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Raman spectroscopy has been demonstrated to have diagnostic potential in areas such as urine and cervical cytology, whereby
different disease groups can be classified based on subtle differences in the cell or tissue spectra using various multi-variate
statistical classification tools. However, Raman scattering is an inherently weak process, which often results in low signal
to noise ratios, thus limiting the method’s diagnostic capabilities under certain conditions. A common approach for reducing
the experimental noise is Savitzky-Golay smoothing. While this method is effective in reducing the noise signal, it has the
undesirable effect of smoothing the underlying Raman features, compromising their discriminative utility. Maximum Likelihood
Estimation is a method for estimating the parameters of a statistical model given an available dataset and a priori knowledge
of the model type. In this paper, we demonstrate how Savitzky-Golay smoothing may be enhanced with Maximum Likelihood
Estimation in order to prevent significant deviation from the ‘true’ Raman signal yet retain the robust smoothing properties of
the Savitzky-Golay filter. The algorithm presented here is demonstrated to have a lower impact on Raman spectral features at
known spectral peaks while providing superior denoising capabilities, when compared with established smoothing algorithms;
artificially noised databases and experimental data are used to evaluate and compare the performance of the algorithms in terms
of the signal to noise ratio. The proposed method is demonstrated to typically provide at least a 50% increase in the signal to
noise ratio when compared to the raw data, and consistently out-performs two alternative smoothing filters.

1 Introduction

Raman spectroscopy is a laser based technique that enables
the identification and quantification of chemical bonds based
on the inelastic scattering of monochromatic light. It is an
inherently weak signal with approximately only 1 in 107 inci-
dent photons being Raman scattered.1 This low photon count
coupled with non-ideal collection efficiencies, e.g. the numer-
ical aperture of the microscope objective or camera quantum
efficiency, means that Raman spectroscopy is vulnerable to
noise. Noise will decide the detection limit of the recording
process as well as the classification potential of multivariate
statistical analysis that may be applied to a recorded dataset
for classification purposes, making efficient and reliable noise
removal a necessity in sensitive applications such as chemical
classification or diagnostics.2

Noise originates from two primary sources; the camera
(dark current and read noise) as well as from the signal it-
self (shot noise).3 The effect of these noise sources can be
reduced by cooling the camera, using slow read out rates, in-
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creasing acquisition times, using a higher power laser, or us-
ing a laser wavelength that produces a larger number of pho-
tons e.g. 400nm. However, these measures can be costly in
terms of time and equipment and thus, are impractical in cer-
tain applications. Therefore, an efficient denoising algorithm
for post-processing of spectra would be advantageous.

Savitzky-Golay (SG) filtering4 is commonly used to
smooth spectra in order to reduce the impact of noise on sta-
tistical classification.5,6 This filtering technique works by dy-
namically fitting a polynomial to consecutive windows of data
points (local least-squares polynomial approximation) in or-
der to follow the shape of the spectrum thereby mitigating the
impact of a randomly varying noise signal. Under certain con-
ditions, this can have a negative impact on spectral features;
in particular high noise applications that require high levels
of smoothing, which may severely affect sharp local features.
Maximum Likelihood Estimation (MLE) is a statistical pro-
cess that enables signal denoising7 by searching for the most
likely value of the signal based on a sequence of measured
values and a priori knowledge of the noise distribution associ-
ated with the collected signal. The proposed algorithm merges
the robust smoothing of the SG filter with the restriction that
the denoised data must be constrained the noise distribution
provided by MLE. In this paper, we demonstrate that this al-
gorithm consistently returns a spectrum with a higher Signal
to Noise Ratio (SNR) than SG filtering alone, as well as effec-
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tively preserving the fidelity of sharp peaks.
The proposed denoising algorithm is constructed on the

combination of Maximum Likelihood Estimation (MLE),
based on estimating the noise in a spectrum, with Savitzky-
Golay (SG) smoothing. The algorithm attempts to overcome
the classical problem of providing a smooth noise free spec-
trum, without affecting the fidelity of sharp spectral features
in the process. The algorithm is comprised of two compet-
ing constraints that are applied to a given spectrum: the first
condition, which makes use of SG filtering, assumes that the
spectrum is smooth, i.e. that a given sample will not differ
significantly from its neighbours; and the second condition,
which is based on MLE, requires that the sample does not de-
viate significantly from the raw value that was recorded, tak-
ing into account the noise distribution that exists for that raw
sample value.

The paper is split into four main sections. Section 2 pro-
vides an overview of the properties of the noise sources, how
they are modelled within the context of Maximum Likelihood
Estimation, and the integration of Savitzky-Golay smoothing
with MLE. Section 3 defines the metrics that are used to eval-
uate the performance of the algorithm, the creation of artificial
data on which to evaluate and compare the data, and the steps
taken to optimise the algorithm’s input parameters. Section 4
provides the result and illustrates the SNR improvement pro-
vided by the proposed algorithm over competing denoising al-
gorithms for experimental and simulated data. Finally, in Sec-
tion 5 we offer a brief conclusion and propose a number of
possible avenues for further improvements.

