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Abstract
Stevens’ scales of measurement are often used in texts outlining statistical approaches for geographers.
However, it is sometimes overlooked that these are not universally accepted, and indeed the theory
surrounding them is contested. This progress report reviews the key ideas of these scales, and discusses a
number of the problems they raise – most notably the fact that certain kinds of data are omitted. The value of
an axiomatic approach to measurement scales and appropriate statistical techniques is then considered. The
report concludes by considering further areas where these ideas may be developed.
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I Introduction: What are
measurement scales?

The concept of scales of measurement (Stevens,

1946) has been used in the physical and social

sciences for decades. Essentially, these are a

categorization of the kinds of variable (or attri-

bute in GIS vector model terminology) that may

occur. Identifying the scales of measurement for

a given set of variables is intended to provide

guidelines for the appropriate method for data

analysis – and possibly visualization tools – that

can be applied in a meaningful way. This has

been an issue that has long contributed to

debates in quantitative human geography –

since data relating to people, the economy,

migration, travel, social well-being and atti-

tudes to place and many other topics contain

examples of measurement on all of these scales.

It is hoped that understanding the relationship

between scales of measurement and data

analysis and visualization techniques may pro-

vide some guidance when working with diverse

forms of quantitative geographical data. I begin

by overviewing and highlighting recent interest

in this topic, and then review and critique the

underlying ideas, and consider fruitful areas for

further research.

II Context and review

Scales of measurement have received much

attention since Stevens’ paper was first pub-

lished, and they inform research currently

ongoing. Since the theory outlines structure in

data types that informs choices on how it may be

processed, it takes on new relevance in an era of
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big data and infographics. For example, this has

been considered in the framework of creating a

unifying ontology of data visualization (Voigt

and Polowinski, 2011), which then leads to con-

sideration of data visualization techniques for

city models (Métral et al., 2012, 2014), and pos-

sibly city dashboards. Big data processing also

draws on these ideas, exemplified by Bimonte,

Villanova-Oliver, and Gensel (2012) – who

consider measurement scale as one factor in

developing methods for automatic aggrega-

tion of data on web-based servers. Härtwig,

Müller, and Bernard (2014) go on to consider

this in the context of spatio-temporal data

analysis. It is also highlighted as an issue

when considering strategies for mapping

American Community Survey-based esti-

mates of statistics, and their associated errors

(Francis et al., 2015).

In terms of visualization, Harvey (2017) pro-

poses a novel theoretical framework approach,

part of which refers to the scales of measure-

ment paradigm for visualizing big data. Finally,

in a visualization context, Lin, Hanink, and

Cromley (2017) draw attention to its relevance

in the context of isopleth mapping. Consider-

ation of measurement scales in the analysis of

social and economic data continues to influence

thinking. In a recent PhD thesis Jensen (2014)

considers the use of compositional data in

econometric modelling, and the approach here

is informed in part by measurement scale. Also,

Erguven (2014) considers influences of mea-

surement theory on statistical analysis of survey

data. Thus, the key idea and Stevens’ proposed

scales continue to be drawn upon as an aid to

understanding many current aspects of quanti-

tative spatial data analysis.

The idea, and the proposed scales, need little

introduction to readers who have attended a

basic ‘quantitative methods for geographers’

or similar course, but, following Chrisman

(1995), it is helpful to list Stevens’ initial

specification of these scales (Table 1).

These can be interpreted as an ordered set –

the ‘Basic empirical operations’ are essentially

cumulative – so that ‘Determination of equality’

is possible on each scale, ‘Determination of

greater or less’ is possible on all scales except

nominal, and so on. The mathematical group

structure is essentially a set of transformations

which can be applied to measurements in each

scale such that the determination of equality

basic empirical operation associated with each

scale will still hold. Again, these form a

sequence since each group transformation is a

subset of the previous one. For example,

x0 ¼ axþ b is a monotonic increasing function,

provided a > 0. It should be pointed out that the

further condition a > 0 should be added to the

mathematical group structure entries for inter-

val and ratio. Mapping all x values onto a

Table 1. Stevens’ original four scales of measurement.

