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Abstract 
 

Online games are a very important class of distributed interactive applications. Their success is 
heavily dependant on the level of consistency that can be maintained between participants 
communicating in the virtual world. Achieving a high level of consistency usually involves the 
transmission of a large amount of network traffic. However, if the underlying network connecting 
participants is unable to process this traffic, then network latency will increase, which will in turn 
negatively impact on consistency. Many schemes exist which attempt to reduce network traffic, 
and thus reduce the effect of network latency on the interactive application. However, applications 
that employ these schemes tend to do so with little knowledge of the underlying network 
conditions, and assume a worst-case scenario of limited bandwidth. Such an assumption can 
actually cause these latency reduction schemes to perform sub-optimally, and ironically introduce 
more inconsistency than they reduce. Hence, it is important that online game applications become 
aware of network conditions, such as available bandwidth. Existing methods of estimating 
bandwidth operate by analysing trends in one-way latency, and require that extra data be 
transmitted between nodes in order to capture the latency trends. Such an approach does not suit 
online games, as the extra data requirements could increase network latency, and affect the ability 
of the application to scale to multiple participants. To deal with this issue, this paper proposes a 
method by which online games can unobtrusively track one-way network latency. This method 
requires no time-stamping information to be transmitted between participants and operates using 
data already being transmitted as part of the online game application, meaning that its impact on 
the network is minimal. NS2 simulations demonstrate that the trends collected by this method can 
be used to estimate bandwidth under certain conditions.  
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1. Introduction 
 
Online games have become extremely popular, both socially and commercially in recent years. At 
their core, they involve multiple participants collaborating and competing within a virtual 
environment, even though those participants may be located at geographically separate locations. 
Popular examples of online games include first person shooters, such as Counter Strike, and massively 
multiplayer online games, such as World of Warcraft.  
 
In order for interaction between participants within the virtual environment to be fruitful, it is 
important that a sufficient level of consistency is maintained between participants in real time. 
Consistency is the degree to which each participant experiences the same worldview [1, 2]. One of the 
key issues limiting the consistency that can be achieved between participants in online games is 
network bandwidth. Network bandwidth is a measure of maximum throughput of traffic on the 
network. If the traffic generated by an application exceeds the bandwidth, then data will need to be 
buffered or dropped until the flow of data decreases [3]. This buffering can occur on a dedicated 
network node, such as a router, or on the computer hosting the application itself. Latency, or the time 



taken to transmit a packet from one application to another across a network, and loss of data will 
increase every time the bandwidth is exceeded.  
 
Many application layer techniques exist which attempt to improve consistency by reducing the latency 
caused by overloaded network nodes [4, 5]. They do this by introducing an acceptable level of one 
type of inconsistency, which causes a reduction in network traffic, with the aim of improving overall 
consistency. A popular example of such a technique is dead reckoning [6]. Under this approach, each 
participant maintains a simplistic model of their own position information. The behaviour of this 
model is determined by a parametric model of the actual participant position. The spatial difference 
between the actual position and the model position is continually calculated. When this value exceeds 
a predefined spatial error threshold value, the parameters describing the parametric model are updated 
to reflect the most current behaviour of the actual entity. A network message is transmitted at this 
time. Upon receipt of this message, each receiving participant then uses the data in this message to 
update the remote position of the participant entity, and to predict the behaviour of a remote 
participant until the next update.  
 
The dead reckoning approach is a standard packet reduction technique in online games. Recent work, 
however, has demonstrated that if techniques such as dead reckoning are not carefully tuned to match 
the characteristics of the network connecting participants, then they can actually introduce more 
inconsistency than they reduce [7]. The characteristics of the network are governed by many factors, 
including the number of users on the network at any one time and the bandwidth of each node on the 
network. These characteristics govern an optimal region of packet transmission rate for the online 
game. Transmitting at a rate above this region means that network latency will increase due to 
overloaded network hardware, while transmitting at a rate below this optimal region means that 
network latency cannot be improved, and will remain constant. If a packet reduction scheme operates 
below the optimal region, then inconsistency is unnecessarily introduced, with no subsequent 
improvement in network latency.  
 
