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Abstract

We address an optimal power allocation problem for minimizing the outage probability forM parallel
block-Nakagami-fading channels under a long-term average sum transmit power constraint with finite rate feedback
of channel state information (CSI). A simulation-based optimization technique called simultaneous perturbation
stochastic approximation algorithm (SPSA) is employed first to numerically derive a locally optimal power codebook.
Due to the high computational complexity and long convergence time of SPSA, we make an ordering assumption on
the power codebook entries and derive effective hyperplane based approximations to the channel quantization
regions and present a number of low-complexity suboptimal quantized power codebook design algorithms. Unlike
existing work on outage minimization for multiple-input multiple-output (MIMO) channels with limited feedback, we
do not assume that identical transmission power is used for all channels within each channel quantization region. We
also do not resort to a Gaussian approximation for the instantaneous mutual information in general as used in many
existing work. Based on our power ordering assumption and hyperplane based approximations, we show that
allocating identical power to all channels within a given channel quantization region in the limited feedback scenario
is asymptotically optimal only at high average power (or average signal-to-noise ratio (SNR)) for the Rayleigh fading
case, whereas for the general Nakagami case, the transmit power allocation for an individual channel within each
quantized region is asymptotically proportional to the corresponding Nakagami fading parameter (severity of fading).
We also present a novel diversity order result for the outage probability for the Nakagami fading case. Finally, we derive
a suitable Gaussian approximation based low-complexity power allocation scheme for a large number of parallel
channels, which has important applications in wideband slow-fading orthogonal frequency-division multiplexing
(OFDM) systems. Extensive numerical results illustrate that only a few bits of feedback close the gap substantially in
outage performance between the limited feedback case and the full instantaneous CSI at the transmitter case.

Introduction
Determining the information theoretic capacity of block-
fading wireless channels has been an important area of
research over the past decade. Various notions of capac-
ity for single-user fading channels include ergodic capacity
[1], delay-limited capacity [2] and capacity versus out-
age probability [3]. For delay-sensitive traffic such as voice
and video, the latter two notions are rather important. In
particular, the notion of outage probability signifies the
probability that the capacity of a wireless channel falls
below a required rate threshold. In [3], optimal power
allocation for outage minimization in the case of paral-
lel fading channels (single user) was obtained with the
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assumption of full channel state information (CSI) at the
transmitter. However, full CSI at the transmitter is hard to
obtain in practice due to limited bandwidth in the feed-
back channel from the receiver to the transmitter, and it
is more common to have full CSI at the receiver. This
has motivated researchers over the last decade to ana-
lyze performances of wireless systems with various forms
of partial CSI at the transmitter (CSIT), such as noisy
CSIT, statistical CSIT and quantized CSIT. In particu-
lar, the idea of Grassmanian line packing was used to
design optimal beamforming codebooks for MIMO sys-
tems in [4], whereas in a related study [5], the authors
derived a lower bound on the outage performance of a
multiple-antenna systems using beamforming based on
quantized CSIT. More recently, in [6], maximization of
expected rate over a single-input single-output slowly fad-
ing channel is investigated using optimized discrete rate
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and power control with quantized CSIT. A general frame-
work for power allocation in Gaussian vector channels
with lp norm constraints on the eigenvalues of the MIMO
channel matrix was investigated in [7]. The authors of [6]
have also investigate the diversity-multiplexing tradeoff
in MIMO channels with quantized CSIT in [8] (see also
[9]). A number of recent articles have investigated out-
age minimization for fading channels with limited feed-
back for MIMO or multi-antenna systems. Such studies
include [9-13]. In particular, [12] looks at outage mini-
mization with a finite-rate power codebook for MIMO
systems. The key finding of this article (see also [8]) is
that the optimal power codebook has a circular structure
in that the same transmit power is allocated to the out-
age region and the best channel region. In order to design
the optimal power codebook, it assumes however that the
same transmit power (as a function of the entire chan-
nel matrix) is used in all transmit antennas. This allows
the authors of [12] to reduce the finite-rate power code-
book design problem to an equivalent scalar quantization
problem. Even then, finding the cumulative density func-
tion for the equivalent scalar random variable requires
computing multi-dimensional probability integrals which
is computationally complex. Furthermore, the optimal
power codebook entries are found via generic gradient
search techniques which can take unreasonably long time
to converge. Using a similar setting, the same authors have
investigated the outage diversity behavior for multiple-
antenna systems with quantized CSIT in [13] (see also
[10]). In [11], the problem of outage minimization using
quantized CSIT is investigated for the fading relay chan-
nel and [14] also studied the outageminimization problem
for cooperative amplify-and-forward systems. In [9], a
Gaussian approximation is used to capture the probability
distribution of the mutual information for a MIMO sys-
tem in order to study the outage behavior. Finally, many
of the above results only apply to Rayleigh fading chan-
nels (where the MIMO channel matrix is assumed to
have complex circularly symmetric Gaussian distributed
entries). Note however that the circular nature of the
optimal power codebook and some of the useful approxi-
mations developed in [10] for asymptotically large number
of channel feedback bits are also relevant for our study
and we duly acknowledge this fact. Our focus is however
on designing practical low-complexity but sub-optimal
algorithms for designing the quantized power codebook
and derive theoretical properties of these power allocation
schemes in order to justify the various approximations
used in designing the sub-optimal schemes.
In our article, we look at an M-parallel fading channels

system as introduced in [15], where one codeword spans
M subchannels in one fading block and each block under-
goes the same CSI, and we aim to minimize the outage
probability under a sum (across all channels) long term

average power constraint with quantized CSIT. Tech-
nologically, parallel fading channels constitute a useful
and fundamental communication framework for various
applications, for example, multiple-antenna systems after
singular value decomposition or an OFDM system with
frequency-selective fading [15]. Due to the unavailability
of full CSIT in our framework, our model is better suited
to the case of multicarrier OFDM systems, withM parallel
subchannels located at nonadjacent carrier frequencies.
The concept of parallel channels also extends to mul-
tiple transmission time-slots [16] and diversity available
through cooperative communications such as multiple
relays etc. Our results in this article are applicable to all
these scenarios.
Our main contributions can be summarized as follows:

• We first formulate the above-described optimization
problem and provide an simulation based iterative
optimization algorithm: simultaneous perturbation
stochastic approximation algorithm (SPSA), to
numerically solve for the joint optimization of locally
optimal channel partitions and quantized power
allocation.

• Based on a power ordering assumption and a
hyperplane based approximation to the basic rate
achieving mutual information curve in the vector
channel space, we derive a number of low-complexity
suboptimal finite-rate power codebook design
algorithms for outage minimization with quantized
channel information—without assuming identical
transmission power per channel or using a Gaussian
approximation for the instantaneous mutual
information in general.

• We show that in the high average power (or average
SNR) regime, it is asymptotically optimal to allocate
transmit power proportional to the Nakagami m
fading parameter in the individual channels within
each quantized region. In the Rayleigh fading case,
this corresponds to allocating the same power across
all channels within each quantized region (but only in
the high average power regime).

• We also derive a novel diversity order result for the
outage probability in the Nakagami fading case.

• Finally, we investigate the suitability of a Gaussian
approximation scheme for the instantaneous mutual
information in the case of a large number of
independent (but not identically distributed) parallel
channels, which is applicable to a slow fading
broadband frequency selective channel or to a flat
fast fading channel [17,18]. Note that as we will show
later, although the Gaussian approximation is seen to
perform poorly for a small number of parallel
channels, it performs efficiently for a large number of
channels (e.g.,M ≥ 16), thus having important
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practical applications to such broadband
multi-carrier systems.

The organization of the article is as follows. Section
‘Channel model and outage minimization’ presents the
fading channel model and the typical outage problem
based on full CSIT. Section ‘Optimum quantized power
control with finite-rate feedback’ presents the outage min-
imization problem with quantized CSIT followed by the
modified problem formulation using the power ordering
and hyperplane based approximation. Various subopti-
mal algorithms are then presented for finding the power
codebook in the high average power regime along with
their associated theoretical properties. A new result on
the diversity order for the outage probability is then pre-
sented for the Nakagami fading case using our power
allocation algorithm based on the power ordering and
hyperplane based approximation. Section ‘Large number
of channels analysis’ presents a Gaussian approximation
based sub-optimal algorithm applicable to the case of a
large number of independent parallel channels. Section
‘Numerical results’ presents an extensive set of numer-
ical results illustrating the efficiency of our algorithms
measured by closeness of their outage performance as
compared to the full CSIT based optimal power alloca-
tion solution. Finally, Section ‘Conclusions’ presents some
concluding remarks and ideas for future extensions of this
study.

