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Abstract. Discovering a representation that allows auditory data to
be parsimoniously represented is useful for many machine learning and
signal processing tasks. Such a representation can be constructed by Non-
negative Matrix Factorisation (NMF), which is a method for finding
parts-based representations of non-negative data. Here, we present an
extension to convolutive NMF that includes a sparseness constraint. In
combination with a spectral magnitude transform of speech, this method
extracts speech phones (and their associated sparse activation patterns),
which we use in a supervised separation scheme for monophonic mixtures.

1 Introduction

A preliminary step in many data analysis tasks is to find a suitable representation
of the data. Typically, methods exploit the latent structure in the data. For
example, ICA reduces the redundancy of the data by projecting the data onto
its independent components, which can be discovered by maximising a statistical
measure such as independence or non-Gaussianity.

Non-negative matrix factorisation (NMF) approximately decomposes a non-
negative matrix V into a product of two non-negative matrices W and H [1, 2].
NMF is a parts-based approach that does not make a statistical assumption
about the data. Instead, it assumes that for the domain at hand, negative num-
bers would be physically meaningless. Data that contains negative components,
for example audio, must be transformed into a non-negative form before NMF
can be applied. Here, we use a magnitude spectrogram. Spectrograms have been
used in audio analysis for many years and in combination with NMF have been
applied to a variety of problems such as sound separation [3] and automatic
transcription of music [4].

In this paper, we combine a previous convolutive extension of NMF [3], which
identifies auditory objects with time-varying spectra, with a sparseness con-
straint, and apply the resulting algorithm to the analysis of speech. The paper is
structured as follows: We overview of convolutive NMF in Section 2 and present
sparse convolutive NMF in Section 3. In Section 4 we apply sparse convolutive
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NMF to speech spectra, and extract phones that have sparse activation pat-
terns. We use these phones in a supervised separation scheme for monophonic
mixtures, and demonstrate the superior separation performance achieved over
those extracted by convolutive NMF in Section 5.

2 Convolutive NMF

NMF [2] is a linear non-negative approximate factorisation, and is formulated
as follows. Given a non-negative M × N matrix V ∈ R

≥0,M×N the goal is
to approximate V as a product of two non-negative matrices W ∈ R

≥0,M×R

(basis) and H ∈ R
≥0,R×N (activations), V ≈ WH, where R ≤ M , such that

the reconstruction error is minimised. For our purposes we require a convolutive
basis, such a model has previously been used to extend NMF [3], which we review
in this section.

In conventional NMF each object is described by its spectrum and corre-
sponding activation in time, while for convolutive NMF each object has a se-
quence of successive spectra and corresponding activation pattern across time.
The conventional NMF model is extended to the convolutive case:

V ≈

To−1
∑

t=0

Wt

t→

H , vik ≈

To−1
∑

t=0

R
∑

j=1

wijt(
t→

hjk), (1)

where To is the length of each spectrum sequence and the j-th column of Wt

describes the spectrum of the j-th object t time steps after the object has begun.

The function
i→

(·) denotes a column shift operator that moves its argument i places
to the right; as each column is shifted off to the right the leftmost columns are

zero filled. Conversely, the
←i

(·) operator shifts columns off to the left, with zero
filling on the right. We use the beta divergence, which is a parameterisable
divergence, as the reconstruction objective,

DBD(V‖Λ, β) =
∑

ik

(

vik

vβ−1

ik − [Λ]ik
β−1

β(β − 1)
+ [Λ]ik

β−1 [Λ]ik − vik

β

)

