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Although spatially varying coefficient (SVC) models have attracted considerable attention in applied

science, they have been criticized as being unstable. The objective of this study is to show that capturing the

“spatial scale” of each data relationship is crucially important to make SVC modeling more stable and, in

doing so, adds flexibility. Here, the analytical properties of six SVC models are summarized in terms of their

characterization of scale. Models are examined through a series of Monte Carlo simulation experiments to

assess the extent to which spatial scale influences model stability and the accuracy of their SVC estimates.

The following models are studied: (1) geographically weighted regression (GWR) with a fixed distance or

(2) an adaptive distance bandwidth (GWRa); (3) flexible bandwidth GWR (FB-GWR) with fixed distance

or (4) adaptive distance bandwidths (FB-GWRa); (5) eigenvector spatial filtering (ESF); and (6) random

effects ESF (RE-ESF). Results reveal that the SVC models designed to capture scale dependencies in local

relationships (FB-GWR, FB-GWRa, and RE-ESF) most accurately estimate the simulated SVCs, where RE-

ESF is the most computationally efficient. Conversely, GWR and ESF, where SVC estimates are naï vely

assumed to operate at the same spatial scale for each relationship, perform poorly. Results also confirm that

the adaptive bandwidth GWR models (GWRa and FB-GWRa) are superior to their fixed bandwidth

counterparts (GWR and FB-GWR). Key Words: flexible bandwidth geographically weighted regression, Monte
Carlo simulation, nonstationarity, random effects eigenvector spatial filtering, spatial scale.

尽管空间变异係数（SVC）模型已吸引了应用科学的大量关注, 但却仍被批评不够平稳。本研究的目标
在于展现, 捕捉各数据关系的“空间尺度”, 是让SVC模式化更为平稳的重要关键, 这麽做并可增加弹性。
本研究于此摘要六大SVC模型在尺度特徵化上的分析属性。本研究通过一系列的蒙特卡罗模拟实验检视
模型, 以评估空间尺度影响模型稳定度的程度, 及其SVC评估的精确度。本文研究下列模型：（1）距离

固定下的地理加权迴归（GWR）；（2）自适应距离的带宽（GWRa）；（3）固定距离下的弹性带宽
GWR（FB-GWR）；或（4）自适应距离带宽（FB-GWRa）；（5）特徵质空间过滤法（ESF）；以及（6）
随机效应 ESF （RE-ESF）。研究结果揭露 , 设计用来捕捉地方关系中的尺度依赖之SVC模型（FB-

GWR、FB-GWRa和RE-ESF）, 最正确地估计模拟的SVCs, 而REESF则在计算上最有效率。反之, SVC估

计被天真地假设在各关系中皆在相同的空间尺度上操作的GWR和ESF表现差劲。研究结果同时确认自适

应带宽GWR模型（GWRa和FB-GWRa）较其固定带宽的对照组（GWR和FB-GWR）而言更为优越。
关键词： 弹性带宽地理加权迴归, 蒙特卡罗模拟, 非平稳性, 随机效应特徵质空间过滤法, 空间尺度。

Aunque los modelos de coeficiente espacialmente cambiante (SVC) han atra�ıdo mucha atenci�on en ciencia

aplicada, se les critica de ser inestables. El objetivo del presente estudio es mostrar que la captura de la

“escala espacial” de cada relaci�on de datos es crucialmente importante para hacer el modelado del SVC

m�as estable y de ese modo agregarle flexibilidad. Se resumen en este artículo las propiedades analíticas de
seis modelos de SVC en t�erminos de su caracterizaci�on por escala. Los modelos son examinados a trav�es de
una serie de experimentos de simulaci�on de Monte Carlo para evaluar el alcance con que la escala espacial

influye sobre la estabilidad del modelo y en la exactitud de las estimaciones SVC. Se estudian los siguientes

modelos: (1) regresi�on geogr�aficamente ponderada (GWR) con una distancia fija, o (2) un ancho de banda

de distancia adaptable (GWRa); (3) ancho de banda flexible GWR (FB-GWR) con distancia fija, o (4)

anchuras de banda de distancia adaptable (FB-GWRa); (5) filtrado espacial eigenvector (ESF); y (6) efectos

Annals of the American Association of Geographers, 109(1) 2019, pp. 50–70 # 2018 American Association of Geographers
Initial submission, September 2017; revised submission, December 2017; final acceptance, February 2018

Published by Taylor & Francis, LLC.

http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2018.1462691&domain=pdf
http://orcid.org/0000-0001-7847-7560
http://orcid.org/0000-0003-0259-4079
http://orcid.org/0000-0003-4254-1780
http://orcid.org/0000-0002-0622-393X
http://orcid.org/0000-0002-3827-1012
http://orcid.org/0000-0001-5125-6450


aleatorios ESF (RE-ESF). Los resultados revelan que los modelos SVC dise~nados para captar las

dependencias de escala en las relaciones locales (FB-GWR, FB-GWRa, y RE-ESF) calculan con la mayor

exactitud los SVC simulados, donde REESF es el de mayor eficiencia computacional. Por el contrario,

GWR y ESF, donde ingenuamente se asume que las estimaciones operan a la misma escala espacial para

cada relaci�on, registran un desempe~no pobre. Los resultados tambi�en confirman que los modelos GWR del

ancho de banda adaptable (GWRa y FB-GWRa) son superiores a sus contrapartes de ancho de banda fija

(GWR y FB-GWR). Palabras clave: escala espacial, filtrado espacial eigenvector de efectos aleatorios, no-
estacionalidad, regresi�on geogr�aficamente ponderada con ancho de banda flexible, simulaci�on Monte Carlo.

S
patially varying coefficient (SVC) models are

used to investigate nonstationarity in response

to predictor data relationships in regression

models. Provided that relationship heterogeneity

exists, models output regression coefficient estimates

that vary across space. Estimated SVCs can be

mapped along with associated inference diagnostics

and thus provide a deeper understanding of a study’s

spatial relationships. As with spatial autocorrelation,

relationship spatial heterogeneity is a common prop-

erty of many geographical processes (see Goodchild

2004; Anselin 2010), although differentiating one

effect from the other can be difficult (e.g., Harris

et al. 2017). Various approaches have been devel-

oped for SVC regression modeling, the most notable

of which include (1) the spatial expansion method

(Casetti 1972; Jones and Casetti 1992), (2)

geographically weighted regression (GWR;

Brunsdon, Fotheringham, and Charlton 1996, 1998;

Fotheringham, Brunsdon, and Charlton 2002), (3)

Bayesian SVC models (Besag, York, and Mollie

1991; Assunç~ao 2003; Gamerman, Moreira, and Rue

2003; Gelfand et al. 2003; Wheeler and Calder

2007; Wheeler and Waller 2009), and (4) eigen-

vector spatial filtering (ESF)-based approaches

(Griffith 2003, 2008; Murakami et al. 2017).

