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Abstract—In this paper, we investigate power-constrained sensing basi) vector with a size higher than that of the measurement

matrix design in a sparse Gaussian linear dimensionality réuction
framework. Our study is carried out in a single-terminal setup
as well as in a multi-terminal setup consisting of orthogonkor
coherent multiple access channels (MAC). We adopt the meamgare
error (MSE) performance criterion for sparse source recongruction
o in a system where source-to-sensor channel(s) and sensordecoder
communication channel(s) are noisy. Our proposed sensing atrix
QN design procedure relies upon minimizing a lower-bound on te MSE
= in single— and multiple-terminal setups. We propose a threstage
sensing matrix optimization scheme that combines semi-deifie

™) 'relaxation (SDR) programming, a low-rank approximation problem
N and power-rescaling. Under certain conditions, we derive losed-
form solutions to the proposed optimization procedure. Though

N numerical experiments, by applying practical sparse recostruc-
tion algorithms, we show the superiority of the proposed sceéme
'|:'by comparing it with other relevant methods. This performance
I'_ .improvement is achieved at the price of higher computationk
= .complexity. Hence, in order to address the complexity burde, we
present an equivalent stochastic optimization method to ta problem

of interest that can be solved approximately, while still poviding a
superior performance over the popular methods] |

Matrix, Low Rank, Convex Optimization, MSE, MAC.

I. INTRODUCTION
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vectory € RM, Further,A ¢ RM*¥ s afat sensing matrix
(i.e., M < N), andn € RM is the measurement noise vector.
For the purpose of reconstructing the sparse vector fror@ge
measurements, several techniques have been developetdrase
convex optimization methods (see eld. [4], [5]), iteratireedy
search algorithms (see e.d.] [6]-9]) and Bayesian estimati
approaches (see e.d. [10]-[14]). It should be mentionet aha
careful design of the sensing matriX is crucial in order to
achieve good performance of sparse reconstruction afgosit
Moreover, as shown in[15]/[16], the sensing matrix has an
important role not only in determining the amount of estiiorat
error, but also in deciding the amount of distortion due to
guantization and transmission of CS measurements ovetaligi
communication channels. Therefore, in this paper, we am-in
ested in the optimized design of the sensing mariwith respect
to an appropriate performance criterion. Regarding therthand
applications of CS, sensing matrices are generally dividéal
two main groups: deterministic or random. Although mostyear

Index Terms—Compressed Sensing, Sparse Gaussian, Sensingvork in CS was based on stochastic sensing matrix generation

such matrices are often not feasible in practice for hardwar
implementations[[17]. Motivated by this fact, we focus on de
terministic sensing matrices, and show that an optimizesigde

Sensor networks have recently attracted much researciesnte0f @ sensing matrix can substantially improve the perforreanf

= due to their practical popularity in accomplishing autorus

—i

tion. Diverse applications of sensor networks motivatedieloy-

14

resources, computational complexity and power consumplio

tasks, such as monitoring, sensing, computation and coneaun Background

ment of new techniques and algorithms due to systems’ limite !N the literature, available approaches for designing rdete

istic sensing matrices for estimation purposes can be elividto

2 this regard, Compressed Sensing (@) @]_[3] can be Cmde(but not limited tO) three broad CategOI’ieS as describedvbel

>§ significantly reduces costs due to sampling, leading to power
consumption and low-bandwidth communication.

CS is a framework for simultaneous signal acquisition and

compression, which is based on linear dimensionality reédoc

The CS framework guarantees accurate (or, even exact)lsigna
recovery from far fewer number of acquired measurementigiun

as an emerging tool for signal compression and acquisitian t

1) In the first category, the sensing matrix design is linked t
a fundamental feature of the sensing mattx called mutual
coherence [18], which is defined as follows

ATA;
@’ 1<14,j<N,
| Aill2l| A2

A
1 = max

i#] @)

where A; denotes the®" column of A. For a sensing matrix,

the condition that the source signal can be represented by @mgier value of the mutual coherence is desired in order fo
sparse form. Indeed, CS builds upon the fact that many tyPesyQe matrix to behave similar to an orthogonal transform. The

physically-observed signals (such as voice, image, etn) e

represented by only a few few non-zero components in a kno
basis, where these few components convey the most inforena

portion the signal.

notion of mutual coherence is important since many worseca
YBrformance guarantee bounds developed for sparse raomnst
on algorithms often build upon its quantity (see e.@..]J]19

One of the early works within this category [s [20] that sadli

In order to clarify the concept of CS in relation to thehe optimal design of sensing matrix in the sense of reducing

objectives of our work, let us consider the linear reductiwodel

_ N ; ;
y = Ax+n, wherex € R" is a sparse signal (in a known 1, 5 more precise manner, the CS measurement vector is mwriee
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y = Ax + n, wherex is a non-sparse input vector. We assume thdtas a

sparse representatiah in a known basis® such thatx = ¥6. Then, the CS
measurement equation can be writtenyas A w60 +n. Hence, if® is known at

the time of reconstruction, the original non-sparse vertoan be recovered from
the reconstruction of the sparse vecfodirectly. In this paper, for simplicity of
presentation, and without loss of generality, we assumi¥hds equivalent to

the identity transform, and therefoseis sparse.
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the mutual coherence (or average mutual coherence forgwera i. Single—terminal ScenarioWe consider a correlated Gaus-
signal recovery performance). sian sparse source vector (i.e., the non-zero componerttseeof

2) In the second category, in order to analytically addrbss tsource signal are correlated Gaussian random variables), t
sensing matrix design problem in a more tractable manner, ik scaled linearly and subsequently corrupted by additvieen
sensing matrixA is optimized by minimizing the Frobenous-before compression/encoding via a CS-based sensing mEltiéx
norm distance between the Gram matrix of the sensing matrésulting CS measurements are transmitted over a noisjo(na
(or, the product of the sensing matrix and a given matrix) amd communication channel, modeled by channel gain and additiv
identity matrix. This method, indeed, reveals how far thesggy noise, under an available average transmit power constrain
matrix can be from an orthogonal transform. Formally, insthithe receiving-end, the source signal is decoded using @n est
line of work, the following optimization problem is posedder mator (e.g., linear or non-linear estimator, sparse recoction
relevant constraints: algorithm, etc.) to reconstruct the sparse source.

ii. Multi-terminal ScenarioWe consider a correlated Gaussian
sparse source vector that is scaled linearly and corrupted ti-
_ _ tive noise, via separate terminals prior to compressiaoéimg
where || - || denotes the Frobenius norm add is & known s cs hased sensing matrices. The CS measurement vereors a
matrix (€.9., a sparsifying dictionary) with approprianénsion. - 5nsmitted over orthogonal or coherent multiple accessicals
Although the optimal sensing matrix with respect to minimi  (\ ac), under an available average transmit power constrain

(@ does not necessarily minimize the mutual coherenceast Rre fsion center (FC), at the receiving-end, decodes thesep
been shown that, using this method, the mutual coherencegf; ce signal.

th_e _sens_ing matrix can be considerably re(_juced. S_ome eBampl |, the above scenarios, we aim at optimizing the sensingbmatr
within this category are [21]=[24]. Further, in [25], sirtarieous (or, matrices) by minimizing éower-boundon the MSE incurred

optimization of sensing matrix and sparsifying dictiondgs " sing the MMSE estimator (which by definition minimizes
been studied which follows the ideas In [26]. , the MSE) of a sparse source signal. We adopt the MSE of
~3) While in the first and second categories, the sensing atfje gracle MMSE estimator as the lower-bound on the MSE to
is designed to address the worst-case performance of Spg§éninimized under an average transmit power constraint. We
reconstruction, the actual performance, such as estimatimr propose a three-stage sensing matrix optimization praeettiat
or mean square error (MSE) of sparse source reconstrucon, comhines semi-definite relaxation (SDR) programming, a-low
be typically far less. Exploiting randomness in the SpaBe® 5k approximation problem and power-rescaling. The &siub
vector, one might consider minimizing the low-rank approximation problem can be derived anadyliic
MSE 2 E[||x — %||2] 3) and_ the S_DR prog_ramming problem can be s_olved _usin_g convex
’ optimization techniques. Further, in the multi—-terminattisigs
under relevant constraints. Herﬁy. H2 denotes the€2_norm, with Orthogonal and coherent MAC, we formulate and solve
and X represents the output of decoder (e.g., a linear or ndinvex optimization problems in order to optimally resctie
linear estimator, a sparse reconstruction algorithm) etcthe Power. Under certain conditions, we derive closed-fornutsohs
receiving end. MSE is one of the most commonly-used criterfi@ the proposed optimization procedure. For example, in the
of accuracy for estimation and reconstruction purposespfidg Single-terminal scenario, we analytically show that if thee-zero
the MSE as a targeted performance criterion in CS systems E8g1ponents of the sparse source are uncorrelated, andufeeso
called for redeveloping classical Bayesian methods forsgpato-sensor channels are perfect, then the optimal solutmrise
reconstruction which have been extensively studied récemt three-stage optimization procedure are tight fr&h@s], which
[12], [13], [27]-[31]. Optimizing sensing matrix with respt are easy to construct, and play important roles in signatgss-
to minimizing the MSE is not only effective in improving theind, denoising, coding, etc. Through numerical experirsehy
performance of Bayesian-based sparse reconstructioritalgps, aPplying practical sparse reconstruction algorithms, wmjgare
but also of other types of sparse reconstruction algoritteush Our proposed scheme with other relevant methods. Expetahen
as greedy search or convex algorithms. [n][32], the authd@$ults show that the proposed approach improves the MSE
proposed a two-stage optimization procedure in order tigdes Performance by a large margin compared to other methods. Thi
sensing matrix with respect to minimizing a lower-bound be t Performance improvement is achieved at the price of higher
reconstruction MSE of a sparse source with known statistic@Pmputational complexity which arises from the fact tha¢ th
properties. In the context of linear dimensionality redct Objective function, i.e., the lower-bound, sweeps ovepaiisible
models with linear decoding, the authors[inl[38[.][34] havess- sparsity patterns of the source. In order to tackle the ceniiyl
tigated optimized design of sensing matrices in a decenadhl issue, we develop an equivalent stochastic optimizatiothote
(multi—terminal) setting, where reconstruction MSE of aegi t0 the problem of interest, which can be approximately slve
(not necessarily sparse) source with known covarianceixnatthile still providing a superior performance over the cotnp
is considered subject to an average transmit power constramethods.
Also, Yuanet. al. in [35] has studied the same optimization Our sensing matrix design for the oracle estimator is dsffer
problem, in a single—terminal setup, under linear decading With that of [32] in the sense that we minimize the oracle
by constraining the volume of error covariance matrix indtef MMSE estimator under a power constraint, while inl[32] the
a total power constraint. oracle least-square (LS) estimator is minimized. Furthes,

