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A B S T R A C T

Ordinal categorical responses are commonly seen in geo-referenced survey data while spatial statistics tools for
modelling such type of outcome are rather limited. The paper extends the local spatial modelling framework to
accommodate ordinal categorical response variables by proposing a Geographically Weighted Ordinal
Regression (GWOR) model. The GWOR model offers a suitable statistical tool to analyse spatial data with ordinal
categorical responses, allowing for the exploration of spatially varying relationships. Based on a geo-referenced
life satisfaction survey data in Beijing, China, the proposed model is employed to explore the socio-spatial
variations of life satisfaction and how air pollution is associated with life satisfaction. We find a negative as-
sociation between air pollution and life satisfaction, which is both statistically significant and spatially varying.
The economic valuation of air pollution results show that residents of Beijing are willing to pay about 2.6% of
their annual income for per unit air pollution abatement, on average.

1. Introduction

Geographically weighted regression (GWR) has been established as
a flexible framework for modelling spatially varying relationships be-
tween predictor variables and an outcome variable (Brunsdon,
Fotheringham, & Charlton, 1996; Fotheringham, Brunsdon, & Charlton,
2003). Recent years have seen active methodological development of
GWR models due to an increasing demand of applying localised spatial
models to data with complex structures and non-Gaussian types of
outcome variables. For instance, GWR models have been extended to
explore spatiotemporal data by incorporating temporal correlations
between an observation at time period t and spatially nearby observa-
tions at previous periods into the overall local weights matrix for esti-
mation (Fotheringham, Crespo, & Yao, 2015; Huang, Wu, & Barry,
2010). Harris, Dong, and Zhang (2013) presented a contextualized
GWR model, thereby the contextual similarities of observations (e.g.
similarity in the attributes of neighbourhoods where houses are located,
measured by certain distance metric) were incorporated into the local
weights matrix for implementing each local regression model. The key
idea underlying this line of GWR model extension is to achieve a better
or more realistic representation of spatial relationships between ob-
servations. Other methodological elaborations of GWR include devel-
oping formal statistical tests of spatial heterogeneity (Leung, Mei, &

Zhang, 2000), and the use of different distance metrics in constructing
the spatial weights matrix (Lu, Charlton, Brunsdon, & Harris, 2016).

This paper contributes to the ongoing GWR developments by ex-
tending a geographically weighted ordinal regression model (GWOR)
for properly exploring spatial data with ordinal categorical response
variables. Ordinal response variables are commonly seen in social sci-
ence research, especially when the research focus is in relation to in-
dividual opinions and attitudes towards events, or subjective assess-
ment of life experiences such as life satisfaction and happiness. Detailed
descriptions of the application scopes of ordinal response variables in a
variety of social science disciplines are provided in Agresti (2010) and
Greene and Hensher (2010). The motivation of extending a GWOR
model lies in two aspects. The first is to address the issue of limited
methodological options to deal with increasingly available geo-refer-
enced survey data in the local spatial modelling literature. Such data
usually quantify important information via categorical variables. Sec-
ondly, we are interested in exploring the socio-spatial variation of life
satisfaction in Beijing, China and examining potential spatial hetero-
geneity in the association between life satisfaction and air pollution.
The GWOR model, demonstrated by examining a geo-referenced life
satisfaction data, can be applied to other spatial data.

Life satisfaction data are often collected based on surveys, in which
questions such as “Overall, how satisfied are you with your life?” are
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asked (e.g. Welsch & Ferreira, 2014). Responses to the question are
usually recorded on a Likert scale, ranging from one being very un-
satisfied to five being very satisfied, for instance. Life satisfaction scores
or ratings are quantitative in nature but the between-category distances
are unknown—the distance between categories of one and two might be
quite different from that between categories of four and five (Agresti,
2010). This differs substantially from a Gaussian variable for which per
unit difference is comparable. It has been shown that applying a linear
regression model to an ordinal categorical variable would cause issues
to model estimation and statistical inferences for regression coeffi-
cients, likely producing misleading model results (Agresti, 2010).

To date, the development of GWR focuses on outcome variables
following a Gaussian (or Normal) distribution, with few notable ex-
ceptions in Nakaya, Fotheringham, Brunsdon, and Charlton (2005)
where a geographically weighted Poisson regression model has been
developed for exploring disease outcomes, and in Fotheringham et al.
(2003) for a geographically weighted Binomial regression models.
Closely related to this study, McMillen and McDonald (2004) presented
a preliminary extension of GWR to geo-referenced ordinal response
variables by proposing a locally weighted ordered probit model.
However, discussions on model specifications such as choices of dif-
ferent link functions for the cumulative probabilities of responses and
choices of adaptive or fixed kernels, and on approaches to test statistical
significance of spatial heterogeneity in regression coefficients are not
provided.

