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AbstractThe motion of a Wave Energy Converter (WEC) can be described in terms of a
particular integro-differential equation, which involves a convolution product accounting for the
radiation forces. This convolution term has a computational and a representational drawback
both for simulation, and for analysis/design of control strategies. This study presents an
application case of a method to obtain a parametric model of the force-to-motion dynamics
and/or the radiation force convolution term, based on recent advances in moment-matching.
This allows the computation of a model that exactly matches the frequency response of the
original system at a chosen set of frequencies, while enforcing specific physical properties of the

device.
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1. INTRODUCTION

Boundary Element Methods (BEM) are commonly used
to calculate the hydrodynamic parameters of wave energy
converters and, more generally, of various marine struc-
tures (Penalba et al., 2017). However, one of the major
drawbacks of BEMs is that the results are computed in
the frequency-domain and, hence, can only characterise
the steady-state motion of the WEC under analysis.

A more comprehensive dynamic modelling approach can
be considered, using a time-domain representation of the
motion of a WEC, in terms of the well-known Cum-
mins’ equation (Cummins, 1962). Moreover, a direct re-
lationship between Cummins’ equation and the hydrody-
namic frequency-domain data is given in (Ogilvie, 1964)
(see Section 3 for further details). The resulting time-
domain dynamical model is an integro-differential equa-
tion, which contains a convolution term accounting for
the fluid memory effects associated with radiation forces
acting on a body. Such a convolution operation usually
represents a computational drawback, for both simulation
and model-based control design.

As discussed in (Faedo et al., 2018), there are several
methods which attempt to represent the convolution term
of Cummins’ equation using a suitable state-space approx-
imation. Two of the most popular methods are those de-
scribed in (Pérez and Fossen, 2008) (NTNU method) and
(Duclos et al., 2001; De Prony, 1795) (Prony’s method).
The first method uses the frequency-domain data obtained
from BEM solvers, while the second one requires the radi-
ation force impulse response to perform such a parametric
approximation.

* This material is based upon works supported by Science Founda-
tion Ireland under Grant no. 13/IA/1886.
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Recently, an approximation technique for the radiation
convolution operation and the complete force-to-motion
dynamics of a WEC, based on recent advances in model
order reduction by moment-matching, has been proposed
in (Faedo et al., 2018). Moment-matching methods are
based on the idea of interpolating a certain number of
points on the complex plane, termed moments. A model
reduced via moment-matching is such that its transfer
function matches the behaviour of the transfer function
of the target system at specific interpolation points (i.e.
the moments). This allow the design of an approximating
model to exactly match the frequency response of the
device under analysis, at a set of specific key frequencies.
This intuitive property allows the enforcement of essential
physical characteristics of the device on the reduced model,
such as input-output stability. This paper presents the
application of this moment-matching-based approach to
identify a finite order parametric model of both the force-
to-motion dynamics and the radiation force convolution
for the full-scale ISWEC (Inertial Sea Wave Energy Con-
verter) device (Bracco et al., 2011). Additionally, a brief
comparison with well-known existing methods is provided.

1.1 Notation

R*™ (R™) denotes the set of non-negative (non-positive)
real numbers. C° denotes the set of pure-imaginary com-
plex numbers and C~ denotes the set of complex numbers
with a negative real part. The symbol 0 stands for any zero
element, with dimension according to the context. The
symbol I, denotes a size n identity matrix. The spectrum
of a matrix A € R™ ™ i.e. the set of its eigenvalues,
is denoted o(A). The symbol @ denotes the direct sum
of n matrices, i.e. @, A; = diag(41, As,...,A,). The
notation R{z} and ${z}, with z € C, stands for the real-
part and the imaginary-part operators, respectively. The
expression ||z|2, with 2 € C"*1, denotes the ¢?>-norm of
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the complex-valued vector x. The Kronecker product be-
tween two matrices M; € R"*™ and My € RP*? is denoted
as M7 ® My € R™X*™4 while the convolution between
two functions f(¢) and g(¢) over a finite range [0,], i.e.
fg f(m)g(t — 7)d7 is denoted f * g. The Fourier transf9rm
of a function f(t) € L*(R) is denoted Z{f(t)} = f(¢),
where L?(R) is the function space of all real-valued square-
integrable functions. Finally, the symbol &, € R™*! de-
notes a vector with odd components equal to 1 and even
components equal to 0.