If a packet reduction technique is to perform optimally, it must continually adapt to the characteristics 
of the network, in particular, network bandwidth. Techniques that measure network bandwidth operate 
by analysing trends in one-way network latency. Typically, this requires a dedicated standalone 
application, or extra data to be transmitted as part of an existing application. The extra data 
requirements could negatively impact on network latency, and reduce the ability of the online game to 
scale to multiple participants. To deal with this issue, this paper proposes a novel method of 
unobtrusively tracking one-way network latency trends in online games. This method does not require 
any clock synchronisation data to be transmitted between participants, and uses data already being 
transmitted as part of an existing online game application. It’s impact on the network beyond that 
which the online game application is already incurring is minimal. The one-way latency trend 
information collected from this technique can then be used to estimate network bandwidth under 
certain conditions.  
 
The rest of the paper is structured as follows. In Section 2, a short review of bandwidth estimation 
techniques is given. Section 3 describes a method of measuring network latency trends with minimal 
impact on the underlying network. Results collected from NS2 simulations of the method are 
presented in Section 4, and show that relative latency measures accurately match the trends in actual 
network latency.  It is also demonstrated that the relative latency measures are useful in estimating 
bandwidth in certain conditions. The paper finishes in Section 5, with some conclusions and a 
description of future work. 
 

2. Bandwidth Estimation Techniques 
 
Accurate bandwidth calculation requires direct access to key nodes on a network, such as network 
routers. As access to these nodes is restricted and is typically not available to the end user, work has 
concentrated on means of estimating bandwidth from the application layer only. At this layer, 
techniques operate by transmitting a group of packets from an application on one node on the network 



to another application on another node. The packets are transmitted at specific intervals. The 
disturbance of the arrival intervals, due to network latency, relative to the sending intervals is analysed 
by the application on the receiving node. Bandwidth is inferred from the nature of this disturbance. 
There are two main categories of bandwidth estimation techniques [8]. Passive approaches estimate 
bandwidth off-line from trace data collected during the run-time of the application, while active 
probing approaches attempts to measure bandwidth during application run-time.  
 
One of the earliest active probing techniques is the “Packet Pair” technique [9]. Under this approach, 
two packets are transmitted in rapid succession from the sending node. The dispersion in the arrival 
times of the packets measured at the receiving node gives a measure of the link with lowest capacity 
between the two nodes. The ToPP (Train of Packet Pairs) method operates by transmitting a series of 
packet pairs [10]. The packet transmission interval is decreased linearly, until a packet rate is found 
that incurs a significant dispersion in packet arrival time. This dispersion is used to measure link 
capacity, as well as end-to-end available bandwidth. The SloPS (Self Loading Periodic Streams) 
technique operates in similar manner to ToPP, and is used to measure end-to-end available bandwidth 
only [11]. SLoPS, operates by transmitting a stream of 100 packets, each of which is 96 bytes long, 
with an equal packet interval, which is initially set to 100μsec. The trend in the one-way delay of these 
packets is analysed. If the bandwidth requirement of the stream is greater than the lowest available 
network bandwidth on the link connecting the two nodes, packets will need to be queued, and there 
will be an increasing trend in the one-way network delays. Otherwise, there will be a constant latency 
trend (taking jitter into account). Depending on the trend, a rate with a greater or smaller packet 
interval is chosen, and the network is again tested. This process continues until two rates are found, 
such that the difference between the two rates is an error value set by the user. The lower rate is the 
highest rate that caused a constant latency trend, while the higher rate is the lowest rate that caused an 
increasing trend. These values give the range in which available end-to-end bandwidth falls.  
 