2 Theory

In this section, a brief overview is provided of the underlying
theory for modelling the noise distributions, the basic MLE
algorithm, and the utilisation of SG smoothing together with
MLE such that the smoothed version of the spectrum can act as
its own prior, i.e. it can provide a form of a priori information
that can be employed in the MLE algorithm.

2.1 Noise

Noise in Raman data originates from four main sources: shot
noise, dark current noise, read noise, and cosmic ray arte-
facts.3 The latter are random energy pulses that interact with
the camera and usually present as intense narrow spikes super-
imposed on spectra; however, the width and intensity of these
spikes may vary significantly. The effect of the proposed al-
gorithm on cosmic rays is not investigated in this paper, and it
is assumed that the spectrum under investigation has been pre-
processed for cosmic ray removal in advance of denoising.8,9

Shot noise is inherent in all recorded electromagnetic signals

and is the result of inconsistent irradiance on a pixel over con-
secutive fixed periods of time. Shot noise is governed by a
Poisson distribution and is time dependent. Due to the square
root relationship of the standard deviation of shot noise with
respect to the collected irradiance, shot noise is more apparent
at low signal levels and hence at shorter acquisition times. In
general, Raman scattering is a weak process, which is partic-
ularly true for biological samples, and therefore shot noise is
usually a problem in the field of Raman based biophotonics.
The weak Raman scattering often necessitates long acquisition
times in order to reduce the effect of shot noise. However, this
comes at the expense of increased levels of dark current noise,
which results from thermal effects in the camera and, like shot
noise, it can be modelled by a time dependent Poisson distri-
bution. High levels of dark current are a result of insufficient
camera cooling or long acquisition times, and under certain
conditions can have a significant impact on spectral features.
Due to the reproductive properties of independent Poisson dis-
tributions, dark current noise and shot noise can be modelled
by a single Poisson distribution10 with a mean value given by
the sum of the spectral irradiance and the dark current, both
multiplied by the acquisition time. In some cases the true limit
of detection can be said to be read noise, which is a time inde-
pendent Gaussian distributed noise11 added by the camera’s
analogue to digital converter; however, when recording Ra-
man signals from biological samples, shot noise and dark cur-
rent are usually several orders of magnitude greater than read
noise.

It is possible to approximate a Poisson distribution as a
Gaussian distribution provided the mean photo-electron count
registered in the camera pixel is high enough. Therefore, if
the spectral irradiance is sufficiently high, the total noise can
be estimated with a single additive Gaussian distribution, and
this enables the denoising process to be modelled as a decom-
position problem, y = x+ d, where y is a vector of discrete
samples that is the recorded spectrum, x is the true spectral
intensity in units of photons collected in each pixel area over
the full acquisition time, t, and d is the noise signal, which is
defined in terms of the following Gaussian probably distribu-
tion:

p(di) =
1

σi
√

2π
exp

[
−(di −µi)2

2σ2
i

]
(1)

where:

• i is an integer index that denotes the ith discrete sample
in a spectrum

• µi = r+ tci i.e. the mean value of the distribution in the
ith sample (in electrons per second) is given by the sum
of the mean read noise, r (in electrons), and the product
of mean dark current, ci, and time, t.
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• σ2
i = xi + tci +σ2

r i.e. the variance of the noise distribu-
tion is given by the sum of the variances of the individual
noise terms.12

• The spectral intensity can be defined in terms of the spec-
tral irradiance as follows: xi = tli, where li denotes the
irradiance in photons per pixel per second.

It is notable in the above description of the noise term, d, that
the dark current noise can vary from sample to sample, which
is due to the variable properties of the semiconductor pixels
of modern CCD detectors, while the read noise is assumed to
have a constant mean value and standard deviation across all
pixels in the detector.

2.2 Maximum likelihood estimation

Maximum Likelihood Estimation (MLE) is a statistical
method whereby the parameters of a known statistical model
can be estimated based on a number of observations; this is
achieved by calculating the parameter values for that model,
which maximise the likelihood of making the set of observa-
tions. In order to use MLE to reduce the noise in a signal,
the statistical model for the noise must be known; take for
example the above decomposition problem for the noise in a
single sample of the spectrum, i.e. the ith sample. Since the
values for the dark current and read noise parameters within
the Gaussian are known (these can be measured in advance of
recording a spectrum), then the only unknown is xi. If a num-
ber of, k, different spectra are recorded, yi1, yi2, ..... yk, then
MLE can be applied to determine the most likely value of xi
that would have resulted in this set of observations. However,
this approach requires a number of different recordings and
the outcome of MLE would be the trivial result that the most
likely value is the mean of all the observations minus the mean
noise. Here, we set ourselves the problem of applying MLE
based only on a single observation. A similar approach has
recently been proposed for removing noise from astronomical
images,13 which is of particular relevance to the current dis-
cussion due to the similarity between astronomical images and
Raman spectra, i.e. areas of dark (flat regions) interspersed
with stars (peaks).