This paper extends the work of McMillen and McDonald (2004) by
offering flexible tools to explore the potential spatial variability in re-
lationships between an ordinal response variable and predictor vari-
ables. The estimation of GWOR model draws upon the locally weighted
likelihood approach via an iterative numerical optimisation procedure
(detailed below). It allows for great flexibility in model specification,
including different link functions (logit and probit) for the cumulative
probabilities of the responses, and a mixed model specification in which
regression coefficients of some variables are spatially varying while
coefficients of other variables are kept spatially invariant (e.g. Mei, Xu,
& Wang, 2016). The R code for implementing various GWOR models
are provided in the Supplementary Information of the paper.

Based on a geo-referenced life satisfaction survey data in Beijing,
this study explores how life satisfaction is spatially linked to air pol-
lution and other factors. There has been a surge of using life satisfaction
data to evaluate environmental amenities such as air quality, the eco-
nomic value of which cannot be directly observed through market
transactions (Ferreira & Moro, 2013; MacKerron & Mourato, 2009;
Welsch, 2006). The theoretical underpinnings of life satisfaction based
environmental evaluation approach are comprehensively reviewed in
Welsch and Ferreira (2014). At its heart, the subjective life satisfaction
is regarded as the experienced utility of individuals, and by estimating
the life satisfaction equation with environmental quality indicators and
income included, the (marginal) willingness to pay (WTP) for en-
vironmental quality can be estimated (e.g. Ferreira & Moro, 2010). The
issue, however, is that the life satisfaction equation was predominantly
estimated by using aspatial regression models, implicitly assuming WTP
for environmental quality improvement to be constant across space.
This is a rather restrictive assumption. It is likely that people living in
different locations with varying socio-economic characteristics tend to
have different preferences for air quality and thus varying WTP for air
quality improvement or air pollution abatement (Bayer, Ferreira, &
McMillan, 2007; Ferreira & Moro, 2013). The GWOR model enables us
to estimate the spatially varying associations between life satisfaction
and air pollution and income, taking locational heterogeneity into ac-
count.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of non-spatial ordinal regression models. In Section
3, we describe the GWOR model and provide details of model estima-
tion. Section 4 applies the GWOR model to explore the socio-spatial
variation of life satisfaction and estimate the economic value of air

quality in Beijing. Conclusions are provided in Section 5.

2. A non-spatial ordinal regression model

Following Agresti (2010) and Greene and Hensher (2010), we use a
latent variable approach to formulate an ordinal regression model due
to its intuitive link to the simple linear regression models. Denote Yi

∗ as
a latent continuous outcome variable and xi a set of predictor variables
such as income, air pollution, and others. A linear regression model
links Yi

∗ to xi,

= + = …∗ βY x i Nϵ ; 1, ,i i i (1)

where i indexes each observation and N, the sample size. xi=[xi,1, xi,2,
…, xi,p] is a row-vector of predictor variable values of observation i
while β is a column-vector of regression coefficients to estimate. The
mapping of the unobservable Yi

∗ to the observed categorical response Yi

depends on a set of cut-off points or threshold values [α0, α1,…, αJ] on
the scale of Yi

∗: Yi= j if aj−1 < Yi
∗≤ aj, j=1,…, J where J are the

number of response categories. Ordinal regression models focus on the
cumulative probability of an observation falling in category j or below,
which is expressed as,

≤ = ≤ = ≤ − = −∗ β βY j Y a a x F a xP( ) P( ) P(ϵ ) ( ).i i j i j i j i (2)

Different specifications of the density function for ϵ leads to dif-
ferent forms of cumulative probabilities for P(Yi ≤ j): 1/
(1+ exp (−aj+ xiβ)) if a logistic density was specified, and Φ(aj− xiβ)
if a Normal density was used where Φ is the cumulative distribution
function of a standard Normal density. The logistic specification was
favoured due to its simplicity in model parameter interpretation
(Agresti, 2010). The probability of (Yi= j), conditioning on xi, is F
(Yi

∗≤ αj) – F(Yi
∗≤ αj−1). The GWOR models extended here allows for

both Normal and logistic densities for ϵ.
The effect of a predictor variable, say x1, on the cumulative prob-

ability of a response falling into category j is not linear because of the
non-linear cumulative distribution function. This is seen from the par-
tial derivative of the cumulative probability with respect to x1, ∂P
(Yi≤ j)/∂x1= f(aj− xiβ)β1 where f(.)= F′(.) is the density function
and β1 the regression coefficient of x1. The interpretation of estimated
coefficients can make use of the concept of odds ratios as in a simple
binary logit model. Taking the log odds of the cumulative probability in
(2) and inserting the cumulative logistic probability formula, we obtain,

≤
− ≤

= − βlog
Y j

Y j
a x

P( )
1 P( )

.i

i
j i

(3)

The equation shows that the effect of x1 on the cumulative prob-
ability on the logit scale is simply β1 regardless the response category.
The maximum likelihood estimation approach is usually used for model
estimation. For observation i, let yi1, …, yi,J be binary indicators of
response categories, then we have yij=1 and yik=0 for k≠ j if Yi= j.
The log-likelihood function of the model is,

∑ ∑= ≤ − ≤
= =

∗ ∗
−θl y F Y a F Y a( ) log[ ( ) ( )]

i

N

j

J

ij i j i j
1 1

1
(4)

where θ=[β, α1, …, αJ−1]. It's useful to note that only J− 1 cut
points are needed to divide the latent variable Y ∗ into J categories
while α0 and αJ are set to −∞ and +∞, respectively. Although there is
not a tractable solution for the first-order conditions of the equation, it
has been shown that the log-likelihood function has a unique global
optimum so different types of iterative maximisation algorithms can be
applied to estimate θ (Burridge, 1981; Pratt, 1981).