Among them, GWR has proven the most popular,

including case studies in hedonic house price modeling

(e.g., Bitter, Mulligan, and Dall’erba 2007; P�aez, Long,
and Farber 2008; Lu, Charlton, et al. 2014), environmen-

tal analysis (e.g., Brunsdon, McClatchey, and Unwin

2001; Harris, Fotheringham, and Juggins 2010; Jaimes

et al. 2010), and disease mapping (e.g., Nakaya et al.

2005; Hu et al. 2012; Ndiath et al. 2015). Much of this

popularity stems from its relative simplicity and readily

available software like GWR4 (Nakaya 2015; see http://

gwr.maynoothuniversity.ie/gwr4-software/) and the

GWmodel R package (Lu, Harris, et al. 2014; Gollini

et al. 2015). Despite the widespread uptake of basic

GWR, it suffers from (at least) two severe limitations: (1)

instability where local predictor variable collinearity can

create spurious nonstationarities (Wheeler and

Tiefelsdorf 2005; P�aez, Farber, and Wheeler 2011) and

(2) inflexibility where basic GWR assumes the same scale

of spatial variation across each set of estimated SVCs

(Brunsdon, Fotheringham, andCharlton 1999).
Relating to the first model limitation, demonstra-

tions exist showing that SVCs estimated from GWR

can be collinear with each other, detect unrealistically

smooth map patterns, or take extreme values. Various

collinearity diagnostics can be calculated to provide a

better understanding of potential problems (Wheeler

and Tiefelsdorf 2005; Wheeler 2007; Gollini et al.

2015), together with the implementation of some regu-

larized GWR models (Wheeler 2007, 2009; Gollini

et al. 2015) or GWR via an empirical Bayes approach

(B�arcena et al. 2014)—all specifically designed to

address collinearity. GWR purportedly is fairly robust

to local collinear effects (Fotheringham and Oshan

2016), but on balance, evidence suggests otherwise

(see, e.g., Harris et al. 2017). Observe that instability

in estimated SVCs from GWR might arise for reasons

other than collinearity, including the existence of out-

liers (Farber and P�aez 2007; Harris, Fotheringham, and

Juggins 2010) and the presence of spatial autocorrel-

ation (Cho, Lambert, and Chen 2010).
For the second model limitation, basic GWR uses a

single kernel bandwidth for its calibration, which is

somewhat flawed in that it implicitly assumes the same

degree of spatial smoothness for each set of estimated

SVCs, which is unrealistic. Thus, when some relation-

ships tend to operate at a larger scale whereas other

relationships operate at a smaller scale, basic GWR will

nullify these differences and only find a “best-on-

average” scale of relationship nonstationarity (as using

only a single bandwidth). To address this limitation,

mixed (semiparametric) GWR can be implemented in

which some relationships are assumed stationary (glo-

bally fixed) and others are assumed nonstationary

(locally varying; Brunsdon, Fotheringham, and

Charlton 1999; Fotheringham, Brunsdon, and

Charlton 2002; Nakaya et al. 2005; Mei, Wang, and
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Zhang 2006; Mei, Xu, and Wang 2016). A mixed

GWR model only in part addresses this limitation,

however, because the subset of locally varying relation-

ships is still assumed to operate at the same spatial

scale. Instead, flexible bandwidth GWR (FB-GWR)

can be used, in which each relationship is specified

using its own bandwidth and thus provides a true multi-

scale GWR model, where the scale of relationship non-

stationarity may vary for each response to predictor

variable relationship.
The development of FB-GWR follows that of

Yang, Fotheringham, and Harris (2011, 2012), Yang

(2014), Lu et al. (2017), Leong and Yue (2017; who

renamed it conditional GWR), and Fotheringham,

Yang, and Kang (2017; who renamed it multiscale

GWR), all of whom implement the idea of a vector of

bandwidths for GWR, as first set out by Brunsdon,

Fotheringham, and Charlton (1999). The study of Lu

et al. (2017) provides an extension of FB-GWR,

where each relationship also can be specified with its

own distance metric, as well as its own bandwidth. In

this study, we implement the model of Lu et al.

(2017) but where it is specified using only Euclidean

distances, thus directly providing a FB-GWR model.
A Bayesian SVC model (specifically, the Gaussian

process-based approach of Gelfand et al. 2003) can be

viewed as a regularized alternative to GWR (i.e., it can

address collinearity) and also is directly able to identify

the spatial scale of each relationship through its specifi-

cation of priors. Thus, both model limitations stated for

GWR are implicitly addressed. Although increased

estimation accuracy for the Bayesian SVC approach

has been reported (see Wheeler and Calder 2007;

Wheeler and Waller 2009), this improvement is com-

putationally expensive, especially when scale is esti-

mated for every set of SVCs (Finley 2011).
Unlike GWR, the ESF-based approach allows con-

trol of the number of parameters (i.e., model complex-

ity) through variable selection. Helbich and Griffith

(2016), Murakami et al. (2017), and Oshan and

Fotheringham (2017), however, demonstrated instabil-

ity of the ESF-based approach in cases where it can suf-

fer just as basic GWR does with respect to Limitations

1 and 2. In this respect, Murakami et al. (2017) pro-

posed an extended ESF-based approach that directly

addresses these limitations (i.e., it is robust to local col-

linearity and allows for the possibility of each set of

SVCs having a different degree of spatial smoothness).

Furthermore, this random effects ESF model (RE-ESF)

is shown to be computationally efficient, thus providing

a practical alternative to the Bayesian SVC model that

often is computationally intractable.
The study of Murakami et al. (2017), employing a

Monte Carlo simulation experiment similar in design

to that used here, not only demonstrated the advan-

tage of the RE-ESF model over the Bayesian SVC

model but also demonstrated its advantages over both

basic and regularized GWR forms (following Gollini

et al. 2015). The latter was not surprising given that

neither single-bandwidth GWR form deals with the

second model limitation. Hence, this study addresses

this important gap by introducing FB-GWR to the

same model comparison exercise. Because repeating all

model comparisons of Murakami et al. (2017) is

unnecessary, only (1) GWR with fixed distance or (2)

adaptive distance bandwidth (GWRa), (3) FB-GWR

with fixed distance or (4) adaptive distance band-

widths (FB-GWRa), (5) ESF, and (6) RE-ESF models

are compared here. Thus, a Bayesian SVC model is not

included here, but this study coupled with that by

Murakami et al. (2017) provides a comprehensive

comparison of major multiscale SVC models (i.e., FB-

GWR and RE-ESF).
In summary, the aim of this study is to continue to

demonstrate the importance of spatial scale in SVC

models through FB-GWR and RE-ESF, the output of

which should be more stable and flexible in compari-

son to their basic counterparts (GWR and ESF,

respectively). Through this demonstration, this study

simultaneously quantifies the influence from

Limitation 1 on the scale of spatial variations in the

estimated SVCs and from Limitation 2 on the scale of

spatial variations in predictor variables. Although

recent studies (e.g., Murakami et al. 2017; Oshan and

Fotheringham 2017) have investigated the influence

from the first limitation on the SVC estimates for

various SVC models, they have ignored the second

limitation. Because the balance between the two

influences estimation accuracy of the coefficients (in

the case of a stationary regression model; see Paciorek

2009), the robustness of an SVC model must be exam-

ined considering both spatial scales 1 and 2. Besides,

this study identifies the source of instability in GWR

and ESF models. The source is unclear especially con-

sidering that Fotheringham and Oshan (2016) showed

a certain robustness of GWR to collinearity. We show

that scales 1 and 2 are the trigger of the instability, by

using an exhaustive simulation experiment.