We begin the derivation of the algorithm by formally defin-
ing the probability of recording an intensity value in the ith
sample, yi, given the true intensity, xi, as follows:

p(yi;xi) =
1

σi
√

2π
exp

[
−(yi −µi − xi)2

2σ2
i

]
(2)

The mean noise, µi, may be subtracted from yi by recording a
dark frame of sufficiently long acquisition time. The standard
deviation of the noise, σi, varies across the samples due to the
varying dark current contributions, ci, which are often pixel

dependent, and the dependence of shot noise on the varying
signal intensity, xi. However, for simplicity and ease of com-
putation, the algorithm assumes a constant standard deviation,
denoted σ̄ , for all samples and is calculated as follows:

z = y−µ −SG(y−µ,v,q) (3a)

σ̄ =
1
N

N

∑
i=1

z2
i (3b)

where N is the total number of samples in the spectrum. The
value of σ̄ that is used in the algorithm is calculated by esti-
mating the mean standard deviation of the global noise term.
This is achieved by applying an appropriate SG smoothing fil-
ter (v = 3, q = 9, where v represents the polynomial order and
q represents the window size of the filter) to the spectrum, sub-
tracting the smooth from the raw, and finally taking the stan-
dard deviation of the remaining signal. Following from this,
the negative log likelihood of observing a signal intensity at
sample i is:

−log(p(yi;xi)) =
(yi −µi − xi)2

2σ̄2 (4)

2.3 Maximising an ‘a posteriori’ estimator

Denoising in this context requires the use of an image prior,
x′, i.e. a reference signal to allow the user to deduce a pri-
ori knowledge of a given spectral sample on the basis that
the spectrum should not deviate significantly from the image
prior. The probability of the true intensity at sample i, can be
defined in terms of the intensity values of the samples in the
image prior in the neighbourhood around i as follows:

p(xi) =
i+n

∏
j=i−n

exp[−λ |xi − x′j|p] (5)

where 2n+1 is the size of the neighbourhood and the λ and p
parameters are used to define how closely a sample in x is ex-
pected to match the surrounding samples in the image prior;
selecting p > 0 will impose a constraint that a smooth tran-
sition must exist from one sample to the next. In the lim-
iting case, if only one observation is available, we can set
x′ = y−µ . This approach is used in Gomez-Rodriguez et al. 14

whereby the image itself serves as it’s own image prior, elimi-
nating the need for multiple acquisitions. The basis of the first
MLE model described here makes use of a similar approach,
whereby the neighbouring samples in the signal can provide a
reference for that sample. In this case the values of λ and p de-
termine how smooth the transition should be from one sample
to the next.13–15 Following from this discussion, the negative
log likelihood of Eq.5 can be determined:

−log(p(xi)) = λ
i+n

∑
j=i−n

|xi − x′j|p (6)
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Using Bayes’ theorem, the negative log likelihood of p(xi;yi)
can be expressed as follows:

−log(p(xi;yi)) =−log(p(yi;xi))− log(p(xi)) (7)

Explicitly:

MLE(xi) =
(yi −µi − xi)2

2σ̄2 +λ
i+n

∑
j=i−n

|xi − x′j|p (8)

Therefore, the most likely value of xi is the one that minimises
Eq.8 and this equation is the basis of the first MLE based al-
gorithm that we propose here. The algorithm begins by set-
ting x′ = y− µ; this involves subtracting a dark frame from
the raw spectrum. The second step is to calculate the most
likely estimate of x, which we denote as xe; this is achieved
by performing a brute force search to find the sample values
that minimise Eq.8, which we denote as xe

i . This process is
repeated for each sample, i, until the entire spectrum is esti-
mated. The third step is to set x′ = xe, and then to repeat the
second and third step iteratively until the conditions for stop-
ping are met; an early stopping strategy is important in order
to prevent over-smoothing of key signal features. Although
the denoising algorithm described by Eq.8 provides meaning-
ful results, we do not investigate it any further in this paper.
A superior algorithm is proposed in the section that follows,
which employs a similar approach; the detailed development
of the first algorithm above is a necessary first step before in-
troducing the algorithm below.

2.4 Improving the ‘a posteriori’ estimator by employing
SG smoothing

The MLE algorithm defined in the previous section is similar
to that defined in Burger et al. 13 , which was applied to astro-
nomical images and employs a two dimensional neighbour-
hood of nine pixels around the sample of interest. A Raman
spectrum is inherently one dimensional and, therefore, only
the samples immediately to the left and right of the sample i
can be used in the MLE algorithm. In this section, we pro-
pose an improved MLE algorithm that makes use of Savitzky-
Golay (SG) filtering. The algorithm is similar to that described
in the previous section; however, in this case the first step is
to set x′ = SG(y− µ,v,q), where SG denotes the application
of an SG filter to the raw spectrum with a dark frame sub-
tracted, y− µ . The second step involves finding the values of
xi that minimise Eq.8 as described for the previous algorithm,
which results in the estimate xe. The third step involves setting
x′ = SG(xe,v,q) ; the second and third steps are repeated iter-
atively and once again an early stopping strategy is employed
to avoid over smoothing. The algorithm investigated in this
paper uses a neighbourhood of only 1, i.e. n = 0. Therefore,

Eq.8 reduces to:

MLE(xi) =
(yi −µi − xi)2

2σ̄2 +λ |xi − x′i|p (9)

The algorithm described above, which will be referred to by
the acronym MLESG going forward, is essentially a pixel by
pixel estimator, that is constrained in two opposing directions.
The left term in Eq.9 will increase as xi deviates from the raw
value. Conversely, the right term will increase as the estimated
value deviates from the SG smoothed version of the spectrum.
It can be expected that the algorithm will perform at least as
well as traditional SG filtering, and with the additional con-
straint that the smoothed spectrum is not permitted to deviate
far from the recorded value within the bounds of the noise dis-
tribution. We can therefore expect superior results in terms of
recovering a truer estimate of the underlying Raman spectrum.

