal low-complex power allocation scheme,
and asymptotic analysis for high resolution quantization.
Section IV provides numerical results to compare the proposed
algorithms, followed by concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed binary hypothesis testing task,
where K sensors are employed to identify two alternatives
hypotheses H = {H0, H1} where H0 denotes the target-
absent hypothesis and H1 represents for target-present hypoth-
esis. More specifically, as shown in Fig. 1 (the use of feedback
channel will be discussed in Section III), each Sensor k
(∀k = 1, 2, ...,K) collects its own observation xk and makes a
local binary decision uk independently according to a certain
local decision rule on the basis of xk only. After that, each
local decision uk is sent by each sensor to the FC (who
makes the final decision) via an orthogonal channel. We assign
orthogonal channels using FDD. Sensor k sends uk = 1 to the
FC if H1 is decided, otherwise uk = 0 is sent. We assume
that local sensors do not communicate with each other.

Let γk(·) denote the local decision rule for Sensor k, k ∈
{1, 2, ...,K}, then the local decision, uk, ∀k, can be given as

uk = γk(xk) =
{

0, decide H0

1, decide H1.
(1)

For each Sensor k, the detection performance is characterized
by its false-alarm probability and detection probability, which
can be given as [9]

PF (k) = p(uk = 1|H0), and PD(k) = p(uk = 1|H1), (2)

respectively. Due to independent decisions, the joint condi-
tional probability density function (PDF) of the local decisions

can be expressed as

p(u1, . . . , uK |Hi) =
K∏
k=1

p(uk|Hi), i = 0, 1. (3)

All involved channels experience slow fading by assuming
that the coherence time is much longer than the time interval
between two consecutive decisions made by the FC [9]. Since
the local decision of Sensor k is transmitted over a slow-
fading orthogonal channel, the received signal at the FC from
Sensor k, yk, can be given as

yk =
√
gkakuk + nk, (4)

where gk is the channel power gain for Sensor k, ak is
the signal amplitude, and nk is an additive noise which is
assumed to be Gaussian with zero mean and σ2 variance.
Then, the conditional PDF of the received signals under two
hypotheses can be written as

p(y|Hi) =
∑

u

p(y|u)p(u|Hi), i = 0, 1, (5)

where y = [y1, . . . , yK ]T and u = [u1, . . . , uK ]T .
There are three common criteria for measuring detec-

tion performance: i) the detection probability; ii) asymp-
totic relative efficiency (ARE); and iii) distance related
bounds [9], [10], [39]. As we mentioned before, false alarm
and detection probabilities have been critical performance
criteria for cooperative spectrum sensing [11]–[15], where the
closed-form analytical expressions of these two probabilities
can be derived in certain scenarios. The ARE is usually used
under the conditions of a large sample size at sensors and weak
signal [9], [10]. For those reasons, distance related bounds,
such as Ali-Silvey class of distance measures, are commonly
used as tractable design criteria. Both the J-divergence (known
as symmetric Kullback-Leibler (KL) divergence) and the
Bhattacharyya bound belong to the Ali-Silvey class of dis-
tance. But J-divergence is more favorable, as it provides a
lower bound on the detection error probability and also has
fundamental connections with the ARE [39]. We thus choose
the J-divergence as detection performance metric.

Let Pk = a2
k, ∀ k = 1, . . . ,K indicate the trans-

mitting power of Sensor k. Given a channel realization
g = {g1, . . . , gK}, we assume that the amount of channel
state information (CSI) available at the sensors is given
as φ(g). We consider the following optimal power alloca-
tion that maximizes the J-divergence detection (denoted as
J(P1(φ(g)), . . . , PK(φ(g)))) under a total average power con-
straint and an individual power constraint, given as

max
{P1(φ(g)),...,PK(φ(g))}

E[J(P1(φ(g)), . . . , PK(φ(g)))]

=
K∑
k=1

E[N(gk, Pk(φ(g)))]

s.t.

K∑
k=1

E[Pk(φ(g))] ≤ Ptot;

0 ≤ Pk(φ(g)) ≤ P kmax,

∀k = 1, . . . ,K, almost sure, (6)
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where

N(gk, Pk(φ(g))) � σ2 + αF (k)gkPk(φ(g))
σ2 + βF (k)gkPk(φ(g))

+
σ2 + αD(k)gkPk(φ(g))
σ2 + βD(k)gkPk(φ(g))

, (7)

and

αF (k) = PF (k)(1 − PD(k)) + PD(k)(PD(k) − PF (k)),
αD(k) = PD(k)(1 − PF (k)) − PF (k)(PD(k) − PF (k)),
βF (k) = PD(k)(1 − PD(k)), βD(k) = PF (k)(1 − PF (k)).

with 0 < PF (k) < PD(k) < 1 (otherwise the sensors do
not provide useful information). When full CSI is available
at sensors, i.e., φ(g) = g, the optimization problem in (6) is
studied in [9], and it is convex when (PD(k), PF (k)) ∈ S

where the set S is defined as

S =
{

(PD, PF )
∣∣∣ 3

4
− 1

2
PF − 1

4

√
1 + 12PF − 12P 2

F

≤ PD ≤ 3
4
− 1

2
PF +

1
4

√
1 + 12PF − 12P 2

F ,

0 < PF < PD < 1
}
. (8)

For the rest of this paper, we also assume (PD(k), PF (k)) ∈ S

is always true. The allocated power can thus be found by the
water-filling algorithm [9], i.e., P ∗

k (g) = min
[
P kmax, [P ′

k]
+
]
,

∀k = 1, . . . ,K , with P ′
k satisfying ξ (gk, P ′

k)−λ∗ = 0, where

ξ (gk, P ′
k)

� (αF (k) − βF (k)) σ2gk

(σ2 + βF (k)gkP ′
k)

2 +
(αD(k) − βD(k))σ2gk

(σ2 + βD(k)gkP ′
k)

2 ,

(9)

and λ∗ is the optimal nonnegative Lagrange multiplier asso-
ciated with total transmitted power constraint, which can be
obtained by solving λ∗

(
Ptot −

∑K
k=1 E[P ∗

k (g)]
)

= 0.

Lemma 1: From ξ(gk, Pk) − λ = 0, we have Pk which is
first increasing in gk ∈ [0, ĝk) (where ĝk is the unique solution
of ∂ξ(gk,Pk)

∂gk
= 0), and then decreasing over gk ∈ [ĝk,∞).

Proof: See Appendix A.
However, the assumption of full CSI available at the sensors

is generally unrealistic in practical systems, due to the limited
bandwidth of the feedback channel. Therefore, in the next
section, we will address this concern by investigating the J-
divergence maximization problem with quantized CSI.

III. OPTIMUM QUANTIZED POWER ALLOCATION

WITH FINITE-RATE FEEDBACK

In this section, we focus on designing a power control
strategy for each sensor based on quantized g acquired via
a no-delay and error-free feedback link with limited rate.1

1Since we consider a slow block-fading environment and only a few bits
of CSI feedback are required, the feedback delay is significantly less than
the coherence time of the fading channels concerned. Thus, the effect of
feedback delay can be negligible. Moreover, with such small data rate, error-
free feedback can be easily achieved by using efficient error control coding
over the feedback link [40], [41].