3. A geographically weighted ordinal regression model

We now describe the geographically weighted ordinal regression
model that allows for regression coefficients varying across space.
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Following the GWR notational convention (Fotheringham et al., 2003),
let ui (ui,x, ui,y) be the geographical coordinates of observation i. Eq. (1)
can be re-written as,

= + = …∗ βY x u i N( ) ϵ ; 1, ,i i i i

= ∞ < ≤∗Y if− Y a u1 ( )i i i1

= < ≤ = … −−
∗Y j if a u Y a u j J( ) ( ), 2, , 1i j i i j i1

= < ≤ +∞−
∗Y J if a u Y( )i J i i1 (5)

Both the J− 1 cut points and the coefficient vector β to estimate are
associated with a location indicator ui, relaxing the restrictive as-
sumption of spatially invariant covariate effects. Following previous
studies (Loader, 2006; Nakaya et al., 2005; Páez, Uchida, & Miyamoto,
2002), a locally weighted local likelihood approach was employed to
estimate parameters in GWOR.

3.1. Model estimation

The log-likelihood function at the fit (or focal) location i is expressed
as,

∑ ∑

∑ ∑

= =

= −

− −

= =

= =

−

θ

β

β

l u w y Y j x

w y F a u x u

F a u x u

( ( )) log[ | ]

log[ ( ( ) ( ))

( ( ) ( ))],

i
k

N

j

J

ik kj k k

k

N

j

J

ik kj j i k i

j i k i

1 1

1 1

1 (6)

where wik is the geographical weight placed on the k-th observation
when fitting the local regression model at location i. A weighting
function is needed to determine the rate of decrease in weights as-
signed to observations when moving further away from the fit point.
A commonly employed weighting kernel is the Gaussian kernel, in
which wik = exp.(−0.5× |ui− uk|/d2) with |ui− uk| = (ui,x − uk,x)2

+ (ui,y− uk,y)2. The parameter d is the kernel bandwidth, which
controls how fast the weights decline with increasing distances away
from the fit location. Alternative kernel functions such as bi-square
kernel are also widely used (Fotheringham et al., 2003; Páez et al.,
2002). A further decision is to choose between a fixed kernel ap-
proach where the distance bandwidth is fixed for all observations,
and an adaptive kernel approach in which the bandwidth varies with
each fit location while keeping the number of nearest observations
from each fit point same.

An iterative maximisation algorithm is employed to estimate model
parameters at location i. The maximum of each local log-likelihood
function can be found by using the Newton-Raphson approach, as il-
lustrated below (Franses & Paap, 2001, p.119),

= −−
−

− −θ θ H θ G θ( ) ( )m m m m1
1

1 1 (7)

where G(θ) and H(θ) are the first-order and second-order derivatives of
the local Log-likelihood function l(θ(ui)) with respect to model para-
meters θ, which are also known as the gradient and Hessian matrix of a
likelihood function, respectively. From (6), the gradient vector can be
obtained as,

∑ ∑= ∂
∂

= ⎡
⎣⎢ =

∂ =
∂

⎤
⎦⎥= =

θ θ
θ θ

G u l u
u

w y
P Y j x

P Y j x
u

( ( )) ( ( ))
( ) ( | )

( | )
( )i

i

i k

N

j

J
ik kj

k k

k k

i1 1 (8)

It becomes clear that only the conditional probability P(Yk= j|xk) is
involved in deriving the gradient vector. For notational simplicity, we
denote P(Yk= j|xk) as P(Yk= j) and the first-order derivative of the
cumulative distribution F(.) as f(.). Then we have,

∂ = ∂ = = −

−

−

… − − − … ′

−

−

β

β

β β

P Y j P Y j x f a u x u

f a u

x u

f a u x u f a u x u

( )/ ( ) [ ( ( ( ) ( ))

( ( )

( ))), 0,

, ( ( ) ( ), ( ( ) ( )), , 0) ,

k k k j i k i

j i

k i

j i k i j i k i

1

1 (9)

which is a (p+ J− 1) column vector with p being the number of
covariates. The Hessian matrix H(θ(ui)) follows naturally as the deri-
vative of (9) with respect to θ(ui)’. To preserve the ordering of the cut
points a, a re-parameterisation approach was employed (Greene &
Hensher, 2010). For example, instead of maximising each local log-
likelihood function over the space of a, we can re-parameterise a to a
vector γ such that aj= aj−1+ exp.(γj), j=1, 2, …, J – 1. Then, max-
imisation is applied to the local log-likelihood over [β, γ].