Scale Basic Empirical Operations Mathematical Group Structure
Permissible statistics
(invariantive)

NOMINAL Determination of equality Permutation group x0 ¼ f ðxÞ – f ðxÞ
means any one-to-one substitution.

Number of cases, mode

ORDINAL Determination of greater
or less

Isotonic group x
0 ¼ f ðxÞ – f ðxÞ means

any monotonic increasing function
Median, percentiles

INTERVAL Determination of equality
of intervals or differences

General linear group x
0 ¼ ax þ b Mean, standard deviation,

rank order correlation
RATIO Determination of equality

of ratios
Similarity group x

0 ¼ ax Coefficient of variation
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constant b (interval) or zero (ratio), as would be

the case if a were zero, does not preserve the

respective determinations of equality for these

scales. Negative values reverse the ordering. I

refer to this group of four scales as the NOIR

group (from the initial letters of Stevens’ orig-

inal nomenclature). Their interconnection is

illustrated in Figure 1.

Around this set of scales of measurement,

Stevens develops the idea of measurement

theory. This argues that the scale of measure-

ment adopted dictates the method of statistical

analysis that should be used, in terms of either

statistical tests or descriptive statistics. It also

sets out a rigorous definition of a scale of mea-

surement as a mapping of some quality (abstract

or physical) onto a numeric value. Examples

include a physical distance to a number of

meters or feet, or a response to a certain govern-

ment policy on to an attitude scale (for a rigor-

ous exposition see Krantz et al., 1971; Suppes

et al., 1989; Luce et al., 1990). These ideas per-

sist in many ways at the time of writing. Many

statistical textbooks contain some version of

Stevens’ table as a guide to choosing appropri-

ate statistical methods given certain kinds of

data, essentially basing their guide on the NOIR

scales. Some software packages use this frame-

work to classify variables. This could involve

‘greying out’ certain statistical procedures that

would be inappropriate for certain variables

according to Stevens’ dictum. For example,

defining variables in SPSS requires variables

to be classified into the near-NOIR grouping

of ‘nominal’, ‘ordinal’ or ‘scale’. The last,

although confusingly named, is a union of inter-

val and ratio scale data.

Although the NOIR grouping is perhaps the

first attempt to classify scales of measurement

in this way, and arguably the first to propose this

concept in a formal framework, other commen-

tators note that it is by no means complete. The

NOIR scales of measurement themselves form

an ordinal scale in that the list of group structure

transforms as defined above form a cumulative

set – and the notion of comparison x < y in this

context can be defined in terms of subsets of

permissible operations. This self-reference may

be seen as aesthetically satisfying, but unfortu-

nately the NOIR set of scales is not exhaustive

and some non-NOIR scales do not fit well into

this ordered framework. Chrisman (1995) notes

that circular data do not find an intuitive place

here: ‘Angles seem to be ratio, in the sense that

there is a zero and an arbitrary unit (degrees,

grads or radians). However, angles repeat the

cycle. The direction 359� is as far from 0� as

1� is’ (p. 274). A similar argument could be

applied to time-of-day or time-of-year data.

Others have also identified kinds of mea-

surement that do not fit comfortably into this

framework, including Stevens himself (1959),

who subsequently argued for a fifth scale (sit-

ting at the same level as interval) for logarith-

mic measures.

Other attempts to identify scales of measure-

ment also exist. Some of these are simpler than

Stevens’, and some more complex. Indeed Van

den Berg (1991) found that the identification of

Figure 1. Scales of measurement – as suggested by
Stevens.
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distinct scales of measurement was an area of

notable disagreement among statistical experts.

Nelder (1990) identified various modes of data,

comprising continuous counts, continuous ratios,

count ratios and categorical. The last of these are

sub-classified into ‘nominal’, ordered on the basis

of an underlying scale, and ordered without an

underlying scale. Here there are more than the

four levels proposed by Stevens, although argu-

ably these do not fit with his overall idea that level

of measurement dictates statistical technique.