L TAT
minimize [T A AT —Iy|Fp, 2

B. Contributions IFormally, a frame is defined as a sequence of column vedgrsf a matrix

o tributi in thi lie in the third t A, and the frame is said to be tight if the associated maiikas a singular-
ur contributions, in IS paper, lie In € Ird- category,,e decomposition (SVD) of the fori, [I5s OMX(N,M)]VI, whereU,

described above. In particular, they are as described below andV,, are unitary matrices with appropriate dimensions.



propose our design in a more general framework (single— ti® K non-zero components of, andxs € RX denotes the
well as multi—-terminal settings) where observations befmm- components ofk indexed by the support s&. Note that the
pression/encoding are scaled and subject to noise whicfieie o0 Gaussian sparse signal is compressible in nature. Thatsayio
the case in practice. Also, our optimization approach ifecBht the sorted amplitudes of a Gaussian sparse vector’'s gninies
with those of [38], [34] in the sense that we deal with sparsdescending order, decay fast with respect to sorted indive®
structured sources, and formulate an objective functiofichivh thatR is a positive definite matrix which is not necessarily scaled
takes into account the sparsity pattern of the source. Mereo identity, i.e., the nonzero off-diagonal elementsk®fallow the
while the works [[33],[[34] consider linear estimation forusce non-zero components of to be correlated. The elements of the
reconstruction, we mainly deal with non-linear estimation support setS are drawn uniformly at random from the set of
sparse source reconstruction. all () possibilities, denoted by, i.e., || = (). In other
words,p(S) = 1/(} ), wherep(S) represents the probability that
) ) a support sef is chosen from the sé€l. The uniform distribution
The rest of the paper is organized as follows. In Seéfibn &, Ws chosen for simplicity of presentation, however, extensito
describe the single—terminal system model, and provideesogiher types of distributions are straightforward. We alsnate
preliminary analysis. Our optimization procedure for thege-  the known covariance matrix of the entire sparse sourceowect
terminal scenario is proposed in Section Ill, and closethfo p,, g 2 E[xxT] € RN*N,
solutions to the optimization procedure in some Specia€ase - \ye model the uncertainty or mismatch in some physical aspect
derived in SectiofL V. We study sensing matrix design in fultyja a source-to-sensor channel described as followingsthece
terminal systems for orthogonal MAC and coherent MAC if |inearly scaled via a fixed matrill € RN whose output
Sectior[Y. We discuss computational complexity of the pe®b s corrupted by an additive white noise € R% uncorrelated
design procedure in Sectidn]VI. The performance comparisgfth the source, where ~ N(0,02I,). For transmission over
of the proposed optimization schemes with other competiggngisy channel, the noisy observations should be compmtesse
methods are made in Sectipn VIl, and conclusions are drawfd then encoded. Here, we assume that the bandwidth of the
in Section VIIl. All proofs are relegated to the Appendix. noisy observatiors 2 Hx +v € R” is compressed via a full
D. Notations row-rank compressed sensing transformation matrig R >~

. . where M < L. We also assume thdt/ < N. The compressed
We will denote vectors and matrices by bold lower-case arﬁgﬂ1 < < P

. R . easurements are simultaneously encoded under an agailabl
upper-case letters, respectively. The cardinality of avgktbe y

denoted byl-|. The square identity matrix and the square all.zedverage transmit power constraint, and then transmitteat av
: -] The Squ y d . Shannel, represented by a fixed channel magix RM*M and
matrix of dimensiom will be denoted byl,, and0,,, respectively.

The matrix operators trace and Erobenius norm will be dehotadditive white noisev € RM . We assume that the channel matrix
P 8 given byG = ¢I,;, and we let the additive channel noise be

by Tr(), |l - I, respectively, and matrix/vector transpose bEﬁistributed asw ~ N(0,021,,), which is uncorrelated with the

T . 7 . )
(). The maximum and minimum e|ge.nvalue of a matrix Ar&urcex and source-to-sensor noise The rationale behind the
denoted byAnax(-) and Auin(+), respectively. For a vectox

of size n, diag(x) denotes am x n diagonal matrix whose scgled identity gssumption of the channel matrix is th.a[e_the
diagonal ,elements are specified by the entriesxofFurther no mter-sympol |_nter1ference between message transmessieer .
blkdiag (X X ) denotes a matrix whose diagonal blo’ckthe communication link, and the_ chann_el is assume_d to remain
consist of ’lﬁ.a.t’ricesX X~ and off-diagonal blocks are%onstant_ during each observat_lon period] [33]. This tedinic

. . Lo oo AN 9 .~ assumption also makes our design procedure tractable. thew,
filled with zero. We will useE[] to denote the expectation .. o4 vector at the decoder becomes

operator. Th&z-norm of a vectox of sizen will be denoted by

|Ix||2. The notationX = 0 means that the matriX is positive y=GAz+w=gAHx+gAv+w. 4)
semi-definite. Also, the optimality in some sense is shown by

Ok

C. Organization

[|>

n

Denoting the total noise in the system by £ gAv+w €

Il. SINGLE-TERMINAL SYSTEM MODEL RM | then the covariance matrix associated with the total noise
We study the single—terminal setup shown in Figlre 1. 1, denoted byR,, € R***, can be calculated as

v w R, 2E{nn"} = 92012)AAT + 02Ty (5)

(L CS encoder * Decoder Finally, at the receiving-end, the decoder which is chamimed
RN D5 A s G o % by a (potentially non-linear) mapping™ — R~ provides the

estimate of the source from corrupted measurements. Wasdisc
Fig. 1: System model for a single-terminal system. the functionality of the decoder next.

A. System Model and Key Assumptions B. Developing MMSE Estimation

We consider ak-sparse (in a known basis) vectare RY Based on the aforementioned assumptions in SeEfion II-A, it

which is comprised of exactl’ random non-zero componenté’vOUId be possible_ (se(_a e.g.[12]) to find a closed-form_emqs
(K < N). We define the support set, i.e., the locations Jor the MMSE estimation of the source given the receivedalign
the non-zero components for the vectors [16'1 ...,an]T as Vvectory. The MMSE estimator, denoted By € RY, minimizes
S 2 fne {1,2....N} : x, # 0} with |é| k. We the MSE by definition, and inherits the following structuse¢

assume that the non-zero components of the source vecios e.g. [12], [13])
distributed according to a Gaussian distributidit0, R), where X = Z B(S,y)E[x|y,S], (6)
R = E[xsx}] € RE*K is the known covariance matrix of Sca



where() represents the set of e@é) support set possibilities, andbut follows some statistical behavior with a known probiail
B(S,y)'s are the weighting coefficients (non-linear 31 such density function (pdf), the formulation if](9) can be extedd
that}" s B(S,y) = 1. FurtherE[x|y, S| € RY is the conditional as follows. As suggested ifi_[41, Chap. 11], as opposed to
mean of the source given a possible supporSsand observation p(|S|) = §(|S| — K) which is the key assumption in our studied
y. The conditional mean if]6) given a possible support&et system model, i.e|S| = K with probability1, one might assume
can be expressed as (seel [12]x|y,S] = thatp(|S|) « 1/|S] or p(|S|) x exp(—|S]) in order to promote

_ sparsity, wherep(|S]) is the probability that the size of support
g(R+ g (HTAT)S R.' (AH)g) 1 (HTAT)S R,'Y,  setis |S]. Unde(l t|his assumption, by marginalizing over the

o cardinality of the support set, it follows that

where (-)s denotes the columns of a matrix indexed by the
support setS, andR,, is shown by[(5). The MMSE estimatdt] (6)
gives the lowest possible MSE for a sparse source in therayaite i
Figure[1. However, the MSE, itself, does not have a closeah-fo 1 2 TerT A Tee1 -1
expression, and typically it is not straightforward to aptie the Zp(|8|) Z P(S[|S])Tx { (R o EsH AR, AHES) }
sensing matrix. In such situations, stochastic optimira{37] s= SCs| (10)
based on gradient estimation methods (also knowsiraslation

bas:ed_ optimization methgdean be.ar.1 approach to address th\s?/herel < K’ < M is an integer denoting an upper-bound on
optimization problem. However, this is beyond the scopehef tihe spar&ty Iev_el, a”@@ is a set of all possible support sets

current paper. Thus, we propose an alternative sensingxmatr. N i
pap prop 9 ith cardinality |S|. Further,p(S||S|) denotes the conditional

timizati thod by minimizi I -bound on the MSEY . . ) -
optimization method by minimizing a fower-bolind on the probability of selection of the suppo§ given cardinality|S]