3.2. Statistical inferences and tests of spatial heterogeneity

The statistical inference of model parameters at location i is drawn
upon the Hessian matrix H(θ(ui)) (Nakaya et al., 2005). The asympto-
matic variance-covariance matrix of regression coefficients is produced
by the negative inverse of the Hessian matrix, –H(θ−1(ui)). Local
pseudo t statistics can be calculated consequently and used for in-
spection of statistical significances on local coefficients. As with other
local spatial modelling techniques, GWR models also suffer from the
issue of multiple hypothesis testing (Brunsdon & Charlton, 2011; da
Silva & Fotheringham, 2016), the statistical significance of local para-
meters should be interpreted with caution.

In terms of the statistical significance test on the spatial non-sta-
tionarity of regression coefficients, a Monte Carlo simulation approach
is used (Brunsdon, Fotheringham, & Charlton, 1999; Fotheringham
et al., 2003). It proceeds as follows: (1) Calculate the variance of the
estimated local coefficients based on the real spatial data configuration;
(2) Randomly permute the spatial configuration of the real data, run the
GWOR model and calculate the variance of local coefficients from each
permutation. Repeat this step for n times, say 99; (3) Compute the rank
of the variance calculated from Step (1) in the empirical distribution of
all variances calculated from Step (2), R. Finally, a p-value can be ap-
proximated by R/(1+ n).

To implement the GWOR model, the bandwidth parameter, either
the distance threshold or the number of nearest neighbours needs to be
found. We use a cross-validation approach to select the bandwidth in
the GWOR model, as specified below,

∑= − =
=

CV P Y j(1 [ ( )] ) .
i

N
i

y
1

2ij (10)

An optimum bandwidth can be thought of a bandwidth that maximises
the predicted probabilities for the chosen response categories for all
observations (Agresti, 2010; Greene, 2003).

We also provide a tentative mix GWOR model to allow part of the
regression coefficients spatially invariant (Fotheringham et al., 2003;
Mei et al., 2016). This is useful in situations where there were not
theoretical or empirical evidences suggesting the effects of certain
predictors on the outcomes are spatially varying. This is the case in our
life satisfaction study. For instance, it would be difficult to argue that
the gender effect on life satisfaction is spatially varying. Alternatively,
the spatial variability of relationships might not pass the statistical
significance test discussed above. In a mixed GWOR model, Eq. (5)
changes to,

∑ ∑= + +∗ β δY u x u x( ) ( ) ϵ ,p mi p i i p m i i m i, , (11)

where the coefficients associated with variables xp are allowed spatially
varying while the coefficients of variables xm are kept constant. The
estimation of a mixed GWR model is usually carried out by using an
iterative procedure: the estimation for the fixed parameters δm and for
the varying parameters βp(ui) are iterated until convergence is achieved
(Lu, Harris, Charlton, & Brunsdon, 2014; Nakaya et al., 2005). We are,
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however, not pursuing such a complex and computationally intensive
algorithm to estimate the mixed GWOR model here. Instead, we simply
set the fixed coefficients to their estimates from a global ordinal re-
sponse model. Local log-likelihood functions at each location are
maximised to calibrate the spatially varying regression coefficients
while keeping the coefficients δm invariant. Multi-collinearity has been
presented a more serious issue in GWR modelling than in global models
as global correlations among independent variables might be elevated
in local samples (Wheeler, 2007; Wheeler & Waller, 2009). However,
this argument has been challenged by recent evidences based on ex-
tensive Monte Carlo simulations. Fotheringham and Oshan (2016)
shows that local parameter estimation in GWR is not sensitive to multi-
collinearity if the level of multi-collinearity is not extremely high,
especially for spatial data with large sample size. There are no theo-
retical reasons to expect multi-collinearity will present a bigger issue
for GWOR than GWR, although a careful check on correlations among
explanatory variables and excluding highly correlated variables are
recommended when building statistical models. A Bayesian spatially
varying coefficients model presents a useful alternative to GWR mod-
elling if statistical inferences on local parameters and heterogeneity are
of particular interest (Harris et al., 2013; Wheeler & Waller, 2009).

3.3. Implementation of GWOR

We coded the GWOR model using the R language with functions
available in the Supporting Information accompanying the paper. There
is great flexibility as to how users can specify their own GWOR models,
including the use of different spatial weighting schemes (adaptive
versus fixed kernels) and different kernel functions (Gaussian, ex-
ponential and bi-square kernels). In addition, both logit and probit link
functions are available for the cumulative probability distributions. The
maximisation of each local log-likelihood function is achieved by using
the optimisation routines provided in the R maxLik package, a package
dedicated to offering easy access to maximum likelihood estimation
(Henningsen & Toomet, 2011).