, (2)

where β controls reconstruction penalty and Λ is the current estimate of V,

Λ =
∑To−1

t=0
Wt

t→

H . The choice of the β parameter depends on the statistical
distribution of the data, and requires prior knowledge. For β = 2, Squared
Euclidean Distance is obtained; for β → 1, the divergence tends to the Kullback-
Leibler Divergence; and for β → 0, it tends to Itakura-Saito Divergence. It is
evident that Eq. 1 can be viewed as a summation of To conventional NMF
operations. Consequently, as opposed to updating two matrices (W and H) as
in conventional NMF, To + 1 matrices require an update (W0, . . . , WTo−1 and
H). The resultant convolutive NMF update equations are

wijt ← wijt

∑T

k=1
(vik/[Λ]2−β

ik )
t→

hjk

∑T

k=1
[Λ]β−1

ik

t→

hjk

, hjk ← hjk

∑M

i=1
wij t

←−t

(vik/[Λ]2−β
ik )

∑M

i=1
wijt[

←t

Λ ]β−1

ik

. (3)
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where H is updated to the average result of its updates for all t. When T = 1
this reduces to conventional NMF.

3 Sparse Convolutive NMF

Combining our reconstruction objective (Eq. 2) with a sparseness constraint on
H results in the following objective function:

G(V‖Λ,H, β) = DBD(V‖Λ, β) + λ
∑

jk

hjk, (4)

where the left term of the objective function corresponds to convolutive NMF,
and the right term is an additional constraint on H that enforces sparsity by
minimising the L1-norm of its elements. The parameter λ controls the trade off
between sparseness and accurate reconstruction.

3.1 Basis Normalisation

The objective of Eq. 4 creates a new problem: The right term is a strictly in-
creasing function of the absolute value of its argument, so it is possible that the
objective can be decreased by scaling Wt up and H down (Wt 7→ αWt and
H 7→ (1/α)H, with α > 1). This situation does not alter the left term in the
objective function, but will cause the right term to decrease, resulting in the ele-
ments of Wt growing without bound and H tending toward zero. Consequently,
the solution arrived at by the optimisation algorithm is not influenced by the
sparseness constraint.

To avoid the scaling misbehaviour of Eq. 4 another constraint is needed; by
normalising the convolutive bases we can control the scale of the elements in
Wt and H. Normalisation is performed for each object matrix, Wj , by rescaling

it to the unit L2-norm, W̄j =
Wj

‖Wj‖
, j = 1, . . . , R, where the matrix Wj is

constructed from the j-th column of Wt at each time step, t = 0, 1, . . . , To − 1.

3.2 Multiplicative Updates

Multiplicative updates can be obtained by including the normalisation require-
ment in the objective. Previously, this has been achieved for conventional NMF
using the Squared Euclidean Distance reconstruction objective [5]. Here, we
present the multiplicative updates for a convolutive NMF algorithm utilising
beta divergence. Our new reconstruction objective is a modification of Eq. 2
where each object, Wj , is normalised, W̄j , resulting in the following generative

model: ∆ =
∑To−1

t=0

∑R

j=1
w̄jt(

t→

hj). By substituting Λ for ∆ in Eq. 4 we obtain
the following multiplicative update rule for H,

hjk ← hjk

∑M

i=1
w̄ijt

←−t

(vik/[∆]2−β
ik )

∑M

i=1
w̄ijt[

←t

∆]β−1

ik + λ

, (5)
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Fig. 1. A collection of 40 phone-like basis functions for a mixture of a male (DMT0) and
female speaker (SMA0) taken from the TIMIT speech database.

and update for W,

wijt ← wijt

∑T

k=1

t→

hjk

[

(vik/[∆]2−β
ik ) + w̄ijt(w̄ijt[∆]β−1

ik )
]

∑T

k=1

t→

hjk

[

[∆]β−1

ik + w̄ijt(w̄ijt(vik/[∆]2−β
ik ))

]

. (6)

4 Sparse Convolutive NMF on Speech Spectra

We apply sparse convolutive NMF to speech, and present a learned basis for the
sparse representation of speech using the TIMIT database. Recently, such work
has been presented for convolutive NMF [6].