3 Tuning the algorithm

The algorithm outlined in the previous section requires five
input variables, namely; λ , p, v, q, and the number of iter-
ations, m. An investigation into the optimal values for these
parameters was performed in order to minimise the number of
input variables and maximise the denoising capability of the
algorithm. The results of this investigation are detailed in this
section in terms of Signal to Noise Ratio (SNR) and a metric
that is proposed for the first time here, which we refer to as the
SNR product.

3.1 Noise metrics for optimisation of parameters

SNR is an important metric for establishing signal quality in
all fields of engineering, and is employed here to evaluate the
performance of the proposed algorithm; to the best of our
knowledge SNR has never previously been applied to evalu-
ate smoothing algorithms in the field of Raman spectroscopy.
SNR is commonly defined as the ratio of the true signal in-
tensity to the standard deviation of the noise,12 i.e. the signal
to noise ratio at a single discrete sample in the spectrum is
given by SNR(xi) = xi/σi, where σ is as previously defined
in Eq.1. However, xi, and by consequence σi, cannot be deter-
mined, and therefore, a method is required to approximate this
definition. A definition of SNR that has previously been ap-
plied to Raman spectra,16 is the ratio of the maximum value in
the spectrum to the Root Mean Square Error (RMSE) of a flat
region of the spectrum; the noise can be estimated by calcu-
lating the Root Mean Square Error (RMSE) of the noisy spec-
trum with respect to an accurately recorded reference spec-
trum, which is known to have very low noise. We employ a
similar definition to estimate the SNR of a denoised spectrum,
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xe, which is defined as follows:

SNR(xe) =
max(xe)

RMSE(xe,xre f )
(10a)

RMSE(xe,xre f ) =

√
1
N

N

∑
i=1

(xe
i − xre f

i )2 (10b)

where max() is a function that returns the maximum value in
the input vector and RMSE calculates the root mean square
error of the input vector with respect to the reference signal
intensity, xre f , both of length N. However, while smoothing
may increase the SNR of a spectrum as a whole it can also
negatively affect sharp local features, which may be of impor-
tance. In order to monitor the effect of the algorithm, specifi-
cally on sharp spectral features, the SNR in the neighbourhood
of a peak, xe[pk− n : pk+ n], is calculated. This calculation
is based on an 2n+1 sample subset of xe centred on a feature
located at index pk. The SNR for this peak region is defined
as follows:

SNR(xe[pk−n : pk+n]) =
max(xe)

RMSE(xe[pk−n : p+n],xre f [pk−n : pk+n])
(11)

This definition uses the same maximum value as for the global
spectrum definition given in Eq.10 but RMSE is calculated
only over the peak region. This ensures a meaningful com-
parison with SNR values of the global spectrum. An estimate
for the SNR of the raw spectrum can be determined by cal-
culating SNR(y−µ) for the global case and for the peak area
SNR(y[pk−n : pk+n]−µ[pk−n : pk+n]), using Eq.10 and
Eq.11 respectively. Finally, in order to reflect the overall SNR
improvement that is provided by the denoising algorithm, we
propose a novel metric called the SNR product which takes
into account the enhanced SNR globally as well as in the re-
gion of a sharp peak:

SNRprod =
SNR(xe)

SNR(y−µ)×

SNR(xe[pk−n : pk+n])
SNR(y[pk−n : pk+n]−µ[pk−n : pk+n])

(12)

Focusing on the left hand side of the above equation, this term
concerns the global SNR and is used to evaluate the mean
improvement in signal quality across the entire wavenumber
range being examined. This term is primarily influenced by
large low frequency regions. The right term focuses on a sharp
local feature and is used to monitor whether the algorithm is
negatively impacting peaks. If there is no SNR enhancement
in the denoised spectrum compared to the raw, then the SNR
product will return a value of 1 or lower. The typical range of
results for the SNR product is 0 < SNRprod < 4.

3.2 Data driven parameter optimisation

In order to robustly examine the recovery potential of the algo-
rithm, large datasets with varying SNR were required, as well
as a priori knowledge of xre f . This requirement meant that ar-
tificial datasets were best suited for the initial testing and opti-
misation phase since large amounts of data can be created with
known noise parameters and with knowledge of the underly-
ing signal. Datasets with various SNRs were generated based
on a signal in the form of a high quality low noise Raman
spectrum recorded from a polymer slide (Ibidi Gmbh) due to
its resilience to photo-bleaching, thermal stability, intense and
reproducible Raman spectrum. In total, 100 spectra were aver-
aged together following subtraction of the mean dark current
and mean read noise, which enabled an accurate estimate of
the true irradiance in terms of the mean photons collected per
pixel per second. This then enabled the signal intensity, xre f

(calculated by scaling the irradiance), and the noise to be sim-
ulated based on any acquisition time using Eq.1. In this way,
six datasets were generated with the SNR values of 20, 40,
60, 80, 100, 120; each dataset contained 100 spectra. Fig. 1
illustrates four sample spectra of SNR values 120, 80, 60, 20
that are approximately indicative of low, medium, high, and
extreme noise cases when recording Raman spectra from bio-
logical samples.

