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We evaluate the performance of various methods for estimating factor returns in an ap-
proximate factor model. Differences across estimators are most pronounced when there is
cross-sectional heteroscedasticity or when cross-sectional sample sizes, 7, have fewer than
4,000 assets. Estimators incorporating either cross-sectional or time-series heteroscedas-
ticity outperform the other estimators when those types of heteroscedasticity are present.
The differences are most pronounced when the cross-sectional sample is small. (JEL G10,
G12, Cl15, C23)
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In a linear factor model of returns, the return on each asset is the sum of a
linear combination of a few systematic factors plus an idiosyncratic return.
Ross (1976) shows that in an economy with many assets, a linear factor model
provides a natural way to capture the diversifiable and nondiversifiable com-
ponents of asset returns. In Ross’s original specification, returns are assumed
to follow a strict factor model, that is, one in which the idiosyncratic returns
have zero covariance. Chamberlain and Rothschild (1983) generalize the
model, allowing nonzero covariance but imposing the assumption that the
eigenvalues of the idiosyncratic-return covariance matrix are bounded as
the number of assets grows to infinity. This generalization is called an
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approximate factor model. The approximate factor model framework has
been used in a wide range of applications. In addition to common stock
return modeling (Ross’s original motivation), the approximate factor model
framework is now used in business-cycle forecasting (e.g., Stock and Watson
2002, 2006), large-scale macroeconomic time-series modeling (e.g., Forni
et al. 2005), and credit models (e.g., Gagliardini and Gourieroux 2014).
Our focus here is on Ross’s original application, to common stock returns,
but our results have potential relevance to other approximate factor model
applications as well.

There are several econometric methodologies for estimating approximate
factor models when the cross-sectional sample size (#) is large relative to the
time-series sample size (7); the chosen methodology often depends upon the
application at hand. Connor and Korajczyk (1986) show that the factors in
an approximate factor model with k factors can be consistently estimated by
the first & eigenvectors of the cross-product matrix of excess returns. Many
other papers similarly rely on eigenvector-based estimation of factor returns,
including Connor and Korajczyk (1987, 1988), Stroyny (1992), Stock and
Watson (1998, 2002), and Jones (2001). In this paper, we use simulation
methods to compare the performance of various methods for estimating
factor returns using large-n methods. We calibrate our simulation model
based on the observed features of U.S. common stock returns. We simulate
panel data sets of returns under different assumptions on the factor model,
including the degree of cross-sectional and time-series heteroscedasticity and
the cross-sectional correlations of idiosyncratic returns. We apply the esti-
mators to both balanced and unbalanced panel data sets of simulated returns.
We consider a variety of cross-sectional sample sizes, and this allows us to
investigate the convergence properties of the estimators as the sample size
grows and their levels of precision for particular sample sizes. For each sim-
ulation sample, we compare the estimated factors to the true factors and
evaluate the performance of the estimators by averaging across a large num-
ber of simulated samples.

Differences across estimators are most pronounced when there is cross-
sectional heteroscedasticity and cross-sectional sample sizes, 7, have fewer
than 4,000 stocks. For very large n, the estimators generally perform simi-
larly. Estimators that explicitly incorporate either cross-sectional or time-
series heteroscedasticity outperform the other estimators when those types
of heteroscedasticity are present for the balanced sample. With both cross-
sectional and time-series heteroscedasticity, as well as an unbalanced panel,
Connor and Korajczyk’s (1988) and Jones’s (2001) methods, which accom-
modate cross-sectional and time-series heteroscedasticity, respectively, pro-
vide the most accurate factor return estimates. Many empirical studies and
simulations in the literature use cross-sectional sample sizes in the range for
which estimators incorporating heteroscedasticity lead to improvements in
the precision of the factor estimates.
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. Large-n Estimators of Factor-Mimicking Portfolios

We assume that the data-generating process for returns on all securities is an
approximate k-factor model. We also assume that asset risk premiums are
linear in factor betas. Let " be an n -vector of ones. Let B be an n x k matrix
of factor loadings, or betas. Let r;; denote the zero-beta return for period ¢, f;
denote the k-vector of zero-mean factor shocks at period 7, and u, denote the
k-vector of factor risk premiums at period 7. Let ¢, be an n-vector of idiosyn-
cratic returns, and let r, denote the n-vector of asset returns. We assume that a
k-factor equilibrium asset pricing model holds so that

R, =r —e"rp = B(u + 1) + &, )]

where E[f;] = 0 and E[¢] = 0. We assume that zero expectation for residual
returns holds conditional on f; E[e|f;] = 0. A strict factor model is one in
which the residual covariance matrix is diagonal, with bounded elements (i.e.,
Eleie;] = D, where D;; < oo and D;; = 0 for i#j). An approximate factor
model allows for covariation in idiosyncratic returns across assets that is
diversifiable in the limit as n —oo. This implies that the eigenvalues of
Eleie;] = X are bounded as n —oo. For a time-series sample over the periods
t=1,2,... T,define R to be the n x T matrix of realized excess returns on the
n securities for 7 time periods: R = [R|R,...Rr]. We write the data-
generating process in matrix form as

R= BF +e, )

where F'is the k x T matrix of the realizations of the factors plus risk pre-
miums, and € is the # x 7'matrix of idiosyncratic returns. We wish to provide
an estimate of the factor excess returns, F, in settings where n can be large
relative to 7. In the next four subsections, we describe the estimation proce-
dures that we implement and compare in our study.