In the remainder of this section the formal definition of
the Kronecker sum is provided, since its definition in the
literature can be often ambiguous.

Definition 1. (Brewer, 1978) The Kronecker sum be-
tween two matrices Py and P, with P, € R™ ™ and
P, € RF>¥* s defined (and denoted) as

Pi&P, 2 P @l +1, ® Ps. (1)
2. MOMENT-BASED THEORY

Linear moment-based theory is recalled and summarised
in this section (the reader is referred to key studies, such
as (Astolfi, 2010)).

Consider a finite-dimensional, single-input, single-output,
continuous-time system described, for ¢ > 0, by the state-
space model
B(t) = Av(t) + Bu(t), y() =Ca(t),  (2)
where z(t) € R", u(t) € R, y(t) € R, A € R"*" B ¢ R**!
and C € RY*", Consider the associated transfer function
W(s)=C(sl, — A)™'B (3)
and assume that (2) is minimal (i.e controllable and
observable).
Definition 2. (Antoulas, 2005) The O0-moment of system
(2) at s; € C\o(A) is the complex number 79(s;) =
C (s;1, — A)~" B. The k-moment of system (2) at s; € C
is the complex number
(=1)* [d*W(s)
e W

(4)

(i) =
with & > 1 integer.

In (Astolfi, 2010), a novel interpretation of moments is
given in terms of the steady-state response (provided it
exists) of the output of the interconnection between a
signal generator and system (2). This result is recalled in
the following theorem.

Theorem 1. (Astolfi, 2010; Scarciotti and Astolfi, 2017)
Consider system (2) and the signal generator

§(t) =5¢(t), u(t)=LE®), (5)
with £(t) € RV*1 S € RV L € R and £(0) € R¥*L,
Assuming that the triple (L, S,£(0)) is minimal, o(A) C
C—, 0(S) c CY and the eigenvalues of S are simple.
Let II € R™*¥ be the (unique) solution of the Sylvester
equation

All 4+ BL =TIS. (6)
Then there exists a one-to-one relation between the mo-
ments 7o(s1), Mo(s2), -.., Mo(s.), with s; € o(S) for all
i = 1,...,v, and the steady-state response CTI¢ of the
output y of the interconnection of system (2) with the
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signal generator (5). In fact, the moments are uniquely
determined by the matrix CTI.

Remark 2. As discussed in (Scarciotti and Astolfi, 2017),
the assumption on the eigenvalues of S is a sensible
hypothesis, since any contribution from a stable mode will
decay exponentially to zero.

Remark 8. From now on, the matrix CII = Y is referred
as the moment-domain equivalent of y(t).

Lastly, the following key result is recalled from (Astolfi,
2010).

Theorem 4. (Astolfi, 2010) The family of systems de-
scribed by

O(t) = (S — GL)O(t) + Gu(t), 6(t)=YO(), (7)
parametrised on G € R**!, such as o(S—GL)Na(S) =0,
contains all the models of dimension v interpolating the
moments of system (2) at o(5).

Remark 5. The transfer function of the reduced order
model (7) interpolates the transfer function of system (2)
at the eigenvalues of S.

Remark 6. The matrix G can be selected to enforce spe-
cific properties of the original system on the reduced order
model, such as a set of prescribed eigenvalues, as detailed
in (Astolfi, 2010) and considered in Section 4.1.

3. WEC EQUATION OF MOTION

A 1-DoF (degree of freedom) WEC is considered in this
study, since the extension of the algorithm to multiple
degrees of freedom can be done in an analogous procedure.