4.1 Discovering a Phone-like Basis

To illustrate the differences between the phones extracted by convolutive NMF
and sparse convolutive NMF we perform the following experiment for both al-
gorithms: We take around 15 seconds of speech from a male speaker (DMT0) and
female speaker (SMA0) to create a contiguous mixture. The data is normalised
to unit variance, down-sampled from 16 kHz to 8 kHz and a magnitude spec-
trogram of the data is constructed. We use a FFT frame size of 512, a frame
overlap of 384 and a hamming window to reduce the presence of sidelobes. We
extract 40 bases, R = 40, with a temporal extent of 0.176 seconds, To = 8, and
run convolutive NMF (with β = 1) for 200 iterations. The extracted bases are
presented in Figure 1. The experiment is repeated for sparse convolutive NMF
with λ = 15, and the corresponding bases are presented in Figure 2.

For convolutive NMF, it is evident that the extracted bases correspond to
speech phones. The verification of which, can be achieved by listening to an au-
dible reconstruction. Most of the phones represent harmonic series with differing
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Fig. 2. A collection of 40 phone-like basis functions for a a mixture of a male (DMT0) and
female speaker (SMA0) taken from the TIMIT speech database. The basis is extracted
using Spare Convolutive NMF with λ = 15.

pitch inflections, while a smaller subset of phones contain wideband components
that correspond to consonant sounds. It is evident for the harmonic phones that
some bases have harmonics that are spaced much closer together, which is in-
dicative of a lower pitched male voice, while others are farther apart, indicating
a higher pitched female voice. Therefore, it is evident that the extracted phones
correspond to either the male or female speaker, which indicates that the timbral
characteristics of the male and female speaker are sufficiently different, such that
phones that are representative of both cannot be extracted. Although, this may
not be true for the consonant phones.

By placing a sparseness constraint on the activations of the basis functions,
we specify that the expressive power of each basis be extended such that it
is capable of representing phones parsimoniously, much like an over-complete
dictionary. The result is that the extracted phones exhibit a structure that is rich
in phonetic content, where harmonics at higher frequencies have a much greater
intensity than seen in the phones extracted by convolutive NMF. This reflects the
requirement that the basis functions in our new sparse phone set, must contain
enough features to produce a parsimonious activation pattern. Analysis of the
male and female sparse phone set reveals another important difference between
the two speakers. In addition to difference in harmonic spacing, it is evident that
the structure of the male phones are of a more complex nature, where changes
over time are much more varied than for the female phone set.

5 Supervised Method for the Separation of Speakers

As illustrated in our previous experiments, the structure of the bases that are
extracted from the speech data are uniquely dependent on the speaker (given
the same algorithm parameters). In the context of speech separation, it is not
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unreasonable to expect that the bases extracted for a specific speaker adequately
characterise the speaker, such that they can be used to discriminate them from
other speakers. For a monophonic mixture where a number speakers are added
together, it is possible to separate the speakers in the mixture by constructing
an individual magnitude spectrogram for each speaker, using the phones specific
to that speaker. Specifically, we use the following procedure for the separation
of a known male and female speaker from a monophonic mixture:

1. Obtain training data for the male, sm(t), and female, sf (t), speaker, create
a magnitude spectrogram for both, and extract corresponding phone sets,
Wm

t and W
f
t , using sparse convolutive NMF.

2. Construct a combined basis set W
mf
t = [Wm

t |W
f
t ], which results in a basis

that is twice as big as R.
3. Take a mixture that is composed of two unknown sentences voiced by our

selected speakers, and create a magnitude spectrogram of the mixture. Fit
the mixture to W

mf
t by performing sparse convolutive NMF with Wt fixed

to W
mf
t , and learn only the associated activations H.

4. Partition H such that the activations are split into male, Hm, and female,
Hf , parts that correspond to their associated bases, H = [Hm|Hf ].

5. Construct a magnitude spectrogram for both speakers, using their respective
bases and activations: Sm =

∑To−1

t=o WmHm and Sf =
∑To−1

t=o WfHf .
6. Use the phase information from the mixture to create an audible reconstruc-

tion for both speakers.