1.1 Asymptotic principal components

For n > T (e.g., 10,000 assets over a 60-month time period), the difficulty
posed by standard factor analytic procedures is that for the estimation of the
k x T matrix of factor realizations, F, one needs to estimate and invert a
much larger n x n covariance matrix (in the example above, where n = 10, 000
and T = 60, the n x n covariance matrix has over 50 million distinct
entries, but we have only 600,000 data points). Connor and Korajczyk
(1986) derive asymptotic principal components (APC) as a method of
estimating factor portfolio returns directly without needing to estimate
and decompose the full covariance matrix. Let Q denote the 7" x T cross-
product matrix of excess returns:

1
Q=-RR. 3)
n
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Let F denote the k x T matrix of the k eigenvectors of Q corresponding to
the largest k eigenvalues of Q. Connor and Korajczyk (1986) show that, for a
k-factor approximate factor model, F is an n-consistent estimate of F. They
call this estimator the asymptotic principal components estimator. This esti-
mator makes no assumptions about cross-sectional heteroscedasticity in the
idiosyncratic returns (the diagonal elements of }’) other than the bounded-
ness discussed above. However, it does not attempt to utilize any such het-
eroscedasticity in estimation. The estimator makes fairly restrictive
assumptions about any time-series heteroscedasticity in idiosyncratic returns:
any asset could have time variation in its idiosyncratic variance, but the
average (across the n assets) idiosyncratic variance must be time invariant.
The estimator also assumes that the econometrician has a balanced panel.
That is, there are no missing data in the » x 7 matrix of returns, R.
Restricting the sample to assets with a complete return history for 7" periods
clearly induces survivorship bias into the factor estimates.

A number of subsequent studies have generalized the procedure to take
into account cross-sectional and time-series heteroscedasticity as well as un-
balanced panels.

1.2 Incorporating cross-sectional heteroscedasticity

Connor and Korajczyk (1988) propose estimating the diagonal idiosyncratic
variance matrix by regressing asset returns on the initial APC factor esti-
mates, F, and using the residuals to estimate the diagonal residual covariance
matrix, D:

€= R - BF, 4
. &
D = Diag|—).
(%) ©

The return matrix is then rescaled by the estimated standard deviations of
the idiosyncratic returns,

R =D 'R, ©6)
and the factors are estimated by applying the APC procedure to R*. We will
refer to this estimator as APC-X to denote that it is a variant of the APC
procedure designed to account for cross-sectional heteroscedasticity. The
APC-X procedure is a variant of weighted principal components (Stock
and Watson 2006, section 4.3). The APC-X procedure is also an example
of feasible generalized principal components estimation (FGPCE) discussed
by Choi (2012) (see example 1 on p. 286).

Stroyny (1992) proposes a large-n variant of maximum-likelihood factor
analysis based on the EM algorithm (Dempster, Laird, and Rubin 1977;
Rubin and Thayer 1982). A standard identification assumption in factor
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analysis is that the factors have a covariance matrix equal to the identity
matrix. Stroyny (1992) argues that applying this constraint at each iteration
significantly slows the convergence of the EM factor analysis procedure and
advocates only applying the desired rotation of the factors after the proce-
dure has converged. In simulations, Stroyny (1992, Table 1) finds that the
modified procedure is significantly faster than the standard EM procedure.
The number of iterations required actually decreases in n for Stroyny’s pro-
cedure (for n = 5,000, the standard EM estimator requires 1,194 iterations
and Stroyny’s procedure requires 19 iterations, while for n = 10,000, EM
does not converge and Stroyny’s procedure requires 18 iterations). The total
CPU time is approximately linear in 7 for the Stroyny procedure. We refer to
this procedure as MLFA-S, or maximum likelihood factor analysis, using
Stroyny’s (1992) procedure.

1.3 Incorporating time-series heteroscedasticity

Factor analysis generally assumes that each asset’s idiosyncratic volatility is
constant through time, while the APC procedure assumes that the average
idiosyncratic volatility across assets is constant through time. Given the ev-
idence of time variation in volatility, in general (e.g., Andersen, Bollerslev,
and Diebold 2010), and idiosyncratic volatility, in particular (e.g, Campbell
etal. 2001; Connor, Korajczyk, and Linton 2006), it seems that incorporating
times-series heteroscedasticity into factor estimation is desirable. Jones (2001)
proposes such an estimator, called heteroscedastic factor analysis (HFA).
The HFA procedure is a variant of weighted principal components (Stock
and Watson 2006, section 4.3; Boivin and Ng 2006, p. 186). Jones (2001)
assumes that the cross-sectional average idiosyncratic volatility is time
dependent:

1

S lim
X =P =X,
n

n—oo
where X, ;, is the (7, /) element of the covariance matrix of idiosyncratic re-
turns, X, = E(¢€)). Define the 7' x T'matrix, %, to be the diagonal matrix with
elements (7, £) = Z,. Jones’s procedure estimates factor returns by calculating
eigenvectors of the scaled matrix,

~—1/2 ~—1/2
T oz . (7)

These factor estimates are used to reestimate idiosyncratic returns and X,
and the process is iterated until convergence.