Although many sources still use Stevens’ ini-

tial classification as a basis for structuring sta-

tistical analysis (despite the fact that Stevens

himself has amended this), the ideas are con-

tested. The contestation falls broadly into two

groupings: those who support measurement the-

ory but disagree in some way with Stevens’

approach, and those who oppose measurement

theory per se.

Below, I review both critiques and offer fur-

ther suggestions. I proceed by outlining some of

the basic ideas in greater detail, then focusing on

the critiques, and finally reflecting on these. I

consider levels outwith Stevens’ original list,

and place them within the ‘Mathematical Group

Structure’ framework suggested in that list. In

particular, types of spatial data and measure-

ment scales will be considered in this frame-

work as well as the concept of permissible

statistics applied in this context.

III Detailed view: ‘Permissible’
statistical operations for the NOIR
scales

In addition to outlining scales of measurement

Stevens suggested appropriate statistical tests

for each of the levels, termed permissible. These

are tests whose outcomes and interpretation

remain unaltered when the mathematical group

structure transform is applied to the data. For

example, two-sample t-tests are not permissible

for nominal level data, even if the nominal lev-

els are denoted numerically. Suppose we had

two samples, uniquely labelled numerically, but

thought to be nominal, as in Table 2.

Applyinga t-test to these valueshas the following

result, rejecting a two-tailed test of H0 : m1 ¼ m2

at the 5% significance level (Table 3).

However, if the data really are nominal, the

results should be invariant to a transform

x 7!f ðxÞ provided f ðxÞ is unique for any x value.

However, consider the transform

f ðxÞ ¼ x if 4 � x � 8;
12� x otherwise

�
This function ‘reverses’ the integers between

four and eight, leaving the rest unchanged, and

meets the uniqueness criterion. The transformed

data are shown in Table 4.

And the test performed on the transformed

data gives the result in Table 5.

In this case the test fails to reject H0. Even if

the test outcome were the same the test statistic

would have been altered – the p-values would

be altered. This example illustrates Stevens’

principle: the transform above should leave the

outcome invariant at the nominal level, but it

Table 2. s1 and s2.

s1 6 7 8 9 10 11

s2 1 2 3 4 5

Table 3. Two-sample t-test: s1 and s2.

t - Statistic 5.20
p-value (two-tailed) <0.001

Table 4. f(s1) and f(s2).

f ðs1Þ 6 7 8 3 2 1

f ðs2Þ 11 10 9 4 5

Table 5. Two-sample t-test: f ðs1Þ and f ðs2Þ.

t - Statistic �1.82
p-value (two-tailed) 0.10
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actually changes the t-statistic. Therefore t-tests

are not meaningful for this level of measurement.

In Stevens’ terminology, the two-sample t-test is

‘not permissible’ for nominal level data. Conver-

sely, a transform of the kind axþ b or ax would

not change the value of the test statistic or the

p value, so two-tailed t-tests are permissible for

interval or ratio levels.

Similarly, ‘permissible statistics’ listed in

Stevens’ table are essentially statistics that are

consistent with the appropriate group structure

transform, in the sense that if fx1; . . . ; xng are a

set of measurements on a given level, f ðxÞ is a

group structure transform for this level, and

x� ¼ gðx1; � � � ; xnÞ is a permissible statistic then

f ðx�Þ ¼ g
�

f ðx1Þ; � � � ; f ðxnÞ
�

. If the measure-

ment scale is somehow ‘recalibrated’ via f ðxÞ,
then the recalibrated summary statistic should

be the summary statistic of the recalibrated

measurements. However, this is not always

strictly the case, and Stevens’ theoretical over-

view is ‘informal’ in some parts. Although stan-

dard deviations are permissible for interval

scale data, the group structural transform here

is f ðxÞ7!axþ b, but if the standard deviation of

a sample is s, then the standard deviation of the

transformed data is as, and not asþ b.

In addition to the idea of a ‘mathematical

group structure’ and the associated ‘basic

empirical operations’, another characteristic of

levels of measurement is that of a meaningful

binary operator. For example, for nominal level

variables x and y the binary operators x ¼ y and

x 6¼ y are meaningful, as they have logical out-

comes of true or false. However, x � y is not

meaningful, since there is no concept of order in

nominal variables. Other levels of measurement

will have different meaningful operators.