C. Developing a Lower-bound on MSE from the set of all possibilitie€ 5. Our results, developed in this

In order to analytically tackle the sensing matrix desigapr Paper, can be easily extended under the new formulatidnO (1
lem, we consider a lower-bound on the MSE, and adopt the boud@wever, for the sake of brevity and simplicity of preseiotat
as the objective for the design optimization procedure. we will useMSE ") expressed by19) for our subsequent analysis.
We bound the MSE of the MMSE estimator by that ofy Relation to Mutual Coherence
the oracle MMSE estimator, i.e., aindeal estimator which has
perfect knowledge of the support sat priori. By definition,
the oracle estimator is calculated as the conditional dspiea

MSE®™ =

As discussed earlier, our design goal is to optimize theisgns
matrix A with respect to minimizingMSE®). It should be
%(or) 2 E[x|y, ], as shown in[{7), givem priori known (but _mentlon_ed that given a sensing matrix, the task of the decode
random) support seS and noisy observationg. Notice that is to estimatethe sparse source with high accuracy by employ-

the conditional expectation given the support set is Gaunssi"9 sparse_reconst(uctlon algorithms. For this purposassep
distributed, resulting in the following MSE reconstruction algorithms needdetectthe support set precisely.

Precision in support detection and accuracy in estimatibn o

MSE®™ 2 E[|x — 27)|12] = E[||xs — ¢ ||2] sparse reconstruction algorithms are typically deterchinth

(@ = o e T AT . 1 the help of mutual coherenge, shown by [(1). Let us denote

- Z p(S)Tr{(R +g°(H A')s R, (AH)s) }v by S € R¥*N a diagonal matrix which makes the columns of
Sc ®) the matrix A normalized to unit/,-norm. This is done using

where (a) follows by averaging over all random supports setd!€ ransformatiom. = AS, whereA is a sensing matrix with

and the results in Bayesian estimation (see, €.g], [38JthEy normalized columns. We also note that both matridesnd A
p(S) = 1/(¥) represents the probability of random selection dave the same mutual coherence. _ W)
the support set from the set of all possibiliti@s In the following, we show a relation betweeNSE

To be able to formulate the MSE il (8) in terms of the sensirﬁl:f'd H throug_h a_lower-bound and an upper-boun_d. We
matrix A, we define, as in[32], the matri&s € RY*X which is se a simplified measurement equation by assuming that

_ — i i (1b)
formed by taking an identity matrix of ordé¥ x N and deleting ¥ — 0 and H = 2111 in @)L that w?lds MSE
the columns indexed by the s8t Then, we rewrite ZsﬁTr { (R*1+g—2(AS*1)g(AS*1)5) . We denote by

s1 and sy the maximum and minimum diagonal elements of
S—!, respectively, then by the Gershgorin disc theorem, all the
(9) eigenvalues oA A lie in the ranggl—(K —1)u, 1-4+(K +1) 4]

It should be mentioned that the sparsity le\@] is typically [41, Chapter 5.2.3], where it follows, using mathematicahip-
estimated in practicé [39]. However, throughout this pajigs ulations, that
assumed to beerfectly known. This is, of course, a generic
trend E the theory of CS due to the analytical simplicity it < MSE®) < K
offers [3]. For example, several important greedy-seapdrse 1\, 9251 = =7 BN :
reconstruction (see, e.g., OMR [6], Subspace Puisuit [§o Al], Amax(RTH)+ G (1 + Kpe) Amin(R1)+ Ua(g.ll) Kp)
B s s pars [oteflc Mot tat te bounds (1LY becom tght whes sl
developed based on the assumption of perfect knowledgeeof nd Iqose when it is large. In order Fo shed some light into the
sparsity level. Furthermore, performance guarantee bouwid eaning of (T), we show the following example.
several sparse reconstruction algorithms have also beeiedt Example 1. In this example, we show a comparison between
based on this fact [19]. If the sparsity level is not exactiypwn, the Gaussian sensing matrix (a standard approach in geirggat

MSE(lb)_ZﬁTr {(R'+¢*BIHTATR,'AHEs) ' }.
S \K

2
w



sensing matrices), and our proposed sensing matrix deslgn (as
scribed in details in the subsequent sections) which isdase g AHx + Av|2] = E[Tr{(AHx + Av)(AHx + Av) " }]
minimization ofMSE"). Basically, we numerically demonstrate TAT . o AT

how the proposed design affects the mutual coherence of a =Tr{AHR,H A" +0,AA } < P'(12)
sensing matnx_. The comparison, reported in Figlie 2(a), is Minimizing the lower-bound[{9) subject to the average power
demonstrated in terms of mutual coherenceand number of constraint [I2) yields

measurementd/. We setN = 48 and K = 2, and varyM from
12 to 48 in a step size 4. The covariance malixs generated minimize MSE(!”

according to the exponential model with correlatipn= 0.5 (cf. A T 9 T (13)
Sectio VI[-A). Furtherg? /o2 = 25, and the total power (shown subject to TH{A(HR,H ' +0,Iv)A } < P.

later by (I2)) is fixed atP = 10 dB. As can be seep, decreases The optimal solution of the optimization problemn]13) is aqu
by increasingM since the sensing matrix behaves similar talent to that of the optimization problem given by the foliog/
an orthogonal transform. Moreover, the proposed designichvh theorem.

aims at minimizingMSE?), provides a lowery than that of
the Gaussian sensing matrix. The efficiency of the propo
sensing matrix in lowering the mutual coherence can be seen f
another angle by interpreting the bounds(fi). In Figure[2(b), .
we plot the upper- and lower-bounds(@), as well as the value 'g'xq v > Tr{Xs)

of MSE"). We observe that when the number of measurements S L 2t .

are sufficiently large for a sensing matrix to have a smalypject to [ R™ +5DsQDs -DsYDs Ik ] “0

JTheorem 1. Let Q £ ATA € REYXE| then the optimization
problem(I3) can be equivalently solved by

MSE | then the upper- and lower-bounds become tight, j.e., Ik Xs |~
becomes small. Thus, in this regime, since the proposedrd&si Y =

based on minimization &fISE"?), the optimized sensing matrix 9.Q g?vz iuL +Q ~0,Vs

has a smalleru compared to other types of sensing matrices. o gT"” )

Note that, as mentioned earlier, a smallergenerally improves Tr{(HR.H +0,1:)Q} < P, Q = 0, rank(Q)=M

(14)
whereDs £ HEg, and the matriceqQ, Xs € RX*K and
Y € RU*E are optimization variables.

the performance of sparse reconstruction algorithms immter
of, e.g., sparse reconstruction accuracy, support setcatiete
etc. In our numerical studies, later in SectionIVIl, we wihiosv
how the proposed design will improve MSE performance as wlémark 2. The last two constraints iifIl4) appear due to the
as probability of support set recovery via numerical stsdid variable transformationQ = AT A which is a ranka/ positive
rigorous and general analysis of probability of supporteeery semi-definite matrix. The difficulty ofI4) is due to the rank
with our proposed sensing matrix design and a specific spasenstraint which makes the optimization problem non-cenve
reconstruction algorithm is clearly difficult and will be mued in general. However, the constraint can be relaxed, and the
in future work. remaining problem becomes convex — a technique known as semi
definite relaxation (SDR). Note that the optimal value of SR
problem can only be used to give a lower-bound on the optimal
o cost of the original problem.

Next, we develop a three-stage optimization procedureysho
in Procedurd]l, in order to approximately solve farin the
oo o non-convex optimization problerh (114).

oo

Procedure 1Three-stage optimization procedure for solvingl (14)

A ot 4 x 1: input: measurement vectoy:, sparsity levelK, covariance
o 6 o . . . .
* ¢ oo ey J matricesR,, and R, channel gainy and noise variances?
A 2
o 16 20 24Numb§u' mezazsuremgils (M)AO 44 48 02 025 03 035 04 " 045 05 055 06 and Uw * . ) ) .
@ ® 2: Semi-definite relaxation (SDR): Solve [14) by dropping

Fig. 2: (a) A comparison between Gaussian sensing matrixpragosed sensing matrix the rank constraint for the optimQ*_
design in terms of mutual coherengeand number of measurementd. (b) The lower-

bound and upper-bound aMISE('?). The lowest (or largest) corresponds taV = 48 3: Low-rank reconstruction: Solve
(or 12). . T )
A" = argAmln lA"A — Q*|%. (15)

I1l. DESIGNMETHODOLOGY FORSINGLE-TERMINAL CASE : N . .
4. Power-rescaling: Scale A* to satisfy the power constraint

In this section, we offer a design procedure for optimizatio by equality.
of the sensing matrixA with the objective of minimizing the
lower-bound (D). The optimization is performed at the d&rpd The following remarks can be considered for implementation
and we assume that the decoder knows the sensor observajfoRroceduré&]l.
models and the source-to-sensor and sensor-to-decoderedsa , The SDR problem in step (2) is convex @, and can be

We assume that the bandwidth is constrained, i.e., we have solved using, for example, the interior point method] [42].

