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Abstract: Wave energy devices are designed, and controlled, in order to be extremely responsive
to incoming wave excitation, hence maximising power absorption. Due to the consequent
large motion excursions, highly nonlinear behaviour is likely to occur, especially in relation
to variations in wetted surface. Moreover, nonlinearities may induce parametric instability, or
activate internal mechanisms for exchanging energy between different degrees of freedom (DoF's),
usually affecting the overall efficiency of the device. Consequently, single-DoF linear models may
produce overly optimistic power production predictions, and neglect important dynamics of the
system. One highly nonlinear phenomenon, particularly detrimental to power absorption for
several wave energy converters, is parametric roll, which internally diverts part of the energy
flow, from the axis where the power take-off is installed, to a secondary axis, generating parasitic
motion. This paper proposes a computationally efficient multi-DoF's nonlinear model, which can
effectively describe nonlinear behaviour, such as parametric pitch and roll, and their impact on
motion prediction, power production assessment, and optimal control parameters.
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1. INTRODUCTION

Linear models, although regularly used in the wave energy
field, are prone to excessive optimism in motion prediction
and power production assessment, and completely neglect
purely nonlinear behaviour. Indeed, the conditions under
which linear models are accurate (small relative motion
between the device and the seawater) are seldom met,
since the objective of a wave energy converter (WEC),
pursued by the control strategy, is to maximise power
absorption, by exaggerating the motion amplitude (Giorgi
and Ringwood, 2017). Under such conditions, linear mod-
els perform poorly, losing accuracy and reliability, with
important consequences, not only with regard to motion
and power absorption prediction, but also in relation to
the accuracy of model-based optimal control strategies.
In particular, the effectiveness of the control strategy, on
which the efficiency of the WEC is highly dependent, relies
on the fidelity of the mathematical model the control is
based on.

The accuracy of linear models may be improved by in-
troducing relevant nonlinearities, which are dependent
on the device dimensions and operating principle (Giorgl
and Ringwood, 2018b). An effective solution for heaving
point absorbers, which are small in dimension compared
to the wave length, is the use of nonlinear Froude-Krylov
(FK) models, where the instantaneous wetted surface is
considered, as compared to the utilisation of the mean
wetted surface for a linear model. One notable example
of extremely nonlinear behaviour, which is undetected by

linear models, but described by nonlinear FK models, is
parametric pitch and roll motion. Parametric resonance is
a phenomenon related to time variation in some system pa-
rameters, which may lead, under particular circumstances,
to dynamic instability.

Particular examples, in the wave energy community, are
given by the SEAREV (Babarit et al., 2009) and the
Wavebob (Tarrant and Meskell, 2016) devices, for which
parametric resonance is a detrimental, difficult to model
and predict, parasitic effect. In fact, parametric instability
is an internal excitation mechanism, which nonlinearly
diverts part of the energy, trom the axis where power is
absorbed, to a secondary axis, ultimately causing signif-
icant efficiency erosion. For the SEAREV and Wavebob
devices, parametric resonance was studied with mesh-
based nonlinear FK force models (Gilloteaux, 2007), which
compare well with wave tank tests, provided an appropri-
ate viscous drag description is included. Nonetheless, the
main drawback of mesh-based nonlinear FK models is the
computational time, since they require time-consuming re-
meshing routines, which makes them slow, and not suitable
for control or optimization applications.

However, a computationally efficient approach is proposed
in this paper, applicable to axisymmetric devices. While
previous work focused on single-body and single-degree
of freedom (DoF) devices (Giorgi and Ringwood, 2017),
this paper focuses on a multi-body multi-DoF's instead. A
simple self-reacting point absorber, inspired by the Wave-
bob device, is considered, and modelled in all its degrees of
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freedom. Despite the simplicity of the geometry, significant
differences are found, between the linear and nonlinear
model, with important consequences for optimization of
the control parameters. Moreover, parametric roll is clearly
evident and articulated, and its dependence on the power-
take off (PTO) is discussed.

The remainder of the paper is organized as follows: Sect.
2 presents the linear and nonlinear mathematical models,
while Sect. 3 describes the device configuration and pa-
rameters, and the wave conditions analvzed. Some results
are presented in Sect. 4, while Sect. 5 gives concluding
remarks and considerations.