1.4 Accommodating unbalanced panels
It is not unusual for empirical analyses of factor models to estimate factor-
mimicking portfolios from balanced panels of data (e.g., Roll and Ross 1980;
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Connor and Korajczyk 1988; Jones 2001). However, requiring a balanced
panel may induce survivorship bias into the sample. Several alternative
approaches are available for estimating factor-mimicking returns with miss-
ing data.

Connor and Korajczyk (1987) suggest a method of factor estimation with
missing data. This procedure estimates the cross-product matrix Q" over
all the observed data (the u superscript denotes an unbalanced panel).
Define 6;, = 1 if the {i, ¢} element of R is observed and §;, = 0 otherwise,
and define the {z, 7} element of Q as

n
Z 0i10i-Ri(Ri+
Q= ’Zln— (®)
Z 51‘,[51‘,1
i=1

Factor-mimicking portfolio returns are estimated from the eigenvectors of
the redefined Q". While Q is guaranteed to be positive semidefinite for a
balanced sample, Q" is not for an unbalanced sample. However, for the
samples typically used in practice, we have never come across a case in which
Q" is not positive semidefinite. We will refer to this estimator as APC-M to
denote that it is the APC estimator with missing data.

The APC-M estimator can be modified to accommodate cross-sectional
heteroscedasticity by constructing Q" from the scaled observed returns de-
fined in (6). That is, the factor estimates are the k eigenvectors of

Z 01101 R} R,
Q= = )
Z 5i,t5i,‘c
i=1

associated with the k largest eigenvalues. We will refer to this estimator as
APC-MX to denote that it is the APC estimator with missing data and which
adjusts for cross-sectional heteroscedasticity.

Stock and Watson (1998, 2002) extend the APC approach in a number
of dimensions. We focus here on the extension to accommodate missing
data. Under stronger assumptions than necessary for consistency of the
APC estimator (i.e., ¢, ~ i.i.d. N(0,6%)), the MLE estimator of {B, F}
minimizes the nonlinear least squares objective function (see Stock and
Watson 1998):

A= D)D" 8u(Riy — Bi.F.,), (10)

1 =1

n T
i=

where, for any matrix X, X;. denotes the i/ row of X and X, denotes the /"
column of X. The first-order conditions are

158

020z aunp 9| uo Jasn Ausiaaiun yiooukepy Aq 2608S8E/ES L/ L/gnoensqe-ajonie/sdel/woo dno-oiwepese//:sdiy woll papeojumod



A Performance Comparison of Large-n Factor Estimators

T
F,t = (Z 51’.132’. Z 51 tB’ th (11)
=1
and
T T
= 6uRiF ) 6iF, F), (12)
=1 =1

which correspond to the time-series and cross-sectional regressions (2)
(which is a time-series regression when viewed as a regression of R on F
and a cross-sectional regression when viewed as a regression of R on B)
applied to the observed data in the unbalanced panel. They obtain the
MLEs of F and B by iterating between the first-order conditions,
Equations (11) and (12) (Stock and Watson 1998). An alternative approach
to obtaining the MLEs is to minimize A using the EM algorithm of
Dempster, Laird, and Rubin (1977). Let A* denote the negative complete-
data log-likelihood function

A*(B, Z Z (R — )2 (13)

where R} is the latent value of R;,. The EM algorithm iteratively maximizes
the expected value of the complete-data likelihood (minimizes the expected
value of A*(B, F)), conditional on the estimates from the prior iteration. Let
B’ and F/ denote the estimated factor loadings and factors after the ;j” iter-
ation of the algorithm. Under the assumed error structure, this amounts to
minimizing, at iteration j,

ZZ R - B F)), (14)

where R);"~! = R;,if 6;,= land R;;""" = B.' P if 6;, = 0 (see Stock and
Watson 1998 page 11). Thus, the missing ddtd are filled in with the fitted
values from the factor model obtained in the previous iteration. The factor
portfolio returns obtained from minimizing (14) are equal to (up to a non-
singular rotation L) the APC estimate obtained from R}’ ' Applying the
EM algorithm amounts to an iterative application of APC unt11 convergence.
In the case in which there are no missing data, Stock and Watson’s (1998,
2002) estimator is identical to Connor and Korajczyk’s (1986) estimator. We
call Stock and Watson’s (1998) estimator APC-EM to denote its use of the
EM algorithm.

Jones (2001) suggests extending the HFA procedure along the lines of
Connor and Korajczyk (1987), in which Q and V' are estimated over the
nonmissing sample. We call this estimator HFA-M to denote that it is the
HFA estimator with missing data.
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. Empirical Analysis