3.1 Time-domain formulation

The linearised equation of motion for a 1-DoF device can
be expressed, in the time-domain, in terms of Newton’s
second law, as follows:

mi}(t):‘}—r(t)‘i‘fh(t)'f'fe(t)a (8)
where m is the mass of the buoy, z(t) the device excursion,
Fe(t) the wave excitation force, Fp(t) the hydrostatic
restoring force and F,.(t) the radiation force. The linearised
hydrostatic force can be written as Fj(t) = —spx(t), where
sp > 0 denotes the hydrostatic stiffness. The radiation
force F,(t) is modelled based on linear potential theory

and, using the well-known Cummins’ equation (Cummins,
1962), is

—+oo
Folt) = oo () — / K(r)i(t —m)dr,  (9)

where fioo = limy 400 A(W), foo > 0 represents the
added-mass at infinite frequency, A(w) is the radiation
added mass and k(t) € L?(R) is the (causal) radiation
impulse response, containing the memory effect of the fluid
response. Finally, the linearised equation of motion of the
WEC is given by

(m + poo)@(t) + k(1) k &(t) + spx(t) = Fe(t),  (10)
The internal stability of equation (10), for the WEC
case, has been analysed and guaranteed for any physically

meaningful values of the parameters and the convolution
kernel k() involved (Falnes, 2002).
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3.2 Frequency-domain formulation

Applying the Fourier transform to (10), and considering
velocity as the measurable output, the following represen-
tation R

1(jw) = Fe(jw)H (jw), (11)
where H(jw) represents the force-to-velocity frequency
response, holds. H(jw) is a function of a specific set of
characteristic frequency-dependent parameters, namely

1
H(juw) = . w
T Bl) + jw [Aw) + ml + >

where B(w) and A(w) are the radiation damping and
radiation added-mass of the device, respectively (Falnes,
2002). The hydrodynamic parameters A(w) and B(w) can
be efficiently obtained using existing BEM solvers, such as
WAMIT or NEMOH.

3.8 Ogilvie’s relations: mapping between time and frequency

Francis Ogilvie (Ogilvie, 1964) established a direct rela-
tionship between time-domain (10) and frequency-domain
(11) models, as a function of the parameters B(w) and
A(w), and the radiation kernel k(t), considering the defi-
nition of the Fourier transform, namely

“+o0
B(w) = /0 k(t) cos(wt)dt,
(13)

+oo
A(w) = oo — %/0 k(t) sin(wt)dt.

It follows that the impulse response k(t) can be written as
a mapping involving the frequency-dependent parameters

as g oo

B(w) cos(wt)dw. (14)
0

Equation (14) allows a frequency-domain analysis of k(t):

a direct application of the Fourier transform, yields

k(jw) = B(w) + jw [A(w) — poo] = K (jw). (15)

4. MOMENT-BASED WEC FORMULATION

The equation of motion presented in (10) needs to be re-
written in a more suitable structure, since the theory pre-
sented in Section 2 is based on a state-space representation
of the system under analysis, i.e.

G(t) = App(t) + Bou(t), wo(t) =Cpp(t),  (16)
where p(t) = [z(t), #(t)]T € R"*!, with n = 2, is the state-
vector of the continuous-time model and y,(t) = ©(¢) € R
is the output of the system. The function u(t) € R,
assumed to be the input of system (16), is defined as

u(t) = Fe(t) — k() * (1), (17)
Under this assumption, the matrices in (16) are given by

0 1 0
Aga: Sh, aBLp: 1 ,C :[01]
i ZE.
(18)

Within the moment-based framework, the input F. is
expressed as a signal generator (5), as

ée(t) = Sge(t)a ]:e(t) =L ge(t)v (19)
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where the dimension of S and L are as in (5), &.(t) € R¥*!
and, without loss of generality, the initial condition of the
signal generator is chosen as £.(0) = €,. The matrix S can
be written in a real block-diagonal form as

! 0 w
S=p [_wp 0”} ,
p=1
where v = 2f, f > 0 integer. With this selection of
matrices, the assumption on the minimality of the triple
(L, S,£.(0)) holds as long as the pair (L, S) is observable.
Also note that each w, represents a desired interpolation
point for the model reduction process (see Remark 5).
Then, the moments of system (16), driven by the signal

generator (19), can be computed by solving a Sylvester
equation (see Theorem 2), i.e.