2. MATHEMATICAL MODEL

Two right-handed frames of reference are introduced: an
inertial frame (&, y,z), with the origin at the still water
level (SWL), « pointing in the direction of propagation
of the wave, and z pointing upwards; and a non-inertial
frame (&, 9, #), fixed with the body, and overlapping with
the inertial frame when the body is at rest. Under the
hypothesis of an inviscid fluid, and irrotational and incom-
pressible flow, linear potential theory can be formulated,
defining the equation of motion for a generic single-body,
in the body-fixed frame of reference, as:

MK = fFKSt + fFKdy + fd + frud + fvz's + fCor + fmoar + fPTO-
(1)

where M is the inertial matrix, x = (&, 9, 2, ¢, 6,1) is the
state vector in the body-fixed frame, f are the generalized
force vectors, composed of 3 forces (F), and 3 torques
(T). The force components on the right hand side of (1)
are the static and dynamic FK forces frg,, and frx iy
respectively, the diffraction force f;, the radiation force
fraq, the viscous force f,;s, the Coriolis force foor, the
mooring force f,40r, and the PTO force fpro.

The mooring system is potentially an important factor
for the generation of parametric instability, according to
the particular mooring configuration (Davidson and Ring-
wood, 2017). Likewise, the viscous drag force, normally
modelled as a Morison-like term (Bhinder et al., 2011),
may be essential in nonlinear FK force models, to avoid an
unrealistic magnification of the motion when parametric
instability appears (Babarit et al., 2009). In this paper,
linear radiation and diffraction forces have been consid-
ered, which is a reasonable approximation for devices much
smaller than the characteristic wave length (Falnes, 2002).
A computationally convenient state space representation
has been used to model radiation forces, based on a
moment-matching technique (Faedo et al., 2017).

Froude-Krylov forces correspond to the integral of the
pressure of the undisturbed incident wave field, over the
wetted surface of the device. Such a pressure is defined,
according to linear Airy’s theory, as:

- B ~_,cosh(k(z+h))
ple,z,t) = psy +pay = ;~+WWU(‘L¢) (2)

where pg = —vz is the static pressure, pg, the dynamic
pressure, v the specific weight of sea water, n(z,t) a 2-

dimensional wave with amplitude a and wave frequency
w, k the wave number, and h the water depth. It is also
convenient to apply Wheeler stretching to (2), as shown
in (Giorgi and Ringwood, 2018c).

Froude-Krylov forces (Frg) and torques (T'rx) are com-
puted by integrating the pressure, shown in (2), over the
instantaneous wetted surface S(t):

FFK5t+FFKdy :Fg—o—f/pstndS—b—f/pdyndS (3&)
S(1) S(1)
TFKH—Q—TFKM:erg+j/pstrx11d5'+//pdyrxnds
S(1) S(1)
(3b)

where F is the gravity force, n = (1, ny, n.) is the unit
vector normal to the surface, pointing outwards, r is the
position vector, and x is the cross product.

Under linear approximation, a constant wetted surface
is considered, in integrals (3a) and (3b), relying on the
assumption of small relative motion between the wave and
the device. In contrast, nonlinear FK forces are computed
with respect to the instantancous wetted surtace, therefore
taking the real position of the device, with respect to 7,
into account.

For a geometry of arbitrary complexity, the actual calcu-
lation of the nonlinear FK integrals requires the use of
plane panels to discretize the surface, which consequently
has to be remeshed, at every time step, in order to define
the instantaneous wetted surface (Gilloteaux, 2007). Such
a remeshing routine makes the approach computationally
expensive. However, for arisymmetric buoys, a convenient
parametrization of the wetted surface can ease the cal-
culation of the FK integrals. Such a method, described
hereafter, is validated in (Giorgi and Ringwood, 2018b).

The assumption of axisymmetric geometry allows an ana-
Iytical description of the whole wetted surface. The geom-
etry of a generic buoy, symmetric around a vertical axis,
can be described in cylindrical coordinates, with respect
to the body-frame (I, 7, ), as follows:

(0, V) = f(o)cos?
y(0,9) = f(o)sind 0 €[-mm)Aeo€ o1, 00 (4)
2(0,9) =0

where f(1) is a generic function of the vertical coordinate
o, describing the profile of revolution of the axisymmetric
body, as shown in (Giorgi and Ringwood, 2017).