All the active probing techniques outlined above are currently implemented as stand alone 
applications, and require that extra data, beyond typical application data, be transmitted in order to 
operate. Although applications such as pathChirp attempt to improve the efficiency of the SloPS 
technique by reducing the amount of data that needs to be transmitted, it still requires extra data 
beyond necessary application data, to be transmitted [8]. These extra data requirements do not suit 
latency sensitive applications, such as online games, and could negatively impact on the experience of 
participants in the game, and the ability of the application to scale to multiple participants. To deal 
with this issue, a novel technique for analysing trends in the one-way delay experienced by online 
game traffic is outlined in the next section. This method is unobtrusive, as it uses data that is already 
being transmitted as part of the online gaming application and also avoids the need to send clock 
synchronisation information in each packet. It’s impact on the network beyond that which the 
application is already incurring is therefore minimal.    
 

3. Relative Latency  
 
In this section, a method of measuring trends in network latency, which is referred to as relative 
latency, is described. Consider the case where a client/server architecture is employed in an online 
game. This is currently one of the most popular architectures in commercial online games. In a 
client/server scenario, the typical interval between packet transmissions from each client to the server 
is usually a constant value between 0.05s to 0.025s (20 to 40 packets per second), with a typical packet 
size of 60 bytes. On the other hand, the packet interval from the server to a client is typically a 
constant value between 0.1s and 0.06s (10 to 15 packets per second), while packet size is, on average, 
100 bytes [12, 13]. 
 
Under the relative latency calculation method, each client initially transmits a “Join Request” packet to 
the server, requesting that they can take part in the current game. Included in this packet, amongst 
other game specific information such as player name and location, is the client’s intended rate of 
packet generation (for example, 30 packets per second). Upon accepting the client’s request, the server 
responds with a “Request accepted” packet, which also includes its own intended rate of packet 



generation, amongst other game specific information. Both the client and server record the time when 
each of these initial packets was received according to their own local clock. This information about 
the intended transmission rate is the only extra data required to measure relative latency.  
 
Following this initial connection negotiation, both the client and server transmit game specific data, 
such as position and current action, as normal, at the rate specified in the original connection 
negotiation message. As both client and server know the packet transmission rate of the other, each 
can both predict when a packet should arrive. If a packet arrives later or earlier than the predicted time, 
then latency has increased or decreased relative to the initial latency value. If the packet arrives at the 
expected time, then latency has remained constant, so relative latency remains the same. In this way, 
variation in latency relative to the first latency value, or relative latency, is calculated, without the 
need for any time synchronisation information to be sent between participants. 
 
An example of the approach described above in action can be seen in Figure 1 (a). Here, it can be seen 
how the initial “Join Request” packet is transmitted to the server from the client. This packet contains, 
amongst other game specific data, information detailing that the client’s transmission rate is 1 packet 
per second. The server then knows to expect a packet from that client every second. The arrival time 
of each subsequent packet is compared to the expected time of that packet in order to calculate relative 
latency. For example, Packet 1 arrives when expected, so relative latency remains at zero. However, 
Packet 2 is delayed by a 1s, leading to an increase in relative latency. Figure 1(b) shows relative 
latency and actual one-way latency for the packets transmitted in Figure 1 (a). It can be seen how the 
trends in latency given by the relative latency measure match that of the actual latency value.  
 
It is important to outline the main benefit of removing the clock synchronisation requirement for 
latency trend analysis. Traditionally, to calculate one-way latency, clocks must first be synchronised. 
A time value then needs to be transmitted with each packet. If this time value is transmitted using a 4 
byte integer, then the size of a 60 byte packet would increase by 6.66%. Although this seems minimal, 
it would mean that a client sending at a rate of 30 packets per second would be required to transmit an 
extra 120 bytes per second, or the equivalent of two extra packets per second, to the server, just to 
calculate one-way latency. A server sending packets at a rate of 10 PPS would be required to transmit 
an extra 40 bytes per second to each client. Given that current online game servers can host hundreds, 
or even thousands, of players, the savings in bandwidth and overall cost to the server provider could 
be considerable.  