As depicted in Fig.1, we assume that the FC can perfectly
estimate CSI of all sensors g = {g1, . . . , gK} via a training-
based channel estimation, and forward some appropriately
quantized CSI to sensors through a finite-rate feedback link.
Thus the sensors can adjust their transmission power based on
the received quantized CSI. More specifically, given B bits of
limited feedback link between the FC and sensors, the space of
the channel vector g is partitioned into L = 2B disjoint regions
G1, . . . ,GL. A power codebook {P1, . . . ,PL} of cardinality
L = 2B , with each Pj representing the power level using in
the region Gj , is designed offline purely based on the statistical
information of g, where Pj = [P1,j , . . . , PK,j ]

T with integer
j ∈ {1, 2, . . . , L}. This power codebook is known a priori by
both the FC and the sensors. Given an instantaneous channel
realization, the FC employs a deterministic index mapping Θ
from the current instantaneous g to one of L indices, defined
as Θ(g) = j, if g ∈ Gj, j = 1, . . . , L. The index j is then sent
to sensors via a feedback link. Each sensor uses the associated
power codebook element to adapt its transmission strategy.

Let Pr (Gj) ,E [· |Gj ] represent the probability Pr (g ∈ Gj)
and the expectation E [·|g ∈ Gj], respectively. Then, the
Problem (6) with limited feedback can be formulated as

max
{Pj},{Gj}

L∑
j=1

E

[
K∑
k=1

N(gk, Pk,j)

∣∣∣∣∣Gj

]
Pr(Gj),

s.t.
L∑
j=1

(
K∑
k=1

Pk,j

)
Pr(Gj) ≤ Ptot,

0 ≤ Pk,j ≤ P kmax,

∀k = 1, . . . ,K, ∀j = 1, . . . , L. (10)

Our goal is to jointly design quantization regions and the
corresponding power codebook for the above optimization
problem. Due to the non-convexity of problem (10), it is very
challenging to find the globally optimal solution. However,
in the next section, we provide an analysis to find a locally
optimal solution for problem (10).

A. A Locally Optimal Quantized Power Scheme

A local optimum of optimization problem (10) can be
obtained by the Lagrange duality method, i.e., by solving the
dual problem of (10), given as,

min
λ≥0

g(λ), (11)

where λ is a nonnegative Lagrange multiplier, and the
Lagrange dual function g(λ) is defined as,

g(λ) = max
0≤Pk,j≤Pk

max, Gj ∀j
L ({Pj} , {Gj} , λ) + λPtot,

(12)

with the Lagrangian

L
(
{Pj}Lj=1 , {Gj}Lj=1 , λ

)

=
L∑
j=1

E

[
K∑
k=1

(N(gk, Pk,j) − λPk,j)

∣∣∣∣∣Gj

]
Pr (Gj) . (13)

In order to solve the dual problem (11), we first assign
an arbitrary initial value to λ, and then iteratively apply the
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following two steps, Step 1 and Step 2, until a pre-specified
convergence criterion is reached:

• Step 1 (Inner loop): With a fixed λ, find locally opti-
mal power codebook {Pj}Lj=1 and quantization regions
{Gj}Lj=1 of the Lagrange dual function (12).

• Step 2 (Outer loop): With the resulting power codebook
and channel partitions, update the optimal value λ by
solving the dual problem (11) using a subgradient
search method, i.e., updating λ using λl+1 =[
λl − βl

(
Ptot −

∑L
j=1

(∑K
k=1 P

l
k,j

)
Pr(Gj)

)]+
,

where l is the iteration number and βl is a positive scalar
step size for the l-th iteration satisfying

∑∞
l=1 β

l = ∞
and

∑∞
l=1(β

l)2 < ∞. Then go back to Step 1 until

convergence (i.e., |λl+1−λl|
λl < ε or |Ptot−Pl

new|
Ptot

< ε with

Plnew �
∑L

j=1

(∑K
k=1 P

l
k,j

)
Pr(Gj)).

Remark 1 (The Convergence of the Outer Loop):
One cannot guarantee the feasibility of the primal variables
in each Step 1 iteration, because the constraint may be
violated at a particular step. However, in the next step
(i.e., Step 2), the Lagrange multiplier value λ will be adjusted
accordingly using the above sub-gradient search method.
In particular, if the power constraint is exceeded, the value λ
should increase, and decrease otherwise. Only in the limiting
step when λ converges, one can say that the primal variables
are feasible. Note that the above sub-gradient update is
guaranteed to converge to the optimum λ as long as the step
size βl is chosen satisfying the conditions stated above, due to
the convexity of the dual problem (11) over λ even though the
primal problem is non-convex [42]. Due to the non-convexity
of the primal problem however, the final obtained primal
variables are only locally optimum. Fig.8 shows an example
of the convergence rate of the outer loop iteration in a
4 sensor system. Please see Section IV for more details.

For Step 1, we employ Generalized Lloyd Algorithm (GLA)
with a modified distortion measure (i.e., a Lagrangian based
cost function) to solve problem (12), as stated in [38]. This
modified GLA is implemented using a sufficiently large num-
ber of training samples (channel realizations) and is designed
based on following two necessary optimality conditions:

1) Given a power codebook P = {P1, . . . ,PL}, the opti-
mal channel partitions are determined by the nearest
neighbor condition, i.e. ∀j = 1, . . . , L,

Gj = {g : Φ(g,Pj) ≥ Φ(g,Pn), ∀n ∈ {1, . . . , L},
n �= j} , (14)

where Φ(g,Pj) =
∑K

k=1N(gk, Pk,j) − λPk,j .
2) Given the channel partition G1, . . . ,GL, the optimal

power codebook is updated by generalized centroid
condition, namely,

{P ∗
k,j}Kk=0 = arg max

Pk,j∈[0,Pk
max],∀k=1,...,K

E[Φ(g,Pj)|Gj ]Pr(Gj), ∀j = 1, . . . , L.
(15)

Note that Gj in the first condition is typically not unique
since ties may break arbitrarily, and the second condition is
a convex optimization problem [9]. Therefore, by beginning

with an arbitrary initial power codebook, one can repeatedly
apply the two optimality conditions until convergence (i.e.,
||P(n+1)−P(n)||

||P(n)|| < ζ or L(n+1)−L(n)

L(n) < ζ, where n is the
iteration number) to obtain a locally optimal power codebook
and the corresponding channel partitions for problem (12).

Remark 2 (The Convergence of the Inner Loop): While
convergence (to a local optimum) of our modified GLA
follows immediately by noting that the Lagrangian

L
(
{Pj}Lj=1 , {Gj}Lj=1 , λ

)
=
∑L
j=1 E[

∑K
k=1(N(gk, Pk,j)−

λPk,j)|Gj ]Pr (Gj) is non-decreasing at each iteration and
is upper bounded due to the finite average transmit power
constraint. A more formal convergence proof can be obtained
as well by alluding to [38, Th. 2], where it was shown that
the above Lagrangian based modified GLA satisfies the global
convergence and empirical consistency properties as defined
in [43]. Fig. 7 shows an example of the convergence rate of
the inner loop iteration in a 4-sensor system. Please see IV
for more details.