The remaining sections are organized as follows.

The next section outlines the GWR- and ESF-based
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models. We then perform a Monte Carlo simulation

experiment to quantify the impact of spatial scale on

model stability. After that, we summarize a second

Monte Carlo simulation experiment to evaluate the

impact of spatial scale on SVC estimates and then

we provide a concluding discussion. Study GWR

and FB-GWR models are fitted using GWmodel

(Version 2.0.4; see https://cran.r-project.org/

package¼GWmodel), the RE-ESF model is fitted

using the R package spmoran (Version 0.1.2;

Murakami 2017; see https://cran.r-project.org/web/

packages/spmoran/index.html), and the ESF model is

fitted by newly written R code.

Spatially Varying Coefficient Modeling

The Overarching SVC Model

A linear SVC model is formulated as follows:

yi ¼
XK
k¼1

xi;kbk sið Þ þ ei; E ei½ � ¼ 0; Var ei½ � ¼ r2;

(1)

where yi represents the response variable at the ith
sample site, with i 2 f1; :::; Ng, xi,k represents the

kth predictor variable, with k 2 f1; :::;Kg, ei repre-
sents the disturbance, and r2 represents a variance

parameter. bk(si) denotes the kth SVC for site i.
Local and global approaches exist to estimate

Equation 1, as detailed later, where, in general, a

global approach to nonstationary modeling is pre-

ferred because it is more statistically coherent (e.g.,

Sampson, Damian, and Guttorp 2001).

Local Estimation (GWR and FB-GWR)

A local approach estimates coefficients at the ith
site, {b1(si), … , bk(si), … , bK(si)}, using only neigh-

boring subsamples. Moving window regression

(MWR; see Lloyd 2010) applies ordinary least

squares estimation to neighboring subsamples at site

i, whereas GWR applies weighted least squares esti-

mation to neighboring subsamples that are weighted

via a distance-decay scheme at site i. MWR is a spe-

cial case of GWR when a boxcar kernel weighting

scheme is specified (weights equal unity within the

kernel and zero otherwise). Distance-decay weighting

provides added flexibility to local regression model-

ing, allowing more data to have an influence locally,

and tends to yield more smoothly varying coefficient

surfaces. Suppose that b(si)¼ [b1(si), … , bk(si), … ,

bK(si)]0, where the prime represents matrix transpose;
then the GWR estimator yields

b̂ sið Þ ¼ X0G sið ÞX
� ��1

X0G sið Þy; (2)

where X is an N�K matrix of predictor variables, y is
an N� 1 vector of continuous response variables, and

G(si) is an N�N diagonal matrix whose jth element
g(si, sj) represents the weight assigned to the jth sam-
ple. Here, g(si, sj) is calculated with some kernel

weighting function (see Gollini et al. 2015). For
instance, the exponential kernel is defined as follows:

g si; sjð Þ ¼ exp � d si; sjð Þ
b

� �
; (3)

where d(si, sj) is the distance between locations si and sj,
and b denotes the bandwidth parameter. The resultant
SVCs tend to be the global coefficients of a standard

regression, if the bandwidth parameter, b, is set suffi-
ciently large enough; otherwise, the SVCs are local.
Here the bandwidth can be specified as a fixed dis-

tance, but for irregular sample configurations, the ker-
nel window tends to include too few samples in
sparsely sampled areas and too many samples in densely

sampled areas. To counter this, an adaptive distance
bandwidth can be specified, where the bandwidth
varies according to a fixed local density of subsamples.
An adaptive exponential kernel is defined as follows:

gad si; sjð Þ ¼ exp � d si; sjð Þ
b sið Þad

 !
; (4)

where b(si)
ad is the adaptive bandwidth for the ith

site and is given by the distance between the ith
site and the jth nearest neighbor. Note that this

kernel is only adaptive to local sample density (and
is used with GWRa); it is not adaptive in a
predictor-specific sense. FB-GWR, described next,
is one way to specify such a kernel.

Standard GWR, as described earlier, ignores dif-
ferences of spatial scale across the SVCs, because
the same (single, fixed or adaptive) bandwidth is

specified for all data relationships. To counter this,
each set of SVCs can be found using its own
bandwidth, providing an extension of GWR with

multiple bandwidths, one for each relationship (i.e.,
FB-GWR). Here the fixed bandwidth, an exponen-
tial kernel for FB-GWR, is defined as

gk si; sjð Þ ¼ exp � d si; sjð Þ
bk

 !
; (5)
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where bk is the fixed bandwidth for the kth parameter.

The kth coefficient estimates might have global-scale

spatial variations if bk is set sufficiently large and

local-scale spatial variations if bk is set sufficiently

small. The corresponding adaptive bandwidth version

for FB-GWR (i.e., for FB-GWRa) is defined as

gadk si; sjð Þ ¼ exp � d si; sjð Þ
b sið Þadk

 !
; (6)

where b(si)k
ad is the kth adaptive bandwidth.

Standard GWR is estimated as follows: (1) the band-

width parameter is calibrated by minimizing the mean

squared error (MSE) applying a leave-one-out cross-val-

idation (CV) procedure (Brunsdon, Fotheringham, and

Charlton 1996) and (2) the SVCs are estimated by sub-

stituting the calibrated bandwidth into Equation 2. FB-

GWR is estimated in a similar fashion, except that in

Step 1 a back-fitting approach is adopted (for details, see

Lu et al. 2017), which sequentially iterates the calibra-

tion of bk (or b(si)k
ad) assuming that all bandwidth

parameters are known (see also Yang 2014). The MSE

minimization in Step 1 for GWR or FB-GWR can be

replaced with maximization of the corrected Akaike

information criterion (AICc) or some other information

criterion. Observe that because N�K coefficients are

estimated using only N samples, it is necessary to

enhance model accuracy while avoiding overfitting. A

CV or AICc approach is reasonable because it minimizes

the generalization error (see Bishop 2006). In this study,

the AICc approach is chosen for all GWR and FB-

GWR fits and, as detailed earlier, only bandwidths cor-

responding to exponential kernels are found.