Fig. 1 Illustration of the artificial dataset noise levels and the
corresponding xre f

3.3 Optimal parameters

The MLESG algorithm described in Section 2 is dependent on
five parameters; namely λ , p, SG parameters (v and q), and fi-
nally the number of iterations, m. This section describes the
steps taken in order to find the best set of parameters to use
for a noisy signal with a given SNR. Using all six artificial
datasets described in Section 3.2 a brute force search over a
wide range of λ and p was performed and the results were
found to be approximately similar for all six datasets. The
λ and p values were fixed at 1.8 and 0.4 respectively, which
were found to work well for all cases, and the other param-
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eters were varied in subsequent investigations. Initial testing
revealed that SG input parameter combinations made up of
v = 3, 5 and q = 5, 7 showed the most promise for use as
spectral priors. All of the parameters were examined in terms
of the improvement in the global SNR, peak SNR, and the
SNR product of the denoised spectra over a range of itera-
tions (m = 1,2,3...100). An example of this analysis for an
initial SNR of 60 is illustrated in Fig. 2, in which the results
that are shown are an average across a dataset of 100 spec-
tra. Results beyond 50 iterations are not displayed in Fig. 2

Fig. 2 An illustration of mean SNR recovery for the datasets with
an initial global SNR of 60 for three sets of SG input parameters
over 50 iterations (The asterisks aligned with the first iteration are
representative of the SNR achieved by SG filtering alone)

since the SNR recovery has stabilised or is already in decline.
These results were reproduced for all datasets previously men-
tioned. Two important results become clear, (i) noisier signals
require a greater number of iterations in order to achieve opti-

mal denoising for both peak regions and globally; this is dis-
cussed further below, and (ii) in general optimal improvement
in peak SNR occurs much earlier than for the global spectrum,
in terms of the number of iterations. It was determined that all
other parameters, other than m, can be fixed to constant values
regardless of input SNR, with approximately similar results.
This significantly simplifies tuning of the algorithm for a given
input SNR to selecting the most appropriate value of m. From
examination of the figures it was determined that the most re-
liable SG input parameters for preserving peaks was SG(5,7);
however, in terms of global SNR, SG(3,5) produces a slightly
higher result. The aesthetic difference of these two conflicting
requirements, i.e. smoothing vs. peak preservation, is illus-
trated in Fig. 3. Optimal numbers of iterations for global and

Fig. 3 An illustration of MLESG denoising for different numbers of
iterations; denoising of peak regions is optimal at low numbers of
iterations, while smooth areas require a significantly larger number
of iterations.

peak denoising were derived from maxima in the SNR graphs
created for each dataset; from this set of results the optimal
number of iterations for both global (mmax) and peak (mmin)
denoising, as a function of input SNR, were found and are il-
lustrated for SG(5,7) in Fig. 4. Ideally, the algorithm should

Fig. 4 (a) Number of iterations (m = mmax) required for optimal
denoising of the global spectrum, as a function of input SNR; (b)
Number of iterations (m = mmin) required for optimal denoising of a
peak region, as a function of input SNR
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provide high levels of smoothing while effectively preserving
the integrity of sharp peak features. Thus, it was decided to
further develop the algorithm to implement an early stopping
procedure (setting m = mmin) in peak regions while also ap-
plying a late stopping procedure (m = mmax) in smoother re-
gions. In order to avoid sharp discontinuities between regions
of early and late stopping, an approach was developed to en-
sure a gradual change in the number of iterations from one
sample to the next. The development of this procedure is dis-
cussed in the following section.

3.4 Early stopping at peaks

Equation 9 is comprised of two opposing constraints; the first
constraint penalises deviation from the smoothed version of
the spectrum, while the second constraint penalises deviation
from the raw values. With the first application of Equation 9,
an initial denoised estimate of the spectrum is obtained that
is more accurate than that produced by SG filtering alone, in
terms of SNR. A second application of Equation 9 is likely to
produce a second estimate of the denoised spectrum with a fur-
ther enhanced SNR. This is due to the fact that the smoothed
version of the first estimate, which is used in this second itera-
tion, is a more accurate representation of the spectrum than the
smoothed version of the raw spectrum that was used in the first
iteration. This argument can be applied to each subsequent it-
eration up to some point for which the spectrum has become
over smoothed, and the SNR of the estimate will begin to re-
duce. In areas where sharp features are present, it is better to
apply an “early stopping” strategy, i.e. to use only a few itera-
tions of the algorithm in order to avoid over smoothing, while
in areas of the spectrum that contain smooth features, “late
stopping”, i.e. application of a large number of iterations, will
provide higher SNR values.