4. Empirical analysis of life satisfaction

4.1. Data and variables

Our analysis mainly draws on a life satisfaction survey conducted in
2013 in Beijing, the key aim of which is to assess the socio-spatial
variations in residents' life satisfaction. Only residents living in their
current residences for at least six months were selected. A spatial
stratified random sampling approach was enforced, with about 0.1% of
the urban population in each of Beijing's six districts sampled. The total
population in the study area is about 11 million in 2010 (Zhang, Yu, Li,
& Dang, 2015). In total, about 7000 questionnaires were issued and
about 6000 were returned (self-completion by post), of which about
5700 were valid. The samples are representative of Beijing's urban
population for key socio-demographic indicators (Dong, Ma, Harris, &
Pryce, 2016; Ma, Mitchell, Dong, & Zhang, 2017; Zhang et al., 2015).
We further select residents who are not migrants, i.e. respondents
whose household registration (hukou) addresses are in Beijing. Migrants
tend to evaluate life satisfaction and environmental quality in a way
that is quite different from local residents do (Chen, Chen, & Landry,
2013; Ma et al., 2017). A key feature of this survey data is its records of
residence address for each respondent. Based on this information, the
life satisfaction data have been geo-coded, which makes possible of
extracting local air pollution levels and other locational variables for
each respondent. Dropping samples with incomplete information on
residential locations and key socio-demographic variables yields a final
sample size of 2656 used in our analysis. The sub-district boundaries
and spatial distributions of selected samples are shown in Fig. 1.

Life satisfaction is our outcome variable measured by the question:
Overall, how are you satisfied with your life? The responses were

quantified on a 5-point Likert scale ranging from 1 (very unsatisfied) to
5 (very satisfied). The majority (> 60%) of respondents were satisfied
with their lives while about 27.5% of respondents rated life satisfaction
level as fair (Table 1). Like many other life satisfaction surveys (e.g.
Ferreira & Moro, 2010), only small proportions of respondents reported
ratings of either very satisfied or very unsatisfied.

Our air pollution data is compiled from the real-time air pollution
monitoring data, hosted by the Beijing Environmental Protection
Bureau (BJEPB). There are 35 air pollution monitoring sites in Beijing,
producing hourly readings for various air pollutants. As the particulate
matter with a diameter of 2.5 μm or less (PM2.5) is of particularly toxic

Fig. 1. The study area and spatial distribution of samples.

Table 1
Descriptive summaries of variables in the study.

Variable names Description Means (standard
deviation)

Life satisfaction 1=very unsatisfied 0.5%
2=unsatisfied 3.0%
3= fair 27.5%
4= satisfied 62.9%
5=very satisfied 6.2%

Log Income Log of family's monthly income 9.1(0.7)
Pollution Annual average concentration of

PM2.5 (μg/m3)
83.5(8.2)

Age < 30 35.6%
30–39 35.1%
40–49 21%
50–59 8.3%

Female Male as base category 49.2%
Marital status Married 66.5%
Housing tenure Owners 70.1%
Housing type Commodity housing 8.0%

Affordable housing 51.2%
Danwei housing 21.5%
Self-built housing 19.2

Education Bachelor degree or above 75.9
Child presence Household with child under 6 13.6
Distance to CBD Log of distance to the city centre 2.2(0.6)
Distance to railway Log of distance to the nearest

subway station
0.2(0.9)

Log land price The average land price around
each residence

8.9(1.1)

N Sample size 2656
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and more linked to health issues than other air pollutants in China
(Zhang, Qi, Jiang, Zhou, & Wang, 2013), we use the concentration of
PM2.5, measured by μg/m3, as a proxy variable for air pollution. Fol-
lowing Ferreira et al. (2013), an inverse distance weighted interpola-
tion (IDW) approach was employed to extract the annual mean air
pollution levels for each residential location in 2013.

Other independent variables are broadly divided into several cate-
gories. The first is a range of individual and household socio-economic
and demographic characteristics, including monthly income, age,
gender and family structure (the presence of children). It is useful to
note that the original income variable is coded as a categorical variable
with seven bands. For the purpose of valuing air pollution, income has
been converted to a continuous variable by using the midpoint of each
income band; and for the open-ended top category by using an extra-
polation approach (Ferreira & Moro, 2013). Housing characteristics of
tenure (owning or renting a home) and type (commodity, affordable,
Danwei or self-built) are also included in our model (Table 1) as they are
related to the socio-spatial variations of life satisfaction (Ma et al.,
2017). In addition, two locational variables are also included in the
model: the Euclidian distances of each residence to the city centre and
to the nearest railway station. As suggested in Ferreira and Moro
(2010), the average per-square meters price of residential land parcels
leased from 2003 to 2013 within a radius of two kilometers of each
residence was also included in the analysis to control for the capitali-
sation effect of air pollution on land prices. Land prices have been
adjusted to the 2003 constant price by using the consumer price indices
of Beijing (Harris et al., 2013). Finally, district dummy variables are
included in the model to control for the possible contextual effect on life
satisfaction arising from the socio-economic variations across sub-dis-
tricts.