IV Scales of measurement outwith
the basic theory

Since others have identified levels of measure-

ment outwith Stevens’ original table, how do

these fit in? For example, are there group struc-

ture transforms and associated permissible sta-

tistics for angular data, or log interval data and if

so, what are they?

1 The ‘cyclic’ scale

The cyclic scale is the generic name by which

all scales of the kind given in the example of

angles above will be designated. Typical uses

in human geography might include analysis of

directions of movement (Faggian et al., 2013;

Brunsdon and Charlton, 2006), the time of day

of crimes (Brunsdon and Corcoran, 2006), or

crowd movement dynamics (Wirz et al., 2012).

The idea is that they range over a set of num-

bers from 0 to C but that the distance between 0

and C is zero, and for d1; d2 2 ½0;C=4� the dif-

ference between C � d1 and d2 is d1 þ d2. In

other situations the difference is defined by

ordinary subtraction. Thus, for angles, C ¼
360� and the difference between 359� and 1�

is 2�, x may be thought of as a point of the

circumference of a circle (see Figure 2).

The set of group structure transformations

take the form x7!f ðxÞ where f maps x onto a

revised scale with a possibly different value for

C. An offset can be added to the transformed x

so that the zero position on the circle is altered.

A switch from ‘clockwise’ to ‘anticlockwise’ is

also possible so that 3
4

C and 1
4

C are transposed

in the diagram. These operations occur when

Figure 2. The cyclic scale of measurement.
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switching between degrees and radians, where

C changes from 360 to 2p, the zero position

moves from 12 o’clock to 3 o’clock, and direc-

tion switches from clockwise to anti-clockwise.

Stevens-type permissible statistics are outlined

in Fisher (1993). Averaging may be exemplified

by the circular mean x~- defined by:

x~¼ tan�1
�X

i

sinðxiÞ;
X

i

cosðxiÞ
�

for x in radians, where the bivariate form

tan�1ðy; xÞ computes the arctangent, taking

into account the correct quadrant given the signs

of the argument. For positive x and y,

tan�1ðy; xÞ ¼ tan�1ðy=xÞ. If x is not in radians,

it is converted to radians for the calculation of

this statistic. The result is converted back to the

initial units afterwards. For spread, typical sta-

tistics include the circular standard deviation

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln

1

n

X
i

sinðxiÞ
 !2

þ 1

n

X
i

cosðxiÞ
 !2

0
@

1
A

vuuut
where again x is in radians, and converted to this

scale otherwise.

There is no well-defined ordering for this

scale of measurement, due to its cyclic nature,

so order-based statistics (such as quantiles) have

no meaning. Effectively, in relation to Figure 1,

the cyclic scale forms a new branch away from

the existing hierarchy at the nominal level, since

operations applicable to the nominal scale (such

as the mode) may be applied here, as may other

operations unique to cyclic measurements.

However, operations that are valid for ordinal

measurements are not valid for the cyclic case.

2 The ‘log interval’ scale

Suppose I have two pairs of running shoes

(denoted A and B here). I take ten 10 km

runs in each pair and measure the average

pace of each run (in minutes per km – see

data in Table 6). I wish to test the hypothesis

that the average running pace in both pairs of

shoes is the same.

In each run the speed is calculated in km/h

(pace divided into 60). If we assume the pace to

be measured on a ratio scale (it has a well-

defined zero of being stationary!), a t-test may

be used to test this hypothesis since, in Stevens’

terms, it is permissible. Here insufficient evi-

dence is found to reject this hypothesis, using

a two-tailed test, as seen in Table 7.

Now consider the same test, using speed

instead of pace (Table 8). This time there is

evidence to reject the null hypothesis.

It could be argued that if there is no strong

reason to favour one hypothesis over the other;

then a valid group structure transform is

f ðxÞ7!60=x, which is non-linear, and hence

rapidity is measured on an ordinal scale. This

Table 6. Average pace and speed for two pairs of running shoes for repeated 10 km runs.