M < N number of observations. Further, [Btbe total available Further, in some cases, closed-form solutions exist which
power, then the average transmit power constraint can ktewri we discuss later in the next section.
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« Step (3) gives an approximate solution to the sensing matrix

design problem. It can be shown that the optimal (with 132k , Full-rank optimization ,
respect to[(T15)) has a closed-form solution. Let the eigen- \ - %= Rank-constrained optimization (Procedute 1)
value decomposition (EVD) (Q* be ELVIE “‘ —6— Rank-constrained optimization (randomization) .
Q= UqI‘qU;v (16) ser * i
whereT';, = dia_g(yql,._..,'qu), with Yar s> Yano g 1
andU, € R*L is a unitary matrix whose columns are the ¢ x
. . . . £ -1 =3 N
eigen-vectors associated with the eigen-valueQbf Then, = x
A* has the following structure [43] aal *
Ye
. T 'R
A* = Ua [dlag(‘/'yql, ceey ‘/’YQM) OZWX(L—M)} Uq s _144F ‘*\*_\* 4
a7 It S .
whereU, € RM*M js an arbitrary unitary matrix. 146 g,
o We note that the resultind\* does not generally satisfy
the power constraint by equality since the eigen-values ™% 10 12 14 1 18 20 2 2
. . Number of measurements (M)
Yarrgro- -+ Van are dropped Inﬂ]?)' Therefore, n Step (4}ig. 3: A comparison between the minimum cost of the objectiv[I4) with and without

of Procedurgll, we rescale the resultiag by the constant rank constraint.
VP/Tr{(HR,HT + 02I;)A*T A*} in order to satisfy the
power constraint by equality.

L . IV. SPECIAL CASES
Example 2. In order to offer insights into the effect of the rank

constraint (in the optimization proble@@d)) on the performance, ~Here, we investigate the optimization problenl(14) and Pro-
we illustrate, in Figurd B, the value of the lower-bountsE(?)  cedure l for several special cases.

in @) as a function of nu_mbe_r of measuremehisby comparing A Special Case IR = 02T, H = Iy)

three methods. In the first ideal method, labeled by ‘fufika

optimization’, we only solve the SDR problem in step (2) of Here, the motivation is to study a scenario where th_e non-
ProcedurellL, and evaluate the value dSE?). Therefore, the Z€r0 components of the sparse source are uncorrelatedz -e.
optimization variableQ is ideally assumed to be full rank, and”glf,{ and the observations before encoding are only subject to
the value ofMSE™ using the resulting SDR gives a lower-2dditive noise, i.e.H = Iy. Under these conditions, we have
bound on the optimal cost provided the rank constraint isliagp the following result.
In the second method, Iab.eled by ‘rank-constrained opéifitn  proposition 3. Let R = 021k and H = I, then the solution
(Procedurel]_l)’,_we expl_0|t the p_roposgd Procedﬂe 1, whetg procedurdl is given by
rank constraint is taken into consideration. In the third the,
we use the ran(_jom_lzatlon technlglJE_l[44] mstgad of step n3) i AF KP U 0, VT (18)
Procedure ]l which is labeled by ‘rank-constrained optirticza M(o2 + Ko2) = “tM Mx(N=M)IVa>
(randomization)’. More precisely, using this method, weumse ! !
that the resulting sensing matrix is given By = VI''/2U/], where U, € RM*M and V, € R¥*N are arbitrary unitary
whereV € RM*L s a random matrix whose elemef¥];; is matrices.

/ T _
drawn from (0, 1/ M) such that£[A. " A] = Q. Note that we Remark 4. The scaling factor on the right-hand side {@8)

rescale each realization oA to meet the power constraint, and. . :
choose the one which gives the Iomep(lb) is to satisfy the power constraint. Further, the structuffetioe

In this illustration, we assume thal — Iy and v — O, sensing _mat_rlx in(18) is normally referred to as tight frame _
[B6], which is easy to construct, and plays important rol@s i
and use the parameters\ = 24,K = 3,00 = 0.1,9 = o001 hocacsing, denoising, coding, etc. Such strudsI@so
0.5,P = 10 dB, andp = 0.5 (i.e., correlation coefficient, see gnai p 9 9 9, ete.

later in SectionCVII-A\.). Further, in the third method, weeus()pmnalI in certain cases, for example, the optimality ofghti
= frame-structured sensing matrix has been shown[in [32] with
1000 randomizations. L .
. . respect to minimizing the LS-based oracle estimator.
It is observed that the proposed method (i.e., Procedlire f)
provides a lower MSE than the randomization technique. MorB. Special Case IR = 021k, v = 0, H : square full rank)
ovet, Pr_oce_dureEIl h_as a Iower—complexny_m step (3) S|(rl1§§e th Following the assumptions in this case, we have the prapaosit
randomization technique compares all possible valuéd ok below.
due to the random realizations of the sensing matrix. The gap
between the curves labeled by ‘rank-constrained optiritimat Proposition 5. LetR = 021 andv = 0, and consider thaH is
(Procedurdl)’ and ‘full-rank optimization’, which is notlarge a square full-rank matrix such that its SVD can be writ_terfh&
margin, shows the loss due to imposing the rank constraist. NI,V , whereU, and V;, are N x N unitary matrices and
can be seen the loss reduces/dsincreases. One reason is thatl', = diag(vn,, Vhs,---,7ny) IS @ diagonal matrix containing
the approximation of the sensing mati from the variableQ singular valuesy,, < yu, < ... < 4. Then, the solution to
in the optimization problenfI8) becomes more accurate. As @rocedure1l is given by

final remark, we note that if the optimization probldffid) with
the rapl_< constraint is exa(;tly solved using some technitiue A* — _U,[T, OMx(N—M)]UZ, (19)
the minimum cost would lie between these two curves. Mo?




whereU, € RM*M s an arbitrary unitary matrix, andl, = Further, U, is the eigen-vector associated with the EVDQ,
diag(v,'s - v )- and ., is the smallest eigen-value @

Remark 6. The scaling factor on the right-hand side@3)is to Remark 10. From (21), it can be observed if channel condition
satisfy the power constraint. According @39) in Proposition5, degrades, ag?/c2 — 0, the sensing matrix has only one active
the effective received measurement matrix at the decoeer, isingular-value.

gAH, has a tight-frame structure. Interestingly, it can be also
shown (see e.gl [17]) that the optimized sensing matrixveelri
in (I9), without the scaling factor, coincides with the optim
solution to the optimization problem

Up to this point, we have investigated the design of sensing
ﬁnatriX for the single-terminal scenario. The techniquesspnted
a X ; : ) .
so far will help us analyze and design sensing matrices fdti-mu
o terminal scenarios with orthogonal and coherent MAC whiah a
minimize [HTATAH - Iy||p, described in the next section.

which belongs to the second category of sensing matrix desigV: DESIGNMETHODOLOGY FORMULTI-TERMINAL CASE
problems introduced in Sectidn_1-A. Therefore, the progose In this section, we study sensing matrix design for a multi-
design is capable of reducing the mutual coherence of tgminal system consisting of orthogonal and coherent MAC.
effective measurement matrix which, in general, improves tin orthogonal MAC, the sensors are scheduled orthogonally i
performance of sparse reconstruction algorithms. Alsoticeo time or frequency where coordination between the sensas ar
that the optimal sensing matrix {9) (without the power scaling required, whereas in coherent MAC, all sensor transmissima
factor) is the closest design — in the Frobenius distance théo cur simultaneously but require distributed phase synchation,
identity transform. also known as distributed beamforming at the sensor tratessi
. _ _ _ 9 Throughout the design, for both cases, we assume that tlenfus

C. Special Case llhf =0, H =1y, R = o;1x) centerg(FC) knows tr?e sensor observation models and theesour

Here, we investigate a case where the additive channel nais&ensor as well as sensor-to-decoder channels. It shetitso

encoding are only subject to additive noise, il¢.= Iy, and the 4t the FC.

non-zero components of the sparse source vector are ulatede
ie., R = o2I. In this case, the optimal sensing matrix td* Orthogonal MAC
the original problem[(T3) can be derived which is given by the We consider the following multi-terminal setup with ortlweg

following proposition. nal MAC which is shown in Figurgl4.
Proposition 7. Let w =0, H = Iy, R = 02Ik. Then, the vi S encoder w1
solution to the optimization problefi3) is given by * Decoder

o kP " BOO M o & e

= W a[ M M><(N—M)]v ( ) x v Wa . 3
: : —>
MxM ; i ; i i i

whereU, € R*** is an arbitrary unitary matrix. H, \%ZQE‘ A L G, \Uya

Remark 8. The scaling factor on the right-hand side {@Q) : :
IS 10 SaftI,Sfy the power constraint by eqqahty' From the |E.Sfj Fig. 4: System modeIAf_(;r_t_h;e_ ;T;L;I';i:terminal scenario witithogonal MAC.
Propositio ¥, as well as that of Propositibh 3 and PropasifB,
it can be observed that as long as the source is uncorrelated a \We consider the sparse source vector with the same propertie
the source-to-sensor channel has a special structure {igeor ~ as those described in Section 1-A. Without loss of gengyalie
full-rank), then the optimized sensing matrix does not ddpen assume that the source is linearly scaled via two fixed nestric
the channel gain and additive noise. It should be noted, kewe H; € R**Y (I € {1,2}) whose outputs are corrupted by
that the value of MSE still depends on the channel parametedditive noise vectors;; uncorrelated with the source, where
. & vy~ N(O,aglILl). For transmission purposes, we suppose that
D. Special Case IVy{(=0, oz 0) the bandwidth of the noisy observatioas2 H;x + v; € RE is
Now, we consider an asymptotic case, where the communitiaearly compressed via the full row-rank matri; € RM:*Lt,
tion channel is in a noisy regime such that the ratio betwlen twhere M; < L;. The compressed measurements are simultane-
power of channel gain over the power of additive channelenoisusly encoded based on a limited power constraint budget, an
tends to zero, i.eg?/02 — 0. then transmitted over noisy channels, represented by fikad-c
. 2 . nel matricesG; = ¢;I,;, and additive noisev; ~ N(0,02 1),
Proposition 9. Let v=0 and g_?u — 0, and defineT = which is uncorrelgted lwitlx andv;. The received(megéurelr)rlent
ZS DS].:{QD:S-r and Z £ T*1/2HR,IHTT71/2 which has the at the FC can be written as
— T i i
EVD Z = U.I'.U, . Then, the approximate solution to Proce- - AIx + AV + @,

dure[1 is asymptotically given by N (23)
A* =1, [diag (y74,0,...,0) Ouxx—an]U,, (21) -
[P ) ) ) ~ where
whereU, € R s an arbitrary unitary matrix, andy, is &l yIm 3& @y InT
the only non-zero eignevlaue of Y= Y21 - N AN]
) 12 . P Tre1/2 H £ blkdiag(H;, Hs), A £ blkdiag(g1A1, g2A2), (24)
Q =T Uzdlag < o ,O, . ,O> Uz T . (22) ¥ vy [VI V;]T7 W S [WI W;]T