Global Estimation (ESF and RE-ESF)

This global approach estimates the SVCs by fitting

spatial process models. The spatial expansion and ESF-

based approaches are representative of such methods,

where the former fits trend surface models, whereas the

latter fits ESF models describing spatially structured

SVC map patterns. The ESF-based approach is built on

the Moran coefficient (MC; see Cliff and Ord 1973),1

which is a diagnostic statistic for spatial dependence.

The MC is formulated as follows:

MC y½ � ¼ N
10C1

y0MCMy

y0My
; (7)

where 1 is an N� 1 vector of ones, C is an N�N
connectivity matrix whose diagonal elements are

zero, and M¼ I –11'/N is an N�N centering

matrix. The MC is greater than –1=ðN–1Þ� 0,

which is the expectation of the MC in the absence

of spatial dependence; is greater than –1/(N – 1) if the

samples are positively spatially dependent; and is less

than –1/(N – 1) if they are negatively dependent. Let us

eigen-decompose the matrix MCM to EfullKfullEfull',
where Efull is anN�Nmatrix with its lth column being

the lth eigenvector el, and Kfull is an N�N diagonal

matrix whose lth element is the l—the eigenvalue, kl.
The eigenvectors have the following feature:

MC el½ � ¼ N
10C1

el
0MCMel
el
0Mel

¼ N
10C1

el
0EfullKfullE

0
fullel

el
0el

;

¼ N
10C1

kl:

(8)

Here Equation 8 suggests that the eigenvectors corre-

sponding to positive eigenvalues are orthogonal basis

functions describing positive spatial dependence, with

each magnitude being indexed by its corresponding

eigenvalue. Likewise, eigenvectors corresponding to

negative eigenvalues explain negative spatial depend-

ence. For details about Moran eigenvectors, see

Griffith (2003).

The ESF-based SVC model of Griffith (2008) is

formulated as

y ¼
XK
k¼1

xk � bESFk þ e; e � N 0;r2I
� �

;

bESFk ¼ bk1þ Ekck;

(9)

where xk is an N� 1 vector of the kth predictor

variable (i.e., the kth column of matrix X), Ek is an

N� Lk matrix composed of Lk eigenvectors (Lk<N),

ck is an Lk� 1 coefficient vector, and “�” denotes

the element-wise (Hadamard) product operator.

Here bESFk ¼ bk1þ Ekck yields a vector of SVCs in

which bk1 and Ekck represent the constant compo-

nent and the spatially varying component, respect-

ively. Equation 9 becomes the linear regression

model with predictor variables fX; x1 � E1; :::; xK �
EKg once the second equation is substituted into the

first equation. Accordingly, the adjusted R2 and

other diagnostic statistics for the linear regression

model are applicable for Equation 9.
The parameters of this model are estimated

through the following steps: (1) eigenvectors, which

are not of interest, are removed a priori from {E1,

… , EK} (see later); (2) significant predictor varia-

bles are selected among fX; x1 � E1; :::; xK � EKg by
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applying a forward variable selection technique; (3)

{b1,… , bK, c1, … ,cK} are estimated using the model

after the variable selection; and (4) b̂
ESF
k ¼

b̂k1þ Ekĉk is calculated. In our analysis, Ek is
defined by the eigenvectors corresponding to positive

eigenvalues in Step 1 (see Murakami et al. 2017).
Thus, all eigenvectors describing positive spatial
dependence are taken into account. The adjusted R2

is maximized in the variable selection Step 2.
The ESF-based approach, which estimates deter-

ministic map patterns, has been extended to a ran-

dom effects ESF-based approach (RE-ESF; Murakami
and Griffith 2015), which models stochastic spatial
processes. The RE-ESF-based SVC model

(Murakami et al. 2017) is formulated as follows:

y ¼
XK
k¼1

xk � bRE�ESF
k þ e; e�N 0; r2I

� �
;

bRE�ESF
k ¼ bk1þ Ekck; ck�N 0L; r

2
c;kK akð Þ

� 	
;

(10)

where 0L is an L� 1 vector of zeros, E is a matrix of L
eigenvectors corresponding to positive eigenvalues,

rc,k
2 is a variance parameter, and K(ak) is an L�L

diagonal matrix whose lth element is

klðakÞ ¼ ðPl kl=
P

l k
ak
l Þkakl , where ak is the key par-

ameter. When ak is large, coefficient estimates of the
nonprincipal eigenvectors are strongly shrunk toward
0, and the kth SVCs, bk

RE-ESF, provide a large-scale

spatial pattern. By contrast, bk
RE-ESF has a small-scale

spatial pattern when ak is small. Thus, ak is a scale par-
ameter for the SVCs, and its effects for RE-ESF are

analogous to the multiple bandwidths of FB-GWR.
Furthermore, Equation 10 has the following

expression:

y ¼ Xbþ eEeK hð Þeu þ e; e�N 0; r2I
� �

;eE ¼ x1 � E ::: xK � E� �
;

eK hð Þ ¼
r2c;1K a1ð Þ

. .
.

r2c;KK aKð Þ

26664
37775;

eu ¼
u1

..

.

uK

2664
3775:

(11)

h 2 fa1; :::; aK; r2c;1; :::; r2c;Kg, and uk~N(0L, r2IL),

where IL is an L�L identity matrix. Note that

ck¼ rk(c)
2K(ak)uk, where Equation 11 suggests that

the RE-ESF model is a linear mixed effects model.

Furthermore, b and eu have the following best linear

unbiased estimators:

b̂êu
" #

¼ X0X X0eEeK hð ÞeK hð ÞeE0
X eK hð ÞeE0eEeK hð Þ þ IKL

24 35�1

� Xy0eK hð ÞeEy0
" #

; (12)

where h is estimated by numerically maximizing the

following Type II restricted likelihood (empirical

Bayes/h-likelihood) function:

log likR hð Þ ¼�1

2
log






 X0X X0eEeK hð ÞeK hð ÞeE0
X eK hð ÞeE0eEeK hð Þþ IKL







�N�K

2
1þ log

2p
N�K

ê0êþ êu0êu� 	� �� �
;

(13)

where ê ¼ y�Xb̂�eEeKðhÞêu. Given X'X, X0eE, andeE0eE, the computational complexity of Equation 13 is

O((KþKL)3), which is independent of N. This

ensures that, once these matrix products are eval-

uated a priori, the numerical optimization of h is

fast, even for large samples.

Degrees of Freedom for the SVC Models

This section defines the degrees of freedom (df) for
the SVC models, which is a measure of model stabil-

ity. For a linear model, df is defined by N – tr[H],

where tr[	] is the trace operator and H is the hat

matrix such that ŷ ¼ Hy. For instance, df for the

standard linear regression model is dfLM¼N –

tr[HLM], which equals the sample size minus the num-

ber of regression coefficients, where HLM¼X(X'
X)–1X'. A large df is desirable to avoid overfitting.

Table 1 summarizes df for the study SVC models.