Channel model and outageminimization
We consider an M-parallel flat-fading channel model,
where a transmitted codeword spans M subchannels in
one fading block. For each fading block, the received
signal of each subchannel i, i ∈ {1, 2, . . . ,M}, can be
represented asa:

yi = √
hixi + wi, (1)

where hi is the channel power gain and xi is the chan-
nel input symbol. The noise sequences w1, . . . ,wM are
independent and identically distributed (i.i.d) Gaussian
random variables with zero mean and unit variance. It
is assumed that the components of channel power gain
vector h = (h1, . . . , hM) are mutually independent, indi-
vidually i.i.d across fading blocks and ergodic and fading
is sufficiently slow so that the input symbols transmitted
over the same fading block experience the same channel
state. It is also assumed that the fading block length N →
∞ so that information theoretic results can be applied.
The individual fading distributions may not be identi-
cal. However, they (and hence the joint channel fading
distribution) are assumed to be continuous.
Given a channel realization h, and assuming the avail-

ability of full channel state information (CSI) at the
transmitter and receiver, denote the corresponding power

allocation to the M subchannels by the vector p(h) =
(p1(h), . . . , pM(h)). Then the maximum mutual informa-
tion of an M-parallel channel is given by [19],

r(h,p(h)) = 1
M

M∑
i=1

1
2
log(1 + hipi(h)), (2)

where, the rate unit is nats per real dimension. Note that in
(2), we consider that the capacity is averaged over parallel
channels as [15] did.
Thus, the outage probability, defined as the proba-

bility that the instantaneous mutual information of the
channel is less than a pre-specified transmission rate r0
(nats/channel use), can be expressed as

Pout(h,p(h), r0) = Prob [r(h,p(h)) < r0] . (3)

Under a long term average power constraint defined by
E[ 〈p(h)〉 ]≤ Pav, (where 〈x〉 denotes the arithmetic mean
of the vector x with length M, namely, 〈x〉 = 1

M
∑M

i=1 xi),
the outage minimization problem can be described as

min
p(h)≥0

Prob
[
1
M

M∑
i=1

1
2
log(1 + hipi(h)) < r0

]

s.t. E[ 〈p(h)〉 ]≤ Pav. (4)

The optimal power allocation with full CSI at the trans-
mitter for this problem can be found explicitly by using
convex optimization techniques and was presented in
Proposition 4 of [3]. The readers are referred to [3] for
further details. Note that here Pav can be thought of effec-
tively as the transmitter side signal-to-noise ratio (since
noise variance has been normalized to unity). In the
following we will address the optimal power allocation
problem for outage minimization where only partial or
limited CSI is available at the transmitter. For the pur-
pose of analysis, we will assume that each channel hi
is gamma distributed (Nakagami fading) with mean 1

λi
,

which probability density function (pdf) is given by

f (hi) = (miλi)
mi

hmi−1
i

�(mi)
e−miλihi , hi > 0, (5)

where �(.) is gamma function (�(s) = ∫∞
0 ts−1e−tdt)

and constant mi ≥ 0.5. mi is called the fading parame-
ter. Larger values of the fading parameter mi imply less
severe fading environments. When mi = 1, the above
distribution boils down to an exponential distribution
(corresponding to Rayleigh fading) and the non fading
case corresponds tomi = ∞.

Optimum quantized power control with finite-rate
feedback
It is well known that having perfect CSI at both transmit-
ter and receiver is hard to satisfy in a practical system due
to bandwidth constraints on the receiver to transmitter
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feedback link as well as considerable communication cost
overhead. In this section, we consider designing a power
allocation procedure for M-parallel flat-fading channels
based on quantized vector CSI h = (h1, . . . , hM) (in
M dimensions) acquired via a no-delay and error-free
feedback link with limited rate from the receiver to the
transmitter.

Optimal power allocation with limited feedback strategy
We assume that the receiver can perfectly estimate the full
CSI information. Given B bits of feedback, a power code-
book P = {P1, . . . ,PL}, where Pj = {p1j, . . . , pMj}, j =
1, . . . , L of cardinality L = 2B, is designed off-line purely
on the basis of the statistics of h. Note that the power lev-
els for different channels here are distinct as opposed to
[9,12] where the same transmit power was allocated to all
transmit antennas in the MIMO setting. This codebook is
known a priori by both the transmitter and the receiver.
Given a channel realization h,

• First, the receiver applies a deterministic mapping
denoted as I from current instantaneous h
information into one of L integer indices [9], where
the mapping I partitions the entireM-dimensional
space of h into L regionsR1,R2, . . . ,RL, given as
I(h) = j, if h ∈ Rj, j = 1, . . . , L.

• Second, the receiver sends the corresponding index
j = I(h) to the transmitter via the feedback link.

• Then, the jth entry of the power codebook P , i.e., Pj,
will be employed by the transmitter for transmission.

Therefore the key steps involved in the limited feed-
back design problem constitute obtaining (off-line) the
jointly optimal CSI partitions and power codebook design.
Our objective is to design efficient algorithms for solving
this joint optimization problem of the channel partition
regions and the power codebook, so as to minimize the
outage probability while satisfying a long term average
power constraint.
Let Pr(Rj), E[ •|Rj] denote Pr(h ∈ Rj) (the probability

that h falls in the regionRj) and E[ •|h ∈ Rj], respectively.
Define the indicator function xj, j = 1, . . . , L as

xj =
{

1, if 1
M
∑M

i=1
1
2 log(1 + hipij) < r0,

0, otherwise. (6)

Then outage minimization problem (4) with limited feed-
back can be formulated as

min
Pj≥0, Rj , ∀j

L∑
j=1

E
[
xj|Rj

]
Pr(Rj)

s.t.
L∑
j=1

E
[
Pj
∑

|Rj
]
Pr(Rj) ≤ Pav, (7)

where Pj
∑

= 1
M
∑M

i=1 pij, i.e., the average of all the
elements in vector Pj. It can be easily verified that the
above optimization problem satisfies the long term aver-
age power constraint with equality.
The dual problem of (7) is expressed as

min
λ>0

g(λ) − λPav, (8)

where λ is the nonnegative Lagrange multiplier associated
with the long term average power constraint in Problem
(7), and the Lagrange dual function g(λ) is defined as

g(λ) = min
Pj≥0, Rj , ∀j

L∑
j=1

E
[
xj + λPj

∑
|Rj

]
Pr(Rj). (9)

With a fixed λ, we can employ an iterative simulation-
based optimization algorithm called the simultaneous
perturbation stochastic approximation algorithm (SPSA)
to find the optimal power codebook of problem (9). A
step-by-step guide to an implementation of SPSA can be
found in [20], which, when applied to our problem, can be
summarized in the following steps.

Step 1 Initialization and coefficient selection: Set
counter index k = 0. Pick initial guess of the
power codebook P̂0 and non-negative
coefficients a, c, A, α and γ in the SPSA gain
sequences ak = a

(A+k+1)α and ck = c
(k+1)γ . For

guideline on choosing these coefficients see [20].
Step 2 Generation of simultaneous perturbation vector:

Generate a p-dimensional (p = ML) random
perturbation vector �k , where each component
of �k are i.i.d Bernoulli ±1 distributed with
probability of 1

2 for each outcome.
Step 3 Loss function evaluations: Obtain two

measurements of the loss function L(·) based on
the simultaneous perturbation around the
current power codebook P̂k : L(P̂k + ck�k) and
L(P̂k − ck�k) with ck and �k from Steps 1 and 2.

Step 4 Gradient approximation: Generate the
simultaneous perturbation approximation to the
unknown gradient ĝk(P̂k) given as,

ĝk(P̂k) = L(P̂k + ck�k) − L(P̂k − ck�k)

2ck

⎡
⎢⎢⎢⎢⎣

�−1
k1

�−1
k2
...

�−1
kp

⎤
⎥⎥⎥⎥⎦

where �ki is the i th component of the �k vector.
Step 5 Updating power codebook: Use the algorithm

P̂k+1 = P̂k − akĝk(P̂k)

to update P̂k to a new value P̂k+1.
Step 6 Iteration or termination: Return to Step 2 with

k + 1 replacing k. Terminate the algorithm if
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there is little change in several successive
iterations or the maximum allowable number of
iterations has been reached.

Note that in the Step 3 of the SPSA which involves cal-
culating a loss function with a given power codebook,
we use the objective function of problem (9) as the loss
function. And then given a power codebook, we use the
nearest neighbor condition of a generalized Lloyd algo-
rithm with a Lagrangian distortion d(h,Pj) = xj + λPj

∑
to generate the optimal partition regions [21], given as,
j = 1, . . . , L,

Rj =
{
h|xj + λPj

∑
≤ xi + λPi

∑
,∀i �= j

}
. (10)

Therefore, with a given power codebook and result-
ing quantization regions, we can numerically calcu-
late the loss function. We repeatedly apply Step 2 to
Step 5 of SPSA until the resulting outage probability
converges within a pre-specified accuracy (Step 6 of
SPSA). After that, we solve the dual problem for find-
ing the optimal λ by using a subgradient based search
method, i.e., updating λ until convergence using λl+1 =[
λl − αl

(
Pav −∑L

j=1 E
[
Pj
∑

|Rj
]
Pr(Rj)

)]+
, where l is

the iteration number, αl is a positive scalar step sizes for
the lth iteration satisfying

∑
l α

l = ∞ and
∑

l α
l2 < ∞.

Due to the fact that problem (7) is not convex, in general,
the optimal solution we obtain here is only locally optimal.
Figure 1 gives an example of what the structure of

a locally optimal channel quantization region looks like

by using SPSA with a given power codebook for M =
2 channels with 2 bits of feedback (i.e., four quantiza-
tion regions, each color stands for a particular region),
where a sufficiently large number of training samples
(channel realizations for h1, h2) drawn from empirical
distributions is used to generate the optimal partition
regions according to (10). From Figure 1, we can see
that, in general, it is difficult to compute the surface
area (or in general volumes in higher dimensional space)
of these regions which have irregular shapes. Although
we can use SPSA to numerically obtain a locally opti-
mal power codebook and partition regions, it takes a
very long time to converge and is computationally highly
complex especially when the number of feedback bits or
the number of channels is large. In the following few
sections, we therefore focus on designing sub-optimal
algorithms by introducing appropriate assumptions and
approximations to the quantized regions and power
codebook.

Power ordering assumption and hyperplane
approximation (POHPA)
Let P(h) represent the optimal power allocation strategy
which maps the channel realization h to a power level
in P . Without loss of generality, we assume that power
levels are such that P1

∑
> · · · > PL

∑
corresponding

to the partition R1,R2, . . . ,RL, then we have the fol-
lowing result which generalizes the circular nature of the
quantized channel regions presented in [9,12] for a scalar
power allocation scenario to the parallel channels case
with a vector power allocation.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.5

1

1.5

2

2.5

x 10
−3

h
1

h 2

Figure 1 Structure of the optimal vector quantization regions for two channels with B = log2 4 bits of feedback.
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Lemma 1. Let P∗(h) denotes as the minimum
power level required to have no outage, i.e., 1

M
∑M

i=1
1
2 log

(
1 + hip∗

i (h)
) = r0. The optimal solution satisfies:

P(h) = Pj, if P
∑
j+1 < (P∗(h))

∑
≤ P

∑
j , j = 1, . . . , L − 1;

P(h) = PL, if (P∗(h))
∑

≤ P
∑
L or (P∗(h))

∑
> P

∑
1 .
(11)

Proof. The proof is similar to [9]. However, since it gen-
eralizes the result for a scalar power allocation in [9] to a
vector power allocation case in this article, we provide a
sketch of the proof (see Appendix 1).