We simulate asset returns using alternative specifications of factor models for
varying numbers of assets and study the behavior, as n increases, of the factor
estimates relative to the true underlying simulated factor model. We consider
four basic cases regarding the nature of the covariance matrix of idiosyncratic
returns: (1) cross-sectional and time-series homoskedasticity: Ele€)] = oI,
where 7 is an n x n identity matrix; (2) cross-sectional heteroscedasticity and
time-series homoskedasticity: Efe,€)] = D, where D is a n x n diagonal matrix
that is time invariant; (3) cross-sectional homoskedasticity and time-series
heteroscedasticity: Ele,e;] = 21, where I'is an n x n identity matrix; and (4)
cross-sectional and time-series heteroscedasticity: Ele€)] = D,, where D, is an
n x n diagonal matrix. For each of these cases, we consider both balanced
and unbalanced panels to assess the effects of missing data. However, we
maintain throughout the analysis the assumption that the data are missing at
random. In addition to the strict factor models discussed above, we allow for
diversifiable levels of correlation in idiosyncratic returns across assets (i.e.,
nondiagonal idiosyncratic covariance matrices) by constructing idiosyncratic
returns, €, as

€ = PEi—1; + Uiy (15)

for p € {0,0.25,0.50}. As long as p < 1, the idiosyncratic returns are diver-
sifiable for large n. We simulate economies in which the idiosyncratic returns
are normally and student-t distributed. This gives us 96 different cases to
simulate (four cases regarding cross-sectional and time-series heteroscedas-
ticity x two cases with complete or missing data x three cases regarding
cross-asset correlation in idiosyncratic returns x two alternative lengths of
time series, 60 and 120 months x two cases of normal and student-t idiosyn-
cractic returns).

2.1 Simulation design

Our sample period is 1976 to 2015. Each simulation uses either 7"= 60 or 120
to correspond to five- and ten-year periods of monthly data. The parameters
of the simulations are calibrated by choosing one of the five- or ten-year
nonoverlapping time periods, resampling firms with available data on the
Center for Research in Security Prices (CRSP) stock database from that time
period, and computing simulation parameters based on the sampled stocks
(the sampling is discussed in more detail below).

The numbers of assets, n, used in the simulation are 250, 500, 750, and
1,000 to 10,000 in increments of 1,000. To give a sense for the cross-sectional
sample sizes used here versus various equity markets, Table 1 lists the min-
imum, mean, and maximum number of companies, over the 1976 to 2015
period, included in the CRSP indices for the New York (NYSE), American
(AMEX), and NASD Stock Exchanges. The table also includes similar
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Table 1

Numbers of listed equities by exchange

Exchange Period Minimum Average Maximum
NYSE 1976-2015 1,489 2,144 2,870
NYSE+AMEX 1976-2015 2,248 2,920 3,740
NYSE+AMEX+NASDAQ 1976-2015 4,675 6,538 9,047
Australia 19962014 1,147 1,624 1,988
Brazil 1996-2014 336 417 557
Canada (TMX Group) 19962014 1,266 3,031 3,937
China (Shanghai) 19962014 720 871 974
China (Shenzhen) 1996-2014 496 916 1,595
Deutsche Borse 19962014 610 701 1,043
India (Bombay) 1996-2014 4,721 5,060 5,798
India (NSE) 1996-2014 810 1,327 1,698
Hong Kong 1996-2014 649 1,130 1,631
Poland (Warsaw) 1996-2014 148 393 872
United Kingdom (London) 1996-2014 2,152 2,319 2,693

Observations are at monthly intervals chosen to correspond to the period to which parameters in the simulation
are calibrated, subject to data availability. The table reports the minimum, average, and maximum number of
firms listed. Data for the NYSE, AMEX, and NASD exchanges are from the Center for Research in Security
Prices (CRSP). Data for the other exchanges are from the World Federation of Exchanges.

figures for various exchanges over the 1996 to 2014 period, which are ob-
tained from the World Federation of Exchanges." The combined NYSE,
AMEX, and NASD markets have a minimum of 4,675 and a maximum of
9,047 firms. The equivalent figures are 4,721 and 5,798 for the Bombay Stock
Exchange, 2,152 and 2,693 for the London Stock Exchange, 720 and 974 for
Shanghai, 1,266 and 3,937 for Canada, 336 and 557 for Brazil, and 148 and
872 for Poland. Thus, our range of 250 to 10,000 firms in the simulation
covers the sizes of a large number of national exchanges. We simulate a three-
factor model (k = 3). For each scenario, we run 5,000 draws of the simula-
tion. We apply each of the relevant estimators to obtain estimates of the k
factors. We do not study the question of the appropriate tests for the (un-
known) true number of factors (e.g., Connor and Korajczyk 1993; Bai and
Ng 2002). That is, we simulate a three-factor model and estimate three
factors.

For each simulation and each estimator, we regress the estimated factor-
mimicking portfolio returns on the true underlying factors and a constant.
Because of the well-known rotational indeterminacy of factor estimates, we
regress each estimated factor on all three true factors:

F =o+bF+u. (16)

For each iteration of the simulation, we tabulate the R? values and the
values of the estimated intercepts (and associated f-statistics) of these k&
regressions. Perfect estimators would imply R* values equal to unity and

' Downloaded from http://www.world-exchanges.org/statistics/monthly-reports on November 3, 2014.
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intercepts equal to zero. We simulate the return matrix R (dimension n x T)
using Fama and French’s (1993) three-factor model.” The true factor matrix,
F, consist of the three factors, R,,,, HML, and SMB.

2.1.1 Factor loadings. The simulated beta loading matrix B (dimension
n x k) is generated based on the empirical distribution of stocks’ loadings
on Fama-French’s factors. For each common stock traded in NYSE/
NASDAQ/AMEX with more than 36 months of observations over the
relevant five- or ten-year estimation period, we estimate a time-series
regression of stock excess returns on Fama-French’s factors and calcu-
late the estimated factor loadings.