AL, + By(Le — Z) = 11,5, (21)
where II, € R™*” and Z is the moment-domain equivalent
of the radiation convolution term. Note that the moment-
domain equivalent of the velocity can be simply expressed
in terms of the solution of (21) as V' = C,II,.
Proposition 7. (Faedo et al., 2018) The moment-domain
equivalent of the convolution integral in (9) can be com-
puted as

(20)

7=V, (22)
where Z € R”*" is a block-diagonal matrix defined by

f
_ T, — My,
X = @ |:mwp T p:| ’
p:1 P p
and its entries depend on the coefficients A(w) and B(w)

of the device at each specific frequency induced by the
eigenvalues of S, as

1w, = B(wp),

(23)

My, = —wp [A(wp) — po] . (24)

With the analytical definition of the moment-domain
equivalent of the radiation force convolution term, the
following proposition is recalled from (Faedo et al., 2018),
which allows (21) to be solved.

Proposition 8. (Faedo et al., 2018) The moment-domain
equivalent of the output y, of system (16) can be com-
puted as
7 %
V=L, (25)
where

o2 = [, o 0]

by = (I, ®C,) (S A,) " (I, ® —B,),
with 7 € R"*” and &, € R™>*".

(26)

Proposition 8 shows an explicit analytical expression for
the moment-domain equivalent of the output of system
(16). Such a result allows the computation of a reduced
order model of system (16) using Theorem 4, in a straight-
forward way. Explicitly:

e {@m = (S~ GuLe) O,(1) + GLF.(1),

0,(t) =V O,(0)

is the family of reduced order models parametrised in
G, interpolating the moments of system (16) at the
eigenvalues of S, where V = Leég .

(27)

Remark 9. The reduced order model (27) has dimension
v = 2f, where f is the number of interpolation points
(frequencies) selected.
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Remark 10. The notation 7:1,7( s) refers to an approximated
time-domain model of the force-to-velocity dynamics of the
device under analysis, by matching the frequencies selected
in o(S).

4.1 Figenvalue assignment

As discussed in Remark 6, the additional degree of freedom
provided by G, can be exploited to arbitrarily assign the
eigenvalues of the reduced order model (27), i.e. given a
set of eigenvalues ¥, one can select G, such as (S —
G,L.) = Y . In this case, the following procedure is
proposed. Define the transfer function (notation adopted
from Remark 10):

Hys)(s) = V[sl, — (S — GuL)] ' Gy (28)
The frequency-dependent hydrodynamic parameters A(w)
and B(w) are calculated using hydrodynamic codes at a
finite number of frequencies w; € [w;, w,], with a frequency
step of Aw;, where w; and w, represents the lower and
upper bound of the range, respectively. Such a frequency
range depends explicitly on the application. Define the
complex-valued vectors H,,, H,, as,

H (jor)
H(j(wi + Aw;))

 Hos)(jwn)
Hy(s)(j(wi + Aw;))

w b w

H(j(wu)) Ho(s)(j(wa)
(29)
Then, the proposed optimisation procedure, to assign the
eigenvalues of the reduced order model ¥, C C~, can be
formulated as,

min ||H, — f[wH%

z,ce- (30)

4.2 On the radiation force convolution operation

The radiation convolution term in (9) defines a linear time-
invariant system completely characterised by the impulse
response function k(t), where the input considered is the
velocity of the device @(t), i.e.

Yk (t) = k() * &(t). (31)
A reduced order model, by moment-matching, can be ob-
tained using the result on the moment-domain equivalent
of such a convolution term, provided in Proposition 7, as
developed in the following.

Assume that the velocity @(t) of the WEC can be written
as a signal generator in implicit form, in a similar fashion
that (19), expressed as a set of linear differential equations
given by

§u(t) = S&(t), @(t) = Ly &(t), (32)
with £ (0) = &, and Ly, such as the pair (L, S) is observ-
able. Then, recalling Proposition 7, the moment-domain
equivalent of the output of (31) can be straightforwardly

computed as Y, = LpZ, and a reduced order model of
(31) can be obtained by applying Theorem 3. Specifically:

Rois) {Gk(t) = (S = GiLy) Ok(t) + Grit(t),
9k(t) =Y @k(t),

is the family of reduced order models parametrised in

Gy, interpolating the moments of system (31) at the

(33)
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eigenvalues of S, where Y, = L,%. Following Equation
(28), the transfer function of the reduced order model (31)
can be computed as,