The change of coordinates, from Cartesian (&, 9, 2) to
cylindrical (o,4), shown in (4), requires the inclusion of
|lep x ep|| in the integral, where e, and ey are unity vec-
tors in the o and ¢ directions, respectively. Furthermore,
n can be expressed as ”2?2: T Finally, since the integrals
are defined in the body frame, it is necessary to map the
pressure from the inertial-frame (where it is defined) onto
the body surface. The transformation, from (&, v,z) to
(.4, %), is represented by the Euler angle triad (o, 8, 1),
corresponding to roll, pitch, and yaw angles, respectively.
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The 3-2-1 Euler angle sequence is the rotation convention
commonly used for marine vehicles, thought of as three
sets of rigid rotations Fossen (2011). Consequently, the
integral for Frg,, in (3a), for example, becomes:

Yo02
FFKdy :/:/pdy(i" g: 2)11(1‘9:]/})(11;(9: 19) (eg Xeﬁ) dod)
S(t) 01

)
Although such an approach is applicable to any geometry
with revolution symmetry, the vast majority of axisym-
metric point absorbers can be described as a combination
of cylinders, cones, and spheres. Note that discs (lids),
which close the surface of a cylinder, cannot be described
using cylindrical coordinates. To this end, polar coordi-
nates are valid alternatives to cylindrical, as shown in
(Giorgi and Ringwood, 2018h).

Finally, the FK force integrals must be solved numerically
using, for example, a trapezoidal rule. The computation
time depends on the integration scheme utilized, and on
the relative and absolute tolerances used to approximate
the integral, which have been set to 1073 and 107,
respectively. The ultimate value of the computation time
depends on the hardware capabilities, on the complexity
of the geometry, and on the number of bodies/DoFs
considered. For the device studied in this paper, described
in Sect. 3, the calculation time of the nonlinear FK forces,
in 7-DoFs, for two bodies, is between 1 -1072s and 5 -
10725, at a single time instant. The consequent run time
for computing the response of the device depends on
the discrete time solver scheme, the time step, and the
simulation duration. Using a constant time step Runge-
Kutta scheme, varying the time step from 0.01s to 0.08s,
for wave periods of about 3s, the resulting run time
is between one and three times the simulation time.
Therefore, such a method has the potential to run roughly
in real time, or a little slower, depending on the particular
implementation. However, these considerations are for
computations performed in Matlab, which is between one
and two orders of magnitude slower than lower level coding
languages, such as C or Fortran (Wendt et al., 2017).
With C or Fortran implementation, therefore, real time
execution is easily achievable.

3. CASE STUDY

A simplified version of the Wavebob device, at 1:17 pro-
totype scale, is considered as a case study, since Tarrant
and Meskell (2016) demonstrate, through tank tests and
a mesh-based nonlinear FK model, peculiar parametric
instability for the Wavebob device, with negative conse-
quences on the efficiency. The slightly simplified Wavebob-
like WEC is a self-reacting heaving device, with a cylin-
drical spar (radius 0.3m, draft 3.5m), moving inside a
cylindrical torus (outer radius 0.62m, inner radius 0.36m,
draft 0.35m). Since the real Wavebob device has a ballast
system at the bottom of the spar, it has been assumed that
two thirds of the weight of the spar is uniformly distributed
in the bottom half of it. The centre of gravity and inertia
properties are computed accordingly. A linear mooring
system is considered attached to the spar. The PTO, which

acts between the two bodies, extracting energy from the
relative heave motion, is modelled as a linear damper.
Finally, as in (Tarrant and Meskell, 2016), the 12 DoF's (6
DoFs for each body) are reduced to 7, considering heave
for both bodies (Z; and Z;, respectively for the spar and the
torus), and the remaining five DoF's (surge &, sway ¢, roll
o, pitch 8, and roll «/) for the whole system, considered as a
single body. Note that, for simulations, a small initial roll
and pitch angle position (0.007rad) has been emploved,
as suggested by Tarrant and Meskell (2016), in order to
provide some initial energy in such DoFs. It not excited,
either internally or externally, such small angles quickly
decrease to zero; conversely, the roll angle increases only
when parametric resonance occur.

The geometry has been simplified because of the intention
to study mainly those nonlinearities related to pitch and
roll motion. In fact, if the cylinder and cylindrical torus
were to be constrained to a purely heaving motion, their
response would be essentially linear, due to their constant
cross sectional area (Penalba et al., 2017). Conversely,
when large pitch/roll angles appear, even such geometries
are subject to nonlinearities in the FK forces.

The choice of a self-reacting type of device is driven by the
fact that such devices are particularly prone to parametric
resonance, which is a Mathieu-type of instability (Fossen
and Nijmeijer, 2012), caused by time-varying system pa-
rameters. In the case of the considered WEC, the leading
causes of parametric instability are the variation of the
metacentre, and of centre of gravity, due to pitch and
relative heave motion, and to variations in wetted surface.
Furthermore, the Mathieu-type of instability is well-known
to appear, after a certain wave amplitude threshold, at
an exciting frequency twice the pitch natural frequency
(Fossen and Nijmeijer, 2012). Due to the typical long spar
of a system like the Wavehob, the pitch natural frequency
is usually low. Consequently, some of the wave excitation
frequencies normally experienced in nominal power pro-
duction conditions are likely to be twice the pitch natural
period, meeting the frequency requirement of the Mathieu
equation.