Despite the offline design of the GLA based quantizer, for
each inner loop, it usually requires a large number of training
samples, which leads to a prolonged convergence time of the
outer loop. As the number of quantization regions L increases,
the number of training samples required will also increase.
Thus it is computationally demanding even for the fusion
center, especially when the number of feedback bits is large.
For example, as shown in Fig.8 in a 4 sensors system, with
4 bits feedback, for each inner loop simulation, 105 randomly
generated channel realizations are used for each sensor. The
outer loop takes 12305.808074 seconds (i.e., ≈ 3.5 hours) to
converge. Please see Section IV for more details. In order
to alleviate computational burden of the above GLA-based
optimum scheme for large values of L case, in the next section,
we will derive a low complexity suboptimal scheme (similar
to [44]) for implementing Step 1 by approximating the channel
quantization regions. It enables us to simplify the dual problem
with an explicit formulation.

B. Suboptimal Quantized Power Allocation (SQPA)

For each channel gk, k = 1 . . . ,K , let {Xk,1, . . . , Xk,Lk
}

denote the associated quantization thresholds on the gk-
axis, where 0 = Xk,0 < Xk,1 · · · < Xk,Lk

=
∞ and Lk is the number of partition intervals on the
gk-axis (satisfying

∏K
k=1 Lk = L). In order to avoid

the complexity of implementing modified GPA, we sim-
ply approximate the quantized channel regions (14) as
G(l1,...,lK) � {g| gk ∈ [Xk,lk−1, Xk,lk), ∀k = 1, . . . ,K}, with
∀l1 ∈ [1, L1], · · · , ∀lK ∈ [1, LK ]. Let P(l1,...,lK) represent the
corresponding allocated power level for the current suboptimal
setting, where P(l1,...,lK) �

[
P1,(l1,...,lK), . . . , PK,(l1,...,lK)

]T
.

Then for given L1, . . . , LK (note that to find the optimal
L1, . . . , LK , we can exhaustively search over all the possible
combinations of L1, . . . , LK and pick the combination that
achieve the best performance), the dual function (12) becomes

g(λ) = max
0≤Pk,(l1,...,lK )≤Pk

max,∀k,∀l1,...,∀lK {Xk,1,...,Xk,Lk
},∀k

×L
({

P(l1,...,lK)

}
,
{
G(l1,...,lK)

}
, λ
)

+ λPtot, (16)
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where

L
({

P(l1,...,lK)

}
,
{
G(l1,...,lK)

}
, λ
)

=
L1∑
l1=1

· · ·
LK∑
lK=1

E

[
K∑
k=1

(
N(gk, Pk,(l1,...,lK)) − λPk,(l1...lK)

)∣∣∣∣∣

G(l1,...,lK)

]
Pr
(
G(l1,...,lK)

)

=
L1∑
l1=1

· · ·
LK∑
lK=1

⎧⎨
⎩

K∑
m=1

⎛
⎝ K∏
i	=m

F(Xi,li)

⎞
⎠N(Xm,lm , Pm,(l1...lK))

−λ
K∏
i=1

F(Xi,li)
K∑
j=1

Pj,(l1,...,lK)

⎫⎬
⎭ , (17)

with N(Xk,lk , Pk,(l1...lK)) =
∫Xk,lk

Xk,lk−1
N(gk, Pk,(l1...lK))

f(gk) dgk, and f(gk) being the PDf of gk, and F(Xk,lk) =
F (Xk,lk) − F (Xk,lk−1) with F (·) being the cumulative dis-
tribution function (CDF).

Now for Step 1, with a fixed λ, our aim becomes to find the
jointly optimal quantization thresholds and the corresponding
allocated power for problem (16). In the following, we employ
a simple iterative algorithm (alternating optimization algo-
rithm), similar to [44], to solve the problem. Let q denote
the iteration number. For k = 1, . . . ,K , the algorithm starts
from an initial guess of

{
Xk,1

(0), . . . , Xk,Lk−1
(0)
}

, and then
produces a sequence of iterates

({
P(l1,...,lK)

(q+1)
}
,

{{
Xk,1

(q+1), . . . , Xk,Lk−1
(q+1)

}K
k=1

})

= θ

({
P(l1,...,lK)

(q)
}
,

{{
Xk,1

(q), . . . , Xk,Lk−1
(q)
}K
k=1

})
,

where θ operates as follows:

• For given partition thresholds

{{
Xk,1

(q), . . . , Xk,Lk−1
(q)
}K
k=1

}
,

a power codebook {P(l1,...,lK)
(q+1)} is chosen to maxi-

mize L({P(l1,...,lK)
(q+1)}, {G(l1,...,lK)

(q)}, λ) in (17);
• And for the fixed {P(l1,...,lK)

(q+1)}, {{Xk,1
(q), . . . ,

Xk,Lk−1
(q)}Kk=1} is updated by maximizing the objective

function L({P(l1,...,lK)
(q+1)}, {G(l1,...,lK)

(q+1)}, λ),
until the resulting L({P(l1,...,lK)}, {G(l1,...,lK)}, λ)
converges within a pre-specified accuracy, i.e.
L(q+1)−L(q)

L(q) < ζ.

More specifically, the following two steps are carried out
for each iteration q (we omit the iteration index for the
simplicity):

1) Given the channel partitions, the optimal power code-
book is obtained by maximizing L

({
P(l1,...,lK)

}
,

{
G(l1,...,lK)

}
, λ
)
, i.e., ∀k, ∀l1, . . . ,∀lK ,

P ∗
k,(l1,...,lK) = arg max

0≤Pk,(l1,...,lK)≤Pk
max

× E

[
K∑
k=1

N(gk, Pk,(l1,...,lK)) − λPk,(l1...lK)

∣∣∣∣∣
G(l1,...,lK)

]
Pr
(
G(l1,...,lK)

)
. (18)

As Problem (18) is convex, the optimal power codebook
can be easily solved by the water-filling algorithm:

P ∗
k,(l1,...,lK) = min

[
P kmax, [P

′
k,(l1,...,lK)]

+
]
, (19)

where P ′
k,(l1,...,lK) satisfies

E
[
ξ
(
gk, P

′
k,(l1,...,lK)

)
− λ
∣∣∣G(l1,...,lK)

]
× Pr

(
G(l1,...,lK)

)
= 0. (20)

From (20), we know that Pk,(l1,...,lk,...,lK) only depends
on Xk,lk−1 and Xk,lk , thus, for the notational simplicity,
we denote Pk,(l1,...,lk,...,lK) by Pk,lk .
Remark 3: If we assume the channel power gain gk, ∀k
follows an exponential distribution with E[gk] = 1

λ̂k
,

we can obtain a closed-form expression for (20) as

σ2λ̂k

P
′2
k,lk

{
(αF (k)−βF (k))