If the same transmit power is allocated to all trans-
mit channels, i.e., p1j = · · · = pMj = P

∑
j , the above

Lemma result reduces to the case of [9,12]. From Lemma
1, we also have that there is no outage in the first L − 1
regions and outage only occurs in the last region RL;
the optimal partition satisfies that a channel realization
h = {h1, . . . , hM} either belongs to the region Rj, where
j ∈ {1, . . . , L} is the maximum index that can guarantee
zero outage for it or belongs toRL;RL includes two parts:{
h|(P∗(h))

∑
> P

∑
1

}
(outage) and

{
h|(P∗(h))

∑
≤ P

∑
L

}
,

denoted asRL,1 andRL,2, respectively.
From Lemma 1, we have the boundary between Rj−1

and Rj, j = 2, . . . , L − 1 is a hypersurface denoted as
g(h1, . . . , hM−1,Pj), which is obtained by solving for hM
from equation r(h,Pj) = 1

M
∑M

i=1
1
2 log(1 + hipij) = r0,

namely,

g(h1, . . . , hM−1,Pj) = k −∏M−1
i=1 (1 + hipij) + 1

pMj
∏M−1

i=1 (1 + hipij)
, (12)

where k = e2Mr0 − 1. The boundaries between
RL and R1, RL−1 are given by g(h1, . . . , hM−1,P1),
g(h1, . . . , hM−1,PL), respectively. Let {ri1, . . . , riL} rep-
resents the quantization thresholds on hi axes (i =
1, . . . ,M), from (12), it can be easily verified that rij =
k
pij , i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , L}. Therefore, if we
assume that the power levels in power codebook are in
descending order, i.e., P1 > · · · > PL which means pi1 >

· · · > piL, i = 1, . . . ,M and also implies P
∑
1 > · · · > P

∑
L ,

we can obtain ri1 < · · · < riL, i = 1, . . . ,M, which
gives a simple partition structure allowing easy numeri-
cal computation of the surface area (or volumes in higher
dimensions) of the quantized regions.We call it the power
ordering (PO) assumption. Figure 2 gives an example of
the optimal quantization structure with the PO assump-
tion for the M = 2 channels case. With this PO assump-
tion, the area below the hypersurface g(h1, . . . , hM−1,P1)
defines the outage regionRL,1.

Figure 2 Structure of the quantization regions for two channels
with B = log2 L feedback bits under PO assumption.

Denoting F(Pj) as the probability that the channel state
(h1, . . . , hM) lies below g(h1, . . . , hM−1,Pj), j = 1, . . . , L,
we have

F(Pj) =
∫

· · ·
∫
RL,1∪R1∪···∪Rj−1

f (h1, . . . , hM)dh1 . . . dhM,

(13)

where f (h1, . . . , hM) is the pdf for the channel vec-

tor,given by f (h1, . . . , hM) = ∏M
i=1(miλi)mi h

mi−1
i

�(mi)
e−miλihi

for Nakagami fading (due to independence amongst the
parallel channels). Thus, the probability that the channel
realization h ∈ Rj is F(Pj+1) − F(Pj) for j = 1, . . . , L − 1,
and 1−F(PL)+F(P1) for j = L. The outage minimization
problem with limited feedback (7) can thus be simplified
as

min{P1>···>PL−1>PL≥0}Pout = F(P1)

s.t.
L−1∑
j=1

(p1j + · · · + pMj)
(
F(Pj+1) − F(Pj)

)
+ (p1L + · · · + pML) (1 − F(PL) + F(P1)) = MPav.

(14)

Problem (14) is in general a nonlinear non-convex opti-
mization problem. Since g

(
h1, . . . , hM−1,Pj

)
, j = 1, . . . , L

is highly nonlinear, it is hard to obtain a closed-form
expression for F(Pj). Although one can use numerical
integrals to calculate F(Pj), and use randomized search
techniques to find the optimum solution of problem (14),
the associated computational complexity increases expo-
nentially with the number of feedback bits and channels.



He and Dey EURASIP Journal onWireless Communications and Networking 2012, 2012:352 Page 7 of 24
http://jwcn.eurasipjournals.com/content/2012/1/352

Next, we will employ another approach by deriving an
approximation for g

(
h1, . . . , hM−1,Pj

)
, such that an ana-

lytical (approximate) closed-form expression for F(Pj) can
be easily obtained (unlike [9] where a Gaussian distri-
bution was used to approximate the distribution of the
mutual information to evaluate an analytical expression
for F(Pj)), thus significantly reducing the computational
complexity of solving problem (14). Then based on the
obtained optimal power allocation using this approxima-
tion, one can use Monte Carlo simulations to evaluate the
“real outage” (corresponding outage probability perfor-
mance given by F(P1)). More details on this can be found
in the Numerical results Section.
From (12), the projection of hypersurface hM =

g
(
h1, . . . , hM−1,Pj

)
, j = 1, . . . , L on any arbitrary two

channel coordinate plane, i.e., hn versus hm, n,m ∈
{1, 2, . . . ,M}, n �= m, is a curve expressed as

hn = g(hm,Pj) = k − hmpmj

pnj(1 + hmpmj)
. (15)

It is easy to verify that the above curve is convex by show-
ing that the second derivative of hn with respect to hm
is strictly positive. This curve intersects the hn axis and
the hm axis at quantization thresholds rnj and rmj, respec-
tively.We can approximate the curve (15) by a straight line
r′njr′mj, as displayed in Figure 3, which is parallel to rnjrmj
and a tangent to the curve (15) at the intersection point ‘a’.

Figure 3 The projection of structure of quantization regions on
hn versus hm coordinate plane with HPA (approximating
g(hm,Pj) byD

(
hm,Pj

)
).

The straight line intersects hn axis and hm axis at point r′nj
and r′mj, respectively. The line r′njr′mj is expressed as

hn = D
(
hm,Pj

) = K − hmpmj

pnj
hm ∈

[
0,

K
pmj

]
, (16)

where K = 2(
√
k + 1 − 1), r′nj = K

pnj , r
′mj = K

pmj
(new

quantization thresholds), and point ‘a’ is
(

K
2pmj

, K
2pnj

)
. We

name this approximation as the hyperplane approxima-
tion (HPA). Note that we could also use the straight line
rnjrmj to do the approximation, but simulations demon-
strate that the r′njr′mj approximation is always better than
rnjrmj. To see clearly, Figure 4 gives an example of the HPA
in three-dimensional (3D) space.
Thus, with PO and HPA (POHPA), the boundaries

betweenRL,1 andR1,R1 andR2, . . . ,RL−1 andRL,2 can
be approximated as

D
(
h1, . . . , hM−1,Pj

) = K −∑M−1
i=1 hipij
pMj

, j = 1, . . . , L.

(17)

Any channel vector below D (h1, . . . , hM−1,P1) is said to
be in outage. SinceD

(
h1, . . . , hM−1,Pj

)
is linear, an analyt-

ical closed-form approximation for F(Pj) can be obtained,
which is denoted as F ′(Pj). In this case, by definition we
have

F ′(Pj) = Pr
(
D(h1, . . . , hM−1,Pj) <

K −∑M−1
i=1 hipij
pMj

)

= Pr
( M∑

i=1
hipij < K

)
. (18)

∑M
i=1 hipij is a weighted sum of independent gamma ran-

dom variables, and F ′(Pj) can be treated as the cumulative
distribution function (cdf) of

∑M
i=1 hipij. Thus a closed-

form expression for (18) can be obtained by using any of
the following two equivalent results, which however differ
in their analytical derivations.

1) Multiple infinite series representation: This
analytical expression was derived in [22],

F ′(Pj) = 1

�
(
1 +∑M

i=1mi
)
[ M∏
i=1

(
miλiK
pij

)mi
]

× �
(M)
2

(
m1,m2, . . . ,mM; 1 +

M∑
i=1

mi;

− m1λ1K
p1j

,− m2λ2K
p2j

, . . . ,−mMλMK
pMj

)
,

(19)
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Figure 4 The projection of structure of quantization regions on hn versus hm coordinate plane with 3D of HPA (approximating g(hm,Pj)
byD(hm,Pj)).

where �
(M)
2 (. . .) is the confluent Lauricella

multivariate hypergeometric function, involving
multiple infinite sums [22]:

�
(M)
2

(
m1, . . . ,mM; 1 +

M∑
i=1

mi; − m1λ1K
p1j

, . . . ,

− mMλMK
pMj

)

=
∞∑

n1=0
. . .

∞∑
nM=0

[∏M
i=1(mi)ni

(
−miλiK

pij

)ni 1
ni!

]
(
1 +∑M

i=1mi
)
nτ

,

(20)

where nτ = ∑M
i=1 ni and the Pochhammer symbol is

defined as (α)k = �(α+k)
�(k) [22]. Equation (19) can be

numerically calculated. However, asM becomes
large, computation of the multiple infinite sum may
become too prohibitive to implement.

2) Single infinite series representation: The second
result provides a simpler expression for (18)
involving only a single infinite sum [23], which was
proposed by Moschopoulos [24].