However, for a fully coupled nonlinear 7-DoF model, the
notion of a single natural frequency in pitch is quite
blurred, as explained in (Tarrant and Meskell, 2016; Giorgi
and Ringwood, 2016), making the condition on the tre-
quency less meaningful. Furthermore, the Mathieu equa-
tion is defined for single DoF unforced dynamic equation,
with harmonic variations of the stiffness term, i.e. there
is no true coupling between DoFs. Although it can give
some insight, it cannot forecast the severity of the eventual
parametric response. Moreover, various approximations
are necessary to squeeze the nonlinear multi-DoF model
into the single-DoF, partially linearized, model required
by the Mathieu equation (Giorgi and Ringwood, 2018a).

Nevertheless, as shown in (Tarrant and Meskell, 2016),
parametric instability is a frequency dependent phe-
nomenon. Therefore, as is commonplace in the litera-
ture concerning parametric resonance, regular waves are
primarily considered, to give frequency-resolved insight.
Given the threshold condition, parametric roll also de-
pends on wave amplitude. Since FK nonlinearities mainly
depend on wave steepness, defined as the ratio between the
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Fig. 1. Optimal power-take off damping coefficient Bpro
for each wave condition, according to the linear and
nonlinear FK models.

wave height and wave length, the wave amplitude is chosen
so that a constant steepness of 2% is produced, which is
at the upper edge of the region of validity of linear Airy’s
waves. Therefore, the set of analyzed wave conditions is
mono-dimensional, with a one-to-one relationship between
wave frequency (w,,) and wave height (Hy).

4. RESULTS

The optimization of a PTO damping coefficient Bpro has
been performed for each wave condition. Both the linear
FK and the nonlinear FK models are considered, in order
to highlight eventual differences in the optimal parameters,
and therefore the sensitivity of the controller to modelling
errors. The resulting optima are shown in Fig. 1. The two
sets of Bpro optima are hereafter referred to as By, and
By, indicating which model is used to compute them,
either the linear FK model or the nonlinear FK model,
respectively.

Significant differences are only found in the range of
frequencies between 2.5 and 3rad/s. It is reasonable to
infer that such differences are strictly related to parametric
resonance in the roll DoF which, as shown in Fig. 2, is
generated over the same frequency range.

Obviously, since in the linear FK model there is no
excitation mechanism of the roll DoF, the resulting roll
motion is inherently zero. On the contrary, in the nonlinear
FK model, an internal excitation mechanism is activated,
due to parametric resonance, at those frequencies which
lead the roll DoF into instability. In Fig. 2, both sets of
PTO optima are used, from Fig. 1, obtained using the
linear and nonlinear models. A significant dependence on
the PTO damping coefficient can be noticed: on the one
hand, the larger the PTO damping, the larger the roll
response; on the other hand, the frequency range, where
parametric roll appears, is overall rather insensitive to
Bpro, even though the frequency of the roll peak response
changes from 2.8rad/s with lower damping, to 2.7rad/s
with higher damping.

59

Hy[m)
0.308 0.214 0.157 0.120 0.095 0.077
] ] I ] |
8 | !\"l/’/
S5
= .
6 :‘ ‘;"
— 5 \d
S 4 ;
2 -
0 | I o
2 2.4 2.8 3.2 3.6 4
way[rad/s]

2. Maximum roll angle, for each wave condition,
according to the nonlinear FK model, using optima
computed with the linear (==) and nonlinear FK
model (mm=) as shown in Fig. 1.
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Fig. 3. Sensitivity analysis on the maximum roll angle, for
different wave conditions and PTO damping coeffi-
cients.

Therefore, it is interesting to undertake a more compre-
hensive study of the relation between the parametric roll
excitation, and the PTO damping coefficients. Figure 3
shows the peak roll response for different wave conditions,
and for different Bpro values, ranging from 0 to about
twice the maximum optimal PTO wvalue, from Fig. 1.
Consistent with Fig. 2, and in agreement with results
shown by Tarrant and Meskell (2016), it is found that
the parametric roll response significantly increases with
Bpro, reaching peaks of 11.3°. Similarly, the frequency
range for parametric instability widens as Bpro increases,
with the peak frequency for maximum roll motion slightly
tending towards larger frequencies. Such behaviour is due
to a progressively stiffening system, as the PTO resistance
grows (Tarrant and Meskell, 2016).