2.1.2 Idiosyncratic returns. Similarly, we rely on the estimated residuals
from Fama-French’s three-factor model applied to the CRSP sample stocks
over the sample period to define the properties of the simulated idiosyncractic
returns. Let 6; be the estimated standard deviation of the idiosyncratic return
of asset i over the relevant estimation period. Some of these estimates are
implausibly large, especially for stocks with a short time series of observations
(e.g., 6; on the order of 300%). We winsorize the sample of estimated idio-
syncratic risk at the 99% level. That is, for any stock, i, with 6; > Gg9e, (Where
G999, 1s the 99th percentile of the cross-sectional distribution of idiosyncratic
risk), we set ; equal to Gg9e,. Also, we estimate the average idiosyncratic
volatility in period ¢ by
&2

o, = =L

i=1,n, t

iew
where €;, is the estimated idiosyncratic return on asset / in period ¢, and i € W
denotes that the squared idiosyncratic returns have been winsorized at the
99% quantile.

Heteroscedasticity Case 1: When we assume both cross-sectional and time-
series homoscedasticity and no cross-correlation, we construct idiosyncratic
returns that are drawn from a normal distribution (Case 1a) or a ¢ distribution
with degrees of freedom, v, equal to five, the average across sample stocks
(Case 1b). Idiosyncratic returns have a mean of zero and a standard deviation,
a, equal to the average value (across sample stocks) of 6;. When we have cross-
correlation, the idiosyncratic return for asset 1 in period ¢, €; ;, is drawn from
these distributions and the remaining idiosyncratic returns are constructed as
€r = pei1, + iy, where u;, ~ N(0,(1 —p*)a?) or u ~ t(0,(1 —p?)
a2,v = 5). This gives each asset an unconditional idiosyncratic standard de-
viation of ¢. This is done independently for each time period, z.

Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library/f-f _factors.html
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Figure 1
Time series of the cross-sectional average squared idiosyncratic return from Fama-French’s model
CRSP firms over the period from January 1976 to December 2015.

Heteroscedasticity Case 2: When we assume cross-sectional heteroscedas-
ticity but time-series homoscedasticity, we randomly pick n empirical
standard deviations, with replacement, calculated from Fama-French’s
three-factor regression residuals, ¢;, from the sample stocks. We generate
the residual matrix from a normal (Case 2a) and student-z distribution
(Case 2b). The idiosyncratic returns have a mean 0 and standard deviation
¢;. If we have cross-sectional correlation, the idiosyncratic return for asset 1
in period ¢, €], is drawn from a N(0, 6%) or (0, 6%, v = 5) distribution, and
the remaining idiosyncratic returns are constructed as e€;; = pe;_1, + u;,,
where u;, ~ N(0,67 — p>62 ) or (0,67 — p*6% |, v =5).

Heteroscedasticity Case 3: When we assume time-series heteroscedasticity
but cross-sectional homoscedasticity, every asset’s idiosyncratic return in pe-
riod ¢ is drawn from either a normal (Case 3a) or student-¢ (Case 3b) distri-
bution with a standard deviation equal to 6, as calculated above. Figure 1
plots the time series of ¢, over our sample period. There is substantial vari-
ation in 6, through time. When we have cross-correlation, the idiosyncratic
return for asset 1 in period ¢, €; ;, is drawn from a N(0, 67) or (0,67, = 5)
distribution, and the remaining idiosyncratic returns are constructed as €;; =
pei1+ui; , where u;; ~ N(0, (1 — p*)&?) or £(0, (1 — p*)62,v = 5).

Heteroscedasticity Case 4: When we assume both time-series and cross-
sectional heteroscedasticity, we assume that the idiosyncratic variance of each
of the sample stocks is proportional to the cross-sectional average idiosyn-
cratic variance in period 7. For each stock, i, we estimate the constant of
proportionality, 6;,
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where Y; is the set of time periods for which asset 7 has observations, and 7 is
number of elements in Y, Thus, an asset’s idiosyncratic risk has a common
element (driven by 6,2), consistent with the evidence of Connor, Korajczyk,
and Linton (2006). Every asset’s idiosyncratic return in period 7 is drawn
from either a N(0, 0,-6*?) (Case 4a) or (0, 9,{3’?, v = 5) (Case 4b) distribution.
When we have cross-correlation, the idiosyncratic return for asset 1 in period
t, €14, is drawn from a N(0, @1(}?) or (0, (91&?, v = 5) distribution, and the
remaining idiosyncratic returns are constructed as ¢;, = pe;_1, + u;; , where
i, ~ N(0,0:67 — p*0;167) or N(0, 0,67 — p*0;162,v = 5).°