Shoes Measurement Individual Runs

A Pace Min/Km 6.45 6.43 5.80 5.93 6.08 6.37 6.64 6.30 6.61 6.06
Speed Km/h 9.30 9.32 10.34 10.12 9.87 9.42 9.04 9.53 9.08 9.90

B Pace Min/Km 6.46 6.42 6.45 6.47 6.37 6.68 7.00 6.73 6.17 6.36
Speed Km/h 9.28 9.35 9.30 9.28 9.41 8.98 8.57 8.92 9.72 9.43

Table 7. Two-sample t-test for null hypothesis of
equal pace.

t - Statistic �2.1000
p-value (two-tailed) 0.0501

Table 8. Two-sample t-test for null hypothesis of
equal speed.

t - Statistic �2.1220
p-value (two-tailed) 0.0480
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being the case, the result of the hypothesis

test may be based on a Wilcoxon test which

compares the ranks of the speed (or the pace)

for each pair of shoes, which gives the results

in Table 9.

Now the p-value implies the null hypothesis

fails to be rejected. Furthermore, the p-value

itself is notably increased, suggesting the power

of the test has diminished.

An alternative approach might be to trans-

form by taking logs (of both pace and speed),

noting that logðPaceÞ ¼ logð60Þ � logðSpeedÞ.
The logged quantities are related by a linear

transform, and form an interval scale. In this

case a t-test is permissible in both cases. For

pace, see the result in Table 10.

Applying the same test to logged speed

measurements gives t¼2.112, which is equiv-

alent to the above (except for a change in

sign) with identical p-value due to the use of

a two-tailed test.

This suggests the existence of another scale

of measurement, whose group structure trans-

form is logðxÞ7!alogðxÞ þ b. Given that x > 0,

this may be stated as x 7!bxa (for a different b).

Stevens proposed this in a later paper. For this

scale the set of group structure transforms is a

subset of those for ordinal scales of measure-

ment but not a superset of those for interval or

ratio scale. These form a ‘parallel’ scale to the

interval scale – superseding the ordinal scale but

incomparable to interval and ratio scales.

3 The ‘absolute’ scale

In ‘absolute’ scale, no transform apart from the

identity transform f ðxÞ7!x is permitted. This

typically applies to count data. Counts of

objects cannot be multiplied by an arbitrary lin-

ear transform and maintain their meaning. Like

ratio data, they clearly have a well-defined zero.

It could arguably also include unobservable

attributes, such as probability (which, in order

for the laws of probability to hold, must be in the

range ½0; 1�) or correlation – which must lie in

the range ½�1; 1�. This scale can be distin-

guished from ratio scale by the absence of units

of measurement.

4 An augmented set of scales

Putting the extra scales together with those put

forward by Stevens prompts re-drawing of the

diagram in Figure 1, giving the updated arrange-

ment shown in Figure 3, where arrows with

dotted shafts show relationships involving the

scales augmenting the original classification.

The scales themselves are shaded in a lighter

colour. The simple ‘ladder’ relationship seen

earlier is no longer apparent.

V Further issues with
measurement theory and NOIR

Criticisms of Stevens’ original set of scales

include that it is incomplete, and that it is incon-

sistent and therefore potentially confusing. For

example, Spearman’s (1904) rank correlation

coefficient (r) is frequently suggested for ordi-

nal measures (though it is essentially Pearson’s

coefficient with interval or ratio measurements

replaced by their rank, an ordinal measure).

Thus, although considering the relationship

between the scales of measurement may prove

useful, the idea of prescribing and proscribing

certain analytical techniques on the basis of

measurement scale contains inconsistencies in

practice. The paradoxical use of Spearman’s

coefficient could be circumnavigated by using

Table 9. Two-sample Wilcoxon test for null
hypothesis of equal speed.

w - Statistic 75
p-value (two-tailed) 0.063

Table 10. Two-sample logged t-test for null hypoth-
esis of equal speed.

t - Statistic �2.1120
p-value (two-tailed) 0.0489
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the Kendall coefficient of concordance t instead

(Kendall, 1938). This is based on pairs of obser-

vations ðxi; yiÞ and ðxj; yjÞ being either concor-

dant such that either xi < xj and yi < yj or

xi > xj and yi > yj or discordant if either

xi > yi and yi < yj or xi < xj and yi > yj. With

these definitions, and assuming no ties in the

data sets,

t ¼ 2ð#concordant pairs� #discordant pairsÞ
nðn� 1Þ

Note this only requires comparison

operators.