Figure 3 has important consequences both in the power
production region, for the control strategy, and in the
survivability mode. In fact, in case of extreme events, a
natural tendency to avoid harm to the WEC might be
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Fig. 4. Maximum pitch angle, for each wave condition,
according to the linear and nonlinear FK model, using
optima computed with the linear and nonlinear FK
model, as shown in Fig. 1.

to considerably increase the PTO damping, in order to
limit the relative motion between the spar and the torus,
and avoid end stops striking. However, what Fig. 3 shows
is that, for large Bpreo values, parametric roll increases
further, possibly causing severe structural damage.

Apart from the parametric instability of the roll DoF,
the pitch DoF is also parametrically excited. While roll is
completely neglected in a linear FK model, pitch is excited
in both models. Therefore, Fig. 4 shows the maximum
pitch response, using both the linear and nonlinear FK
models, each of them using the two sets of PTO damping
optima, By, and By . from Fig. 1, for a total of four curves.

Little dependence on the PTO parameters, and conse-
quently on the roll motion, is found, since the curves for
ecach model, using the two sets of Bpro. substantially
overlap. In contrast, a significant difference between the
two models can be appreciated, with the nonlinear FK
model forecasting larger pitch motion, especially at low
wave frequencies. The nonlinear FK model is more re-
sponsive in pitch, mainly because of the changes in the
metacentric height. In particular, the pitch hydrostatic
stiffness decreases as the metacentre moves down and, if it
eventually falls below the centre of gravity, the restoring
force becomes negative, leading to instability (Biran and
Pulido, 2013).

Finally, power output prediction, for both linear and non-
linear models, and using the two sets of PTO parameters,
is considered, and shown in Fig. 5. Differences within the
same model, using different PTO optima, are obviously
concentrated in the range of frequencies between 2.5 and 3
rad/s, where parametric roll is excited. Overall, the power
produced according to the nonlinear FK model is lower
than in the linear FK model, mainly due to the larger pitch
motion, as shown in Fig. 4. Indeed, larger differences in
power estimation are found at low wave frequencies, where
larger errors are obtained in the pitch motion prediction.

The lower efficiency with the nonlinear FK model can be
explained with reference to Figs. 2 and 4: roll and pitch
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Fig. 5. Power produced, for each wave condition, according
to the linear and nonlinear FK model, using optima
computed with the linear and nonlinear FK model, as
shown in Fig. 1.

motions are both larger in the nonlinear FK model, while
the energy of the incoming wave is the same. Therefore, in
order to excite such DoFs, and produce larger oscillations,
some energy is diverted from the principal (heave) PTO
axis, where the energy is harvested, and fed into to the
secondary roll/pitch axes, where no PTO conversation
takes place. Such a mechanism is particularly evident for
parametric roll, and shown in Fig. 6, which presents the
envelope of the squared-velocity time traces, for relative
heave, and roll motion. Note that the square-velocity is
a more representative quantity of the energy absorbed,
which is extracted in the relative heave DoF, while wasted
in the roll DoF. Figure 6 shows that the energy content in
the relative heave motion is larger when the roll motion
is still negligible (left part of the time trace); conversely,
the gradual increase in parametric roll causes a decrease
in relative heave, until steady state is reached (right part
of the time trace). Therefore, it is evident that, due to
parametric resonance, part of the energy is diverted from
relative heave to roll, as schematically represented by the
wavy arrow in Fig. 6.

5. CONCLUSIONS

This paper proposes a multi-DoF computationally efficient
nonlinear FK model for axisymmetric wave energy devices,
and applies it to a simple self-reactive heaving point ab-
sorber. The ability to appreciate parametric resonance is
demonstrated, which can be detrimental to the device effi-
ciency. It is crucial to highlight how the system response,
with particular focus on its nonlinear effects and power
production, is highly sensitive to the control parameters.
Likewise, the optimization of the control parameters is
very dependent on the model fidelity and ability to de-
scribe nonlinearities. Therefore, models for control appli-
cation must be accurate and representative of the complex,
nonlinear, system dynamics. Such models also need to be
computationally viable, such as the one proposed in this
paper, in order to be practically usable in optimization
routines.
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Fig. 6. Envelope of the time traces for the squared-velocity
in relative heave (top), and roll (bottom), using the
nonlinear optimum at w, = 2.8rad/s. The wavy
arrow schematically represents the energy diverted,
due to parametric resonance, from the relative heave
to the roll DoF.
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