Denoting the total noise in the system hy= AV +w e thel, largest eigen-values df);, and by lettingA have the
RM:+M: "the covariance matrix associated with the total noistallowing structure
denoted byR,, € RIMi+M2)x(Mi+M2) "ig R, £ Enn'| =

blkdiag(g7oy, A1 A +03, Tar,, 63070, AsAg+or, Tng, ). 5) A =1, [diag(m,...,m> Ontx(Li—a1) | Ugys
S (31)
For the design of sensing matrices in the system of FiGliredhereU,, € RM *M: is an arbitrary unitary matrix.
we aim gt ”?I'”'m'z'ﬂg a Iower-ll(aour_ld gn mﬁ;T_IhﬂS(:E of the _szarse Here, there is a slight difference in power-rescaling thetnima
source. Similar to the steps taken in Sec ~, We Calv erAl* compared to the single-terminal case. Since each terminal
the orgcle MMSE estimator. Followingl(7), the oraclg estona ;¢ subject to different channel gains and noisés; and Aj
of x given the measuremen{5[23) can be writteEpdy, 5] = need to be scaled differently. Therefore, we give a weightin
_ ~ T~ ~ (== 1~ ~ coefficient to each sensing matrix, i.\; — /oyAf, where
1 THTAT 1 TAT 1 !
(R +(J H A )s R, (AHJ)S) (H A )3 R,y a; > 0 is the weighting coefficient to be optimized, aAd
. NxE ) . (26_) is already determined from the previous stage. Then, weesolv
Recalling thatEs € R is formed by taking an identity the optimization problen30d) with new optimization variables
matrix of orderN x N whose coIl_Jmns indexed by the SUppPort, > () and a», > 0 instead ofQ which is known at this stage.
setS are deleted, the oracle estimator [nl(26) gives the oragigyte that the resulting optimization problem becomes coive
MSE determined as following a1 anda, and can be solved efficiently using any convex solver.

1 SO -1 The final rescaled optimized sensing matrices bechTqA*
Msngéz(T)ﬁ{(R—l+E§JTHTATR;1AHJES) } and , /a3 A, '
S \K

. ) L (27) In order to extend the multi-terminal case to more than 2
So as to formulate the sensing matrix optimization pmbler@ncoders, we need to modify the problem formulation accord-

we determine the total average transmit power constraint as ingly. Assume that we hav& terminals, comprised oR parallel

2 source-to-sensor channel matric€H;}/*, and noise vectors

ZE[||AlHlx+Alvl||§] {vi}*,, R CS encoders{A;}X,, R channels{G,}, and

=1 28) R channel noise vector:$wl}fil. Th_en, equations[ (24) an_d
2 (25) are modified by adding the matrices and vectors assakiat

= X:Tlf{AszRgngTAlT +ol AJA/ Y <P, with R terminals. Furthermore, the power constraint [n] (28)
=1 would be modified by extending the summation frém- 1 to

where P is the total available power, and the last equality i&= R. Consequently, the optimization in_{29) can be solved with
obtained by straightforward mathematical manipulations. respect to variable§A;}/,. We also note that the equivalent
It should be also mentioned that, throughout the desigrhier toptimization problem in[(30) should be modified by introdwgi
multi-terminal systems, we consider that the total powertfie & optimization variables{Q;}{X, and R variables {Y;}* .
sensors are constrained. However, our design procedureearsimilarly, the constraints if (30) should be modified by intthg
app“ed also when power per sensor is constrained. the parameters and variables associated withithterminals.

Now, we pose the following optimization problem
B. Coherent MAC

minimize MSE(®

A Az We consider the multi-terminal setup with coherent MAC that
2 . . . - .
is shown in Figuréls. The system model using coherent MAC is
subjectto Y Tr{AHR,H/A] +02 AA/} <P, 9 Y d
- (29) Vi CS encoder
whereMSE"?) is shown by [[2I7). We have the following result. . ,
H A 4 @ w
Theorem 11. The optimization probler@3) can be equivalently A C\» Decoder .
solved by the probler0), on top of next page, where we haveX va i ' Ve —
definedEs £ HJEs, and furtherQ, £ A/ A, € RExE, /L ,
Xs € REXE andY, € RLvxLi | € {1,2}, are optimization H, wZ2;= A L Gy |2
variables.
Remark 12. Note that the optimization prob|e@) is not gen- Fig. 5: Studied model for multi-terminal system with coler&AC.

erally convex due to the rank constraints. Similar to Praged,

we give an approach in order to approximately solve fay similar to that of the orthogonal MAC, described in Secfic/lV

(I € {1,2}). Ignoring the rank constraints, the resulting SDRwith the difference that the transmitted observations fralin
problem would be convex jointly in all optimization variabl terminals are superimposed and received as a coherent sam. W
Denoting the optimal solution of the SDR problem®y, and also assume that the size of observations at each termieal ar
taking EVD, we obtaiQ; = U, T';, U, , whereU,, € Ri*L1  equal, i.e My = M £ M. The received measurements at the
iS a unitary matrix, whose columns are eigen-vectors assedi FC can be written as

with the eigen-values of the matrlx,, = diag ('yqll Yo "Vqu) s N

such that'yqll > > Yar, Noyv, we can approxir_nz_;\tely y=y1+y:s+w=AHx+Av+w. (32)
reconstruct the rank¥/; sensing matribAr from Q; by admitting M



minimize Tr{Xs}
Q. Xs,Y XS:
~1 4 Elblkdiae [ -2-Q,. 2-Q, | Es — ELblkdi E
subject to R~ + Egblkdiag (U?U] Qq, = Qz) Es — Egblkdiag(Y1,Y2)Es iK =0 (30)
Ix Xs
Y, ALQ 2
oz =0,y Tr{(HR.H +021 <P, Q >0, rank(Q) =M, VI, S
[UQ_ZZQZ g | o ()@ <r ase @) <
vy
where
minimize Y " Tr{Xs}
1 17 PHY s
A2 (g0, A1 g20,,A5] , H 2 [—HT —HT] ) R '+ LDIQDs-DiYDs I
(9100, 9200, As] e B subject to + 5z DsQDs s¥YDs I |4
1 1 T T Xs
vE [—vlT —v;] Y 1Q
0U1 v2 LN 2 Fw ~ E 07 VS
(33) ch owloi+r, +Q
Denoting the total noise in the system hy= AV + w, the 2 _—_
covariance matrix associated withis ZTr{(HlRIHl +%ILL) Ql} =P
=1
Q> 0, rank(Q) = M,
SA XAT L -2 (38)
Rn:AA +0’wI]u. ~

(34)

Following (@), it can be shown that the oracle estimatorof
given the measuremenis{32), i.B[x|y, S], gives the following
MSE

MSEC2 Z(TI)Tr{(Rl—i-EgﬁTKTf{nl;&ﬁEs)l
S \K

(35)

We obtain the average power constraint in the case of coherglgect to optimization variables Oond@*

MAC as

E[HAlHlX-i- AlVl”%]
=1 (36)

2
=Y Tr{AHRH A +0)AA[} <P,
=1

where we have definedﬁs £ ﬁES, and whereQ ¢
R(LlJrLQ)X(LlJrLQ)’ XS c RKXK and? c R(LlJrLQ)X(LlJrLz)
are optimization variables. FurtheQ; € RL <5 (1 € {1,2}),
is the !*" diagonal block ofQ.