F ′(Pj) =
M∏
i=1

(
β1
βij

)mi ∞∑
n=0

δnγ
(
ρ + n, K

β1

)
�(ρ + n)

, (21)

where ρ = ∑M
i=1mi,βij = pij

miλi
,β1 = min(βij), γ (.) is

incomplete gamma function (γ (s, x) = ∫ x
0 ts−1e−tdt)

and the coefficients δn are obtained recursively by

δn+1 = 1
n + 1

n+1∑
l=1

[
δn+1−l

M∑
i=1

mi

(
1 − β1

βij

)l
]
,

n = 0, 1, . . . , δ0 = 1. (22)

Special cases

• If ρ = ∑M
i=1mi is an integer, (21) can be further

simplified as [23]

F ′(Pj) =
M∏
i=1

(
β1
βij

)mi ∞∑
n=0

δn

×

⎧⎪⎨
⎪⎩1 − e−

K
β1

ρ+n−1∑
l=0

(
K
β1

)l
l!

⎫⎪⎬
⎪⎭ . (23)

• IfM = 2, let β2 = max(βij), andmθ is the
corresponding fading parameter for β2, we have

F ′(Pj) =
(

β1
β2

)mθ ∞∑
n=0

(mθ )n
(
1 − β1

β2

)n
n!

×
γ
(
ρ + n, K

β1

)
�(ρ + n)

, (24)
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where (mθ )n+1 represents the Pochhammer
symbol.

With POHPA, Problem (14) can be approximated as

min{P1>···>PL−1>PL≥0} F
′(P1)

s.t.
L−1∑
j=1

(p1j + · · · + pMj)(F ′(Pj+1) − F ′(Pj))

+ (p1L + · · · + pML)
(
1 − F ′(PL)+F ′(P1)

) = MPav.
(25)

It is not hard to verify that Problem (25) is still nonconvex.
However, we can employ the Karush-Kuhn-Tucker (KKT)
necessary conditions to achieve locally optimal solutions.

Remark 1. Note that KKT necessary conditions usually
require regularity of a local optimum, which amounts to
(in the context of Problem (25)) linear independence of the
gradients of the active inequality constraints evaluated at
the local optimum (see Proposition 3.3.1, p. 310 in [25]).
In Problem (25), if a local optimum of the power vector
satisfies P1 > · · · > PL−1 > PL > 0, then the only active
inequality constraint is the average power constraint, in
which case the linear independence property is trivially
satisfied. In the case where the local optimum for PL = 0,
it can be easily shown by simple linear algebra that the gra-
dients corresponding to these two (PL = 0 and the average
power constraint) active inequality constraints satisfy the
linear independence condition.

Since regularity of a local optimum is thus established,
one can now use KKT necessary conditions to obtain
the following important result that can be used to design
locally optimal quantized power codebooks:

Theorem 1. Suppose {p1j∗, . . . , pMj∗}Lj=1 be an optimum
to Problem (25). Then we have

∂F ′(Pj)

∂p1j∗
= · · · = ∂F ′(Pj)

∂pMj∗
, j = 1, . . . , L (26)

where ∂F ′(Pj)
∂pM1∗ =− μ(F ′(P2)−F ′(P1))

1−μ
∑M

i=1(pi1−piL)
, ∂F

′(Pj)
∂pMj∗ =− F ′(Pj+1)−F ′(Pj)∑M

i=1(pi,j−1−pij)
,

j = 2, . . . , L − 1, and ∂F ′(PL)
∂pML∗ = − 1−F ′(PL)+F ′(P1)∑M

i=1(pi,L−1−piL)

Proof. See Appendix 2.

Combining the above result with the average power con-
straint in (25), we have the following system of (ML + 1)
nonlinear equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
j=1

(p1j + · · · + pMj)(F ′(Pj+1) − F ′(Pj)) + (p1L + · · ·

+ pML)(1 − F ′(PL) + F ′(P1)) = MP av,

∂F ′(Pj)

∂p1j∗
= · · · = ∂F ′(Pj)

∂pMj∗
, j = 1, . . . , L

∂F ′(Pj)

∂pM1∗ = − μ(F ′(P2) − F ′(P1))

1 − μ
∑M

i=1(pi1 − piL)
,

∂F ′(Pj)

∂pMj∗
= − F ′(Pj+1) − F ′(Pj)∑M

i=1(pi,j−1 − pij)
, j = 2, . . . , L − 1

∂F ′(PL)

∂pML∗ = −1 − F ′(PL) + F ′(P1)∑M
i=1(pi,L−1 − piL)

,

P1 > · · · > PL.
(27)

A solution to (27) provides a locally optimum power allo-
cation policy {Pj

∗}Lj=1. For small values of L and M, the
above system of nonlinear equations can be solved by var-
ious optimization softwares. However, the complexity of
solving the above set of nonlinear equations is still too
high for moderately large numbers of feedback bits and
channels. Therefore, we consider several low-complexity
suboptimal schemes suited to special cases of high or low
Pav as described below.

High average power approximation (HPavA)
In the high average power or average SNR regime, the fol-
lowing result allows us to simplify the computation of the
quantized power codebook. It also illustrates that using
our hyperplane based approximations, it is not optimal
to allocate identical power to individual channels within
each quantized region in general.

Theorem 2. For arbitrary M, in high average power (as
Pav → ∞), the multiple infinite series representation (19),
F ′(Pj), j = 1, . . . , L can be further approximated as

F ′(Pj) ≈ 1

�
(
1 +∑M

i=1mi
) M∏

i=1

(
miλiK
pij

)mi

(28)

and a locally optimum power allocation scheme for (25)
satisfies the following approximate relationship:

mi
pij∗

≈ ml
plj∗

, i, l ∈ {1, 2, . . . ,M}, i �= l, j = 1, . . . , L.

(29)

Proof. See Appendix 3.
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(29) implies that in high Pav, for each quantization
region, the power allocated to each channel asymptoti-
cally depends only on the severity of fading (represented
by the parameterm).
Special cases:

• Identical fading parameters: Ifm1 = · · · = mM , from
(29), we have

p1j∗ ≈ · · · ≈ pMj
∗, j = 1, . . . , L (30)

which means, in high Pav, with identical fading
parameters for all channels, for each quantization
region, the power assigned to each channel is
asymptotically equal, and we call this solution as
equal power per channel (EPPC).

• Rayleigh fading: (m1 = · · · = mM = 1), from
Theorem 2, (28) reduces to

F ′(Pj) ≈ 1
M!

M∏
i=1

(
λiK
pij

)
(31)

and (29) reduces to EPPC.

For the general case (29), without loss of generality, by
letting pij = mi

mM
pMj, ∀i ∈ {1, 2, . . . ,M − 1} and denoting

pMj as pj for simplicity, the aboveML+1 equations system
(27) can be simplified into an L+1 equations system only:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
j=1

pj(F ′(pj+1)−F ′(pj))+pL(1 − F ′(pL)+F ′(p1))=P′
av,

∂F ′(pj)
∂pj

= −F ′(pj+1) − F ′(pj)
(pj−1 − pj)

, j = 2, . . . , L − 1

∂F ′(pL)
∂pL

= −1 − F ′(pL) + F ′(p1)
(pL−1 − pL)

,

(32)

where P′
av = Pav MmM∑M

i=1 mi
.

Thus HPavA reduces the M-dimensional vector quan-
tization problem into a one-dimensional scalar quantiza-
tion problem, as illustrated in Figure 5, with correspond-
ing quantization thresholds r1, . . . , rL, where rj = r′Mj =
K/pj, and remarkably reduces the complexity. We call this

outage

Figure 5 One-dimensional scalar quantization model: PFPPC.

suboptimal scheme as the proportional to fading param-
eter per channel (PFPPC) scheme. For small values of L,
the above L nonlinear equations (where one can evaluate
F ′(pj) using the single infinite series representation (21))
can be solved by various optimization softwares.
For large values of L (e.g., L ≥ 16 or B ≥ 4), one can

use the so-called equal average power per region (EPPR)
approximation for such a scalar quantization problem
by using the mean value theorem [10]. This essentially
implies that when L goes to infinity, the total average
power assigned to each quantization region is asymptoti-
cally equal and the performance using this approximation
is close to optimum for large number of bits of feed-
back. In this case, we need to solve the following set of L
equations instead of (32)

pj(F ′(pj+1) − F ′(pj)) = P′av
L

, j = 1, . . . , L − 1;

pL(1 − F ′(pL) + F ′(p1)) = P′av
L

. (33)

which can be carried out by an iterative algorithm employ-
ing the standard bisection search method. We call this
algorithm as ‘PFPPC+EPPR’.
Let Pjtot represents the total average power allocated

to region Rj at PFPPC case. Then the average power
constraint in (32) can be rewritten as,

L∑
j=1

Pjtot
pj

= 1. (34)

Since p1 > p2 > · · · > pL,
∑L

j=1 P
j
tot = P′av, it follows that

p1 > P′
av. (35)

Thus, in high the Pav regime (Pav → ∞), r1 = K
p1 → 0,

and we have the following result which indicates that the
total power allocated to the outage region is asymptoti-
cally (as Pav → ∞) negligible thus allowing us to further
simplify the quantized power codebook design method:

Lemma 2. In the high Pav regime, limr1→0 PL,1tot = 0, if∑L
j=1 ρj > 1, where ρ = ∑M

i=1mi.

Proof. See Appendix 4.

Therefore another effective scheme for large L is to addi-
tionally (to PFPPC) employ what we call the zero power in
outage region (ZPiOR) approximation (PFPPC+ZPiOR),
by letting the power level pL = 0 resulting in rL = K

pL →
∞, as showed in Figure 6. Thus we have the total aver-
age power allocated to outage region RL,1, PL,1tot = pL ∗
F ′(p1) = 0.
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outage

Figure 6 One-dimensional scalar quantization model and ZPiOR
approximation: PFPPC+ZPiOR.