Here, dfGWR¼N – tr[HGWR] deflates when X0GðsiÞX
is nearly singular. Singularity happens when the

bandwidth is small and most elements of G(si) take

near-zero values. In other words, small bandwidths

introduce overfitting. The problem is serious if sub-

samples are sparsely distributed around the site si.
Thus, GWR specified with an adaptive bandwidth

(GWRa), which changes the kernel window size in
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accordance with sample density, would be an effect-

ive tool to mitigate this problem, where dfGWRa is

likely to be larger than dfGWR in many cases, even

though they are both given by N – tr[HGWR] with

different kernel specifications. In GWR specifica-

tions, X0GðsiÞX approaches X'X as their bandwidth

increases and their df increase up to N – K. Thus,
GWR approaches are stable if the underlying associ-

ations (bks) have large-scale spatial variations or no

variations (i.e., are constant).
For GWR, the singularity of X0GðsiÞX also changes,

depending on the spatial scale of the predictor varia-

bles. If xk suggests small-scale spatial variations, xk
would have considerable variation within each kernel

window. By contrast, if xk suggests large-scale spatial

variations, the variation of the predictors within each

kernel window can be small. In the extreme case, if xk
has uniform values across the window around site si, it
is exactly collinear with the intercept term within the

window (i.e., suppose that x1 represents an intercept,

the entries of the kth row and column of X0GðsiÞX take

exactly the same values with the entries of the first row

and column; the resulting X0GðsiÞX becomes singu-

lar).2 The FB-GWR model, which calibrates the band-

widths implicitly considering the scale of each xk, is

valuable not only to control the varying scales of the

SVCs but also to stabilize the SVC estimates (e.g., in

the presence of collinearity).
Regarding ESF, forward eigenvector selection impli-

citly identifies the model that maximizes accuracy,

where dfESF¼N – tr[HESF]. Given that Moran

eigenvectors describe coefficient patterns at different

spatial scales, eigenvector selection identifies the scale

of spatial variation in each SVC set. The dfESF
decreases as the number of selected eigenvectors

increases; it happens if the response and predictor vari-

ables have spatially varying associations at every scale.
Unlike all of the preceding models, the df for the RE-

ESF model, dfRE-ESF¼N – tr[HRE-ESF], includes not just

the scale parameters {a1,… , aK} but also the variance

parameters {r21,c,… , r2K,c}. Different from GWR, FB-

GWR, and ESF models whose df always decrease in the

presence of small-scale spatially varying associations

(i.e., bks), the RE-ESF model is capable of maintaining

a high dfRE-ESF value by decreasing the variance parame-

ters even if small-scale associations exist.
In short, both the scale of associations (i.e., bks)

and the scale of predictors influence model df or

model stability. The section Simulation 1: Scales of

xk and bk versus Model Stability analyzes how these

two scales influence model df employing a simulation

experiment. Section 4 then quantifies the influences

of these two scales on SVC estimation accuracy

through a second simulation experiment.

Simulation 1: Scales of xk and bk versus
Model Stability

Overview

This section objectively evaluates model complex-

ity with df values, while varying the predictor

Table 1. The hat matrix, H, of the study spatially varying coefficient models, where df¼N – tr[H]

Model Hat matrix, H Parameters in H

GWR, GWRa HGWR¼ a matrix with its ith row being xðsiÞ0½X0GðsiÞX��1
X0GðsiÞ ba

FB-GWR, FB-GWRa Single hat matrix is not available (Fotheringham, Yang, and Kang 2017).

The following hat matrix for the kth SVC appears in each iteration of the

backfitting: x(si)0 [xk0 Gk(si)xk]
–1xk

0 Gk(si), where Gk(si) equals G(si) whose b is

replaced with bk.

b1,… , bK
b

ESF
HESF ¼ ½X eEESF �

�
X0X X0eEESFeE 0
ESFX

eE0
ESF
eEESF

��1�
X0eE0
ESF

�
,

where eEESF ¼ ½ x1 � E1 ::: xK � EK �

Selection of eigenvectors

RE-ESF
HRE�ESF ¼ ½X eEeKðhÞ �

�
X0X X0eEeKðhÞeKðhÞeE 0

X eKðhÞeE 0eEeKðhÞ þ IKL

��1�
X0eKðhÞeE0

� h ‰ {a1,… , aK, r
2
1,c,… , r2K,c}

Note: GWR¼ geographically weighted regression; GWRa¼ geographically weighted regression with adaptive distance bandwidths; FB-GWR¼ flexible

bandwidth geographically weighted regression; FB-GRWa¼ flexible bandwidth geographically weighted regression with adaptive distance bandwidths;

ESF¼ eigenvector spatial filtering; RE-ESF¼ random effects eigenvector spatial filtering.
aIn case of GWRa, b is replaced with b(si)

ad.
bIn case of FB-GWRa, {b1,… , bK} is replaced with {b(si)

ad
1,… , b(si)K

ad}.
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variables and the scale parameters for the SVCs, and

tests for which cases the SVC models are unstable

(i.e., it investigates the first earlier model limitation).

For simplicity, we evaluate only cases where the spa-

tial scale of variation for each set of SVCs is the same.

In other words, regression relationships are set to vary

from small scales to large scales but always in the same

fashion for each regression relationship in the model.

Thus, FB-GWR is not analyzed here, because it simply

defaults to standard GWR in this instance.
For the Monte Carlo simulation, we assume an

SVC model, y ¼ b0 þ x1 � b1 þ x2 � b2 þ e, where
the predictor variables, xks, are generated from3

xk ¼ 1� rxð Þex nsð Þ þ rxC bxð Þex sð Þ; (14)

where ex(ns)�N(0, I) and ex(s)�N(0, I). Here C(bx)
is a matrix that row-standardizes a symmetric spatial

proximity matrix whose (i, j)th element equals

exp(–d(si, sj)/bx) and where d(si, sj) is the Euclidean dis-

tance between sample sites si and sj. Spatial coordinates
of the sample sites also are allowed to vary and are gen-

erated from standard normal distributions. Thus, C(bx)ek
is a spatial moving average (SMA) process, and rx is the
ratio of spatially dependent variation to total variation

in xk. The bandwidth bx determines the kernel radius in

the SMA process. A small bx assigns much greater

weights to neighborhoods, and the resulting SMA pro-

cess describes small-scale spatial variations. Likewise, a

large bx describes large-scale spatial variations.
The df values for GWR, GWRa, ESF, and RE-ESF are

evaluated while varying the parameters for the predictor

variables (see Table 2) and those for the SVCs (see Table

3). In each case, the df values for each model are eval-

uated 200 times. For ESF, ½ x1 � E1; :::; xK � EK� , where
Ek consists of eigenvectors corresponding to positive

eigenvalues, are candidates for variable selection. These

eigenvectors also are used in RE-ESF (i.e., E¼Ek). The

ratio of the selected eigenvectors in ESF is as described in

Table 3.
This section does not discuss estimating SVCs

through model fitting but rather discusses calculating

df by simply substituting known scale parameters bx
for the predictors and the same parameter b for

SVCs into df¼N – tr[H] (see Table 1). SVC esti-

mation accuracy is discussed in Simulation 2.