The number of iterations, mi, associated with each sam-
ple index i, which is imposed by the presence of a peak at
a wavenumber given by pk j is determined using a Gaussian
distribution as follows:

G( j, i) = exp
[
−|wavenumberi − pk j|2

2σ2
g

]
(13a)

mi = min j[G( j, i)]× (mmax −mmin)+mmin (13b)

where wavenumberi is the spectrum wavenumber axis as a
function of sample index i, and σg is the standard deviation of
the the Gaussian, all in units of cm−1. The vector pk j contains
a series of k wavenumber peak locations that is input by the
user and, therefore, j takes values of 1 to k. mi denotes the
number of iterations that will be applied to the ith sample in
the spectrum and mmax and mmin are as previously described.
The min j[] operator returns the minimum value in the j dimen-
sion. The result of applying the algorithm defined by Eq.13 to
the polymer spectrum is shown by the red line in Fig. 5, where

σg = 10. Samples that are located in large slowly varying re-

Fig. 5 The number of iterations is determined using Eq.13 and
provides an early stopping strategy for the MLESG algorithm in
peak regions as well as a smooth transition in iteration numbers
from one sample to the next.

gions are associated with high numbers of iterations (mmax),
while peak locations are associated with a low number of iter-
ations (mmin); an appropriate gradient of iterations from mmax
to mmin is calculated by Eq.13 to prevent discontinuities in the
denoised spectrum. However, disassociating the flat regions
from the peaks in this way allows for greater smoothing in the
low frequency regions. Rather than increase mmax, and there-
fore the run-time of the algorithm, the window size of the SG
filter and λ are increased for the final 20% of the iterations to
produce an improved spectrum by providing an increased rate
of smoothing in areas that are relatively flat. A flowchart of
the over-all operation of the algorithm is illustrated in Fig. 6

Automatic identification of peaks in a noisy spectrum is a
challenging process and not within the scope of this paper;
therefore, it was decided that the user would input a number
of distinct peak wavenumber locations. This is a reasonable
approach since many applications involve a set of known peak
locations in each recording, e.g. in the case of recording spec-
tra from an epithelial cell, which is discussed in more detail in
the following section. This can be achieved by manually in-
putting a vector of wavenumber locations, which can be time
consuming, or by defining a set number of locations and load-
ing them automatically from a text file. In the case of known
peak locations this allows the algorithm to be applied as a sin-
gle post-processing step for individual spectra or as part of a
larger, automated process. If this is not the case, a peak for
which the wavenumber location is not defined may be sub-
jected to unnecessary smoothing. Two alternative approaches
are discussed in the future work section, of the conclusion.
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Fig. 6 Flowchart of the algorithm’s operation steps.

4 Evaluation

In this section, the MLESG algorithm is applied to experi-
mental data based on multiple recordings from the aforemen-
tioned plastic slide. The algorithm is also applied to a spec-
trum recorded from a biological cell, which has been artifi-
cially noised in order to generate a large amount of data for
testing. In all cases the performance of the algorithm is com-
pared to results obtained from SG filtering and an algorithm
known as ‘the perfect smoother’, or pSmooth17 for short, in
terms of the three SNR metrics described in Section 3.1; this
latter algorithm is based on penalised least squares and has
been shown to provide an improvement over SG filtering. In
the case of pSmooth, the algorithm has an inbuilt parameter
optimiser provided by the author; however, it was noted by the
author that pSmooth is optimised to smooth and does not adapt
itself to preserve sharp local features. For the SG smoothing
input parameters, in all following cases the smoothing param-
eters are fixed at v = 3 and q = 7 since these parameters were
biased more towards global SNR and so it lends itself to a
reasonably fair representation of SGs capabilities.

4.1 Application to experimental data

The tuning of the algorithm described in Section 3 was per-
formed with simulated datasets based on a spectrum recording
from an Ibidi polymer slide. In order to test the performance of
the algorithm on experimental datasets, spectra from the same
slide were recorded using a confocal Raman microscopy sys-
tem and the SNR of the recorded datasets was controlled by

varying the acquisition time. A reference spectrum with low
noise was collected using a long acquisition time and subtrac-
tion of a dark frame of equal acquisition time; the value of
xre f for a given dataset could then be calculated by scaling the
reference spectrum appropriately in order to match the acqui-
sition time used to record that dataset; this was done using
an Extended Multiplicative Signal Correction (EMSC) algo-
rithm.18

Both simulated and experimental data were processed us-
ing the MLESG algorithm with early stopping for peaks at the
wavenumbers illustrated in Fig. 5 and the denoised spectrum
was evaluated in terms of SNR, and compared with the other
smoothing algorithms. The results of this analysis show that
the SNR of the collected signals can potentially be doubled
through applying the MLESG algorithm, which is advanta-
geous in low light applications or in applications where cost
or time constraints exist. Results from the experimental and
simulated datasets were similar; however, experimental data
had a slightly lower improvement in SNR results, which is to
be expected due to experimental variability of the signal in-
tensity and dark current both of which result in a variation
in the SNR of the raw spectrum. Another possible cause of
the slightly lower SNR improvement is the use of a Gaussian
noise model, instead of the more accurate Poisson model, for
the experimental noise. A qualitative comparison of signal re-
covery is illustrated in Fig. 7 where the quality of the denoised
spectra by the relevant algorithms is illustrated.
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Raw Data MLE SG SG(3,7) PSmooth xrefxref

Fig. 7 Qualitative comparison of signal recovery achieved by the
three denoising algorithms on an experimental spectrum with an
initial SNR of 97. A high resolution image is available online that
clearly illustrates the improvement.