 
To analyse the performance of the technique described in the section, a number of simulations were 
conducted using a networking simulator, known as NS2. The results collected from these simulations 
are described in the next section 
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Figure 1(a). The variation in packet arrival rates 
relative to the first packet latency is calculated 

Figure 1(b). The trends in relative latency 
match that of actual latency. 

 



4. NS2 Simulations and Results 
 
A number of simulations were conducted using a networking simulator known as NS2. This 
networking simulator has been in constant development and revision for many years, and is currently 
the basis for much research in the area of networking [14]. Using NS2, a typical online game with a 
client/server architecture was simulated. Packet size for the client to server connection was set to 60 
bytes with a packet interval of 0.033ms, resulting in a total transmission rate of 1.8 kilobytes/s per 
client. Packet size for the server to client connection was set to 100 bytes, with a packet interval of 
0.1ms, resulting in a total rate of 1 kilobytes/s to each client. For simplicity, a single server and two 
clients were simulated. An overview of the network connecting the participants is shown in Figure 2. 
Latency was set to 0ms, with jitter of 20ms. The amount of bandwidth on the network was varied on 
the bottleneck link between the server and the clients.  
 Client 1 
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 Figure 2. Overview of simulation network
 
 
In the first simulation, only Client 1 transmitted data to the server. The downstream bandwidth was set 
to 2.5 kilobytes/s on the server side (connection from Node 1 to Node 2 in Figure 2). One-way latency 
using synchronised clocks and one-way relative latency was recorded, and is shown in Figure 3(a).  
Here we can see that, as the data being transmitted by Client 1 does not exceed the network 
bandwidth, latency remains constant, taking jitter into account. Minimum latency is 0.024s, as this is 
the length of time a 2.5 kilobyte/s link takes to process a 60 byte packet. It can be also seen how the 
relative latency accurately tracks the trends in the actual latency values. For further clarity, Figure 3(b) 
shows a zoomed in section of Figure 3(a). Again, it can be seen how the relative increases and 
decreases can be accurately tracked, without the need for transmission of clock synchronisation 
information.   
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Figure 3(a) Latency trends with a total rate of 1.8 kilobytes/s and a 
bandwidth of 2.5 kilobytes/s (b) Zoomed in section of Figure 3(a) 



A second simulation was conducted to analyse how the relative latency tracking scheme reacts to 
varying latency trends. In this case, the bottleneck link bandwidth was again set to 2.5 kilobytes/s 
Client 1 joined the server as normal at time 0, and transmitted 60 byte packets with an interval of 
0.033 ms. At a time of 10 seconds, Client 2 joins the server, and begins transmitting data at the same 
rate and packet size as Client 1. At 10.5 seconds, Client 2 leaves the server, and stops transmitting 
data. During the time interval when both clients are sending data to the server, a total of 3.6 kilobyte/s 
is transmitted. This is greater than the available bandwidth on the bottleneck link, and causes network 
latency to increase. This is clearly evident from Figure 4. Here, latency and relative latency are again 
plotted against time for the connection between Client 1 and the server. It is clear from Figure 4 how 
the relative latency trends accurately match the increasing network latency at time 10 seconds, and the 
decreasing network latency when Client 2 stops transmission at a time of 10.5 seconds.  Figure 5 
shows the latency trends calculated when bandwidth on the bottleneck link is set to 3.125 kilobytes/s. 
Again, it can be seen how the relative latency measure accurately captures all the nuances of the actual 
latency value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An increasing trend in one-way network latency, such as those seen in Figures 4 and 5, is an indication 
that one of the nodes on the network is currently being overloaded. The nature of this trend can be 
used to provide an estimate of the available network bandwidth on the connection between the client 
and the server. In the next subsection, a method of estimating bandwidth from the nature of the trends 
in network latency is explored in further detail. 
 
4.1 Bandwidth Estimation 
 
Both the SloPS and ToPP approach use an iterative approach to determine bandwidth. Although they 
can quickly converge to an estimated bandwidth value, such an iterative approach is not suited to 
online games, which have very strict time constraints. In such a case, it is necessary to establish a 
relationship between the application’s packet transmission rate and the measured trends in network 
latency in real time.  
 