Ko5)(8) = Vi [sL, — (S — GyLy) ' G, (34)

and the complex-valued vectors K, and K., are defined as
in (29), by considering the frequency response of the ra-
diation convolution kernel K (jw) (15) (instead of H(jw)),

and the reduced order model transfer function K, (g)(s)

(instead of ﬁg(s)(s)). Then, the set of desired eigenvalues
Y of system (33), can be assigned using the same optimi-
sation criterion described in Section 4.1, namely,

min || K, — IN(ng

o (35)

5. NUMERICAL EXAMPLE: ISWEC

For this case study, the pitch dynamics of the full-scale
ISWEC device Bracco et al. (2011) is considered. The
resulting coefficients A(w) and B(w) (obtained using the
open-source BEM solver NEMOH) are shown in Figs. la
and 1b.

x10° a x10° b
oF T
6 -
34}
Q
2 -
E 0
0 5 10 0 5 10
w [rad/s] w [rad/s]

Figure 1. ISWEC pitch characteristics: (a) radiation
added-mass A(w); (b) radiation damping B(w).

Although the coeflicients are computed over a frequency
range of w = 0.01 [rad/s] to w = 10 [rad/s] (as in
Fig.1), a frequency range of w; = 0.3 [rad/s] and w, = 3
[rad/s] is selected as the key approximation interval (see
(Faedo et al., 2018) for further details). For the numerical
simulations presented in this paper, the irregular waves
are generated from the JONSWAP spectrum (Hasselmann,
1973) shown in Fig.3 (peak period T}, = 8[s], significant
wave height Hs = 2[m], peak enhancement factor v = 3.3).
One can notice that all the non-zero values of the spectrum
lie inside the frequency range selected, depicted by a white
area in each subsequent plot.

6 F——r——————————————

SDF [m?/s]

4
2 ]
R |
w [rad/s]

Figure 3. JONSWAP spectrum

5.1 Force-to-velocity case

To compute a parametric model of the force-to-motion
frequency response H (jw), a suitable set of interpolation
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points needs to be chosen, which can be done in a straight-
forward manner by inspecting Figs. 1c and 1d: in the case
of a single interpolation point, the resonant frequency of
the device (w & 1.55[rad/s]) represents a sensible choice.
As can be appreciated in Fig. 4, the frequency response
of the parametric model identified by moment-matching
H{y 553 (jw) (solid-red) and the frequency response of the
WEC computed with NEMOH (dashed-black) are in per-
fect agreement up to graphic accuracy. One can notice that
both frequency responses are exactly the same (up to any
numerical errors) at the interpolation points.

1.45 2.6

Magnitude [dB]

Phase [deg]

1.55
-200 T T T T

-300 | . -

-400 | ! N

Magnitude [dB]

-500 1 1 1
0.1 0.3 : 3 10

w [rad/s]
135 T T T T
F--== !
45
0
45

90 1 1 i
0.1 0.3 3

w [rad/s]

|

Phase [deg]
slelelaly

_
o

Figure 4. Bode diagram of the force-to-velocity frequency
response computed with the coefficients obtained
from NEMOH (dashed-black) and the moment-
matching parametric model frequency response (solid-
red), using a unique interpolation point (black dot).

For the approximation of the ISWEC force-to-motion pitch
dynamics, there is no significant improvement when con-
sidering more than one interpolation point. However, as
discussed in the next section, the approximation error
continues decreasing monotonically with increasing para-
metric model order v.

5.2 Radiation impulse response case

In an analogous way to the force-to-velocity case, the
moment-matching based strategy can be applied to ob-
tain a parametric model of the radiation kernel K (jw),
as defined in (15). In this case, there is no significant
improvement in the approximation accuracy when consid-
ering more than two interpolation points, as depicted in
Fig. 5.

The parametric model of the radiation kernel response
should have particular (physical) properties, as discussed
in (Faedo et al., 2018). Some of these properties are re-
called in the following: the transfer function K(s) has a
zero at the origin, is strictly proper, stable and passive.
Fig.6b explicitly shows that the first three properties are
accomplished for the case of K; 4526} (s). Regarding pas-

sivity, Fig. 6a shows that the real-part of K 4526} (jw)
is always positive which, together with the stability condi-
tion, imply that the system is passive. It should be noted
that passivity is not explicitly ensured by the approach
presented in this paper. However, a non-linear constraint
can be added to the optimisation process (35) to system-
atically guarantee such a property (Faedo et al., 2018), if
desired.
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0.1 0.3 3 10
w [rad/s]

Figure 5. Bode diagram of the radiation kernel frequency
response computed with the coefficients obtained
from NEMOH (dashed-black) and the moment-
matching parametric model frequency response (solid-
blue), for three interpolation points (black dots).