Over our sample period there are eight nonoverlapping 60-month periods,
(1976-1980, 1981-1985, . . ., 2011-2015) and four nonoverlapping 120-month
periods (1976-1985,1986-1995, 1996-2005, and 2006-2015). We discuss the
results for the 60-month periods here and report the results for 120-month
periods in the Internet Appendix. We require a stock to have 36 months of
data within a subperiod to be included in the sample. Over the eight 60-month
periods, there are 4,278, 4,606, 5,462, 5,433, 6,237, 4,700, 4,123, and 3,416
CRSP firms that meet the 36-month data requirement. Over the four 120-
month periods, there are 5,849, 7,345, 7,679, and 4,735 CRSP firms that meet
the 36-month data requirement. We simulate each hypothetical economy
5,000 times. For simulations of 60-month sample periods, we use Fama-
French’s factors from each of the eight 60-month periods for 625 (5,000/8)
simulations, for a total of 5,000 simulations. For simulations of 120-month
sample periods, we use Fama-French’s factors from each of the 120-month
periods for 1,250 (5,000/4) simulations. For each run of the simulation, we
draw the n x k matrix of factor loadings and the corresponding idiosyncratic
volatility from the estimated values, with replacement. Given the idiosyn-
cratic volatility estimate, we generate the idiosyncratic returns by using either
the normal or ¢ distributions described above. Given these, we generate an
n x T return matrix R = FB + ¢ and apply the factor estimators to the
returns for cross-sectional samples of n = 250, 500, 750, 1,000, 2,000,
3,000, ..., and 10,000. For each of our 96 case combinations, and 5,000
simulations, we regress F on the true F, and record the adjusted R?, the
estimated intercept, &, and the associated ¢-statistic for the intercept.

Cases 3 and 4, which allow for time-series heteroscedasticity, also preserve
any conditional heteroscedasticty of idiosyncratic volatility, Table 2 shows
the results of a regression of 6—? on the cross-products of Fama-French’s
factor realizations for each 60-month period as well as for the full 480-month

7 For Heteroscedasticity Cases 2 and 4 with idiosyncratic cross-correlations, we impose the constraint that the

standard deviation of the idiosyncratic return be at least 0.1%.
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period (results for the 120-month periods are reported in the Internet
Appendix). In six of the eight 60-month periods there is statistically signifi-
cant conditional heteroscedasticity (at the 5% level), as can be seen from the
F-test for joint significance of the factor cross-products. Thus, the simulation
design preserves the conditional heteroscedasticity that exists in the data.

For the estimators that require iteration to convergence, that is HFA, MLFA-S,
HFA-M, and APC-EM, we run the iterations until the minimum R> (across the k
= 3 estimated factors) from the multivariate regression of the factors from iteration
j on the factors from iteration j — 1 is greater than or equal to 0.999.

To generate an unbalanced sample with missing observations, we use the
same pattern of missing observations as observed in the data to generate a
simulated return series with missing values. That is, we sample jointly from
B;., 6; and the pattern of missing observations.

2.2 Balanced panel of asset returns: Normally distributed idiosyncratic returns
For the balanced-panel case, we apply four estimators, APC, APC-X, HFA,
and MLFA-S. We discuss the 60-month samples here and relegate the 120-
month samples to the Internet Appendix, since the results are quite similar.
We first discuss the results with normally distributed idiosyncratic returns
and then turn to the results with 7-distributed idiosyncratic returns. Figure 2
shows the average (across the 5,000 simulations) R? values for Case la for
all three factors and two cross-correlation structures (p = 0.0,0.5). Our
figures report the results for n = 250, 500, 1,000, 2,000, 5,000, and 10,000
(the full results appear in the Internet Appendix). The factors change across
columns, and the value of p changes across rows. For ease of comparison,
since scales can vary across graphs, the dashed horizontal line in each graph
is at an R? value of 0.95. Several points are clear from the figure. First, all
four estimators perform comparably even though three of the estimators are
estimating extra parameters. In fact, it is often difficult to make out any
difference between the estimators for samples of 500 or more stocks (see the
Internet Appendix for exact numerical values for all charts). Second, accu-
racy falls for higher-order factors and as the idiosyncratic-return correlation
across assets increases. Third, all of the estimators are fairly accurate. The
smallest mean R> values exceed 0.8, even for the estimates of the third
factor, with p = 0.5, and with the smallest number of assets in the cross-
section (7 = 250). When we have 2,000 assets in the cross-section, almost all
mean R? values equal 0.98 or higher.

Figure 3 shows the average R* values for Case 2a for all three factors and
two cross-correlation structures (p = 0.0,0.5). In this scenario, idiosyncratic-
return variance varies across assets but is constant through time. In this
instance, one would expect that APC-X and MLFA-S would have superior
performance since they explicitly take into account the differences in idiosyn-
cratic risks across assets.
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Again, there are several points that are clear from the figure. First, APC-X
and the procedure from Stroyny (1992), MLFA-S, dominate the other pro-
cedures, until we reach values of n ranging from 2,000 to 5,000. Second, with
the exception of APC-X and MLFA-S, cross-sectional heteroscedasticity
significantly slows the convergence (in 7) of the factor estimates to the true
factors. While under Case 1a the R%s are 0.8 and higher, under Case 2a, the R
values are as low as 0.5 and need approximately 2,000 to 3,000 assets for the
second and third factors to attain minimum R values above 0.975. Third,
APC and HFA are essentially equivalent, which would be expected given that
there is no time-series heteroscedasticity in the scenario.

Figure 4, shows the average R> values for Case 3a for all three factors and
two cross-correlation structures (p = 0.0,0.5). In this scenario, idiosyncratic-
return variance varies across time but is identical across assets. First, as ex-
pected, HFA outperforms the other three estimators for factors two and
three. The performance differential is very small for factor one but increases
slightly as we extract additional factors. Second, the performance of the other
three estimators is indistinguishable.