Remark 2. Note that if ρ ≥ 1, the condition
∑L

j=1 ρj >

1 is clearly satisfied for any L ≥ 2. For 0.5 < ρ < 1 (which
is the case of no diversity withM = 1 or the single channel
case), one can show that there exists a finite L for which
the condition

∑L
j=1 ρj > 1 is satisfied. This is easily seen

by noting that the condition
∑L

j=1 ρj > 1 is equivalent to
ρL+1 < 2ρ − 1 for ρ < 1. It is interesting to note however
that when ρ = 0.5 (which is the case when one has as
single Nakagami channel withm = 0.5, the worst possible
fading parameter), there is no finite value of L that can
achieve

∑L
j=1 ρj > 1. Thus in high Pav, it is near optimal to

allocate zero power to the outage region as long as ρ ≥ 1
with any L ≥ 2, or a single channel with 0.5 < m < 1 and
a sufficiently large L. For a single channel with m = 0.5, it
seems that even in high Pav, one needs to allocate nonzero
power to the outage region.

Therefore the performance of the ZPiOR approximation
(PFPPC+ZPiOR) becomes asymptotically (as L → ∞)
close to that of the PFPPC scheme, except for the single
channel case with m = 0.5, where one can use the EPPR
approximation instead to reduce complexity.
In this case, (32) can be simplified as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
j=1

pj(F ′(pj+1) − F ′(pj)) = P′
av

pj−1 = pj + F ′(pj+1) − F ′(pj)

− ∂F ′(pj)
∂pj

j=2, . . . , L − 1, F ′(pL)=1

(36)

which can be easily solved by using a standard bisection
method. In fact, numerical studies illustrate (as we will see
later) that the ZPiOR approximation has a near-optimum
(for Problem (25)) performance for large number of
quantization regions. Thus, the ZPiOR approximation
achieves a better complexity-performance tradeoff than
PFPPC+EPPR.

Remark 3. For the low Pav scenario, we can apply the
ZPiOR approximation as well. This is because it is easy to
verify that

1
M

(p1L + · · · + pML) < Pav (37)

then when the average power is small (Pav → 0), piL →
0, i = 1, . . . ,M as well, and the corresponding quantiza-
tion threshold riL → ∞. In this case, the region RL only
includes RL,1 (the outage region) and the corresponding
power level PL = 0, thus making the ZPiOR approxi-
mation applicable. A similar observation was also made
in [9].

Asymptotic behavior of outage probability
Here we briefly comment on the diversity behavior of
the outage minimization algorithm using POHPA for
Nakagami-m fading channels. Define the diversity gain d
as

d = − lim
Pav→∞

logPout
logPav

. (38)

Then we have the following important approxima-
tion for d, which generalizes the existing diversity order
results for outage probability (e.g., [13]), that are valid for
Rayleigh fading channels only.

Theorem 3. For an arbitrary M, with log2 L bits of
quantized feedback, using the optimal power allocation
employing the POHPA approximation, we have

Pout ≈
(

ρL
MmM

)ρL+···+ρ

cρL−1+···+ρ+1

Pavρ
L+···+ρ

. (39)

The diversity order can be approximated as

d ≈
L∑
j=1

( M∑
i=1

mi

)j

. (40)

Proof. See Appendix 5.

Special case: Note that for the Rayleigh fading case
where mi = 1,∀i = 1, 2, . . . ,M, (40) becomes d ≈∑L

j=1Mj, which is consistent with similar results in [9,10].

Remark 4. It is possible that the result in Theorem 3
may hold with equality, rather than being an approxima-
tion for the diversity order. However, due to the various
levels of approximations involved in deriving this, we are
unable to prove an exact equality at this stage. This will
involve computing orders of approximation errors and
showing that the error goes to zero as Pav goes to infinity.
We leave this for future study.
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Large number of channels analysis
The previous algorithms can be effectively applied to find
locally optimal solutions or suitable approximations for
them for moderate number of parallel channels, such as
M < 10. OnceM ≥ 10, these algorithms become compu-
tationally demanding. Given that practical wideband slow
fading multi-carrier systems such as OFDM (with large
number of sub-carriers), can be modeled as asymptoti-
cally large number of i.i.d parallel channels [18], one needs
to find outage minimizing power allocation algorithms
with limited feedback for largeM. Below we provide such
an algorithm using a Gaussian approximation for large M
in high Pav.

Remark 5. According to [18], the mutually indepen-
dence of large number of parallel channels can be justified
by the assumptions that the number of independent prop-
agation paths in wideband slow fading channel models
increase linearly with the bandwidth and the carrier fre-
quencies of parallel channels are sufficiently separated
with the effect of the multipath spread essentially elimi-
nated [18]. Even if the adjacent subcarriers are correlated,
with subcarrier grouping technique [26], we can still have
a large number of parallel independent subchannels (each
comprises a number of subcarriers), such as 32 subchan-
nels as stated in [26].

Note that in high average power, we have
M∑
i=1

log(1 + pijhi) ≈
M∑
i=1

log(pijhi) =
M∑
i=1

log
(
pij

fi
λi

)

=
M∑
i=1

log
(pij

λi

)
+

M∑
i=1

log(fi) (41)

where fi = hiλi, 1
λi

is the mean of channel gain hi,
and under the Nakagami fading model, the pdf of fi is
(mi)mi
�(mi)

f mi−1
i e−mifi ,∀i.

Thus F(Pj), j = 1, . . . , L for M channels can be approxi-
mated as

F(Pj) = Prob
(

1
M

M∑
i=1

1
2
log(1 + pijhi) < r0

)

≈ Prob
(

1
M

M∑
i=1

log(fi) < sj

)
= V (sj) (42)

where sj = 2r0− 1
M
∑M

i=1 log
(
pij
λi

)
= c′ − 1

M
∑M

i=1 log(pij),
c′ = 2r0 + 1

M
∑M

i=1 log(λi) and the function V (.) denotes
the cdf of 1

M
∑M

i=1 log(fi). It is easy to show that the pdf
of zi = log(fi) is fzi = (mi)mi

�(mi)
e−miezi emizi . Denote its mean

and variance by E[ zi] and Var[ zi], respectively. For the

Rayleigh fading case, the pdf of zi = log(fi) is e−ezi ezi ,
which is the well known Gumbel Distribution with mean
E[ zi]= −r, where r is Euler-Mascheroni constant (r =
0.5772156649 . . .) and variance Var[ zi]= π2

6 .
Note that for largeM, ifm1 = · · · = mM or in the special

case of Rayleigh fading (mi = 1, ∀i), zi is i.i.d with finite
mean and variance and then the Central Limit Theorem
(CLT) directly applies whereby one can use a Gaussian
approximation for the pdf of 1

M
∑M

i=1 zi. However, in the
general case where the fading parameters mi are different
for different channels, zi, i = {1, 2, . . . ,M} are indepen-
dent but not necessarily identically distributed. In this
case, it is important to prove that {zi − E[ zi] } satisfies the
Lindeberg condition (for a statement of this condition, see
p. 262, [27]), so that a generalized CLT can be applied and
a Gaussian approximation can be used for the instanta-
neous mutual information over parallel fading channels.
Indeed, we can analytically prove the following Lemma:

Lemma 3. The sequence {zi − E[ zi] } satisfies the Linde-
berg condition.

Proof. The proof of this can be found in Appendix 6.

Therefore when the number of channels M → ∞, the
cdf of 1

M
∑M

i=1 zi can still be approximated (by applying
Theorem 3, Chap. VIII.4 in [27]) by a Gaussian cdf with
mean and variance given by

μ = 1
M

M∑
i=1

E[ zi] , σ 2 = 1
M2

M∑
i=1

Var[ zi] . (43)

Thus, we have

V (sj) ≈
∫ sj

−∞
1

σ
√
2π

e−
(x−μ)2
2σ2 dx = 1

2

[
1 + erf

( sj − μ

σ
√
2

)]
.

(44)

The original problem (14) for a large number of channels
case can be approximated as

min{P1>P2>···>PL≥0}V (s1)

s.t.
L−1∑
j=1

(p1j + · · · + pMj)
(
V (sj+1) − V (sj)

)
+ (p1L + · · · + pML) (1 − V (sL) + V (s1)) = MPav.

(45)

Using the KKT necessary conditions, we again get

∂V (sj)
∂p1j

= · · · = ∂V (sj)
∂pMj

, j = 1, . . . , L. (46)
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Note that

∂V (sj)
∂pij

= f (sj)
∂sj
∂pij

= 1
σ
√
2π

e−
(
c− 1

M
∑M

i=1 log(pij)−μ
)2

2σ2 − 1
M

1
pij

,

(47)

where f (s) = 1
σ
√
2π e

− (s−μ)2
2σ2 . It is easily seen that the above

expression for ∂V (sj)
∂pij is a monotonically increasing func-

tion of pij for all i = 1, 2, . . . ,M and j = 1, 2, . . . , L.
Therefore, from (46), we have

p1j = · · · = pMj, j = 1, . . . , L. (48)

The above result implies that at a local optimum, using
the Gaussian approximation, the power levels (for each
quantization region) for all channels are identical, which
is identical to the EPPC scheme. With a slight abuse of
notation, denote pj = pij, j = 1, . . . , L. The we have sj =
c′ − log(pj) and the vector quantization problem (45) can
be converted into the scalar quantization problem below
with quantization thresholds s1, . . . , sL:

min{p1>···>pL≥0}V (s1)

s.t.
L−1∑
j=1

pj(V (sj+1)−V (sj))+pL(1−V (sL) + V (s1))=Pav.

(49)

After employing the corresponding KKT necessary opti-
mality conditions and simplifying, we have the system of
L nonlinear equations below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
j=1

pj(V (sj+1)−V (sj)) + pL(1 − V (sL) + V (s1)) = Pav,

pj−1 = pj
(V (sj+1) − V (sj)

f (sj)
+ 1

)
, j = 2, . . . , L − 1

pL−1 = pL
(
1 − V (sL) + V (s1)

f (sL)
+ 1

)
.