In Fig. 7 it can be seen that the flat regions have a signif-
icantly lower standard deviation than that of the spectra that
have been processed using the other techniques. However, this
has had little to no effect on its capacity to preserve the charac-
teristic features of the sharp peak, which has been highlighted
in Fig. 7. This is further demonstrated in Fig. 8, which com-
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pares the results in terms of the metrics previously discussed
in Section 3.1. However, it is difficultly to visually appreci-
ate a small improvement in the SNR of a signal; for example,
a spectrum with a SNR of 90 may appear qualitatively simi-
lar to a spectrum with an SNR of 100. In order to provide a
more rigorous quantitative evaluation, a set of tables that cor-
respond to Fig. 8(a), Fig. 8(b), and Fig. 9 are given in the
accompanying ESI.

Fig. 8 Comparison of SNR enhancement achieved by denoising
algorithms for simulated and experimental datasets of similar SNRs.
Corresponding table of values is available in the ESI, see Tables 1
and 2.

Although the experimental datasets were collected with the
intention of having matching SNRs to the simulated datasets,
this was not strictly possible and so the SNR range for the
experimental data is from 33 - 141 approximately; however,
the axes ranges have been kept the same for ease of compar-
ison. While the results fluctuate more than the results for
the experimental section, they show similar trends; in both
cases pSmooth out-performs SG smoothing in terms of global
SNR, which is to be expected, and MLESG shows the high-
est SNR improvement in all contexts. However, in the figures
that describe the improvement in peak SNR it is clear that the
MLESG algorithm is the only method that consistently and re-
liably improves the SNR within a peak region, and the SNR
product further reflects this with significantly higher values for
the MLESG algorithm than for the other methods, in all cases.
The algorithms were also evaluated in terms of computational
efficiency. The algorithms were implemented using Matlab
running on a Dell Inspiron 15 with an Intel Core i7 processor.
The average time taken for MLE-SG, SG, and PSmooth was

195 ms, 0.8 ms, and 34.8 ms, respectively. As expected, SG
smoothing provides the fastest implementation.

4.2 Application to biological spectra

It may be difficult to record a reliable and low-noise refer-
ence Raman spectrum from a biological sample that could
subsequently be used in an accurate quantitative evaluation
of improvements in SNR for a denoised spectrum. An ac-
curate representation of the irradiance would require a long
exposure time on one sample point and would likely result
in photo-bleaching/damage. In addition, biological cells are
often biochemically heterogeneous at different locations in a
single cell, as well as across a group of similar cells; such a
heterogeneity presents an additional complexity in terms of
finding an accurate reference spectrum that could be used in a
quantitative assessment of SNR over a dateset. Therefore, it
was decided to test the algorithm on a simulated dataset based
on one high quality cell spectrum that is artificially noised;
in this case the reference spectrum is the original cell spec-
trum before the addition of noise. Considering the similarity
in the results between the experimental and simulated polymer
datasets, it was inferred that the simulated cell spectra would
provide a suitable representation of the algorithm’s capabili-
ties for this application. A low noise reference spectrum was
generated by adding together more than fifty spectra recorded
from a high grade bladder cancer cell line, following formalin
fixation; cell preparation, recording, and appropriate process-
ing methods.19 The end result is a reference spectrum of 500s
acquisition time recorded from the nucleus of 50 cells from
this cell line using a 120mW 785nm laser. This low noise
reference was then artificially noised as described in Section
3, and 17 datasets were generated with SNR values from 20
to 200 in steps of 10, each containing 100 spectra. Follow-
ing this, the spectra were denoised using the MLESG algo-
rithm with early stopping at appropriate wavenumber loca-
tions and the average improvement in SNR was measured for
each dataset. Among the marked peak locations (in cm−1) are:
785, 1004, 1090, 1127, 1262, 1319, 1341, 1451, 1585, 1619,
and 1662. These peak number locations correspond to well
known biochemical assignments in epithelial cells, as shown
in Table 1.20,21
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Wavenumber (cm−1) Chemical Bond Association
785 - 788 Stretching of DNA related bonds Nucleic Acid

and DNA/RNA breathing modes
1004 Phenylalanine Protein
1090 Stretching of DNA related bonds Nucleic Acid

Stretching of C-N backbone Protein
1127 Stretching of C-N backbone Protein

Stretching of C-C Lipid
1262 DNA/RNA breathing modes Nucleic Acid

Amide III Lipid
1319 CH2, CH3 twisting Lipid

DNA/RNA breathing modes Nucleic Acid
CH deformation vibration Protein

1341 DNA/RNA breathing modes Nucleic Acid
CH deformation vibration Protein

1451 CH2 deformation vibration Protein/Lipid
1585 DNA/RNA breathing modes Nucleic Acid
1619 Tyrosine; tryptophan Protein
1662 DNA/RNA breathing modes Nucleic Acid

Amide I Protein
Fatty Acids Lipid

Table 1 A table of common biochemical assignments in epithelial
cells

The standard deviation of the Gaussian modelling the peak
regions was kept at 10, as in the previous section. The re-
sults, together with corresponding results for the PSmooth al-
gorithm, and SG filtering (with polynomial and window sizes
of 3 and 7) respectively, are shown in Fig. 9. In almost all
cases the MLESG algorithm outperforms the other algorithms,
with a minimum of 50% improvement in SNR compared to the
raw data. For the low SNR case pSmooth shows a compara-
ble result to MLESG for the global spectrum due to the higher
amount of smoothing generated by that algorithm; however,
the improvement in the SNR in the region of the phenylala-
nine peak is significantly higher for MLESG.