%10° a b
5F T T 2 T T T
1 X
=
3 —
0 S0 ) { J o
b —~
Sa &
&
1 X
5k I A o ) 1 X,
0 2 4 6 8 -4 -3 -1 0

-2
R{K(jw)} x10° R{s:}

Figure 6. Nyquist diagram (a) and pole-zero map (b) of
K{1.452.6)

Fig.7 depicts the radiation impulse response computed
using the data obtained from NEMOH (dotted-black), and
the impulse response of the reduced order model 16{1_4572,6}
(solid-blue). It can be noted that both impulse responses
are almost identical, validating the transient response of
the parametric model 16{1_4572,6}.

5

L1>10><1O | :
=
£ 5 7
=
g 0o PG00 —9—@
<

5 1 1

0 10 15

Time s]

Figure 7. Comparison between the radiation impulse re-
sponse computed with data from NEMOH (dotted-
black) and the impulse response of Ky 452.6) (solid-
blue).

5.3 Comparison with existing strategies

In this subsection, the moment-based strategy presented
in this paper is compared to the methods proposed in
(Pérez and Fossen, 2008) (NTNU) and (Duclos et al., 2001;
De Prony, 1795) (Prony’s). The comparison is carried out
using time-domain data and the results are given in terms
of Normalised Root Mean Square Error (NRMSE) between
the steady-state velocity of the WEC and the steady-state
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velocity computed using the models identified with each
different strategy. Since the irregular waves are generated
using random phases, a mean of 20 different simulations
is considered to compute each NRMSE in order to obtain
representative results, which are shown in Fig. 8.

While NTNU and Prony’s methods (as developed in (Pérez
and Fossen, 2008) and (De Prony, 1795), respectively),
only provide a parametric model of the radiation force
convolution term of (10), the moment-matching strategy
presented in this study can be used to obtain a parametric
model of both the radiation force convolution term and
the force-to-motion dynamics directly. It should be noted
that, if the radiation convolution term is approximated,
two additional elements are required in the state-space
approximation to compute the force-to-motion simulation
(position and velocity). Therefore, and as can be appreci-
ated in Fig.8, the methods presented which approximate
only the radiation force convolution term have a minimum
state-space order of 4.

y

0.15
0.1

NRMSE

0.05

Order

Figure 8. NRMSE for moment-matching force-to-velocity
approximated model (solid-red), and the approx-
imated radiation impulse response computed us-
ing moment-matching (dashed-blue), NTNU (dotted-
black) and Prony’s (dash-dot-green) methods for dif-
ferent model orders.

For this case study (and for orders between 6 and 10) all
the tested strategies obtain reasonably accurate approx-
imations (NMRSE < 5%). One can notice that, among
the selected strategies, only the moment-matching method
achieve a monotonically decreasing NRMSE.

6. CONCLUSIONS

This paper shows how to obtain a finite order parametric
model from frequency-domain data for both the force-to-
motion and the radiation convolution term of Cummins’
equation for the case of the ISWEC device, using a recent
strategy based on model order reduction by moment-
matching. By considering this strategy, it can be ensured
that the identified parametric models exactly match the
behaviour of the system at a set of key frequencies while
enforcing, at the same time, specific physical properties in
the model.

The results obtained with this moment-matching strat-
egy are compared with well-established algorithms in
the wave energy community. It is demonstrated that
only the approximation error obtained by the moment-
matching strategy decreases monotonically when increas-
ing the model order. In addition, only the radiation im-
pulse response approximating model computed based on
moment-matching fulfills the radiation force system (phys-
ical) properties.
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Finally, an open-source MATLAB toolbox, to obtain finite-
order hydrodynamic models using this moment-matching
strategy, is currently under development and it will be
available over the next months at the Centre for Ocean
Energy Research website ! .
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