4.2. Life satisfaction model specification

The empirical life satisfaction model is specified as,

= + + + +∗ δsatisfaction γ Log Income β Pollution L X ϕ ϵi i i i i i i i i (12)

where satisfactioni⁎ is the latent life satisfaction of respondent i. The key
predictor variables of interest are air pollution (Pollution) and income
(Log Income), and the regression coefficients of them are allowed to vary
spatially. It has been shown that the associations between locational
factors (here Li) and subjective travel satisfaction are spatially varying
(Dong et al., 2016). We test whether similar arguments hold in the case
of life satisfaction. Xi includes other predictor variables, the effects of
which are assumed to be spatially constant.

Following the environmental evaluation literature (e.g. Welsch &
Ferreira, 2014), the latent variable satisfactioni⁎ represents the experi-
enced utility of individual i, which leads to the formula derived for
economic valuation of air pollution (or the marginal WTP for air quality
improvement),

=
∂

∂
∂

∂
= ×

∗ ∗satisfaction
Pollution

satisfaction
Income

β
γ

IncomeWTP /i
i

i

i

i

i

i
i

(13)

Essentially, the ratio of the two first-order partial derivatives in the
equation produces the marginal rate of substitution between income
and air pollution, which measures the amount of money placed on a
marginal change in air pollution levels (Ferreira & Moro, 2010). With
respect to the marginal WTP, the interpretation in this study is how
much money are people willing to pay for a one unit improvement in air
quality, holding the level of latent life satisfaction constant.

5. Model estimation results

5.1. Global ordinal regression model results

Two global ordinal regression models with a logit link function were

first estimated to explore the socio-spatial variation in life satisfaction
in Beijing. We started with estimating a baseline model only with the
income and air pollution variables included. Then, a range of socio-
economic, demographic and locational variables are incorporated into
the second model. Following Brown, Oueslati, and Silva (2016), the
regression coefficient of a variable is interpreted as an income-equiva-
lent marginal effect on life satisfaction, calculated by dividing it by the
income coefficient.

Table 2 present estimation results. We also calculated the marginal
WTP using (13). The standard errors of the WTP estimates are obtained
by using the delta method. The estimated income and air pollution
effects (Column 2) on life satisfaction are both statistically significant at
the 1% significance level. Air pollution is negatively associated with life
satisfaction, with a one unit decrease in air pollution having an
equivalent average effect on life satisfaction as an about 8.7% increase
of monthly income or about 0.7% increase of annual income, holding
other variables constant. Translating into marginal WTP, people are
willing to pay about 979 RMB (Chinese yuan) with a 95% confidence
interval of [220, 1739] for a marginal decrease in air pollution, eval-
uated at the mean monthly income level.

In the next model with a range of socio-economic, demographic and
locational predictors included, the model fit was significantly im-
proved, as indicated by the substantial increase in the log likelihood
value and the decrease of AIC comparing to the first model. The asso-
ciations of income and air pollution to life satisfaction remain statisti-
cally significant. In fact, the ratio of two estimated coefficients almost
doubled from −0.087 to −0.171, indicating that the equivalent effect
of a one unit decrease in air pollution on life satisfaction amounts to the
effect of a 17.1% increase in monthly income (or 1.4% increase of
annual income), everything else equal. The marginal WTP for air
quality is subsequently increased to about 1926 RMB with a 95%
confidence interval of [519, 3334].

Comparing to baseline age group (below 30), statistically significant
differences in life satisfaction were found for the age group of 30–39 but
not for others. As is often found in the literature, higher educational
achievement is associated with higher levels of life satisfaction, ceteris
paribus. Married people is also positively associated with higher levels

Table 2
Model estimation results from global ordinal regression models.

Variables Coefficients Std. error Coefficients Std. error

Log Income 0.43⁎⁎ 0.061 0.291⁎⁎ 0.066
Pollution −0.037⁎⁎ 0.014 −0.05⁎⁎ 0.015
Age
30–39 −0.246⁎ 0.12
40–49 −0.184 0.148
50–59 −0.177 0.188
Female −0.139 0.081
Married 0.242⁎ 0.123
College degree 0.344⁎⁎ 0.103
Child presence −0.374⁎⁎ 0.128
Housing tenure 0.341⁎⁎ 0.096
Work-unit housing −0.454⁎⁎ 0.114
Affordable housing −0.387⁎⁎ 0.105
Self-built housing −0.119 0.162
Log distance to city

centre
0.324⁎⁎ 0.115

Log distance to
railway station

−0.226⁎⁎ 0.058

Average land price −0.035 0.037
District fixed effects Yes Yes
β/γ −0.087⁎ 0.034 −0.171⁎⁎ 0.064
Willingness to pay 979 [220,

1739]
1926 [519,
3334]

Log likelihood −2485 −2440
AIC 4996 4933

⁎ represent statistical significance levels of 0.05.
⁎⁎ represent statistical significance levels of 0.01.
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of life satisfaction, having an equivalent effect of an 83.1% increase in
monthly income or 6.9% increase of annual income. Child presence is,
however, negatively associated with life satisfaction. Our findings on
how housing tenure and types are associated with life satisfaction are
largely in line with previous life satisfaction studies in China: home
owners tend to report higher levels of life satisfaction; residents living
in work-unit and affordable housing tend to report statistically sig-
nificantly lower levels of life satisfaction than those living in com-
modity housing (e.g. Bian, Zhang, Yang, Guo, & Lei, 2015; Liu, Wang, &
Chen, 2017; Ma et al., 2017).