(50)

When L is not large, one can solve the above equations
using optimization tools 1stOpt. When L is large (roughly
L ≥ 16), we can also use the EPPR approximation or
the ZPiOR approximation to solve them, as discussed in
the section on high Pav approximations. Table 1 below

Table 1 Proposed power allocation strategies

Number of channels M < 10 M ≥ 10

Optimal approach SPSA -

Approximation POHPA -

High Pav PFPPC (L ≥ 16, GA (L ≥ 16,

PFPPC+ZPiOR or
PFPPC+EPPR)

GA+ZPiOR or
GA+EPPR)

shows the applicability of various algorithms discussed so
far according to different ranges of M, L and high P av,
where “GA” denotes the Gaussian approximation based
algorithms.

Numerical results
To numerically illustrate the performance of the designed
power allocation strategies, we consider an M-parallel
(independent) Nakagami block-fading channels, which
characterizes a multicarrier OFDM system, with M par-
allel subchannels located at nonadjacent carrier frequen-
cies. Themean value of the gamma distributed fading gain
for each channel is assumed to be inversely proportional
to the square of the wireless propagation distance d, and
the required transmission rate is taken to be r0 = 0.25 nats
per channel use. Outage performance with full CSI at the
transmitter is obtained with the optimal power allocation
results presented in [3]. It should be noted that the results
illustrate the “real outage” performance of the proposed
algorithms, where the power codebook designed via the
algorithms is used to obtain the average outage probabil-
ity over a large number of Monte-Carlo simulated channel
realizations. As a result, the average power required for a
given real outage may not strictly be the same as the orig-
inal average power based on which the power codebook
is designed. However, for a given algorithm, the graphs
can and should be used to determine the minimum outage
probability obtainable for a given average power and vice
versa.

Experiment 1. The first experiment examines the per-
formance of POHPA. Figure 7 compares the outage per-
formance of SPSA, an exhaustive search over the space
of all possible power allocation policies implementing the
power ordering (PO) approximation only, and POHPA
with 1 bit feedback for two channels case (d1 = 40m, d2 =
60m, m1 = m2 = 0.5). It can be observed that when
Pav is small, the performance of these three methods have
negligible difference, while when Pav is large, SPSA is
slightly better than PO and POHPA. Figure 8 shows the
outage performance of SPSA and POHPA for a higher
dimensional case (four channels case, d1 = 30m, d2 =
40m, d1 = 60m, d2 = 70m, m1 = m2 = m3 = m4 = 1).
Again, it can be seen clearly that with identical number
of feedback bits, the outage probability gap between SPSA
and POHPA gradually increases as Pav increases. From
Figures 7 and 8, it seems that in a higher dimensional
space (larger number of channels), with the same num-
ber of feedback bits, the outage probability gap between
the two methods is bigger than the one in a low dimen-
sional space, especially in high Pav. And with the same
value of M, as the number of feedback bits increases, this
gap seems to decrease, as shown in Figure 8. This can be
explained due to the fact that to achieve a fixed outage
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Figure 7 Outage performance comparison between SPSA, PO, and POHPA for two channels 1 bit feedback (m1 = m2= 0.5).

probability, a larger number of feedback bits requires
less Pav.

Experiment 2. This experiment tests the performance
of suboptimal scheme HPavA (namely, PFPPC). Figure 9
compares the outage performance of PFPPC approxima-
tion with its optimal case (POHPA) for two channels
(d1 = 40 m, d2 = 60 m) with 1 bit feedback (m1 =
m2 = 0.5). The striking observation in Figure 9 is
that when Pav ≤ 32 dB, POHPA only slightly outper-
forms PFPPC, while when Pav > 32 dB, the perfor-
mance of PFPPC and POHPA almost overlaps each other

(i.e., the performance of PFPPC is very close to its opti-
mum), indicating that PFPPC is an efficient near-optimal
scheme for POHPA especially at high Pav. In addition,
Figure 10 illustrate the efficiency of using PFPPC+EPPR
and PFPPC+ZPiOR schemes for HPavA (PFPPC) at large
number of feedback bits. As shown in Figure 10, with
4 bits of feedback (16 regions), PFPPC with ZPiOR
approximation (PFPPC+ZPiOR) achieves almost equiv-
alent performance to PFPPC with EPPR approximation
(PFPPC+EPPR), and both schemes are very close to their
optimal case (PFPPC). This result illustrates the fact that
ZPiOR can be combined with PFPPC as a computationally
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Figure 8 Outage performance comparison between SPSA and POHPA for four channels (m1 = m2= m3= m4= 1).
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Figure 9 Outage performance of HPavA (PFPPC) scheme (M = 2,B = 1,m1 = m2= 0.5).

simpler alternative to PFPPC+EPPR for large number of
feedback bits.

Experiment 3. The third simulation, as illustrated
in Figure 11 for four channels case (d =[30m, 40m,
60m, 70m] and m1 = m2 = m3 = m4 = 0.5),
studies the effect of increasing the number of feedback bits
on the outage performance using the proposed schemes.
For comparison, the performance of the optimal power

control policy with full CSI [3] is also shown. Instead
of comparing the performance with the POHPA scheme,
we plot the outage probabilities of its computationally
efficient near-optimal schemes (PFPPC and its variants).
With a small number of bits (1 bit and 2 bits) of feed-
back, PFPPC can be implemented by using the optimiza-
tion software 1stopt, and with 4 bits of feedback (L =
16), we plot the performances of PFPPC+ZPiOR instead.
The important observation from this figure is that the
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Figure 10 Outage performance of PFPPC+EPPR and PFPPC+ZPiOR schemes with 4 bits feedback for two channels andm1 = m2= 1
(ρ > 1).
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Figure 11 Effect of increasing feedback bits on outage performance for four channels (m1 = m2= m3= m4= 0.5).

introducing one extra bit of feedback substantially reduces
the gap with the full CSI performance and only a few
bits of feedback can eliminate most of the gap with the
full CSI performance. For example, at an outage probabil-
ity of 10−2, with 4 bits of feedback, there is only around
2.5 dB power loss compared to the full CSI case. This con-
firms that power allocation with limited feedback (only
with a few feedback bits) can provide a dramatic per-
formance advantage over no CSI (channel non-adaptive
power allocation across all channels).

Figure 12 depicts the diversity behavior of the proposed
outage minimization scheme POHPA using the derived
bound given in (39) for four channels with m1 = m2 =
m3 = m4 = 0.5. In high Pav, the outage performance of
the PFPPC scheme is very close to optimum (POHPA),
thus here we plot the performance of the computationally
efficient PFPPC scheme instead of POHPA. We also use
(28) to approximate the outage expression when the out-
age probability ≤ 10−10. As we can see from Figure 12,
the derived bound captures the slope of outage behavior
in high Pav extremely well.

Experiment 4. Figure 13 shows the effect of the fad-
ing parameter m on the outage performance. It depicts
the outage performance with 4 bits of feedback over
six Nakagami fading channels with different values of
the fading parameter: m = 0.5, m = 1, and m = 2 (here
we use identical fading parameter for each channel, i.e.,
m1 = · · · = m6 = m, and d =[20, 30, 40, 60, 70, 80]). It can
be noticed that as m increases, i.e., the fading sever-
ity decreases, significant performance gains can be easily

observed. To achieve a target outage probability 10−2,
4 bits of feedback with m = 2 provides around 2.65
and 1.18 dB improvements over 4 bits of feedback with
m = 0.5 andm = 1, respectively, as measured by the SNR
gap with respect to their respective full CSI performances.

Experiment 5. Figure 14 compares the outage perfor-
mance between the PFPPC scheme and the Gaussian
approximation (GA) for four channels case (m1 = m2 =
m3 = m4 = 0.5). It can be seen very clearly that the
PFPPC scheme outperforms GA, the benefit of the PFPPC
scheme becoming more pronounced as Pav increases. For
instance, with the same feedback bits, at an outage prob-
ability of 10−3, PFPPC with 1 bit requires roughly 7.8 dB
less power than GA does; and PFPPC with 2 and 4 bits
feedback provide around 5.6 and 2.3 dB power savings
over GA, respectively. Even with only with 1 bit of feed-
back, PFPPC can achieve a better performance than GA
with 2 bits of feedback in high Pav. These results indi-
cate that the POHPA (with the PFPPC approximation)
can achieve remarkable performance advantage over GA,
especially in high Pav. However, when the number of
channels is large, POHPA becomes computationally pro-
hibitive. And in this case, GA is an efficient alternative,
which is consistent with similar observations (for MIMO
settings) in [28].

Figure 15 illustrates the outage probability over large
number of channels (16 channels) using GA, with the val-
ues of distances d1, . . . , d16 randomly obtained (with a
uniform distribution) from the range [20m, 100m] and
different identical fading parameters (m1 = · · · = m16 =
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Figure 12 Bound on diversity order for L = 2 and L = 4with PFPPC scheme (M = 4,m1 = m2= m3= m4= 0.5).

m) m = 0.5 and m = 2, respectively. We again see
that only a few bits of feedback are required to close the
gap with the performance with full CSI. For instance, to
achieve a target outage probability 10−2, with m = 2, the
power consumption gap between 10 bits of feedback (less
than one bit per channel) and its full CSI based counter-
part is only about 2.4 dB, while with m = 0.5, the gap is
2.8 dB. On the other hand, as m decreases, i.e., the fading
severity increases, the outage performance of the limited
feedback schemes deteriorates as expected.

Conclusions
In this article, we have derived a simulation based
optimization algorithm using SPSA and presented var-
ious low-complexity sub-optimal outage minimization
algorithms via optimal power allocation with finite-rate
or quantized channel feedback for an M-parallel block-
fading channels under a long term average power con-
straint. Numerical results illustrate the effectiveness of
these algorithms via their outage performance in compar-
ison with the performance of the optimal power allocation
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Figure 13 Effect of the fading parameter m on outage performance for six channels.
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Figure 14 Outage performance comparison between POHPA and GA (M = 4,B = 1,2,4 bits,m1 = m2= m3= m4= 0.5).

with full CSI, and show that only 4 bits of feedback close
the gap with the outage performance of the full CSI algo-
rithm substantially for M = 4 or M = 6. For a large
number of channels (M = 16), our Gaussian approxima-
tion based algorithm performs approximately within 2.8
dB (SNR gap) of the full CSI based algorithm at an out-
age probability of 10−2 with less than 1 bit of (broadcast)
feedback per channel when all channels undergo severe
Nakagami fading with identical fading parameterm = 0.5.
Future study includes extension of these results to corre-
lated fading channels, consideration of noisy or erroneous
feedback as investigated in [29] and quantized CSIT based
power allocation to more general optimization problems
such as the service-outage based power and rate allocation
in [15].