Despite the contradictory nature of r as a

descriptor of association for pairs of ordinal

measurements, its use still persists, possibly

dominating the use of t. A similar issue exists

for the Mann-Whitney U -test, as it is a nonpara-

metric equivalent to the t-test based on the sums

of the ranks of observations in two samples.

Intended for use with ordinal measurements, it

is based on sums of the ranks – an operation not

permissible in Stevens’ theory. In these objec-

tions some confusion arises: although Spear-

man’s correlation coefficient and Mann and

Whitney’s test both rely on non-permissible

operations, they apparently do the jobs that they

are intended to do. In the light of this observa-

tion, does the concept of levels of measurement

scale actually offer any useful contribution?

Rather than questioning its relevance, some

consider it to be harmful, and that adhering to its

recommendations might lead to misleading or

inappropriate analysis. One of the earliest cri-

tiques is from Lord (1954), who argued that the

appropriateness of data analysis depends on

context and the question it is designed to

answer, rather than the scale of measurement

attributed to the data (Velleman and Wilkinson,

1993). For example, the floor number of an

apartment block is an ordinal scale measure-

ment, but if all floors had the same room height,

it effectively functions as an interval scale mea-

surement. Regressing this quantity against

sound level for some source of noise at ground

level (say passing trains) would have meaning

given this context.

Guttman (1977: 105) argues similarly: ‘Per-

mission is not required in data analysis. What is

required is a loss function to be minimized.’

Here, ‘loss function’ encapsulates a penalty for

making a wrong decision or a wrong summary

statistic in the context of the question being

asked. This should be defined differently in dif-

ferent situations. Further, Guttman argues, ‘If a

mathematician gives or withholds “permission”

without reference to a loss function, he [sic]

may be accessory to helping the practitioner

escape the reality of defining the research prob-

lem’ (p. 105). Although the idea of a ‘loss func-

tion’ is perhaps in itself reductionist, the last

statement highlights a distinction between the

mathematician and the practitioner, and perhaps

a distinction between the (pure) mathematician

and the data analyst. Attempting to base recom-

mendations for appropriate data analysis tech-

niques solely on a set of abstract axioms risks

overlooking the issues that the researcher ini-

tially wished to address.

Whereas one may disagree that human geo-

graphy is a science, an important point is made

Figure 3. Scales of measurement: An augmentation
of Stevens’ classification.
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on the role of experience. An axiomatic

approach to scales of measurement has more

in common with pure mathematics than a sci-

ence. Velleman and Wilkinson (1993: 7) rein-

force this argument: ‘Experience has shown that

in a wide range of situations that the application

of proscribed statistics to data can yield results

that are scientifically meaningful, useful in

making decisions, and valuable as a basis for

further research.’ Following these proscriptions

could hinder the yielding of such results, sug-

gesting that axiomatic measurement theory

should be considered harmful.

Objections to measurement theory certainly

cast doubt on the utility of an axiomatic

approach. However, knowing something about

the characteristics of data types does inform the

process. For example, in many contexts the

numbers associated with nominal categories are

simply proxies for some other attribute, such as

political party or gender. Carrying out arithme-

tical operations on these makes no sense when

context is also considered. Similarly, although

the average rank of scores in one group could be

compared to that for another, there are limits to

which this approach is useful. On the other

hand, in the apartment floor example, a differ-

ence in mean ordinal measures may have further

meaning, as each level suggests a constant

change in height. Fractions of these also imply

differences in height. Thus, considering types of

data does inform understanding, although rather

than providing a guiding theory to data analysis

of itself, it provides contextual information.

With this in mind, it is also helpful to

consider other suggested classifications of

data. These are generally in a less rigorous

setting than those of Stevens, but they do

shed light on different approaches to analysis.