With respect to locational factors, the proximity to city centre is
negatively associated with life satisfaction, suggesting people who lives
further away from the centre tend to be more satisfied than those living
closer to the city centre, holding other variables constant. This might
point to the net negative externalities associated with living around the
city centre. Although being close to the city centre implies greater ac-
cess to employment opportunities and other facilities, the housing
pressure (high prices and overcrowded spaces), as well as other nega-
tive externalities such as noise, traffic congestion and high-intensity
land development are also greater. Being close to subway stations is
significantly related to higher levels of life satisfaction. There is an
insignificant association between land prices and life satisfaction,
controlling for the capitalisation effects of locational variables and air
pollution on land prices. However, as mentioned above, the uneven
spatial distributions of locational facilities and the process of residential
sorting primarily driven by household income might lead to spatially
varying preferences for air pollution, which will be tested in the GWOR
models.

5.2. GWOR model estimation results

This section explores the spatial variations in the associations be-
tween air pollution, income, locational variables and life satisfaction
while keeping other regression coefficients constant across spaces. The
results reported in Table 3 are based on a fixed Gaussian kernel ap-
proach with a distance bandwidth of 15.8 km obtained by using the
cross-validation procedure outlined above. We also estimated an
adaptive GWOR model with an optimum bandwidth of 956 nearest
neighbours, which accounts for roughly 36% of the total sample. It
takes about 35min and 41min for implementing the fixed and adaptive
GWOR models on a MacBook with a 3.3 GHz Intel Core i5 processor,
respectively. The obtained spatial patterns of local coefficients are si-
milar. Ideally, we would want to develop a formal statistical test for
choosing between models with adaptive and fixed kernels, as in GWR
models for continuous response variables. However, due to the

complexity of ordinal regression models, it is not clear how to form a
hat matrix for a GWOR model, a key element for such type of model
comparison (Brunsdon et al., 1996; Fotheringham et al., 2003). A
Monte Carlo simulation approach, outlined above, was used to test
whether the spatial variations in local coefficients are statistically sig-
nificant, or due to random sampling uncertainty. The non-stationary
test results based on 99 permutations are also reported in the last row of
Table 3. Overall, the non-stationary test results suggest that the spatial
heterogeneity in the associations of income, air pollution and locational
factors to life satisfaction is unlikely due to random sampling un-
certainties.

Looking at the distribution of the local coefficients of income (Log
Income), there is relatively large variability, shown by the difference
between the 2.5-th and 97.5-th percentiles of the distribution and the
large standard deviation (Table 3). Fig. 2 depicts the interpolated sur-
face of the associations between income and life satisfaction with
breaking points being the quintiles of the local coefficients. Approx-
imate significance inferences of local coefficients are also presented in
the map. Residential locations are presented by cross symbols and the
statistical significances of local coefficients are indicated by different
colours: black for significant coefficients and grey for insignificant
coefficients, depending on whether the absolute t-values of local coef-
ficients are above 1.96 or not. From Fig. 2, we see that the income-life
satisfaction associations are increasing from the central urban area of
Beijing to the suburban areas of Beijing. The local coefficients of air
pollution also exhibit large spatial variability, indicated by a roughly
41% increase in the local coefficients from the lower quantile to the
upper quantile of the distribution. The Monte Carlo non-stationary test
for air pollution yields a p-value of 0.01, producing strong evidence on
the spatial variation in how air pollution is related to life satisfaction.
Fig. 3 shows an interesting spatial pattern of the local pollution coef-
ficients. Overall, the central urban areas of Beijing present a stronger
negative relationship between air pollution and life satisfaction than
the suburban areas do, indicating a stronger preference for air quality
for residents living in central urban areas. For most of our sampling
locations, proximity to the city centre is negatively associated with life
satisfaction while public transport accessibility tends to increase life
satisfaction (Table 3).

Using the estimated local coefficients of air pollution and income,
local marginal WTP was estimated and presented as the percentages of
average income in the last column of Table 3. It is useful to note that the
marginal WTP is estimated as 42% and 20% of the average monthly

Table 3
Estimation results from the GWOR model.

Summaries on
coefficients

Log Income Pollution Log
distance to
city centre

Log
distance to
railway
station

WTP

2.5% 0.073 −0.1 −0.249 −0.367 −0.169
25% 0.214 −0.091 0.337 −0.276 0.2
50% 0.234 −0.077 0.429 −0.241 0.312
75% 0.285 −0.054 0.474 −0.149 0.417
97.5% 0.74 0.037 0.631 −0.08 0.457
Standard

deviations
0.133 0.034 0.462 0.104 0.186

Monte Carlo
non-
stationary
(p-values)

0.09 0.01 0.03 0.06

Note: The GWOR model is estimated by using a fixed kernel approach with an optimum
bandwidth of about 15.8 km. WTP measures the marginal willingness to pay for air
quality improvement, presented as percentages of the average sample income.