Proof: The proof is omitted since it can be followed by the
proofs of Theorem]1 and Theordm]11. [ |

Remark 14. In order to solve the optimization problei@8)
for A;, I € {1,2}, we follow similar steps as in Proce-
dure[1: We first relax the problen@8) by ignoring the rank
constraint, which results in a convex SDR program with re-
l is determined, we
take the EVDQ* = UzI';Uy, then approximately reconstruct
Ar = Ua[diag(\/ﬁ, ceey \/’m) OMX(L1+L2—M)]U,;! where
75 (1 <1 < M) are the largest eigen-values @*. Next, we
partition A* to extract matricesAj, | € {1,2}. For power-
rescaling the sensing matrice’s; to meet the power constraint,
similar to the orthogonal MAC, we give the weighting coedfiti
/a; to the corresponding matrix and optimize over. The
optimization is done by solving38) with new optimization
variablesa; > 0 and oz > 0. Note that the rank and positive

where P > 0 is available power. Further, we used the fact th&€Mmi-definite constraints are immaterial at this stage siGy

the source and source-to-sensor noises are uncorrelatesll &s

the fact that€[vv '] = I, 1,. Therefore, we pose the following

optimization problem for sensing matrix design

minimize MSE("®
A1,Az

2
subjectto Y Tr{AHR,HA] +02 AA/} <P,

=1
(37)

already fulfils these constraints. In this ca€@,becomes
041012)1 ATA 304,00, ATTAS
300,00, A5 ATzl ASTAS ’

whereas = \/ajog, and Aj is known from the previous stage.
In order to convexify the latter assumption, using the Sshur
complement([42], we write it as the following matrix inegjtal

851
a3

Q::&*T:&*: |:

a3
Q2

E

where MSE®) is shown in [35). The following theorem givesHence, the power-rescaling optimization problem becornesex

an equivalent optimization problem to {37).

in variablesa; > 0, s > 0, a3 > 0, Xg and Y which can
be solved using any standard convex solver. Note also theat th

Theorem 13. Let @ = ATA, then the optimization problem final rescaled optimized sensing matrices would\e A} and

(37) is equivalent to solving

v/asAs which satisfy the power constraint with equality.
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The extension of the design procedure for coherent MAfie approximation becomes tighter due to thew of Large
with more than 2 terminals is straightforward, and can beedoiumbers It should be mentioned that the uniformly random
using the same steps as discussed in the previous subskgtiorselection of the support sets is indeed the worst-case geEum
orthogonal MAC. If the support sets are selected according to a different-non
uniform distribution, say;(S), then one can approxima@9) by
neglecting the tail of the probability density functigf®). Owing

In this section, we discuss the computational complexity @) the concentration inequalities, the probability thag tselected
solving the proposed optimization scheme for sensing matfattern S exceeds the sum of mean and two/three times the
design in single— and multi—terminal settings. We also fil®a standard deviation of this distribution is small, and theppart
low-complexity alternative design approach based on ststith  set patterns for averaging can be chosen accordingly.
optimization.

First, in the single-terminal setting, we note that the high
computational complexity in Proceduré 1 arises from the firs For the single-terminal setting, we provide numerical eixpe
step, i.e., solving the SDR problem({14) without the rankents for evaluating the sensing matrix design scheme peapo
constraint). More precisely, the SDR problem consists of ofn Procedurd]l, which is referred to as

matrix variableQ of size L x L, (;;) matrix variablesXs of size , |.ower-bound minimizing sensing matrix (Procedire 1)
K x K, and one matrix variabl® of size L x L. Hence, it can be and compare it with the following design methods:

iteratively solved using interior point methods with cortgtional — . . .
complexity growing at most lik€) (2L + (N)gKﬁ) arithmetic o Upper-bound minimizing sensing matrlydsing this method,
plexity g g we upper-bound the MSE of the MMSE estimator of the

. . . . K . .
operations in each iteration [45]. Following similar argemts, sparse source vector by that of the linear MMSE (LMMSE)
estimator. The MSE incurred by using the LMMSE estima-

the computational complexity of solving the SDR problems
tor can be written as

VI. COMPLEXITY CONSIDERATIONS

VIlI. NUMERICAL EXPERIMENTS

associated with multi-terminal orthogonal MAC, i.d.](3@nd
multi-terminal coherent MAC, i.e.,[(88), grows at most like

O0QLS + 218 + (Y)°K®) and O@2(L1 + L»)® + () K9), MSE () 2 Tr{(R;1 +92HTATR;1AH)’1}.
respectively. Therefore, it can be seen thatNasncreases, the o i o o
computational complexity grows exponentilllly Optimizing the sensing matrix with respect to minimizing

The computational complexity of solving the SDR problems f[he above equation under a power constraint has been studied
associated with[{14)[(80) and _{38) can be significantly cedu n [@]’. [34]. ) L . .
under certain assumptions (see, e.g., the special cadésnl-| * Gaussian sensing matrixthis method is typically a stan-
Section[TV), for which closed-form solutions can be derived dard approach in literature for generating a sensing matrix
Here, we offer an alternative in order to solve the SDR prokié Each element of the Gaussian sensing matrix is generated
() in a less computational way. Note that the objectivefiam according to the standard Gaussian distribution.

MSE®) in @) can be rewritten as « Tight frame Using this method, the sensing matrix is chosen
asA = U, [Iyy Opy(r—nr)| Vo, WhereU, € RM*M
MSE®™) = Eg [’I‘r{(R_l +92E§HTATR;1AHES)_1} , andV, € RE*L are arbitrary unitary matrices.
9) Note that we scale the resulting sensing matrix, described

where S is a random variable which picks a support set above, byy/P/Tr{(HR,HT + ¢2I,)ATA} in order to satisfy
uniformly at random from the set of all possibiliti€s andEs the power constraint. We also compare the actual MSE, iadurr
denotes the expectation with respect to the random suppbrt By using the above methods, with the value of the lower-bd@@hd
S. Notice that the expectation ifi (39) can be (approximatelyhen the lower-bound minimizing sensing matrix is appliBiis
calculated using the sample mean as will be referred to adower-boundin our experiments. It should
1 . be also mentioned that for solving the convex SDR problenas, w
> Tr{(R’1+ PELHTATR;'AHE) } use thecvx solver [46] .
i S'cy We also compare the performance of the proposed schemes
(40)  for the single—terminal setting, and multi—terminal segi with

where &’ is uniformly chosen from a se’ C €. Note that orthogonal and coherent MAC described in Remirk 12 and
the cardinality|Q)’| can be chosen to be far less théﬁﬁ). As a RemarkIH, respectively.

result, the computational complexity of solving the resgitSDR
problem reduces t@(2N° + |Q|K°) arithmetic operations,
where || <« (%) Following the same arguments, the SDR We evaluate the performance using the normalized MSE
problems of [(3D) and (38) can be also approximately solveld wWiNMSE) criterion, defined Bs

a significantly reduced computational complexity. E[|x — %2
NMSE £ 2

Remark 15. We note that in the above analysis, we assume that K ’
all the support sets are uniformly drawn fro@) possibilities,
i.e., all supports are equi-probable. Hence, according(E8),
there is no preference towards selecting a particular sipars proposed sensing matrix design in terms of fitebability of

pattern in order to use the sample-mean approximatioiia). support set recoverwhich is defined as
However, by choosing a larger number of sparsity patterns, R
Pr{n#n:neS,neS},

MSE(®) ~

A. Experimental Setups

whereX is the decoder’s output.
In addition to NMSE, we also compare the performance of

N
Note that (%)
function, i.e.,H(p)

oNH(K/N) where H(-) denotes the binary entropy
—plogyp — (1 —p)logy(l —p), for 0 < p < 1. 2NMSE can be thought of as MSE per degree of freedom.

> 2
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where S is the reconstructed support set of the vectorand
n e {1,2,..., N} is an element of the reconstructed support set -

—&— Upper-bound minimizing
—A— Gaussian .
—o— Tight frame

—%— Lower-bound minimizing

Our simulation setup is described as follows. For given eslu
of sparsity levelK (assumed known in advance) and input vector -
size N, we choose the number of measureméitsNe randomly
generate a set of exactlif-sparse vectok, where the support
setS with |S| = K is chosen uniformly at random over the
set {1,2,...,N}. The non-zero components of are drawn
from Gaussian distributioV'(0, R), and the covariance matrix
R ¢ RE*K is generated according to the exponential model
[47], where each entry at rowand columny is chosen agl—7|
in which 0 < p < 1 is known as correlation coefficient. We -161
compute sample covariance matrix for the sparse sourceryect
i.e., R, = E[xx'] using 10° randomly generated samples of

=== Lower-bound

Normalized MSE (dB)

~121

the source vectoxx. We let L = N, H = Iy andv=0 20, * * * * * * * * * *

10 12 14 16 18 20 22 24 26 28 30

for the single—terminal setting, and for each terminal ie th _ - Number of measurements (M) o _
multi=terminal set_ting, and estimate th_e SOUBCG_CFOITI noisy 2(3‘”'&; (lj\le'\gzﬁ ggh(iﬁ])e:;safunctlon of number of measuremehtsusing different sensing
measurements using sparse reconstruction algorithms. a\fdym

use the greedy orthogonal matching pursuit (OMP) algor{ijm
and the Bayesian-based random—OMP reconstruction dlgorit
[12], which is a low-complexity approximation of the exact
(exhaustive) MMSE estimator.

B. Experimental Results

To assess the actual performance of the proposed desigh methg
ods using Monte-Carlo simulations, we genera@®0 realiza-
tions of the input sparse vectar In our first two experiments, we
use, at the decoder, the random-OMP algorithm for recoctabru
of sparse source vector.

Normalized MSE (d!