Results

Figure 1 plots the mean estimated df values for

the SVC models arising from this first Monte Carlo

simulation experiment. Here the mean dfGWR results

suggest that GWR (with a fixed bandwidth) is

unstable when y and xks have small-scale spatially

varying associations (b¼ 0.2).

Unlike the mean dfGWR results, the mean dfGWRa

results for GWRa (with its adaptive bandwidth) are

always relatively large across all values of b. At least

from this result, GWRa seems relatively stable com-

pared to GWR. This finding is not surprising, given

that numerous empirical studies have suggested as

much (e.g., Harris, Fotheringham, and Juggins

2010). Only for highly regular sample configurations

is fixed bandwidth GWR usually recommended.
In Figure 1, the mean dfRE-ESF results are evaluated

for cases with rk¼ 0.1 and rk¼ 1.0, respectively. On

the one hand, when rk¼ 1.0, which implies weaker

shrinkage, dfRE-ESF takes small values. On the other

hand, dfRE-ESF values are large across cases when stronger

shrinkage is imposed by rk¼ 0.1. Thus, the RE-ESF esti-

mates are relatively stable even when the SVCs have

local variation but with a proviso that the rk parameter

Table 2. Parameter settings for predictor variables: xk

Parameter Notation Case

Sample size N 400

Bandwidth bx {0.0, 0.2, 0.6, 1.0}

Ratio of spatial variation rx {0.2, 0.6, 1.0, 2.0}

Table 3. Parameter settings for spatially varying coefficients (SVCs): bk

Model Parameter Notation Case

GWR Bandwidth b {0.2, 0.6, 1.0, 2.0}

GWRa Adaptive bandwidth b(si)
ad {0.1, 0.3, 0.5, 1.0}

ESF Ratio of predictor variables being selected q {0.2, 0.4, 0.6, 0.8}

RE-ESF Scale ak {0.2, 0.6, 1.0, 2.0}

Variance rk {0.1, 1.0}

Note: GWR¼ geographically weighted regression; GWRa¼ geographically weighted regression with

adaptive distance bandwidths; ESF¼ eigenvector spatial filtering; RE-ESF¼ random effects eigenvector

spatial filtering.
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Figure 1. Mean degrees of freedom (df), with respect to the scale of the SVCs. In each panel, lighter lines represent dfs evaluated with

more locally tending SVCs, whereas darker lines represent dfs evaluated with more globally tending SVCs. Note: GWR¼ geographically

weighted regression; GWRa¼ geographically weighted regression with adapted distance bandwidth; RE-ESF¼ random effects eigenvector

spatial filtering; SVCs¼ spatially varying coefficients.
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is estimated appropriately. Furthermore, the mean dfESF
values, which equal the sample size minus the number of

selected predictor variables, become {373.2, 349.3,

324.5, 301.7} in cases where the ratio of selected eigen-

vectors equals {0.2, 0.4, 0.6, 0.8}, respectively.

Considering the usefulness of the shrinkage parameter,

rk, in RE-ESF, regularized ESF (e.g., Seya et al. 2011)

might be useful to increase dfESF.
In summary, fixed bandwidth GWR can be very

unstable when the bandwidth of local parameter

estimation is inappropriately small, and ESF tends to

be unstable as the number of selected eigenvectors

increases. Conversely, GWRa is stable across both

small- and large-scale SVC processes, and RE-ESF is

similarly stable, provided that rk is estimated

appropriately.
Also observable from Figure 1 is that predictor vari-

able xk, with small-scale spatial variation universally,

makes all SVC models unstable. In contrast, in the con-

text of global spatial regression (e.g., spatial error model;

LeSage and Pace 2009), Paciorek (2010) analytically

showed that the coefficient estimates tend to be unstable

if the spatial scales of the predictor variables are larger

than the scale of the residual spatial process.4 Thus,

both small-scale xk and large-scale xk influence the reli-

ability of the SVC estimates for different reasons. The

next section discusses the influence of all of these insta-

bilities on the accuracy of the SVC estimates themselves

and tries to determine whether small-scale xk or large-

scale xk is more harmful in SVC estimation. Besides, the

scale of the true bks also might influence their estimation

accuracy. In this respect, the next section summarizes

analyses about how the scales of xk and bk and their mis-

matches influence SVC estimation accuracy.

Simulation 2: Scales of xk and bk versus
SVC Estimates

Overview

This section presents comparisons of all six study

SVC models (GWR, GWRa, FB-GWR, FB-GWRa,

ESF, and RE-ESF) through another Monte Carlo

simulation experiment, where we now assess the

accuracy of the estimated SVCs in relation to the

(known) simulated SVCs. The synthetic data are

generated with the following SVCs model:

y ¼ b0 þ x1 � b1 þ x2 � b2 þ e; e�N 0; 22I
� �

;

b0 ¼ 1þ C b0ð Þe0; b1 ¼ �2ð Þ1þ 3C b1ð Þe1;
b2 ¼ 0:5ð Þ1þ C b2ð Þe2; (15)

where ek � N(0, I). The spatial variation in b1 is

three times greater than the spatial variation in b0
and b2. We refer to b1 as a significant SVC process,

whereas b0 and b2 are considered to be insignificant

SVC processes. This simulation experiment thus spe-

cifically investigates the second model limitation from

earlier. Following the previous section, the predictor

variables are generated from xk¼ð1�rxÞexðnsÞþrx
CðbxÞexðsÞ. Parameters are estimated 200 times while

varying parameter values, as summarized in Table 4.

Results

The accuracy of each model’s SVC estimates is eval-

uated using root mean squared error (RMSE) and bias

diagnostics. The results and explanations of the bias

diagnostics are given in the Supplemental Material,

and only the RMSE results are presented here.
The RMSE for estimated b̂k is formulated as

follows:

RMSE b̂k

h i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

200N

X200
iter¼1

XN
i¼1

bk sið Þ � b̂k sið Þiter
� 	2vuut ;

(16)

where bkðsiÞ is the true SVC value generated from

Equation 15 and b̂ðsiÞiterk is the estimate obtained in

the iterth iteration. To visualize the simulation

results effectively, we use the two-dimensional plots

presented in Figures 2 through 6. Here the horizon-

tal axis always denotes the RMSEs for RE-ESF,

whose SVC estimation accuracy has been shown to

Table 4. Parameter settings in 144 (3� 4� 3� 4) cases

Parameter Notation Case

Sample size N {50, 150, 400}

Bandwidth for {b0. b1, b2} (b0, b1, b2) {(0.2, 0.2, 0.2), (1.0, 0.2, 1.0), (0.2, 1.0, 0.2), (1.0, 1.0, 1.0)}

Bandwidth for xk bx {0.2, 0.6, 1.0}

Ratio of spatial variation in xk rx {0.0, 0.4, 0.8, 1.0}
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Figure 2. Root mean square error: Random effects eigenvector spatial filtering (x-axis) versus geographically weighted regresssion

(y-axis). Large-scale means the large-scale (b and bx). The lighter end of the Significant line means a small variance of the spatially

dependent component (sx), and the darker end means a large variance. GWR¼ geographically weighted regression; RE-ESF¼ random

effects eigenvector spatial filtering.