β2
F (k)

[
δF

(
X̃k,lk

)
− δF

(
X̃k,lk−1

)]

+ (αD(k)−βD(k))
β2

D(k)

[
δD

(
X̃k,lk

)
− δD

(
X̃k,lk−1

)]}

= λ
(
e−λ̂kXk,lk−1 − e−λ̂kXk,lk

)
, (21)

where X̃k,lk = λ̂kXk,lk , X̃k,lk−1 = λ̂kXk,lk−1,

δD (x) � e−xσ2
D

σ2
D + x

+ eσ
2
D
(
1 + σ2

D

)
Ei
[−σ2

D − x
]
,

δF (x) � e−xσ2
F

σ2
F + x

+ eσ
2
F
(
1 + σ2

F

)
Ei
[−σ2

F − x
]
,

with σ2
D = σ2λ̂k

βD(k)P ′
k,lk

, σ2
F = σ2λ̂k

βF (k)P ′
k,lk

, and Ei[·] is the

exponential integral defined as Ei[z] = − ∫∞
−z

e−t

t dt.
2) With the resulting power codebook, we then update

quantization thresholds by maximizing L
({

P(l1,...,lK)

}
,{

G(l1,...,lK)

}
, λ
)
, i.e.,

{Xk,1, . . . , Xk,Lk−1}Kk=1

= arg max
0<Xk,1<···<Xk,Lk−1<∞,∀k

L1∑
l1=1

· · ·
LK∑
lK=1

×
⎧⎨
⎩

K∑
m=1

⎛
⎝ K∏
i	=m

F(Xi,li)

⎞
⎠N(Xm,lm , Pm,lm)

−λ
K∏
i=1

F(Xi,li)
K∑
j=1

Pj,lj

⎫⎬
⎭ . (22)

Problem (22) in general is a non-convex optimization
problem. However, we will prove in Lemma 4 that there
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exists a unique maximum point for Problem (22), and
this optimal solution X∗

k,lk
, ∀lk = 1, . . . , Lk, is obtained

by solving the following equation and inequality:
{
λ− ψ (Xk,lk , Pk,lk , Pk,lk+1) = 0;

(Pk,lk+1 − Pk,lk )
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

< 0,
(23)

where

ψ (Xk,lk , Pk,lk , Pk,lk+1)

=
(αF (k) − βF (k)) σ2Xk,lk

(σ2+βF (k)Xk,lkPk,lk) (σ2+βF (k)Xk,lkPk,lk+1)

+
(αD(k) − βD(k)) σ2Xk,lk

(σ2+βD(k)Xk,lkPk,lk) (σ2+βD(k)Xk,lkPk,lk+1)
.

(24)

We now present some important intermediate results :
Lemma 2: For Sensor k, let Pk,mk

be the largest power
level, then based on Lemma 1 the optimal power levels
obtained in (20) satisfies: 0 ≤ Pk,1 < · · · < Pk,mk−1 <
Pk,mk

> Pk,mk+1 > · · · > Pk,Lk
.

Proof: See Appendix C.

Lemma 3:
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

= 0 has a

unique solution, and
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Pk,lk

< 0,
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Pk,lk+1
< 0.

Proof: See Appendix B.
Lemma 4: Based on Lemma 3 there exists a unique
optimal solution {Xk,1 . . . Xk,Lk−1} for Problem (22),
which is obtained by solving (23). And the resulting
{Xk,lk}Lk−1

lk=1 automatically satisfies 0 < Xk,1 < · · · <
Xk,Lk−1 <∞.

Proof: See Appendix D.

Therefore, with a fixed λ, a scheme which finds a suboptimal
power codebook and the corresponding quantization regions
for Problem (16) is summarized in Algorithm 1:

Algorithm 1 Suboptimal Quantized Power Allocation (SQPA)
1: Initialize q = 0, choose arbitrary initial value of{

Xk,1
(0), . . . , Xk,Lk−1

(0)
}

satisfying 0 < X
(0)
k,1 <

· · · < X
(0)
k,Lk−1 <∞ for k = 1, . . . ,K

2: repeat

1) Given
{
Xk,1

(q), . . . , Xk,Lk−1
(q)
}K
k=1

, optimal{
P(l1,...,lK)

(q+1)
}

is given by (19), for
lk = 1, . . . , Lk

2) Given
{
P(l1,...,lK)

(q+1)
}

, optimal{
Xk,1

(q+1), . . . , Xk,Lk−1
(q+1)

}K
k=1

is given by

(23), for lk = 1, . . . , Lk − 1
3) q = q + 1

3: until Convergence: L(q+1)−L(q)

L(q+1) < ζ

As we mentioned in Step 2, the optimal λ is
determined by solving the dual problem, satisfying

λ

(
Ptot −

L1∑
l1=1

· · ·
LK∑
lK=1

(
K∑
k=1

Pk,(l1...lK)

)
Pr(G(l1...lK))

)
= 0.

Since the average power
L1∑
l1=1

· · ·
LK∑
lK=1

(
K∑
k=1

Pk,(l1...lK)

)

Pr(G(l1...lK)) can be shown to be a monotonically decreasing
function of λ using a similar proof of Lemma 1 in [45],
we can find the unique optimal λ via a simple bisection
method.

C. Asymptotically Large Number of Feedback Bits Scenario

In this section, we look at the SQPA algorithm and analyze
the system performance in the high rate quantization region,
i.e., for a case with a large number of feedback bits B. Under
this circumstance, the design of optimal channel partitions
becomes less significant. Thus, with high rate quantization,
we can apply the idea of equal probability per region (EPrPR)
to design a simple suboptimal channel partition [46], [41].
Assuming gk, ∀k follows an exponential distribution with
the mean of 1

λ̂k
, the corresponding CDF can be written as

F (Xk,lk) = 1− e−λ̂kXk,lk . Then, by applying EPrPR to each
gk-axis, we can obtain F (Xk,lk) = lk

Lk
, ∀lk = 1, . . . , Lk − 1.