—&— Upper-bound minimizing

. . . . -20r~
In our first experiment, we use the simulation parameters —A— Gaussian

N =36,K = 3,P = 10dB,g = 0.5,0, = 0.1,p = 0.25. —o— Tght frame

We plot the NMSE of the design methods as a functiombf —g-.| A Lower-bound minimizing

in Figure[®. The value of\/ can be thought of as bandwidth “ - Loverbound

or number of transmissions over channel. We observe that at

all measurement regions, the proposed lower-bound mimigiz 0 5 o ; 0 5 B

5
Transmission power (P in dB)

Ser!s'”g matrix Omperforms the other competing methods P.é{ 7: NMSE (in dB) as a function of transmission powr(in dB) using different sensing

taking into account sparsity pattern of the sparse source. fatrix design schemes.

expected, as the number of measurements increases, the per-

formance of the methods improves, however, it finally saésa

and increasingy/ further does not help to improve NMSE. Thisrepresentation at the receiving-end. This, for exampleglasant

is because at higher number of measurements, the NMSEfds compression or recognition purposes. Therefore, inraxt

influenced more by the additive noise which is fixed. A8 experiments, we use the greedy OMP algoritim [6] which

increases, the performance of the tight frame approactas threserves the sparse structure through reconstructingatinee

of the lower-bound minimizing sensing matrix, illustraithat at the decoder’s output.

the latter behaves like an orthogonal transform. Setting the decoder as the OMP algorithm, we compare the
Using the same simulation parameters, by fixihg = 18, performance of the methods (in terms of NMSE) as a function

we now vary transmission powe?P (in dB), and evaluate the of channel signal to noise ratio (CSNR), defined G&NR £

performance of the methods in terms of NMSE. The results aj&/02, in logarithmic scale. The results are reported in Fiduire 8.

reported in Figur€l7. In the low power regime, the perfornean&imulation parameters are chosen Ms= 36, K = 3,P =

of the competing methods are almost the same, howeveP, ad0 dB, M = 18, p = 0.5. We fix o, = 0.1, and vary the CSNR

increases, the proposed lower-bound minimizing sensingimafrom 1 to 10 where the channel gaig is chosen accordingly.

outperforms the other schemes. For exampld; at 10 dB, the It is observed that af'SNR = 102, the lower-bound minimizing

proposed scheme gives a better performance by more than 6s@ising matrix outperforms the Gaussian sensing matrixdrng m

as compared to the other methods. than 8 dB, and the upper-bound minimizing sensing matrix by
In the previous experiments, we have used the random-OMre than 10 dB. Further, as channel condition improves, the

algorithm (as the approximation of the exact MMSE estimatolower-bound minimizing scheme, as compared to other sckeme

for reconstructing the sparse source. While this algoritism takes a better advantage of the channel condition in order to

nearly optimal (in MSE sense), the reconstructed vectorhimigeduce the NMSE.

not be necessarily a sparse vecfor|[12]. In some applicgtion Although the MSE criterion is an important measure of ac-

together with reconstruction accuracy, one might desirpaase curacy in performance analysis, the probability of supmsat
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Fig. 9: Probability of support set recovery as a function ofmber of measurements using Fig. 11: NMSE (in dB) as a function of number of measuremesisgidifferent sensing
different sensing matrix design schemes. matrix design schemes.

recovery is also of central interest in sparse source réwons N = 100, K = 5,0, = 0.1,9 = 0.5, P = 10 dB, p = 0.75, and
tion. Therefore, in our next two experiments, we compare tipdot the NMSE by varyingh in Figure[I1. Further, the cardi-
performance of the sensing matrix designs in terms of suppoality of the set?’ in (@0) is set to 2500, while the cardinality of
set recovery using the OMP algorithm by varying number afie set of all sparsity patterns j€| = (I]g) ~ 7.5 x 107. It can
measurements (at fixedl = 10 dB) in Figure[®, and by varying be observed while the computational complexity of the lewer
transmission power (at fixed/ = 18) in Figure[I0. We use bound minimizing scheme has been considerably reducetd| it s
the same simulation parameters as those chosen for the@psevoutperforms the other methods.
experiment. In our last two experiments, we illustrate the performante o
We observe that the lower-bound minimizing sensing matrtke proposed schemes for multi-terminal settings withagtmal
improves the probability of support set recovery using thdRO and coherent MAC. First, we choose simulation parameters as
reconstruction algorithm. One reason for this behaviorue b N = 32, K = 3,04, = 0w, = 0w = 0.2,g1 = 05,92 =
the fact that the proposed design endeavors to decreaseitbalm0.75, P = 10 dB,p = 0.5, and plot NMSE as a function of
coherence: of the sensing matrix as discussed in Secfionlll-Dhumber of measurements in Figlrel 12, where we assume that
The value ofu, which can be calculated b{fl(1) numerically, af\/; = M,. We compare the performance of the proposed scheme
fixed M = 20 and P = 10 dB is . = 0.46 for the proposed for the orthogonal and coherent MAC with optimized power-
sensing matrix design, while its value @559, 0.61 and 0.75 rescaling (as described in Rem&ark 12 and Rermark 14 by optimiz
for tight-frame, upper-bound minimizing and Gaussian Bens ing scaling coefficientsa; andas), and with unoptimized power-
matrices, respectively. rescaling wherev; = as. As can be seen, while optimizing the
Next, we implement a higher-dimensional system, and apmgaling weights are effective in improving the performaimncthe
the proposed low-complexity approach introduced in Sefd® coherent MAC, the performance in the orthogonal MAC is not
For this purpose, we choose the following simulation patanse too sensitive to the optimized weights. Further, the penforce
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settings. The design aims to minimize a lower-bound on MSE

procedure by deriving closed-form expressions for the isgns

. —k—Multi-terminal (Orthogonal MAC/Unoptimized power scaling) | of sparse source reconstruction in the studied settingsleUn
% Multi-terminal (Orthogonal MAC/Optimized power scaling) certain COﬂditiOl’]S, we have been able to address the Olam.. .
—9—Multi-terminal (Coherent MAC/Unoptimized power scaling)
1

Normalized MSE (dB)

¢y Multi-terminal (Coherent MAC/Optimized power scaling)

-16

Fig. 12: NMSE (in dB) as a function of number of measuremenmtsilti-terminal setting

with orthol

1 1
8 10 12 14 16 18

1
20 22 24 26 28 30 32

Number of measurements (M1 = Mz)

gonal and coherent MAC.

Normalized MSE (dB)

matrix. Numerical results show the advantage of our progose
design compared to other relevant schemes in terms of MSE
and probability of support set recovery. This advantage has
been achieved at the price of higher computational comglexi
Therefore, we proposed an approximate optimization proeed

in order to reduce the complexity burden.

APPENDIXA
SOME USEFULLEMMAS

The following lemmas are stated without proof.

Lemma 16. The matrixEs € RV*K  which is formed by taking
an identity matrix of orderN x N and deleting the columns
indexed by the support sét has the following properties:

« ElEs = I,
T_ (&)
° ZS ESE - TIN

Lemma 17. The covariance matrix of the sparse source, Re.,
can be parametrized as

R, = % Z ESREE, (41)

K/ S

whereR is the covariance matrix of th& non-zero components
in x.

_pol] ~©—Proposed design (single-terminal) R :‘:2\
-©- Lower-bound (single-terminal ) IR

_zzi—e—Proposed design (irlhogonal MAC) ~‘~:~2‘:~ i Lemma 18' [ page 249] LEtA andB are tWON X N Sym_
- - Lower-bound (orthogons] MAC) .g metric matrices, whose eigen-values ...,ay andgy, ..., 8y

-24*Tf"°9°5;d “df I“““C‘“\“Iﬁf)"c’ Ty are ordered increasingly and decreasingly, respectivé@lgen
=-¥=- Lower-boun coherent A N

9, 1 1 1 1 1 1 FI‘I' AB > - Q0.

05 1 15 2 25 3 35 4 { } - Zz_l ifi

9,09,

APPENDIXB

Fig. 13: NMSE (in dB) as a function of channel gain ragg/g: in single— and multi—
PROOF OFTHEOREMI[I

terminal settings.

To solve the optimization problem if_{1L3), let us first define

in the coherent MAC is superior to that of in the orthogonal A
since, in the latter, each terminal is subject to additivanctel
noise.

The final experiment demonstrates how a second terminas help
to improve the performance. For this purpose, we compare tHging the matrix inversion lemma fa,, !, we obtain
proposed low-complexity design methods for the singlerteal
setting and multi-terminal settings with orthogonal MACdan (

MSES” 2 T {(R™! + g?EJH ATR,'AHEs) '} (42)

2
Gw
252

970y

coherent MAC. In Figuré 13, we compare the NMSE (in dB) R;' =0,%Iy —0,%A
of the proposed methods as a function of channel gain ratio

g2/g1 along with their corresponding lower-bounds. We set ) ) )

the following simulation parametersy — 64, K — 4,M — Plugging [4B) back intd(42), it follows that
40,04, = 0y, = 0 = 0.02, P = 10 dB, p = 0.5, and choose

g1 = 0.5, then vary the ratig2/g; from 0.5 to 4. It can be seen as ,

the channel condition in the second terminal improves, @ g \gp(" — Ty { (R’l 4 g—QEEHTATAHES
between the performance in single-terminal and multi-teain O

—1
IL+ATA> AT, (43)

settings increases. 2 2 -1 1
9 ~L_EIH'ATA ( Tu T + ATA) ATAHES) } :
VIII. CONCLUSIONS O g-o;

(44)

We have proposed an optimization procedure for designing
sensing matrix, under power constraint, in CS frameworkiand Next, definingQ 2 ATA and Ds £ HEg, the original
single— and multi-terminal (with orthogonal and cohere®®) optimization problem in[{23) for finding optimized sensingtnix
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A can be equivalently translated ifto Hence, the objective function in the left hand side[ol (5@)ctees
its minimum whenQ = oIy (for somea > 0) sinceElEs =

2
minimize > TIr { (R*1 + 5—2D§QD5 Ix (cf. Lemmal[Ib), and the matrix inside the argument of the
s “ trace becomes an scaled identity matrix. Note that thiscehof
_g_D I - b -t Q does not affect the power constraint. Further, the coefficie
o2, sQ ( i Q) Q S) is derived such that the constraiff}(49) is satisfied withadityu
. - that yieldso = % Therefore, assuminB. = 021 and
subject to Tr{(HR.H' +01:)Q} < P,Q = 0, rank(Q) = ](\1’5) H =1y, the S(;YlEItIOJFIKtO )the SDR problem is
where the rank constraint appears sinde ¢ RM*L with ) KP
M < L. Introducing the semidefinite slack variable matrix Q= WIM (51)

Xs € REXE we can alternatively solve . . ) .
s y Hence, the optimal sensing matrix (with respect to[(15)),

mi(gi)r?ize Z Tr{Xs} after rescaling to meet the power constraint, becoinds (19).
1S

APPENDIXD

2
subject to (R—l + g—QDgQDs PROOF OFPROPOSITIONS

) w ) o Following the assumption in Propositibh 5, the SDR optimiza
_g_zDg (;2}—22 IL"‘Q)lQDS) <X, SCQ tion problem simplifies into

w v o 1 92 - —1
Tr{(HR,H" +021,)Q} < P mln(|Qm|ze Z’H { (;IK + O_—QESH QHEs

Q > 0, rank(Q) = M.