Figure 5 shows the average R> values for Case 4a, in which idiosyncratic-
return variance varies across time and across assets. MLFA-S (for all three
factors) and APC-X (for factors two and three) dominate APC and HFA for
small cross-sectional samples (72). The superior performance of MLFA-S and
APC-X may be a function of the dispersion of idiosyncratic-return variance
in the cross-section versus in the time series. That is, a sample with greater
volatility of volatility in the time series might lead to relatively better perfor-
mance for HFA. However, our sample period includes the “Great
Moderation” and five NBER dated recessions, including the recent financial
crisis of 2008-2009, and should provide substantial variation in volatility.

2.3 Balanced panel of asset returns: 7-distributed idiosyncratic returns
Figure 6 shows the average (across the 5,000 simulations) R” values for Case
1b for all three factors and two cross-correlation structures (p = 0.0,0.5).
Several points are clear from the figure. As in the case with normally distrib-
uted idiosyncratic returns, all four estimators perform comparably even
though three of the estimators are estimating extra parameters. In fact, it is
often difficult to make out any difference between the estimators for samples
of 500 or more stocks. Second, accuracy falls for higher-order factors and as
the idiosyncratic-return correlation across assets increases. Third, having
leptokurtic idiosyncratic returns reduces the accuracy of the estimators, par-
ticularly for smaller values of n. The smallest mean R> values exceed 0.65,
even for the estimates of the third factor, with p = 0.5, and with the smallest
number of assets in the cross-section (z = 250). When we have 2,000 assets in
the cross-section, almost all mean R” values equal 0.95 or higher.
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Figure 7 shows the average R” values for Case 2b for all three factors and
two cross-correlation structures (p = 0.0, 0.5). In this scenario, idiosyncratic-
return variance varies across assets but is constant through time. In this
instance, one would expect that APC-X and MLFA-S would have superior
performance since they explicitly take into account the differences in idiosyn-
cratic risks across assets.

As in Figure 3, APC-X and the procedure from Stroyny (1992), MLFA-S,
dominate the other procedures, until we reach values of n around 5,000.
Second, cross-sectional heteroscedasticity significantly slows the convergence
of the factor estimates to the true factors. While under Case 1b, the R’s are
0.65 and higher, under Case 2b, the R? values are as low as 0.3 and need
approximately 1,000 to 5,000 assets for the second and third factors to attain
minimum R> values above 0.975. Fourth, APC and HFA are essentially
equivalent, which would be expected given that there is no time-series heter-
oscedasticity in the scenario.

Figure 8, shows the average R values for Case 3b for all three factors and
two cross-correlation structures (p = 0.0, 0.5). In this scenario, idiosyncratic-
return variance varies across time but is identical across assets. First, as ex-
pected, HFA outperforms the other three estimators for factors two and
three and outperforms MLFA-S for factor 1. Second, the performance of
MLFA-S declines in # for the first factor.

Figure 9 shows the average R> values for Case 4b, in which idiosyncratic-
return variance varies across time and across assets. MLFA-S (for all three
factors) and APC-X (for factors two and three) dominate APC and HFA for
small cross-sectional samples (n). For large values of n, HFA performs
slightly better for factors two and three.

2.4 Unbalanced panel returns: Normally distributed idiosyncratic returns

The relative comparisons across the alternative cases of heteroscedas-
ticity for balanced panels, discussed above, gives a good sense for the
effect of changing assumptions about the form of heteroscedasticity on
the performance of alternative estimators. To conserve space, we only
discuss the most realistic case, in which there is both cross-sectional
and time-series heteroscedasticity (Case 4a). The full results are avail-
ablein the Internet Appendix. For the unbalanced-panel case, we apply
four estimators, APC-M, APC-MX, HFA-M, and APC-EM. Figure 10
shows the average R> values for Case 4a for all three factors and two
cross-correlation structures (p =0.0,0.5). First, APC-MX outperforms
the other three estimators for low values of n. For factors one and two,
APX-MX outperforms for all values of n and both p = 0.0 and p =0.5.
For factor three, APC-MX outperforms for values of n less than or
equal to 3, 000 (p = 0.0) or values of n less than or equal to 2, 000 (p =
0.5). Second, for factor three, HFA is the best estimator in those
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instances in which APC-MX is not. Third, APC-EM and APC-M per-
form similarly.

2.5 Unbalanced panel returns: z-distributed idiosyncratic returns

Figure 11 shows the average R” values for Case 4b for all three factors and
two cross-correlation structures (p = 0.0,0.5). First, APC-MX outperforms
the other three estimators for low values of n. For factor one, APC-MX
outperforms for all values of n and both p = 0.0 and p = 0.5. For factor
two, APC-MX outperforms for values of # less than or equal to 10, 000 (p =
0.0) or values of n less than or equal to 5, 000 (p = 0.5). For factor three, APC-
MX outperforms for values of n less than or equal to 2, 000 (p = 0.0) or values
of n less than or equal to 1, 000 (p = 0.5). Second, for factors two and three,
HFA is the best estimator in those instances in which APC-MX is not. Third,
APC-EM and APC-M perform similarly.