Endnote
aA flat fading channel can be expressed as a complex-
baseband model. However, according to the Appendix
B.4.2 of ([19], pp. 527–528), one way to derive the capac-
ity of a complex-baseband channel is to think of each user
of the complex channel as two uses of a real channel.
Thus, we only need to consider a real-baseband model,
i.e., (1), and then multiply 1/2 at the maximum mutual
information with unit nats per real dimension, as in (2).

Appendix 1
Proof of Lemma 1
Proof. The proof is similar to [9,12]. For all j, 1 ≤ j ≤

L − 1, P(h) = Pj, if h ∈ Rj, let R∗
j be the set of all

h such that P
∑
j+1 < (P∗(h))

∑
≤ P

∑
j , we need to prove

that R∗
j = Rj. Assume the contrary, that R∗

j \Rj is a

non empty set (\ denotes the set subtraction operation),
i.e., if h ∈ R∗

j \Rj, then h ∈ R∗
j and h �∈ Rj. And

we can partition the set R∗
j \Rj into two subsets R−

j =
R∗

j \Rj
⋂∑j−1

k=1Rk and R+
j = R∗

j \Rj
⋂∑L

k=j+1Rk . If
the set R−

j has nonzero probability, then we can con-
struct a new scheme by assigning all elements of this set
to Rj instead. Since ∀h ∈ R−

j ,P∗(h)
∑

≤ P
∑
j , such rear-

rangement achieves the same outage probability but with
less average power due to P

∑
j < P

∑
k , 1 ≤ k ≤ j − 1,

which is in contradiction with the optimality of the opti-
mal solution P and R. On the other hand, the set R+

j is
also an empty set, otherwise, we can easily see that this
set is in outage (since ∀h ∈ R+

j , (P∗(h))
∑

> P
∑
j+1), thus

we have larger overall outage probability, which is also a
contradiction. Therefore, we have R∗

j ⊆ Rj. We also can
similarly prove R∗

L ⊆ RL as [9] did, omitted due to space
limit. Since

⋃L
j=1R∗

j = ⋃L
j=1Rj, we can conclude that

R∗
j = Rj,∀j.

Appendix 2
Proof of Theorem 1
Proof. We introduce μ as the Lagrange multiplier asso-

ciated with the average power constraint. The Lagrangian
can be written as

J(P,μ) = F ′(P1) + μ

⎡
⎣L−1∑

j=1

( M∑
i=1

pij

)
(F ′(Pj+1) − F ′(Pj))

+
( M∑

i=1
piL

)
(1 − F ′(PL) + F ′(P1)) − MPav

]
.

(51)
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Figure 15 The outage performance ofM = 16 channels with GA (m = 0.5 andm = 2).

Setting the first-order partial derivatives to zero (i.e.,
∂J

∂pij∗ = 0, i = 1, . . . ,M, for j = 1, . . . , L), produces

∂J
∂pi1∗ =

(
1 − μ

M∑
i=1

pi1 + μ

M∑
i=1

piL

)
∂F ′(P1)

∂pi1∗

+ μ(F ′(P2) − F ′(P1)) = 0,

∂J
∂pij∗

= μ

[( M∑
i=1

pi,j−1−
M∑
i=1

pij

)
∂F ′(Pj)

∂pij∗
+ (

F ′(Pj+1)

− F ′(Pj)
) ] = 0, 2 ≤ j ≤ L − 1

∂J
∂piL∗ = μ

[( M∑
i=1

pi,L−1 −
M∑
i=1

piL

)
∂F ′(PL)

∂pij∗

+ (1 − F ′(PL) + F ′(P1))

]
= 0. (52)

Since μ �= 0 (note that otherwise ∂F ′(P1)
∂pi1∗ = 0, i =

1, . . . ,M and since F ′(P1) is monotonically decreasing
with pi1, ∂F ′(P1)

∂pi1∗ = 0 implies pi1∗ = ∞, corresponding
to infinite average power which is impossible), F ′(P2) �=

F ′(P1), thus (1 − μ
∑M

i=1 pi1 + μ
∑M

i=1 piL)) �= 0.
Simplifying (52), we have,

∂F ′(P1)

∂p11∗ = · · · = ∂F ′(P1)

∂pM1∗ =− μ(F ′(P2) − F ′(P1))

1 − μ
∑M

i=1(pi1 − piL)
,

∂F ′(Pj)

∂p1j∗
= · · · = ∂F ′(Pj)

∂pMj∗
= − F ′(Pj+1) − F ′(Pj)∑M

i=1(pi,j−1 − pij)
,

2 ≤ j ≤ L − 1,

∂F ′(PL)

∂p1L∗ = · · · = ∂F ′(PL)

∂pML∗ = −1 − F ′(PL) + F ′(P1)∑M
i=1(pi,L−1 − piL)

.

(53)

Therefore, finally, we have

∂F ′(Pj)

∂p1j∗
= · · · = ∂F ′(Pj)

∂pMj∗
, j = 1, . . . , L. (54)

This completes the proof.

Appendix 3
Proof of Theorem 2
Proof. In the multiple infinite series representation (19),

for a sufficiently high Pav, we have
∣∣∣−miλiK

pij

∣∣∣ < 1, ∀i, j.
Thus from [30], the conditions of the convergence of the
power series (20) are satisfied.
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From (19), we have

F ′(Pj) = 1

�
(
1 +∑M

i=1mi
)
[ M∏
i=1

(
miλiK
pij

)mi
]

×
∞∑

n1=0
· · ·

∞∑
nM=0

[∏M
i=1(mi)ni

(
−miλiK

pij

)ni 1
ni!

]
(
1 +∑M

i=1mi
)
nτ

= 1

�
(
1 +∑M

i=1mi
)
[ M∏
i=1

(
miλiK
pij

)mi

]

×

⎛
⎜⎜⎝1 +

∑
{
n1,...,nM∈Z|∑M

i=1 ni=1
}T(n1, . . . , nM)

× 1∏M
i=1 p

ni
ij

+ · · · +
∑

{
n1,...,nM∈Z|∑M

i=1 ni=∞
}

× T(n1, . . . , nM)
1∏M

i=1 p
ni
ij

)
(55)

where T(n1, . . . , nM) =
∏M

i=1(mi)ni (−miλiK)ni 1
ni !(

1+∑M
i=1 mi

)
nτ

and Z is the

set of non-negative integers.
Since in the high Pav regime, using the approximation
1∏M

i=1 p
ni
ij

≈ 0 for
∑M

i=1 ni ≥ 1, we have

F ′(Pj) ≈ 1

�
(
1 +∑M

i=1mi
)
[ M∏
i=1

(
miλiK
pij

)mi
]
. (56)

From (56), we have, for i = 1, . . . ,M

∂F ′(Pj)

∂pij
≈ −mi

pij
1

�
(
1 +∑M

i=1mi
) M∏

i=1

(
miλiK
pij

)mi

.

(57)

Finally, by substituting (57) in Theorem 1, we have
mi
pij∗

≈ ml
plj∗

, i, l ∈[ 1,M] , i �= l, j = 1, . . . , L (58)

which completes the proof of Theorem 2.

Appendix 4
Proof of Lemma 2
Proof. In [24], Moschopoulos justified the uniform con-

vergence of the single infinite series in (21). With PFPPC,
(21) can be rewritten as

F ′(pj) =
M∏
i=1

(
λi

max(λi)

)mi ∞∑
n=0

δnγ
(
ρ + n, KmM max(λi)

pj

)
�(ρ + n)

(59)

where ρ = ∑M
i=1mi ≥ 0.5 (M ≥ 1,mi ≥ 0.5) and the

coefficients δn are obtained recursively by

δn+1 = 1
n + 1

n+1∑
l=1

[
δn+1−l

M∑
i=1

mi

(
1 − λi

max(λi)

)l
]
,

δ0 = 1, n = 0, 1, . . . . (60)

In high the Pav regime (Pav → ∞), r1 = K
p1 → 0, then with

PFPPC, the total average power allocated to the outage
regionRL,1 is

lim
r1→0

PL,1tot = lim
r1→0

pLF ′(p1). (61)

We have
lim
r1→0

pLF ′(p1) = lim
r1→0

pL
p1

p1F ′(p1)

= lim
r1→0

r1
rL

K

∏M
i=1

(
λi

max(λi)

)mi ∑∞
n=0

δnγ (ρ+n,r1mM max(λi))
�(ρ+n)

r1

= lim
r1→0

r1
rL

C
∞∑
n=0

δn(r1mM max(λi))ρ+n−1e−r1mM max(λi)

�(ρ + n)

= lim
r1→0

rρ1
rL

C′, (62)

where C = KmM max(λi)
∏M

i=1

(
λi

max(λi)

)mi
and C′ =

C (mM max(λi))ρ−1

�(ρ)
, and the last equality follows from the fact

that when n ≥ 1, the individual terms go to zero for any ρ,
as r1 → 0.
From the proof of Theorem 3 (see below), we have

p1 ≈ P′avρ
L−1+···+ρ+1

LρL−1+···+ρ+1cρL−2+···+ρ+1
= P′av

∑L−1
i=0 ρi

C1
(63)

where C1 = LρL−1+···+ρ+1cρL−2+···+ρ+1. Thus, we have

lim
r1→0

rρ1
rL

C′ = lim
Pav→∞

pL
pρ
1
C′Kρ−1 ≈ lim

Pav→∞ pL
Cρ
1C′Kρ−1

P′av
∑L

i=1 ρi
.