Hence, the quantization threshold
{
X∗
k,lk

}
is given as,

X∗
k,lk

=
1

λ̂k
ln

Lk
Lk − lk

, ∀lk = 1, . . . , Lk − 1. (25)

which depends only on the number of partitions Lk.
With a sufficient large number of feedback bits, by applying

the mean value theorem (MVT) [47], the left hand side of (20)
can be approximated as

E
[
ξ
(
gk, P

′
k,lk

)− λ
∣∣G(l1,...,lK)

]
Pr
(
G(l1,...,lK)

)

=

⎛
⎝ K∏
j 	=k

1
Lj

⎞
⎠∫ Xk,lk

Xk,lk−1

[
ξ
(
gk, P

′
k,lk

)− λ
]
f(gk)dgk

≈
⎛
⎝ K∏
j=1

1
Lj

⎞
⎠
[
ξ

(
1

λ̂k
ln

Lk + 1
Lk − lk + 1

, P ′
k,lk

)
− λ

]
. (26)

Substituting (26) into (20), the power codebook can be
explicitly derived as,

P ∗
k,lk

=

⎧⎨
⎩
y
(
P ∗
k,lk

)
, if

d0ln
Lk+1

Lk−lk+1−λλ̂kσ
2

λλ̂kσ2−(αD(k)−βD(k))ln
Lk+1

Lk−lk+1

>0

0, otherwise
(27)

where d0 = αF (k) + αD(k) − βF (k) − βD(k) [9], and

y
(
P ∗
k,lk

)
=

σ2λ̂k

βF (k) ln Lk+1
Lk−lk+1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

√√√√√√√
αF (k) − βF (k)

λσ2λ̂k

ln
Lk+1

Lk−lk+1

− αD(k)−βD(k)�
�1+

βD(k) ln
Lk+1

Lk−lk+1
σ2λ̂k

P∗
k,lk

�
�

2

− 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(28)
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Remark 4: Note that y
(
P ∗
k,lk

)
in (28) decreases

as P ∗
k,lk

increases. We can thus apply a fixed-point
iteration technique to obtain the optimal P ∗

k,lk
[48],

if
d0ln Lk+1

Lk−lk+1 − λλ̂kσ
2

λλ̂kσ2 − (αD(k) − βD(k)) ln Lk+1
Lk−lk+1

> 0.

Thus, the J-divergence can be explicitly approximated as

J ≈
K∑
k=1

{
1
Lk

Lk∑
lk=1

[
σ2λ̂k + αF (k) ln Lk+1

Lk−lk+1P
∗
k,lk

σ2λ̂k + βF (k) ln Lk+1
Lk−lk+1P

∗
k,lk

+
σ2λ̂k + αD(k) ln Lk+1

Lk−lk+1P
∗
k,lk

σ2λ̂k + βD(k) ln Lk+1
Lk−lk+1P

∗
k,lk

]}
(29)

Remark 5: With average individual power constraints,
we can rewrite the Problem (10) as

max
Pj , Gj , ∀j

L∑
j=1

E

[
K∑
k=1

N(gk, Pk,j)

∣∣∣∣∣Gj

]
Pr(Gj)

s.t.

L∑
j=1

Pk,jPr(Gj) ≤ pk, ∀k = 1, . . . ,K,

0 ≤ Pk,j ≤ P kmax, ∀j = 1, . . . , L, (30)

where pk is the average power constraint for Sensor k. The
Lagrange dual function g({λk}) is defined as:

g({λk}) = max
0≤Pk,j≤Pk

max, Gj ,∀j
L ({Pj} , {Gj} , {λk})

+
K∑
k=1

λkpk, (31)

with

L ({Pj} , {Gj} , {λk})

=
L∑
j=1

E

[
K∑
k=1

(N(gk, Pk,j) − λkPk,j)

∣∣∣∣∣Gj

]
Pr (Gj) . (32)

All the properties depicted in Section III can be easily applied
to the case of average individual power constraints. In addi-
tion, if

∑K
k=1 pk = Ptot, solution of Problem (30) is one of

the feasible solutions of Problem (10).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed power allocation algorithms via numerical simulations.
In our simulations, we consider a network in which there
are K sensors around the FC and distance from sensors
to the FC are d1, . . . , dK (in meters) with the correspond-
ing operating frequency f1, . . . , fK (in megahertz) in the
range of 902-928 MHz (915 MHz band) based on IEEE
802.15.4 standard (2006/2011) [49].2 The path-loss in free

2According to the IEEE 802.15.4 standard (2006/2011) [49], there are a few
license-free frequency industrial, scientific, and medical radio (ISM) bands
available for wireless sensor networks, such as: (1)868-868.6 MHz (868 MHz
band) with data rate 20kbps used in Europe, (2) 902-928 MHz (915 MHz
band) with data rate 40kbps used mainly in North America and Australia (3)
2400-2483.5 MHz (2.4 GHz band) with data rate 250kbps is used worldwide.

Fig. 2. Quantization regions of three-bit feedback for a system with three
sensors.

space of signal power at the FC from each sensor follows
the free-space path-loss model [50],

PLk = 20 log10(dk) + 20 log10(fk) − 27.55.

Thus, the channel gain of each sensor follows an exponential
distribution with mean of 10

−PLk
10 . The noise variance at

the FC is σ2 = −70dBm and the maximum transmitting
power of each sensor is P kmax = 2mW. The total power
budget is less than 2KmW, otherwise each sensor uses its
maximum transmitting power. In practice, many of the WSN
applications, such as mission-critical surveillance, require a
low false alarm rate (no more than 0.05) and a high detection
probability (no lower than 0.5) [51]. Thus, we assume all
sensors perform Neyman-Pearson detection with false alarm
probability set to PF (k) = 0.04 and the detection probability
PD(k) ≥ 0.5, k = 1, . . . ,K.
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TABLE I

ALLOCATED POWER AT EACH REGION FOR THE SQPA CASE AND THE GLA CASE

Fig. 3. Detection performance comparison between GLA and SQPA with 1,
2, and 4 bits feedback in a 4 sensors system.

For a comparison, Fig. 2 plots the quantization regions
obtained by both SQPA and GLA strategies with 3 bits feed-
back under a total power constraint of 2.2523 mW in a three-
sensor (K = 3) network, where d1 = 44.26m, f1 = 909MHz;
d2 = 58.57m, f2 = 916MHz; d3 = 72.66m, f3 = 923MHz,
and PD(1) = 0.7, PD(2) = 0.8, PD(3) = 0.9. The
partition regions of the SQPA case is almost identical to that
of the GLA case, where the allocated power at each region
is in Table I. Fig. 2 and Table I clearly demonstrate that the
suboptimal SQPA scheme with 3 bits of feedback can almost
approach the optimal GLA performance, which thus confirms
the effectiveness SQPA.

Fig. 3 depicts the performance of the J-divergence obtained
by the SQPA algorithm versus Ptot with feedback bits B =
{1, 2, 4} in a four-sensor (K = 4) network, where d1 =
29.74m, f1 = 902MHz; d2 = 44.26m, f2 = 909MHz;
d3 = 58.57m, f3 = 916MHz; d4 = 72.66m, f4 = 923MHz
and PD(1) = 0.6, PD(2) = 0.7, PD(3) = 0.8, PD(4) =
0.9. We also plot the corresponding J-divergence performance
obtained by the GLA. Even with only 1 bit feedback, the
J-divergence performance of SQPA and the corresponding
GLA are very close. Further, we plot the corresponding
J-divergence performance of two extreme cases: i) no CSI
at sensors in which sensors use the pre-specified power
level to transmit for all channel conditions; and ii) full CSI

Fig. 4. Comparison between total power constraint and individual power
constraint with 1, 2 bits feedback and no feedback in a 2 sensors system.

at sensors with the power allocation scheme given in (9).
As shown in Fig. 3, when the number of feedback bits
increases, the performance gap between the SQPA and the
full CSI decreases considerably. With only 4bits of feedback,
SQPA can achieve almost the same performance as full CSI
case.