. Conclusion

In this paper, we document the performance of a number of estimators of
factor returns using large-n methodologies. We simulate asset returns obey-
ing an approximate factor model with a variety of assumptions about the
nature of cross-sectional and time-series heteroscedasticity, the cross-
correlation of idiosyncratic returns, the distribution of idiosyncratic returns,
and with the data drawn from both balanced and unbalanced panels. The
methods used for balanced panels include (1) APC, the asymptotic principal
components estimator of Connor and Korajczyk (1986); (2) APC-X, the
procedure of Connor and Korajczyk (1988) designed to accommodate
cross-sectional heteroscedasticity in idiosyncratic returns and also a variant
of weighted principal components (Stock and Watson 2006, section 4.3) and
the feasible generalized principal components estimation (FGPCE) (Choi
2012); (3) Stroyny’s (1992) maximum likelihood factor analysis, which also
accommodates cross-sectional heteroscedasticity; and (4) Jones’s (2001) het-
eroscedastic factor analysis (HFA), which incorporates time-series hetero-
scedasticity in idiosyncratic returns. The methods used for unbalanced panels
include (1) APC-M, the missing data version of APC from Connor and
Korajezyk (1987); (2) APC-MX, the missing data version of APC-X; (3)
APC-EM, the EM algorithm-based estimator of Stock and Watson (1998);
and (4) HFA-M, the missing data version of HFA from Jones (2001).
When the data are from a balanced panel and there is no heteroscedastic-
ity, all the estimators perform similarly. In this case, cross-sectional sample
sizes as small as 250 assets provide very accurate factor estimates.
Idiosyncratic returns with fat tails require larger cross-sectional samples to
achieve a given level of fit for the estimators. Cross-sectional heteroscedas-
ticity leads to superior performance of the MLFA-S and APC-X estimators.
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APC and HFA require much larger samples (3,000 to 6,000) to perform
similarly to the estimators designed to accommodate cross-sectional hetero-
scedasticity. Time-series heteroscedasticity of the magnitude observed in
monthly data leads to superior performance of the HFA estimator, partic-
ularly for factors two and three. When both cross-sectional and time-series
heteroscedasticity are present, APC-X and MLFA-S provide the most accu-
rate factor estimates for lower values of n, while HFA provides the most
accurate factor estimates for higher values of n.

When the data are from an unbalanced panel and there is no heterosce-
dasticity, all estimators perform similarly . In this case, cross-sectional sample
sizes as small as 500—1,000 assets provide very accurate factor estimates. ¢-
distributed idiosyncratic returns lead to slightly less accurate estimators. With
both cross-sectional and time-series heteroscedasticity (Cases 4a and 4b), the
APC-MX estimator is most accurate for either all values of n (factors one and
two with normal returns and factor one for ¢ -distributed returns) or smaller
values of 7 (all other cases). When APC-MX is not the best estimator, HFA-
M is the best estimator. The results indicate that estimators that account for
heteroscedasticity are preferred, particularly when the cross-sectional sample
is small. The full U.S. market of traded equities over 60-month periods (and
requiring at least 36 months of observations) provides cross-sectional sample
sizes between 4,123 and 6,237 firms, so the differences across estimators are
relevant for studies in most markets.

Our read on the recent literature is that most papers do not accommodate
cross-sectional heteroscedasticity and almost none, except for Jones (2001),
accommodate time-series heteroscedasticity. Goyal, Pérignon, and Villa
(2008) study group-specific and cross-group factors. Their empirical work
has cross-sectional samples varying from 2,942 to 4,023, split between groups
of stocks that are traded on the NYSE (samples between 1,500 and 1,763) and
NASDAQ (samples between 1,252 and 2,263). There is no adjustment for
heteroscedasticity. Ando and Bai (2015) also study group-specific factor
structures but accommodate the existence of observable and unobservable
factors. Their sample has 1,039 stocks in group A and 102 in group B. The
statistical factors are estimated without taking into account heteroscedastic-
ity. Greenaway-McGrevy, Han, and Sul (2012) also study estimators that
include observables and latent factors. Their procedure does not accommo-
date heteroscedasticity, although a variant allows for serial correlation in
idiosyncratic returns. Their simulation analysis varies with the cross-
sectional samples ranging from 25 to 4,000.

Westerlund and Urbain (2015) compare the performance of the APC es-
timator to simple cross-sectional averaging. Their estimators do not accom-
modate heteroscedasticity, and they simulate factor structures without
heteroscedasticity with cross-sectional samples up to 1,200. Two papers by
Ludvigson and Ng (2007, 2009) use scaled variables in the factor estimation,
which implicitly corrects for cross-sectional heteroscedasticity, but not for
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time-series heteroscedasticity. Su and Wang (2017) propose a factor estima-
tor robust to time-varying factor loadings and simulate its performance in
factor economies with either homoscedasticity or cross-sectional heterosce-
dasticity for cross-sectional samples of 100 or 200.

The cross-sectional sample sizes are typically in the range such that
estimators taking heteroscedasticity into account would improve precision.
We have not replicated those studies to see if their inferences would be over-
turned or strengthened, but our results suggest that those looking for more
precise factor estimates should consider estimators that account for
heteroscedasticity.
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