60 Murakami et al.



be relatively good across all cases in the companion

study of Murakami et al. (2017), and the vertical

axis denotes the RMSEs for one of the models

(GWR, ESF, FB-GWR, GWRa, and FB-GWRa).
Figure 2 compares (fixed bandwidth) GWR with

RE-ESF for SVC estimation accuracy via RMSE.

Here, GWR provides more accurate SVC estimation

than RE-ESF if the plot outputs are concentrated in

the bottom right triangle of each panel, whereas the

estimated SVCs from RE-ESF are more accurate if

the plot outputs are in the top left triangle. Results

clearly demonstrate that the RMSEs from GWR are

generally greater than those from RE-ESF and thus

RE-ESF tends to be more accurate. This tendency is

most conspicuous when the significant SVC (b1) has
small-scale variations and xk has strong large-scale

variations, verifying that different scales of relation-

ship nonstationarity need to be accounted for in

SVC models (which RE-ESF does but GWR does

not). This tendency is also substantial for the largest

sample size, when N¼ 400. By contrast, GWR can

perform equally as well as, or better than, RE-ESF

when N¼ 50. This is interesting and might suggest

that the smaller the sample size, the more difficult it

is to detect relationships varying locally and across

different spatial scales. Furthermore, P�aez, Farber,

and Wheeler (2011) recommended using GWR only

for relatively large samples (N> 160), but these

results suggest some value in GWR for small samples.

Figure 3 compares the RMSE of estimated coefficients

for ESF with RE-ESF, where it is clear that ESF pro-

vides poorer levels of SVC estimation accuracy than

RE-ESF across all nine scenarios. As with GWR (and

as would be expected), ESF provides relatively

inaccurate SVC estimates in cases with small-scale

variations in the significant SVC (b1) and strong

large-scale variations in xs. Although not shown

graphically, comparing Figures 2 and 3 implies

strongly that GWR tends to perform better than ESF.

Figure 4 compares FB-GWR and RE-ESF, where,

interestingly, unlike GWR, no singular estimates

appear from FB-GWR. Thus, GWR with multiple

bandwidths (in this FB-GWR form) appears to sta-

bilize SVC estimates and tentatively might provide a

useful alternative to a regularized GWR model in

addressing local collinearity issues. Because most

plots follow the 45� line in Figure 4, FB-GWR pro-

vides SVC estimates that tend to be just as accurate

as those from RE-ESF. Moreover, FB-GWR SVC

estimates are more accurate than RE-ESF when

N¼ 50. This is because RE-ESF is a likelihood

approach relying on the law of large numbers.

Conversely, the SVC estimates for FB-GWR tend to

be marginally less accurate than those from RE-ESF

when xk have strong large-scale variation, and the

significant SVC (b1) has small-scale variation (but

for N¼ 150 and for N¼ 400 only).
Figure 5 compares GWRa with RE-ESF for SVC

estimation accuracy. Somewhat surprisingly, GWRa

does not suffer from any singular fit, and RMSE val-

ues are greatly reduced compared to the fixed band-

width GWR results in Figure 2. The use of an

adaptive bandwidth appears to be a simple and effi-

cient solution to stabilize GWR modeling, although,

in this case, stability might relate more to the effects

of sample configurations than to other influences.

Conversely, GWRa provides much poorer levels of

SVC estimation accuracy (than GWR and RE-ESF)

for the significant small-scale SVC, b1. Furthermore,

the GWRa estimates for insignificant SVCs, b0 and

b2, tend to be more accurate than that found for

GWR (see Figure 2), whereas the GWRa coefficient

estimates provide broadly similar levels of accuracy

to that found for RE-ESF for such cases. Figure 6

compares FB-GWRa with RE-ESF for SVC estima-

tion accuracy. Here FB-GWRa appears to have

accuracy tendencies similar to those found with both

FB-GWR (Figure 4) and GWRa (Figure 5), in rela-

tion to RE-ESF. As would be expected, FB-GWRa is

more accurate than GWRa for the significant small-

scale SVC, b1, where the FB-GWRa results are more

compatible with those from RE-ESF. Overall, FB-

GWRa is found to estimate both weak and strong

SVC processes relatively accurately.
The drawback to GWRa and FB-GWRa, how-

ever, is that the use of adaptive bandwidths implies

that nonstationary relationships are operating within

their own local region of dependence, whereas fixed

bandwidth GWR and FB-GWR ensures that these

regions are the same size everywhere and thus pro-

vides more generalized interpretations of the geo-

graphical process under study. For example, reporting

that the nature of the relationship between crime

and unemployment depends only on incident char-

acteristics within a 2-km radius of the crime scene is

intuitively more informative than reporting that this

relationship depends only on the characteristics of

the nearest thirty incidents of the crime scene.

Finally, Table 5 compares average computational

times for all six SVC models for the three sample
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Figure 3. Root mean square error: Random effects eigenvector spatial filtering (x-axis) versus eigenvector spatial filtering (y-axis). Large-
scale means the large scale (b and bx). The lighter end of the Significant line means a small variance of the spatially dependent

component (sx), and the darker end means a large variance. ESF¼ eigenvector spatial filtering; RE-ESF¼ random effects eigenvector

spatial filtering.
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Figure 4. Root mean square error: Random effects eigenvector spatial filtering (x-axis) versus flexible bandwidth geographically weighted

regression (y-axis). Large-scale means the large scale (b and bx). The lighter end of the Significant line means a small variance of the

spatially dependent component (sx), and the darker end means a large variance. RE-ESF¼ random effects eigenvector spatial filtering;