(46) T
Next, by applying the Schur's complement [42], the first subject to 7% TY{H QH} < P.
constraint in II%E) can be rewritten as (52)
The objective function in[{32) reaches its minimum when

R71+%D§QDS Z DS Q( 33“3 I.+Q) 'QDs IK] 0 HTQH = oIy (see [49, Lemma 2]). Taking SVD, we have

i 1% Xs| — H = UyIl'yV}, whereUy and Vi are N x N unitary

(47)  matrices and’y; = diag(Yay s Yhas - - - » Thy ) 1S @ diagonal matrix

. . containing singular valuesy, < v, < ... < Yny. Then, it

Introducing another slack semldeﬁmte variable matdx<€  q)10ws thatQ* should have the following structure

RE*Esuch thatY = - Q( 2021N+Q) 'Q, and using the B B
Schur’'s complement for the resultlng matrix inequality, ean Q= O‘(HHT) t= aUnly Uy, (53)
further decompose the constraint[inl(47) into the two limeatrix \where by plugging into the power constraint, we obtaia: -

0-2

inequalities in[(TH) which concludes the proof. Therefore, the optimal sensing mattix (with respect toIIITS))
APPENDIXC can be chosen as ih {19) after power rescaling.
PROOF OFPROPOSITIONJ] APPENDIX E
Using the notatiorQ = AT A, we rewrite [4%4) as PROOF OFPROPOSITION
" 1 e Having the assumptions in Propositidn 7, the oracle estimat
MSEW) — 1 {(§IK + —QEEQES in (7) becomes
: w -1 -1 /\(O’I‘) o 920-3]: ZAT AAT i A 71AT AAT T
5Q< IN“FQ) QES) ) X =g P K+9 As ( ) As sl Ny,
(48) (54)

i , where ()" denotes matrix pseudo-inverse. It yields
Applying Lemmé[ 1V, the power constraint becomes ) P y

1
ﬁ{(”—% +02) Q} - p (49) MSE®) = Zﬁ{( I+ — ESAT(AAT)TAES>
K v -7
55)
and the objective functio s MSEL" is lower-bounded as ~ Taking SVD, A = U, [T, On_u] V], it follows that
2 I 0
(1b) 2 1 9 T AT(AATYA =V, { M Mx(N—M) ]VT.
ZMSES Z Z K2 /T { <§IK + U_zES QEs ( ) Onv—myxm Ov—anyx(N—) “
S s Z w (56)
2 2 -1 -1 Applyin into , we have the following problem
~ gTEgQ< 3”21N+Q) QES) } pplying (&8) into [52) gp

1 1 !
(50) m|n|m|ze ZTr{(—QI;H——zE V. {IM 8}VZE5) }
where we used the inequalifr{B~!} > Tr{B} for a positive o v
definite matrixB of dimensionK x K [49, Lemma 2], in which subject to ?:c Te{I2} < P,

the equality is satisfied whdh becomes a scaled identity matrix.

(57)
INote that sincep(S) = 1/(%), it can be ignored in formulating the resulting _We note that the_Ob]eCtlve functlon_|ﬂ57) can be_ minimized
optimization problems. with respect toU, independent of’, in the constraint. Now,
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sinceE;V, V] Es = I, the objective function in[(87) can beobjective function in[(ER) is maximized by letting, = -Z-,

. ks
lower-bounded as and-~y, = ... =1, =0. Thus, it follows that '

1,1 -1 P
ZTr{(EEVa (et ety vTES) } Q*=T1/2Uzdiag(
s (58) From [63), it is observed thaQ* has only one non-

O ULZIN—]W 21
where by(-);; we denote the diagonal elements of the correspor#pro eigen-value. Using EVD ofQ*, we have Q* =
ing matrix. The lower-bound i (38) is satisfied with equalit U,diag (v4,0,...,0) U], wherey, > 0 denotes the non-
and only if the matrix inside the trace-inverse operatorobees zero eigen-value ofQ*. Now, let the SVD of A be A =
diagonal, which yieldsV, = In. Also, from the constraint UalTa Onrx(L—a)]V,a ., whereU, € RM*M andV, € RE*E
in (&7), it follows thatT, can be an arbitrary diagonal matrixare unitary matrices, arid, € R"*" is a diagonal matrix. From
satisfying the transmission power constraint. For sinigliove Q = ATA, it is concluded that the optimal sensing matrix can

setl’, = ,/WIM Hence, the optimal sensing matrix2€ expressed as i (21).

has the structure if_(20). APPENDIX G
PROOF OFTHEOREM[IT

,o,...,o) U/ T2 (63)

K22

APPENDIXF ) o } _
PROOF OFPROPOSITIOND Using the matrix inversion lemma, we obtain
-1
We have ~_ . _ _ o
i 1 R ' =blkdiag <aw§1Ml—awa1 < : L IL1+A1TA1) AT,
1 - v
(1v) _ -1, 9 T B

MR m ZTr { (R * U_QDS QDS) } —2 -2 ity T ' T

K S ) w . Uw21M2—0'w2A2 3 9 IL2+A2 AQ A2 .
@ 1 g g 27w
= TZ FI‘I.{R_O__QRD:SFQDSR}+O(||O__2D:SFQDS||2F)1 N N (64)

(x) 5 w w Defining Es £ HJEs, by plugging [6%#) back into[{27), it
(59) follows that

where(a) follows from Taylor series for the inverse term inside
2
the trace operator in the first equation. Singe — 0, then by \Sg() —

-1
m Tr (R1+Egsﬁs_ﬁgTﬁs> ,
neglecting the higher moments, the optimization problerfl®)

«[~]
5

can be asymptotically approximated as (65)
. where
maximize > Tr{RD{QDsR} S 2 biding [ 55 2
S = lag | 5-Qu, 2
subject to Tr{HR,H' Q} < P (60) N - o
g
Q > 0, rank(Q) = M. T £ blkdiag <angQl <gzw12 Iy, + Q1> Q1 , (66)
w1 1% vy
Defining the full-rank symmetric positive definite matfix = 2 2 -1
> s DsR?DJ, and denotingl'!/2QT*/2 £ L, the optimization gTZQQ < 5211, + Q2> Q2> ,
problem in [60) can be rewritten as Tiws 2%
A AT A AT
maximize Tr {L} Qi = Ar AL Q2= Az As B
. Introducing the semidefinite slack variable matiks €
—-1/2 Trm—1/2 !
subject to Tr{T~Y/?HR,H T '/?L} < P (61) REXK | we equivalently solve

L > 0, rank(L) = M. o =
=0 rankdl) minimize ZTr{XS}
LetZ 2 T-Y/2HR,H'T~/2 have the EVDZ = U.T. U/ . QXs 7 !
We also decomposk asL = UlI‘lUlT, whereU, andU; are . L mtes =tes N _
unitary matrices, anff’, andT; are diagonal matrices containing ~ SUPIECt 0 { R +EsSEs—EsTEs | = X5

i 67
., and~y,,, respectively. In order to solvE{(61), we drop the rank 2 67)
constraint, and relax{61) using Lemind 18 as ZTF{(HszHlT)Ql +2 QY <P
L =1
maximize » ", Q: = 0, rank(Q;) = M,, VI, VS
L
ki 345 (62) Now, applying the Schur’'s complement, the first constraint i
L (&7) can be rewritten as the positive semi-definite constrai
subjectto Y .y, <P, oy, >0, 1<i<L, L mres s
= R —|—ESSE5—ESTE5 Ix = 0. (68)
Ix Xs

wherey;, > ... >y, and~y,, < ... <7,,.

Note that the optimization probleni (61), without the ran
constraint, and[(82) become equivalent wH&h is diagonal.
This holds whenU; = U,, where the columns olU, are
associated with the eigen-values &fin an increasing order. [R1+E§SE5—E§blkdiag(Y1,YQ)ES Ix }

Since T is a block diagonal matrix, by introducing another
kwo slack semidefinite variable matricés;, € R >l v, €
RL2xLz2 the constraint(88) can be decomposed into

=0

— 3

Now, it only remains to solve[ (62). It is well-known that the Ix Xs



[23]
Y, Q
o2 =0, VI,VS,
QoI+ Q [24]
b vy
which concludes the proof. [25]
APPENDIXH [26]

We omit the proof of the theorem since it is similar to the,,

PrROOF OFTHEOREM[13

proofs of Theoren{]l and Theoreml]11l by introducing slack

variables and by applying the Schur’'s complement. (28]
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