For example, given Ptot = 2.8701 mW (4.5789 dBm), the
J-divergence loss due to imperfect CSI are approximately
14.52%, 10.29%, 6.77%, and 0.57% for no CSI case, 1 bit
feedback, 2 bits feedback, and 4 bits feedback, respectively.
A similar behavior also can be observed from Fig. 3 for the
J-divergence obtained by GLA. These results are particularly
useful as the GLA-based optimal scheme becomes computa-
tionally intensive for the case of large number of feedback
bits (as mentioned in Section III A), whereas SQPA provides
a performance that is extremely close to that of the GLA,
while requiring much less computation time.

Fig. 4 and Fig. 5 show the J-divergence behavior of the GLA
algorithm with the average and individual power constraints
for two-sensor and four-sensor networks, respectively. For the
sake of comparison and simplicity, we assume all sensors are
under the same average power constraint and

∑K
k=1 pk =

Ptot. For two-sensor network, parameters are d1 = 29.74m,
d2 = 72.66m, f1 = 902MHz, f2 = 923MHz, PD(1) = 0.7
and PD(2) = 0.9. In general, we notice that the total
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Fig. 5. Comparison between total power constraint and individual power
constraint with 1, 2, and 4 bits feedback in a 4 sensors system.

Fig. 6. Asymptotic J-divergence behavior in a two-sensor network versus
the number of quantization level, with Ptot = −1.6316dBm.

power constraint scenario outperforms the individual power
constraint scenario, especially for no CSI case (with no CSI,
under the individual power constraint, each sensor simply
transmits by using all its power budget). The superiority of
the total power constraint scenario is due to the fact that
the solution of Problem (30) (individual power constraints)
is always a feasible solution of Problem (10) (total power
constraint), but it does not work the other way around. The
total power constraint scenario therefore has a larger feasible
set and achieves better resource efficiency. However, this per-
formance gap gradually decreases when number of feedback
bits increase.

A similar performance behavior can be observed in Fig.3
for the 4-sensor network case ( with same parameters). These
observations confirm that the solution of Problem (30) is one
of the feasible solutions of Problem (10).

Fig. 6 shows the asymptotic J-divergence behavior of
SQPA versus the number of total feedback bits B with the
total transmission power budget Ptot = −1.6316dBm for

Fig. 7. Inner loop iteration convergence rate with given λ = 2 for proposed
GLA-based locally optimal scheme in a 4 sensors system

Fig. 8. Outer loop iteration convergence rate for proposed GLA-based locally
optimal scheme in a 4 sensors system, given Ptot = 1.6 mW, initial value
λ = 1 and step size 2/k.

a two-sensor network. We compare the performance with full
CSI. When the number of feedback bits increases, the J-
divergence increases, and approaches the value corresponding
to full CSI performance. This further confirms that a near-full
CSI system performance can be achieved by SQPA with only
a small number of feedback bits.

Convergence Rate: Fig. 7 and Fig. 8 illustrate the con-
vergence rate of our proposed GLA-based locally optimal
quantized power scheme (i.e., a two-step iteration scheme
introduced in Section III A) in a four-sensor system (with sys-
tem parameters same as Fig. 3) for 2 bits and 4 bits feedback,
respectively. All schemes were implemented in MATLAB
(R2015b) on an Intel(R) Core(TM) i7-5600 CPU with a clock
speed of 2.60 GHz and a memory of 16 GB. For each inner
loop simulation, 105 randomly generated channel realizations
are used for each sensor with fixed λ = 2. As we can
observe from Fig. 7, the Lagrangian-based distortion function
is non-decreasing at each iteration and converges as it is
upper bounded due to the average total power constraint,



GUO et al.: POWER ALLOCATION FOR DISTRIBUTED DETECTION SYSTEMS IN WSNS WITH LIMITED FC FEEDBACK 4763

which agrees with Remark 2. Fig. 8 shows the convergence
rate of the proposed scheme for the total transmission power
budget Ptot = 1.6mW. Starting with a randomly chosen
initial value λ = 1 and step size 2/k, the outer loop takes
10778.827387 seconds (i.e., ≈ 3 hours) and 12305.808074
seconds (i.e., ≈ 3.5 hours) to converge, respectively, for
2 bits and 4 bits feedback cases. We also compare the
computational convergence speed of the suboptimal SQPA
and optimal GLA algorithms. For a given total transmission
power Ptot = 1.6 mW with 2 bits feedback, SQPA takes only
around 152.987741 seconds (i.e., ≈ 2.5 minutes) whereas the
GLA takes 10778.827387 seconds (i.e., ≈ 3 hours) in order
to achieve a comparable level of accuracy.

V. CONCLUSION

In this paper, we consider a problem of transmit power
allocation in order to maximize the detection performance
subject to the total and individual power constraints on each
sensor. Instead of full-CSI, we assume that only the quantized
CSI is available at the sensors acquired via limited feed-
back from the FC. A locally optimal solution is derived by
solving its dual Lagrangian optimization problem based on a
Lagrangian based modified GLA. Due to the high complexity
of the Modified GLA, we further propose an efficient and
low-complexity scheme to determine the quantization regions.
Although the problem is non-convex, we explicitly formulate
the problem and solve for an unique solution, which provides
a locally optimal solution. However, numerical results show
that only a small amount of feedback bits can give almost
the same detection performance as the full CSI case. Future
work will involve extending the results to MIMO slow-fading
channels.

APPENDIX

A. Proof of Lemma 1

Let S(gk, P ′
k) = ξ(gk, P ′

k) − λ, then by applying the
’Implicit Function Theorem’, we have ∂P ′

k

∂gk
= − ∂S(gk,P

′
k)/∂gk

∂S(gk,P ′
k)/∂P ′

k
.

As ∂S(gk,P
′
k)

∂P ′
k

= ∂ξ(gk,P
′
k)

∂P ′
k

< 0 [9], we know that Lemma 1

holds if ∂S(gk,P
′
k)

∂gk
> 0 in gk ∈ [0, ĝk) and ∂S(gk,P

′
k)

∂gk
< 0 over

gk ∈ [ĝk,∞), where ĝk is the unique point of ∂ξ(gk,P
′
k)

∂gk
= 0.

Note that, we have,

∂S(gk, P ′
k)

∂gk
=

σ2 Q′

(σ2 + βF (k)gkP ′
k)

3 (σ2 + βD(k)gkP ′
k)

3 ,

with

Q′ � Z4(gkP ′
k)

4 + Z3(gkP ′
k)

3 + Z2(gkP ′
k)

2

+Z1(gkP ′
k)

1 + Z0

where,

Z0 = σ8d0

(a)
> 0,

Z1 = σ6(3d1 − C0)
(b)
= 2σ6(PD(k) − PF (k))2[PD(k)2PF (k) + PD(k)PF (k)2

+(2 − PD(k) −PF (k))(1 − PD(k))(1 −PF (k))]
(c)
> 0,

Z2 = 3σ4(βD(k)αF (k) − βF (k)αD(k))(βD(k) − βF (k))
(d)
= 3σ4(PD(k) − PF (k))2(PD(k) + PF (k) − 1)2

× [PD(k)(1 − PF (k)) + PF (k)(1 − PD(k))]
(e)
> 0,

Z3 = (αF (k) − βF (k))σ2βD(k)2(βD(k) − 3βF (k))

+(αD(k) − βD(k))σ6βF (k)2(βF (k) − 3βD(k)),

Z4 = −βD(k)βF (k)d2

(f)
< 0, (33)

with d0, d1, d2 and C0 defined as [9]:

d1 = αF (k)βD(k) + αD(k)βF (k) − 2βF (k)βD(k),

d2 = αF (k)βD(k)2 + αD(k)βF (k)2

−βF (k)βD(k)2 − βF (k)2βD(k),

C0 = βF (k)(αF (k) − βF (k)) + βD(k)(αD(k) − βD(k)).