FB-GWR¼ flexible bandwidth geographically weighted regression.
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Figure 5. Root mean square error: Random effects eigenvector spatial filtering (x-axis) versus geographically weighted regression with

adapted distance bandwidth (y-axis). Large-scale means the large scale (b and bx). The lighter end of the Significant line means a small

variance of the spatially dependent component (sx), and the darker end means a large variance. RE-ESF¼ random effects eigenvector

spatial filtering; GWRa¼ geographically weighted regression with adaptive distance bandwidths.
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Figure 6. Root mean square error: Random effects eigenvector spatial filtering (x-axis) versus flexible bandwidth geographically weighted

regression with adaptive distance bandwidths (y-axis). Large-scale means the large-scale (b and bx). The lighter end of the Significant line means

a small variance of the spatially dependent component (sx), and the darker end means a large variance. RE-ESF¼ random effects eigenvector

spatial filtering; FB-GWRa¼ flexible bandwidth geographically weighted regression with adaptive distance bandwidths.
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sizes of N¼ 50, 150, and 400. As expected, GWR

and GWRa run the fastest, because they are rela-

tively simple. Considering the RMSE coefficient

accuracy results earlier, one implied recommendation

is that GWRa would often be a sensible and prag-

matic choice for very large data sets. By contrast,

FB-GWR and FB-GWRa are relatively slow due to

their usage of the back-fitting algorithm in their

calibration. Acceleration of these multiscale GWR

models would be an important research topic in the

future, although some work in this area is currently

in progress (Lu et al. 2018). The ESF model is also

slow because it requires stepwise eigenvector selec-

tion. By contrast, RE-ESF is as fast as GWR and

GWRa, despite the fact that it estimates each spatial

scale of each set of SVCs (i.e., RE-ESF is multi-

scale). This is because the computational complexity

for optimizing the scale parameters is only O(L3K3),

which is independent of sample size. Note also that

the cost for eigen-decomposition for RE-ESF, which

is severe when N is large, can be lightened dramatic-

ally by an approximation proposed by Griffith

(2000), which is for regular lattice data, or

Murakami and Griffith (2017). Thus, RE-ESF also is

recommended for very large data sets and should be

preferred to GWRa when relationships are expected

to vary not only locally but also across different spa-

tial scales.

Concluding Remarks

This study investigated the influence of scale on

SVC modeling, where relationships between the

response and predictor operate not only locally but

also at varying spatial scales. Results from simulation

experiments suggest that standard GWR provides

poor SVC estimates, when some SVCs vary at a small

scale whereas others vary at a large scale. By contrast,

a multiscale GWR model in FB-GWR provides SVC

estimates that are relatively accurate for such proc-

esses. Differences in SVC estimation accuracy, and

also SVC model stability, further depend on whether

fixed distance or adaptive distance kernel bandwidths

are specified for GWR or for FB-GWR, where, in

general, adaptive ones should be preferred.
GWR and FB-GWR are examples of local

approaches to SVC modeling, whereas ESF and RE-

ESF models are both global approaches. Here RE-ESF

is a regularized ESF model that is designed to capture

scale dependencies in local relationships, just as FB-

GWR is. In this study, RE-ESF is shown to more

accurately estimate such multiscale SVC processes in

comparison to not only ESF but also GWR. RE-ESF is

also shown to be a more stable model than ESF or

GWR. Both FB-GWR and RE-ESF are found to pro-

vide the most accurate estimates of the SVC processes

generated in the simulation experiments but where

RE-ESF is shown to be the most computationally effi-

cient and thus more suitable for very large data sets.

Overall, the results indicate that any future SVC study

should pay keen attention to two important types of

spatial scale—that of the scale of the associations and

that of the scale of the predictors—and investigate

with an FB-GWR or RE-ESF model accordingly. This

is especially important considering any true set of

local regression relationships does not operate at the

same spatial scale (as naï vely assumed in the standard

GWR model).
Still, there are remaining issues, where future work

about the analytic properties of spatial scale and SVC

estimates could follow that of Paciorek (2010), where

only the effects on global (stationary) regression coef-

ficients were investigated. Such studies would improve

understanding about the scale problem and possibly

enable the establishment of a local–global indicator of

scale dependence for SVCs. In addition, to better

understand differences in SVC models in practice, a

wide variety of empirical SVC model studies is

required. Further simulation work also might prove

worthwhile; for example, using different simulation

designs. We conducted some preliminary work in this

area, where SVC model performance was assessed for

retrieving smoothly varying deterministic coefficient

processes rather than the random effect coefficient

processes generated in this study. The results are given

in the Supplemental Material.

Whether through empirical or simulation studies,

the influence of a kernel function on FB-GWR

Table 5. Average computational time in seconds

N GWR GWRa FB-GWR FB-GWRa ESF RE-ESF

50 0.13 0.18 1.50 10.31 1.49 0.29

150 0.54 0.72 12.02 12.96 10.52 0.77

400 2.44 2.63 93.52 65.41 72.56 3.38

Note: GWR¼ geographically weighted regression;

GWRa¼ geographically weighted regression with adaptive distance

bandwidths; FB-GWR¼ flexible bandwidth geographically weighted

regression; FB-GRWa¼ flexible bandwidth geographically weighted

regression with adaptive distance bandwidths; ESF¼ eigenvector spatial

filtering; RE-ESF¼ random effects eigenvector spatial filtering.
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performance also should be assessed. Although this

study used an exponential kernel, which decays

slowly, the slow decay might help induce stability

and accuracy of FB-GWR performance; a bi-square

or tri-cube kernel that decay quickly might have a

different effect in this respect. Gaussian, Cauchy

(see Nakaya 2001), and anisotropic kernels (see

Finley et al. 2009) also could be assessed.
Further comparison with Bayesian SVC models

also is needed, especially as their computational effi-

ciency continues to improve. For example, Finley

et al. (2010) approximated a Bayesian SVC model

with a low-rank approach, replacing the computa-

tionally heavy Markov chain Monte Carlo with an

integrated nested Laplace approximation (Blangiardo

and Cameletti 2015), which appears to be a likely

avenue of model development. The RE-ESF can be

viewed as a maximum a posteriori estimation of a

low-rank Bayesian SVC model (see Murakami

et al. 2017).
Finally, this and related studies have only consid-

ered basic multiscale SVC models; many extensions

are possible, all of which warrant study, including

(1) non-Gaussian SVC models (Atkinson et al.

2003; Griffith 2002, 2004; Nakaya et al. 2005), (2)

spatiotemporal varying coefficient models (Huang,

Wu, and Barry 2010; Griffith 2012; Fotheringham,

Crespo, and Yao 2015), (3) spatial prediction SVC

models (Harris et al. 2010; Harris, Brunsdon, and

Fotheringham 2011; Griffith 2013), (4) spatial inter-

action models with SVCs (Nakaya 2001; Kordi and

Fotheringham 2016; Griffith, Fischer, and LeSage

2017), and (5) the mitigation of the modifiable areal

unit problem through SVC models (Fotheringham,

Brunsdon, and Charlton 2002; Murakami and

Tsutsumi 2015).
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Notes

1. Griffith (2017) shows that the MC-based ESF is
superior to the Geary’s ratio-based ESF (Geary 1954),
which could be used.

2. This problem, which is purely due to the local
collinearity between x1 and xk, appears irrespective of
the scale of the true spatially varying associations, bks.

3. The predictor variables x1 and x2 are generated
mutually independently. It would be an interesting
topic for future work to evaluate SVC estimation
accuracy by varying scales and the degree of
multicollinearity simultaneously (e.g., P�aez, Farber,
and Wheeler 2011; Fotheringham and Oshan 2016;
Oshan and Fotheringham 2017).

4. Estimation instability does not appear in this section
because SVCs are implicitly assumed known and
not estimated.
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