Similar results are observed to those in the previous section.
The peaks have been effectively preserved and the large flat
regions have a lower standard deviation than that provided by
the other two denoising algorithms. In all cases the MLESG
algorithm preserves the peaks better than the other two meth-
ods, while also out-performing the other methods in terms of
global smoothing. The SNR product clearly demonstrates the
superiority of the algorithm for all cases of input SNR by tak-
ing into account both global and peak SNR improvement in a
single metric. Despite the tuning of the algorithm using the
polymer spectrum, which has a significantly different spectral
form the algorithm still provides a superior SNR enhancement
over the other algorithms and produces high quality denoised
spectra. This indicates that the algorithm performs robustly
across different types of spectra. This does not preclude the
possibility of improving performance through spectra-specific
tuning.

Fig. 9 Comparison of SNR enhancement for simulated T24 datasets
achieved by denoising algorithms. A corresponding table of values
is available in the ESI, see Table 3.

Fig. 10 Comparison of SNR enhancement achieved by denoising
algorithms for an initial SNR of 50
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5 Conclusion and Future Work

This paper has demonstrated how Savitzky-Golay filtering
may be enhanced with Maximum Likelihood Estimation to
produce an algorithm that consistently out-performs compet-
ing algorithms. MLE provides bounding properties, based
on the noise distribution associated with the signal, to pre-
vent the SG smoother from significantly altering the under-
lying spectral features. The algorithm is iterative, with in-
creased smoothing occurring with each iteration; inclusion of
an early stopping procedure, based on a user input of peak
locations, further ensures that sharp local features are effec-
tively preserved while allowing further smoothing in low fre-
quency regions. The resulting algorithm provides up to a
100% improvement in SNR when compared to the raw data,
consistently out-performing competing algorithms (PSmooth
and SG filtering) in terms of all metrics used to evaluate algo-
rithm performance. While inputting all peak locations of in-
terest may not always be possible, particularly if unexpected
components exist, many applications are based on recording
a known sample repeatedly, therefore, the features of interest
are generally well known and will require the same wavenum-
ber locations for subsequent experiments.

The proposed algorithm was optimised and rigorously
tested on simulated datasets based on a polymer spectrum be-
fore being tested on experimentally collected datasets; a close
correspondence was observed in the results for the simulated
and experimental datasets. Finally the algorithm was tested
on simulated datasets of epithelial cells and the results showed
similar trends in SNR improvement despite there being no re-
tuning of the algorithm.

Another contribution of this paper is the development of a
rigorous approach to evaluate Raman smoothing algorithms in
general in terms of SNR and the proposed SNR product met-
ric. This analysis is based on estimating the RMSE with re-
spect to a known reference and is applied to both the global
spectrum, as well as in a peak region; since these regions
can be adversely affected by smoothing. The proposed metric
known as the SNR product, i.e. the product of the improve-
ment in global SNR multiplied by the improvement in peak
SNR, is used to monitor the overall spectral quality provided
by the denoising algorithms. This allows the user to evaluate
how effectively the algorithm preserves peaks and smooths
low frequency regions simultaneously. We believe that this
paper constitutes the first attempt to rigorously investigate the
effects of smoothing algorithms on Raman spectra in terms of
SNR.

Recently, a blind deconvolution algorithm has been pro-
posed that appears to have some similarities to the denoising
method presented here22,23. Their method also makes use of
the maximising a posteriori technique in an iterative manner,
and uses a modified Tikhonov regularization model that ap-

pears to be similar to the constraint used in our approach that
penalises deviation from neighbouring values. Their method
also includes a deconvolution process during each iteration in
order to take into account, and correct for, the system response
function, which is also varied with each iteration. This ap-
proach is demonstrated to recover highly degraded and noisy
Raman spectra, particularly for cases in which spectral struc-
ture is corrupted due to the instrument response. Although
this blind deconvolution algorithm has some similarities to the
proposed method, both are derived in fundamentally different
ways, and each has its own unique characteristics. More work
is needed to fully elucidate the relationship between the two
algorithms and to compare their results.

A further avenue of investigation to improve performance is
to vary λ across the spectrum in a similar manner to that of the
adaptive regulariser discussed in the previous paragraph.22,23

By varying this parameter rather than m it may be viable to
produce a result in fewer iterations, perhaps as few as one.
It may also limit the requirement for a peak identifier in the
algorithm although this method could be challenging to im-
plement for exceptionally narrow spectral features. Another
avenue for improvement is to include an automatic peak iden-
tifier24 in the operation of the algorithm to negate the need
for user input; as well as having the benefit of including unex-
pected spectral peaks in the early stopping process.
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