In (33), as shown in [9] that when 1 > PD(k) > PF (k) >
0, d0, d1, d2, βF (k), βD(k) are positive, which can give us
(a), (f). We also can obtain (b), (d) by applying the definition
of αF (k), βF (k), αD(k), βD(k), and (c), (e) are followed
from 1 > PD(k) > PF (k) > 0. Therefore, we have
Z0, Z1, Z2 are positive, and Z4 is negative, which gives us Q′

having one sign change (regardless the sign of Z3). According
to Descartes’ rule of signs we can see there is only one
positive solution ĝk satisfying ∂S(gk,Pk)

∂gk
= 0; together with

∂S(gk,Pk)
∂gk

∣∣∣
gk=0

= d0
σ2 > 0, we get S(gk, Pk) is first increasing

in gk ∈ [0, ĝk) and then decreasing over gk ∈ [ĝk,∞).

B. Proof of Lemma 2

1)
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

= 0 has unique solution: After

some mathematical manipulation, we can express

∂ψ (Xk,lk , Pk,lk , Pk,lk+1)
∂Xk,lk

=
Q

(1+dXk,lk)2 (1+mXk,lk)2 (1+DXk,lk)2 (1+MXk,lk)2
,

where

d =
βF (k)
σ2

Pk,lk , m =
βD(k)
σ2

Pk,lk ,

D =
βF (k)
σ2

Pk,lk+1, M =
βD(k)
σ2

Pk,lk+1,

Q = T6 X
6
k,lk

+ T5 X
5
k,lk

+ T4 X
4
k,lk

+ T3 X
3
k,lk

+T2 X
2
k,lk + T1 X

1
k,lk + T0

with

T0 =
d0

σ2

(h)
> 0, T1 =

2d1

σ4
(Pk,lk+1 + Pk,lk)

(l)
> 0,

T2 =
d2

σ6

(
P 2
k,lk+1 + P 2

k,lk
+ Pk,lkPk,lk+1

)

+
Pk,lk+1Pk,lk

σ6

[
β2
F (k)(αF (k) − βF (k))

+β2
D(k)(αD(k) − βD(k)) − 3d2

]
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T4 =
Pk,lk+1Pk,lk

σ10

[
d2Pk,lk+1Pk,lk

(
βF (k)2 + 4βF (k)βD(k) + βD(k)2

)− 4d1βF (k)βD(k)Pk,lk+1Pk,lk (βF (k) + βD(k))

−d0βF (k)2βD(k)2
(
P 2
k,lk+1 + Pk,lk+1Pk,lk + P 2

k,lk

)]
(34)

∂ψ (Xk,lk , Pk,lk , Pk,lk+1)
∂Pk,lk

=
−X2

k,lk
σ2

(σ2 + βF (k)Xk,lkPk,lk)2 (σ2 + βF (k)Xk,lkPk,lk+1) (σ2 + βD(k)Xk,lkPk,lk)2 (σ2 + βD(k)Xk,lkPk,lk+1)
× [σ6C0 + βF (k)βD(k)

(
2σ4d0Xk,lkPk,lk + σ4d0Xk,lkPk,lk+1 + σ2d1X

2
k,lk

P 2
k,lk

+2σ2d1X
2
k,lkPk,lkPk,lk+1 + d2X

3
k,lkP

2
k,lkPk,lk+1

)] (u)
< 0 (35)

(g)
=

d2

σ6

(
P 2
k,lk+1 + P 2

k,lk + Pk,lkPk,lk+1

)

+
2 Pk,lkPk,lk+1 (PD(k) −PF (k))2

σ6

×[(PD(k) + PF (k) − 1)2(2 − PD(k) −PF (k))(PD(k)
+PF (k)) + 2(1 − PD(k))(1 − PF (k))

×PD(k)PF (k)]
(s)
> 0,

T3 =
2 Z2 (Pk,lk+1 + Pk,lk)Pk,lk+1Pk,lk(βF (k) + βD(k))

3σ12

(r)
> 0,

T5 =
−2 d1βD(k)2βF (k)2

σ12
(Pk,lk+1 + Pk,lk)P 2

k,lk+1P
2
k,lk

(t)
< 0,

T6 = −d2βD(k)2βF (k)2

σ14
P 3
k,lk+1P

3
k,lk

(n)
< 0,

and T4 is defined in (34) (shown in the top of this page), where
d0, d1, d2 and Z2 are defined in Lemma 1. (g) is obtained
by applying the definition of αF (k), βF (k), αD(k), βD(k);
and (h), (l), (s), (r), (t), (n) are obtained due to the fact that
d0, d1, d2, Z2 are all positive and 1 > PD(k) > PF (k) > 0.

Therefore, for Q, regardless the sign of T4, the number
of sign differences between consecutive coefficients is 1, i.e.
T0, T1, T2, T3 are positive and T5, T6 are negative. Applying
Descartes’ rule of signs, we can obtain the only one solution

X̂k,lk satisfying
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

= 0.

2)
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Pk,lk

< 0: Proof is given in (35)
(shown in the top of this page), where C0 is defined
in Lemma 1. We obtain (u) since βD(k), βF (k), d0, d1, d2

are positive and C0 is nonnegative. The proof of
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Pk,lk+1
< 0 follows a similar proof in (35).

C. Proof of Lemma 3

Applying the mean value theorem (MVT) to (20), we can
have ξ(X̄k,lk , Pk,lk) − λ = 0, ∀lk = 1, . . . , Lk, where
X̄k,lk ∈ (Xk,lk−1, Xk,lk). According to Lemma 1, when
ξ(gk, Pk) − λ = 0, Pk is first increasing in gk ∈ [0, ĝk)
(where ĝk is the unique solution of ∂ξ(gk,Pk)

∂gk
= 0), and

then decreasing over gk ∈ [ĝk,∞). Without losing general-
ity, assuming ĝk ∈ [Xk,jk−1, Xk,jk), jk is an integer and
jk ∈ [1, Lk]. If Pk,jk−1 < Pk,jk > Pk,jk+1, we must have

Pk,1 < · · · < Pk,jk−1 < Pk,jk > Pk,jk+1 > · · · > Pk,Lk
.