Fig. 2. The interpolated surface on associations between income and life satisfaction.
Sample locations are presented by cross symbols: black colour indicating significant
coefficients and grey colour insignificant coefficients, depending on whether the absolute
t-values of local coefficients are above 1.96 or not.

G. Dong et al. Computers, Environment and Urban Systems xxx (xxxx) xxx–xxx

6



income at the upper and lower quantiles of its distribution in the GWOR
model. This is in contrast with the estimated WTP as 17.1% of the
average income in the global ordinal regression model (Table 2). This
suggests that people living in different locations are willing to pay for
air pollution abatement differently. The median marginal WTP for per
unit air pollution abatement was about 31.2% of the average monthly
income (or 2.6% of the average annual income). This represents a small
share of income that residents are willing to pay for improvement of air
quality, comparing to the usual WTP estimates reported in the Eur-
opean environmental valuation studies (e.g. Ferreira et al., 2013). The
spatial variation of WTP is presented in Fig. 4 with breaking points
being the quintiles of the distribution. A noticeable feature is the de-
crease in WTP when moving away from the central urban area to the
more suburban areas. A plausible explanation is that residents living in
the central and southern areas of Beijing are on average more exposed
to air pollution than whose living in the northern areas of Beijing
(Zhang et al., 2013), and thus a higher WTP for air pollution abatement.

Finally, we calculate the monetary welfare effect of discrete changes
(rather than the per unit or marginal change) in air pollution.
Compensating Surplus (CS) is a popular measure for policy analysis in
the environmental economics literature (e.g. Welsch & Ferreira, 2014).
Following Ferreira and Moro (2010), CS is calculated as:

̂− × ∆Income exp β γ Pollution[1 ( / )] , in which Income is the sample
mean income and ΔPollution measures the discrete amount of air pol-
lution abatement. In short, CS measures the amount of money that
would keep the (latent) life satisfaction of an individual at the original
level when a change of air pollution has occurred. We use the lower,
median and upper quantiles of the estimated marginal WTP from the
GWOR model (Table 3) to calculate the CS for discrete amounts of air
pollution abatement. Fig. 5 shows the calculated CS, presented as per-
centages of the average annual income. The CS curves show an inter-
esting feature: they increase rapidly first, and then tend to be stable. At
the currently high levels of air pollution in Beijing, the amount of
money people are willing to scarce for air pollution abatement increases
quickly, reflecting a great desire for a drop of air pollution. However,
after a decrease of about 15 μg/m3 in the air pollution concentration,
the amount of money people would like to give up stays stable, roughly
equal to 8.3% of the average annual income. In other words, further
reduction of air pollution levels won't contribute much to the increase
in individual life satisfaction. The issue facing Beijing and Chinese cities
in general, however, is that a moderate reduction of air pollution levels
is far from reaching the air quality standard deemed to be not harmful
to human health (Zhang et al., 2013).

6. Conclusion

In this paper, we extend the GWR modelling framework to accom-
modate ordinal categorical responses. Ordinal response variables are
increasingly explored in a wide range of social science disciplines, al-
though in a way that the spatiality of the data under study is not often
taken into account. The GWOR model offers a flexible exploratory tool
to explore the spatial aspects of data and address the issue of spatial
heterogeneity. Estimation methods and statistical tests on spatial het-
erogeneity in covariate effects for GWOR models are elaborated in the
study. The usefulness of the model is demonstrated by exploring the
socio-spatial variations of resident's life satisfaction in urban Beijing
and the spatially varying relationships between life satisfaction and
income, air pollution and other locational factors.

Drawing on a recent large-scale survey data in Beijing, the study
assessed potential spatial variability in the WTP for air quality. The
median marginal WTP for per unit air pollution abatement was esti-
mated as about 31.2% of the average monthly income (or 2.6% of the
average annual income) under the GWOR model. This demonstrates a
low willing to pay for marginal improvement of air quality. Although
having experienced rapid economic growth for decades, China remains
a developing country and the preference for clean air is not expected to
be as strong as that in developed countries, on average. We also identify
a ceiling point in the amount of money people are willing to pay for air
pollution reduction, beyond which people become reluctant to sacrifice

Fig. 3. The interpolated surface on associations between pollution and life satisfaction.

Fig. 4. The interpolated surface on estimated WTP for air quality improvement, presented
as percentages of the average monthly income.

Fig. 5. The compensating surplus for discrete amounts of air pollution abatement.
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more money for further air pollution abatement. This might reflect the
currently weak preference for air quality of residents in Beijing and
likely in other Chinese cities.

Some limitations remain. First, this study has not devised an ap-
propriate approach for model comparisons due to the difficulty of ap-
plying the usual analysis of variance approach to models with ordinal
response variables. Another issue is in relation to our tentative devel-
opment of the mixed GWOR model. The development of an iterative
estimation algorithm for the mixed GWOR model is our next step.
Despite these limitations, GWOR offers a suitable tool for local spatial
analysis and modelling of ordinal categorical responses.
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