(64)

Since from the proof of Theorem 3, we have pL ≈ P′av
L ,

lim
r1→0

rρ1
rL

C′ ≈ lim
Pav→∞

Cρ
1C′Kρ−1

LP′av
(∑L

i=1 ρi
)
−1

. (65)

Thus, if
(∑L

i=1 ρi
)

− 1 > 0, we have

lim
r1→0

rρ1
rL

C′ = 0. (66)

This completes the proof of Lemma 2.



He and Dey EURASIP Journal onWireless Communications and Networking 2012, 2012:352 Page 21 of 24
http://jwcn.eurasipjournals.com/content/2012/1/352

Appendix 5
Proof of Theorem 3
Proof. In the high Pav regime, from Theorem 2, we have

F ′(Pj) ≈ c

p
∑M

i=1 mi
j

= c
pρ
j
, j = 1, . . . , L, (67)

since pij = mi
mM

pMj = mi
mM

pj using the same notation as
in Section ‘High average power approximation (HPavA)’.
Here c =

∏M
i=1(mMλiK)mi

�(1+ρ)
where ρ = ∑M

i=1mi. When
Pav → ∞, according to [13], all the quantization thresh-
olds approach zero, thus the length between any two
quantization thresholds approaches zero as well resulting
in the property that the total average power assigned to
each quantization region is asymptotically equal. Thus, we
have

pj(F ′(pj+1) − F ′(pj)) = P′av
L

, j = 1, . . . , L − 1

pL(1 − F ′(pL) + F ′(p1)) = P′av
L

(68)

where P′
av = MmM

ρ
Pav. Applying (67) to (68), we have for

j = 1, . . . , L − 1,

pj

(
c

pρ
j+1

− c
pρ
j

)
≈ P′av

L

1
pρ
j+1

≈
(
P′av
Lc

)
pj

+ 1
pρ
j
. (69)

It is clear to deduce that in the high Pav regime, forM ≥ 2

and M = 1, m ≥ 1, 1
pρ
j
compared to

(
P′av
Lc

)
pj is negligible,

thus (69) can be written as,

1
pρ
j+1

≈
(
P′av
Lc

)
pj

pj ≈ pρ
j+1

P′av
Lc

. (70)

The same approximation can be shown to hold true for
M = 1, 0.5 ≤ m < 1 by contradiction, details are omitted
due to space restrictions. Thus, we have,

p1 ≈ pρ
2
P′av
Lc

≈
(
pρ
3
P′av
Lc

)ρ P′av
Lc

= pρ2

3

(
P′av
Lc

)ρ+1

≈ · · · ≈ pρL−1

L

(
P′av
Lc

)ρL−2+···+ρ+1
. (71)

Since limPav→∞ F ′(p1) = 0, from (68) we have,

pL(1 − F ′(pL)) = P′av
L

pL
(
1 − c

pρ
L

)
≈ P′av

L
. (72)

Note that c
pρ
L
is negligible (→ 0) when Pav go to infinity,

thus, we have,

pL ≈ P′av
L

. (73)

Applying (73) to (71), we have

p1 ≈
(
P′av
L

)ρL−1 (
P′av
Lc

)ρL−2+···+ρ+1

= P′avρ
L−1+···+ρ+1

LρL−1+···+ρ+1cρL−2+···+ρ+1
. (74)

Since,

Pout = F ′(P1) ≈ c
pρ
1

≈ c
(
LρL−1+···+ρ+1cρL−2+···+ρ+1

P′avρ
L−1+···+ρ+1

)ρ

= LρL+···+ρcρL−1+···+ρ+1

P′ avρ
L+···+ρ

=
(

ρL
MmM

)ρL+···+ρ

cρL−1+···+ρ+1

P av
ρL+···+ρ

,

(75)

we have,

d = − lim
Pav→∞

logPout
logPav

≈ − lim
Pav→∞

log
((

ρL
MmM

)ρL+···+ρ

cρL−1+···+ρ+1
)

logP av

+ lim
Pav→∞

logPρL+···+ρ
av

logPav

= 0 + ρL + · · · + ρ =
L∑
j=1

ρj. (76)

This completes the proof of Theorem 3.

Appendix 6
Proof that {zi − E[ zi] } satisfies the Lindeberg condition
Proof. Given a random variable fi ∼ Gamma(mi,βi)

(wheremi is the fading parameter satisfying 1
2 ≤ mi < ∞)

and E[ fi]= miβi = 1, or βi = 1
mi
, we have Var(fi) =

miβ
2
i = βi. So 0 < Var(fi) ≤ 2 < ∞.
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Let zi = log(fi), thus the moment-generating function
of random variable zi is

Mzi(t) = E(etzi) = E(etlog(fi)) = E((fi)t)

=
∫ ∞

0
f ti

f mi−1
i

�(mi)β
mi
i

e−
fi
βi dfi

= �(mi + t)βmi+t
i

�(mi)β
mi
i

∫ ∞

0

f t+mi−1
i

�(mi + t)βmi+t
i

e−
fi
βi dfi

= �(mi + t)βmi+t
i

�(mi)β
mi
i

= �(mi + t)βt
i

�(mi)
. (77)

Then,

E(zi) = M(1)
zi (0)

=
d
(

�(mi+t)βt
i

�(mi)

)
dt

(0)

=
(

�(mi + t)′βt
i

�(mi)
+ �(mi + t)βt

i log(βi)

�(mi)

)
(0)

= �(mi + t)′(0)
�(mi)

+ log(βi)

= (ψ(mi + t)�(mi + t))(0)
�(mi)

+ log(βi)

= ψ(mi) + log(βi),
(78)

where ψ(mi) denotes the digamma function [31].
Similarly,

E(z2i ) = M(2)
zi (0)

=
d2
(

�(mi+t)βt
i

�(mi)

)
dt2

(0)

=
(

�(mi + t)′′βt
i

�(mi)
+ 2

�(mi + t)′βt
i log(βi)

�(mi)

+ �(mi + t)βt
i log

2(βi)

�(mi)

)
(0)

= �(mi+t)′′(0)
�(mi)

+2
�(mi + t)′(0) log(βi)

�(mi)
+log2(βi)

= �(mi + t)′′(0)
�(mi)

+2
�(mi + t)(0)log(βi)

�(mi)
+log2(βi)

= �(mi + t)′′(0)
�(mi)

+ 2ψ(mi) log(βi) + log2(βi)

= (ψ(mi+t)′�(mi + t)+ψ(mi + t)�(mi + t)′)(0)
�(mi)

+ 2ψ(mi) log(βi) + log2(βi)

= (ψ1(mi+t)�(mi + t)+ψ(mi + t)2�(mi + t))(0)
�(mi)

+ 2ψ(mi) log(βi) + log2(βi)

= ψ1(mi) + ψ(mi)
2 + 2ψ(mi) log(βi) + log2(βi)

= ψ1(mi) + (ψ(mi) + log(βi))
2, (79)

where ψ1(mi) denotes the trigamma function [31].
Let σ 2

i = Var(zi), then we have

σ 2
i = E(z2i ) − (E(zi))2

= ψ1(mi) + (ψ(mi) + log(βi))
2 − (ψ(mi) + log(βi))

2

= ψ1(mi)

=
∞∑
n=0

1
(mi + n)2

. (80)

Since 1
2 ≤ mi < ∞, we can obtain,

0 <
1
m2

i
< σ 2

i =
∞∑
n=0

1
(mi + n)2

≤ ψ1

(
1
2

)
= π2

2
< ∞.

(81)

Since mi < ∞, there exists a large enough constant C̄ so
thatmi ≤ C̄ < ∞. From (81), we have

0 <
1
C̄2 < σ 2

i ≤ π2

2
< ∞. (82)

Let Xi = zi − E(zi), Sn = ∑n
i=1 Xi, σ 2

n = Var(Sn) =∑n
i=1 σ 2

i , then from (82) we have

σ 2
n =

n∑
i=1

σ 2
i > n

1
C̄2 . (83)

Thus, when n → ∞, we have

σ 2
n → ∞. (84)
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For every ε > 0, using Chebyshev’s Inequality, we can
obtain,

P(|Xi| > εσn) ≤ σ 2
i

ε2σ 2
n

≤ max
(
σ 2
i
)

ε2σ 2
n

=
π2

2
ε2σ 2

n
→ 0 as

n → ∞. (85)

Thus,

lim
n→∞

1
σ 2
n

n∑
i=1

E
(
X2
i I{|Xi| > εσn}

)

= lim
n→∞

1
σ 2
n

n∑
i=1

σ 2
i
1
σ 2
i
E(X2

i I{|Xi| > εσn})

≤ lim
n→∞max

(
1
σ 2
i
E(X2

i I{|Xi| > εσn})
)

1
σ 2
n

n∑
i=1

σ 2
i

= lim
n→∞max

(
1
σ 2
i
E(X2

i I{|Xi| > εσn})
)

≤ lim
n→∞ C̄2 max

(
E(X2

i I{|Xi| > εσn})
)

(86)

where I(A) denotes the indicator function taking the value
1 if the event A is true and taking the value 0 otherwise.
Let Yn denotes the random variable X2

i I{|Xi| > εσn}, then
Yn is nonzero if and only if |Xi| > εσn. Since from (85),
we know that this event has probability approaching zero
as n → ∞, we can also conclude that Yn

P−→ 0, where
P−→ denotes convergence in probability. Since |Yn| ≤ X2

i
and E(X2

i ) = σ 2
i < ∞, by applying the Dominated Con-

vergence Theorem, we can conclude that E(Yn) → 0,
namely,

E(X2
i I{|Xi| > εσn}) → 0. (87)

Applying the above result into (86), we have

lim
n→∞

1
σ 2
n

n∑
i=1

E(X2
i I{|Xi| > εσn}) = 0. (88)

Thus, the Lindeberg condition holds, and Xi satisfies the
Central limit theorem.
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