If Pk,jk < Pk,jk+1 > Pk,jk+2, we will have Pk,1 < · · · <
Pk,jk < Pk,jk+1 > Pk,jk+2 > · · · > Pk,Lk

. If Pk,jk−2 <
Pk,jk−1 > Pk,jk we obtain Pk,1 < · · · < Pk,jk−2 <
Pk,jk−1 > Pk,jk > · · · > Pk,Lk

. Any of these cases can
be written in the form of: Pk,1 < · · · < Pk,mk−1 < Pk,mk

>
Pk,mk+1 > · · · > Pk,Lk

, where mk ∈ [1, Lk], and Pk,mk
is

the largest power level for Sensor k.

D. Proof of Lemma 4

A local solution of Problem (22) can be obtained by solving
the Karush Kuhn Tucker (KKT) conditions, given as:

(Pk,lk+1 − Pk,lk) [λ− ψ (Xk,lk , Pk,lk , Pk,lk+1)] = 0.

1) Pk,lk+1 > Pk,lk : As ∂
∂Xk,lk

(λ − ψ(Xk,lk , Pk,lk ,

Pk,lk+1))|Xk,lk
=0 = −T0 < 0, based on Lemma 3 we

have λ − ψ (Xk,lk , Pk,lk , Pk,lk+1) is first decreasing in
Xk,lk ∈ [0, X̂k,lk), where X̂k,lk is the unique solution

of
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

= 0, and then increasing over

Xk,lk ∈ [X̂k,lk ,∞). From Lemma 3 that ψ(Xk,lk ,
Pk,lk , Pk,lk+1) is decreasing w.r.t Pk,lk , we have
ψ (Xk,lk , Pk,lk , Pk,lk+1) > ξ (Xk,lk , Pk,lk+1), together with
E [ξ (gk, Pk,lk+1) − λ|G(l1,...,lk+1,...,lK)

]
= 0 (obtained

from (20) ), we can get E[ψ(gk, Pk,lk , Pk,lk+1)|
G(l1,...,lk+1,...,lK)] > λ; and from MVT we know that
there exists X̃k,lk ∈ (Xk,lk , Xk,lk+1) such that

ψ
(
X̃k,lk+1, Pk,lk , Pk,lk+1

)
= E [ψ (gk, Pk,lk , Pk,lk+1)|G(l1,...,lk+1,...,lK)

]
> λ.

Thus, there are two solutions of λ − ψ(Xk,lk , Pk,lk ,
Pk,lk+1) = 0: one maximum point and one minimum point
for Problem (22), and the maximum point can be obtained
by (23).

Next, we will prove the resulting {Xk,lk}Lk−1
lk=1 from

Problem (22) satisfies 0 < Xk,1 < · · · < Xk,Lk−1 < ∞.
Given X ′

k,lk−1 < X ′
k,lk

< X ′
k,lk+1 < X ′

k,lk+2 from last
iteration, and applying MVT to (20) we can obtain:

λ = E [ξ (gk, Pk,lk)|G(l1,...,lk,...,lK)

]
= ξ
(
X̄k,lk , Pk,lk

)
= E [ξ (gk, Pk,lk+1)|G(l1,...,lk+1,...,lK)

]
= ξ
(
X̄k,lk+1, Pk,lk+1

)
= E [ξ (gk, Pk,lk+2)|G(l1,...,lk+2,...,lK)

]
= ξ
(
X̄k,lk+2, Pk,lk+2

)
,
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where X̄k,lk , X̄k,lk+1 and X̄k,lk+2 satisfy X ′
k,lk−1 <

X̄k,lk < X ′
k,lk

< X̄k,lk+1 < X ′
k,lk+1 < X̄k,lk+2 <

X ′
k,lk+2. Because Pk,lk+1 > Pk,lk , from Lemma 3 we

know ψ
(
X̄k,lk+1, Pk,lk , Pk,lk+1

)
> ξ

(
X̄k,lk+1, Pk,lk+1

)
=

λ = ξ
(
X̄k,lk , Pk,lk

)
> ψ

(
X̄k,lk , Pk,lk , Pk,lk+1

)
. Let

X∗
k,lk

denote the solution of (23), from above analy-
sis we can obtain X∗

k,lk
< X̂k,lk , where X̂k,lk is

the unique solution of
∂ψ(Xk,lk

,Pk,lk
,Pk,lk+1)

∂Xk,lk

= 0.

Since X∗
k,lk

satisfies ψ
(
X̄k,lk+1, Pk,lk , Pk,lk+1

)
> λ =

ψ
(
X∗
k,lk

, Pk,lk , Pk,lk+1

)
> ψ

(
X̄k,lk , Pk,lk , Pk,lk+1

)
, and

ψ (Xk,lk , Pk,lk , Pk,lk+1) is first increasing in Xk,lk ∈
[0, X̂k,lk) and then decreasing over Xk,lk ∈ [X̂k,lk ,∞),
we can obtain X̄k,lk < X∗

k,lk
< X̄k,lk+1. If Pk,lk+2 >

Pk,lk+1, by using the similar analysis we can have X̄k,lk+1 <
X∗
k,lk+1 < X̄k,lk+2, thus, combining all the results

above, we can conclude X∗
k,lk

< X∗
k,lk+1. If Pk,lk+2 <

Pk,lk+1, similarly, we have ψ
(
X̄k,lk+2, Pk,lk+1, Pk,lk+2

)
<

ξ
(
X̄k,lk+2, Pk,lk+2

)
= λ = ξ

(
X̄k,lk+1, Pk,lk+1

)
<

ψ
(
X̄k,lk+1, Pk,lk+1, Pk,lk+2

)
and X∗

k,lk+1 > X̂k,lk+1.
As X∗

k,lk+1 satisfies ψ
(
X̄k,lk+2, Pk,lk+1, Pk,lk+2

)
< λ = ψ(

X∗
k,lk+1, Pk,lk+1, Pk,lk+2

)
< ψ

(
X̄k,lk+1, Pk,lk+1, Pk,lk+2

)
,

and ψ (Xk,lk+1, Pk,lk+1, Pk,lk+2) is first increasing in
Xk,lk+1 ∈ [0, X̂k,lk+1) and then decreasing over Xk,lk+1 ∈
[X̂k,lk+1,∞), we know that X̄k,lk+1 < X∗

k,lk+1 < X̄k,lk+2.
Together with X̄k,lk < X∗

k,lk
< X̄k,lk+1, we can have

X∗
k,lk

< X∗
k,lk+1.

2) Pk,lk+1 < Pk,lk : The results can be obtained similar to
1) case.

Therefore, based on the above analysis, we can conclude
that there exists only one maximum point in Problem (22), thus
only one optimal solution to Problem (22). And this optimal
X∗
k,lk

follows 0 < X∗
k,1 < · · · < X∗

k,Lk−1 < ∞ and can be
obtained by solving the following:{

λ− ψ (Xk,lk , Pk,lk , Pk,lk+1) = 0;
(Pk,lk+1 − Pk,lk)

∂ψ(Xk,lk
,Pk,lk

,Pk,lk+1)
∂Xk,lk

< 0.
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