This procedure may also be used for convolutive NMF, and can be generalised
for more than two speakers, and speakers of the same gender.

5.1 Separation Experiments

Here, we compare the separation performance of convolutive NMF and sparse
convolutive NMF. For an extensive study of the relationship between parameter
selection and separation performance for convolutive NMF, see [6].

We select three male (ABC0, BJV0, DWM0) and three female (EXM0, KLH0, REH0)
speakers from the TIMIT database, and create a training set for each that in-
cludes all but one sentence voiced by that speaker. We artificially generate a
monophonic mixture by summing the remaining sentences for a selected male
female pair, generating a total of nine mixtures in this way. More formally, each
sentence pair is normalised to unit variance, down-sampled from 16 kHz to 8
kHz, and summed together. A magnitude spectrogram of each mixture is con-
structed using a FFT frame size of 512, a frame overlap of 256 and a hamming
window.

The separation performance for both algorithms is evaluated for each mixture
over a selection of values for R (R = [40 80 140 220]). For both algorithms the
temporal extent of each phone is set to 0.224 seconds (To = 6), the number of
iterations is 150, β is set to 1 and each experiment is repeated for 10 Monte
Carlo runs. For convolutive NMF, a total of 24 speaker phone sets are extracted



Discovering Convolutive Speech Phones 7

cNMF 0.01 0.1 0.3 1.0 2.0

−3

−2

−1

0

1

2

3

S
D

R
 (

dB
)

scNMF Vs cNMF: SDR

λ

Fig. 3. A comparison of the SDR results obtained by convolutive and sparse convo-
lutive NMF: Box plots are used to illustrate the performance results, where each box
represents the median and the interquartile range of the results. It is evident that for
λ = 0.1, a better spread of results is obtained, indicating that sparse convolutive NMF
achieves superior overall performance.

and used in 360 (9×4×10) separation experiments. For sparse convolutive NMF
separation performance is tested for λ = [0.01 0.1 0.3 1.0 2.0]; resulting in 120
(6× 4× 5) speaker phone sets and 1800 (9× 4× 5× 10) separation experiments.

For the purposes of ease of comparison with existing separation methods,
we evaluate the separation performance of both algorithms using the source-
to-distortion ratio (SDR) measure provided by the BSS_EVAL toolbox [7]; SDR
indicates overall separation performance and is expressed in dB, with higher
performance values indicating better quality estimates. .

5.2 Separation Performance

We statistically analyse the performance of convolutive NMF and sparse con-
volutive NMF by collating the results from all experiments and presenting the
results using box plots: Each box presents information about the median and the
statistical dispersion of the results. The top and bottom of each box represents
the upper and lower quartiles, while the length between them is the interquartile
range; the whiskers represent the extent of the rest of the data, and outliers are
represented by +. Box plots for SDR are presented in Figure 3.

The SDR results indicate that for λ = [0.1, 0.3], the median performance
obtained (0.66 dB, 0.62 dB) exceeds convolutive NMF (0.44 dB), for our given
algorithm parameters. It is also evident that a better spread of results is produced
for sparse convolutive NMF; demonstrating that when λ is chosen appropriately,
sparse convolutive NMF achieves superior overall performance. However, audible
reconstructions reveal that convolutive NMF is more resilient to artifacts; this
may reflect the fact that each sparse phone set exhibits phones that are rich in
features, which may manifest as artifacts in the resultant source estimates. It is
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also evident that the performance of the sparse convolutive algorithm degrades
significantly for large λ values, so much so, that it renders the results useless,
for our data this is especially evident for λ > 1.

6 Conclusion

In this paper, we presented a sparse convolutive NMF algorithm, which effec-
tively discovers a sparse parts-based representation for non-negative data. This
method extends the convolutive NMF objective by including a sparseness con-
straint on the activation patterns, enabling the discovery of over-complete rep-
resentations. Furthermore, we demonstrate the superiority of sparse convolutive
NMF over convolutive NMF, when applied to a supervised monophonic speech
separation task.
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