One such list of classifications was suggested

by Tukey (1977):

	 Names

	 Grades (ordered labels such as Freshman,

Sophomore, Junior, Senior)

	 Ranks (starting from 1, which may repre-

sent either the largest or the smallest)

	 Counted Fractions (bounded by zero and

one; these include percentages, for

example)

	 Counts (non-negative integers)

	 Amounts (non-negative real numbers)

	 Balances (unbounded, positive or nega-

tive values)

The list is interesting if not axiomatic. It

offers greater detail than Stevens’ groupings,

and brings in the concept of constrained values

– Amounts may not be negative, Counted Frac-

tions must lie between zero and one, and Counts

must be integers greater than or equal to zero.

Such constraints help consideration of the

nature of variables, and provide concepts

beyond those considered by Stevens’ classifica-

tion. They are also helpful in suggesting appro-

priate statistical models for data. For example,

identifying a quantity as a counted fraction sug-

gests that a binomial distribution may be an

appropriate model. Similarly, Poisson models

may be appropriate for count data.

VI Further issues

Tukey’s suggestions are well established, yet

have made less of an impact on textbooks of

quantitative geography than Stevens’ initial

ideas despite the fact that few quantitative

human geographers currently adhere to an axio-

matic approach. Yet despite the fact that Tukey

identifies more richness in variety of data types

than Stevens’ approach, more recent considera-

tions suggest that even more kinds of data

should be considered, many of which are rele-

vant to quantitative human geography.

In many situations, locations in geographical

space (modelled as a map projections or a point

on the surface of a globe) are in themselves a

data type. Like directional data, in general they

have no implicit ordering, but mathematical

operations such as addition, subtraction and the
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computation of means (in this case centroids)

are meaningful. Referring again to the network

diagram in Figure 1, this is another offshoot

from ‘nominal’. Further understanding of direc-

tional data can be gained by regarding direc-

tions as two-dimensional points constrained to

lie on a circle of unit radius. The circular mean

is the projection of the centroid of a set of direc-

tions represented in this way onto the circle of

unit radius, as demonstrated in Figure 4.

All scales of measurement are subject to

measurement error. However, further uncer-

tainty occurs in the assignment of categories

to nominal measures if the categories are

unclearly defined. It is difficult, if not impossi-

ble, to define the concept of a materially

deprived household in a crisp way. In such

cases, the idea of fuzzy sets is often applied.

However, how fuzzy nominal entities fit into

this framework, and what statistical operations

are meaningful for such data, is not yet clear.

Work such as that by Fisher (1999) provides a

strong starting-point for this.

Returning to issues related to multi-

dimensional data, most basic classifications of

scale focus on the unidirectional, where rela-

tionships between entities are generally based

on ordering. However, there are other kinds of

relationship. Geographical regions could be

regarded as measurements on a nominal scale.

Intuitively there is no order relationship

between them but a notion of adjacency, where

a pair of regions share a border, could be repre-

sented. If this scale is tentatively named ‘nom-

inal positional’, there is more structure in the

scale of measure than in ‘pure’ nominal data.

Statistics such as Moran’s-I (Moran, 1950)

identify the degree of linkage between a nom-

inal positional scale and an interval or ratio

scale measurement.

VII Closing discussion

Although much of the material here has been

considered in previous discussions, some of

these ideas take on a new significance in the era

of data science, and in particular geographical

data science. There may be good arguments that

an axiomatic view on measurement types is not

the most advantageous way to proceed, yet an

understanding of different kinds of data, or

(in Stevens’ framework) different measurement

scales, and an understanding that such typolo-

gies are themselves contested ideas, plays an

important role in data science. Even if one does

not accept the notion that certain kinds of

Figure 4. Constrained 2D interpretation of a circular mean.
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analysis or statistical summaries may be pro-

scribed purely on the basis of measurement

scale, it is informative to reflect on the combi-

nation of research question, kind of data, and

type of visualization or analysis that is taking

place. These ideas are an aid to thought in this

area, even if they do not provide a set of con-

crete rules.
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