A relationship between network latency and transmission rates can be established using basic queuing 
theory. Consider a queuing system with a deterministic arrival rate and deterministic service rate, also 
known as a D/D/1 queuing system. In this case, if the arrival rate, RA, is greater than the service rate, 
RS, at a node, then messages will be added to a queue and delayed. In this case, the system is said to be 
unstable, and the queue length and delay will grow indefinitely. The increase in delay per packet, LP is 
given by: 
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The total increase in latency in a given time interval can be found by multiplying Equation (1) by the 
number of packets received during that interval. In a D/D/1 queuing scenario, the server node would 
process RS packets per second, meaning that any recipients connected to this node would also receive 
RS packets per second. The increase in latency over a second, as measured by one of these recipients, 
would be then be given by RSLP. Using some straightforward simplifications, the increase in latency 
per second, LS, can be found in terms of the arrival and services rate, RA and RS respectively, as shown 
in (2).    
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(2) 

In the simulations presented in the previous section, LS, can be easily calculated from the slope of the 
relative latency trend. As RA, the packet transmission rate, is already known, Equation (2) can be used 
to estimate the service rate of the bottleneck link, RS.  
 
To test the accuracy of Equation (2), a number of simulations were again conducted. The multiple 
client scenario as detailed in the previous section was again employed, resulting in a total transmission 
rate of 3.6 kilobytes/s. The bandwidth of the bottleneck link was varied. The slope of the network 
latency values over time was calculated within the region where network latency was increasing. 
Example results from these simulations are presented in Table 1.  
 
It is clear from Table 1 that bandwidth can be accurately estimated using only the slope information 
and total transmission information. However, it should be noted that this is only a relatively simple 
approach to estimating bandwidth, and does not consider the effect of cross traffic or varying queuing 
strategies of network nodes, for example. Improving the robustness of this estimation technique 
remains the focus of future work. 
 
Total Transmitted (RA) Slope (LS) Estimated Bandwidth (RS) Actual Bandwidth 

3.6 kilobytes/s 0.47916666 1.87500024 kilobytes/s 1.875 kilobytes/s 
3.6 kilobytes/s 0.30555654 2.49999643 kilobytes/s 2.5 kilobytes/s 
3.6 kilobytes/s 0.13194531 3.12499687 kilobytes/s 3.125 kilobytes/s 

 
Table 1. Bandwidth estimation from relative latency trends 

 
5. Conclusions 
 
Maintenance of an acceptable level of consistency between participants in an online game can require 
the transmission of a high level of network traffic. If this traffic is greater than the capacity of the 
nodes connecting participants, then latency will increase, causing a subsequent decrease in 
consistency. To deal with this issue, many techniques have been developed which reduce network 
traffic by lowering one level of consistency, with the result of reducing overall network traffic 
requirements.  
 
However, unless these techniques are carefully tuned, they can actually introduce more consistency 
issues than they solve. It is important, therefore, that applications employing these techniques become 
aware of the characteristics of the network in which they operate. This, however, can introduce a 
significant overhead in terms of extra data transmission requirements, which could in turn negatively 
impact on the performance of the online game. 



 
To deal with this issue, this work presented a novel method of detecting latency trends in online game 
traffic that avoids the traditional data requirements of one-way latency analysis. This technique is 
unobtrusive, as it operates using data that is already being transmitted as part of the online game 
application. It operates by predicting when a network packet should be received, and comparing this 
predicted value to when the packet is actually received. The result of this technique is a measure of 
relative latency, which is an accurate recreation of the trends in actual network latency values. 
Analysis of these trends can then be used by the online gaming application to estimate bandwidth in 
real time. 
 
Future work will investigate how this scheme could be employed in a real world gaming scenario, and 
will examine how it can be used to optimise the performance of packet reduction techniques, such as 
dead reckoning.  
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