
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Content-aware partial compression for textual big data analysis in
Hadoop

Author(s) Dong, Dapeng; Herbert, John

Publication date 2017-06-29

Original citation Dong, D. and Herbert, J. (2017) 'Content-aware Partial Compression for
Textual Big Data Analysis in Hadoop', IEEE Transactions on Big Data,
In Press, doi: 10.1109/TBDATA.2017.2721431

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://dx.doi.org/10.1109/TBDATA.2017.2721431
Access to the full text of the published version may require a
subscription.

Rights © 2017 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/5452

Downloaded on 2020-07-06T14:31:29Z

https://libguides.ucc.ie/openaccess/impact?suffix=5452&title=Content-aware partial compression for textual big data analysis in Hadoop
http://dx.doi.org/10.1109/TBDATA.2017.2721431
http://hdl.handle.net/10468/5452

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 1

Content-aware Partial Compression for Textual
Big Data Analysis in Hadoop

Dapeng Dong, Member, IEEE and John Herbert, Member, IEEE

Abstract—A substantial amount of information in companies and on the Internet is present in the form of text. The value of this
semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The
ever-increasing data production, however, pushes data analytic platforms to their limit. Compression as an effective means to reduce
data size has been employed by many emerging data analytic platforms, whom the main purpose of data compression is to save
storage space and reduce data transmission cost over the network. Since general purpose compression methods endeavour to
achieve higher compression ratios by leveraging data transformation techniques and contextual data, this context-dependency forces
the access to the compressed data to be sequential. Processing such compressed data in parallel, such as desirable in a distributed
environment, is extremely challenging. This work proposes techniques for more efficient textual big data analysis with an emphasis on
content-aware compression schemes suitable for the Hadoop analytic platform. The compression schemes have been evaluated for a
number of standard MapReduce analysis tasks using a collection of public and private real-world datasets. In comparison with existing
solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.

Index Terms—Big Data, Compression, MapReduce, Distributed File System.

F

1 INTRODUCTION

B IG data is now at the frontier of research, innovation and
business. The real-world value of big data is evident in

a wide range of applications as demonstrated by successful
examples including banking [1], healthcare [2], education
[3], government [4] and social science [5].

As a valuable asset, data is constantly being collected
and accumulated from almost all aspects of life. The term
datafication [6] was coined to capture this phenomenon. It
is predicted that the global datafication process will generate
44 zetabytes of data by 2020 compared to 4.4 zetabytes in
2013 [7]. It should also be noted that a substantial amount
of data being collected is semi-structured or unstructured
[8], primarily in text format [9]. The sheer volume of data
and the aggressive speed of data growth present major
challenges to all aspects of big data analysis from analytic
platforms to scalable algorithms. In order to deal with the
challenges brought by big data, there is very active ongo-
ing development of new tools, algorithms, computational
frameworks, analytic platforms and deployment strategies.
Current big data analyssi optimization focuses on scaling
up/out analytic platforms [10] [11] and using approxima-
tion algorithms [12] [13].

Another optimization, complementary to those other
optimizations would be to reduce the size of the source
data through compression, and support the direct use of
the compressed data in analysis. This aspect of leveraging
compression for big data analysis in distributed environ-
ments has not been given much attention. On current an-
alytic platforms, such as Hadoop, the purpose of compres-
sion is to reduce data size in order to save storage space

• D. Dong is with the Boole Centre for Research in Informatics, University
College Cork, Ireland. E-mail: d.dong@cs.ucc.ie

• J. Herbert is with Department of Computer Science, University College
Cork, Ireland.E-mail: j.herbert@cs.ucc.ie

and lower the data transmission cost over the network.
Currently, compressed data cannot be directly involved
in MapReduce-based computation. In order to carry out
an analysis, the compressed data must firstly be decom-
pressed fully in a sequential manner – sequential due to
the fact that modern compression schemes often employ
data transformation and/or contextualization techniques
which create strong dependencies within the compressed
data. The decompression process also requires the under-
lying storage system to maintain sufficient free space for
holding the decompressed data. Additionally, depending
on the compression algorithms, decompression speed varies
greatly. This can delay considerably the delivery of analysis
results when the data volume is large. It should also be
noted that previous research has identified that the Input
and Output (I/O) system (including both disk I/O and
network I/O) is often the bottleneck for data-centric analysis
in a distributed environment [14] [15]. The network I/O
efficiency can be improved by compressing the intermediate
data that is going to be transmitted over the network. The
disk I/O efficiency can also be improved if the compressed
data can be decompressed in parallel in memory as data
is being consumed at each computational node of Hadoop
(parallel decompression in memory). In this way, the total
decompression time can be reduced in proportion to the
number of parallel processes. The data loading time can
thus be kept to a minimum, and the use of extra storage
space can be avoided.

However, if data is to be decompressed in memory,
in parallel, in a distributed environment, we will have to
ensure that the compressed data is splittable and that each
data split is self-contained. This also requires maintaining
logical completeness, with respect to the data contents, for
each data split. This is because, in general, computational
frameworks, such as MapReduce and Spark, process data in

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 2

parallel independently on a per split basis in general; each
data split is further broken into a group of logical records
(what constitutes a record is data- or application-specific, for
example, a record can be a sentence in a plain text file or a
row in a database table); a parallel process then deals with
a single record at a time. Thus, new compression schemes
are needed. This must be done by making the compression
process aware of the organization of the data contents,
controlling the use of contextual data, and developing ap-
propriate packaging mechanisms so that compressed data
is splittable to the Hadoop Distributed File System (HDFS)
and MapReduce framework, while also maintaining the
logical completeness of each data split to the computational
framework without sacrificing too much compressibility.

In the usual MapReduce work-flow, during analysis,
a MapReduce program will process data in its original
format. This is because MapReduce developers understand
the logic and organization of the original data contents to
be processed. Also, many existing algorithms and software
packages used for parsing the data are designed to work
with specific data formats. This also drives exploration
of appropriate compression methods for compressing data
in such a way that the compressed data can be directly
processed in MapReduce without decompression, while
ensuring the compressed data is compatible with existing
algorithms and software packages and requires minimum
effort from MapReduce program developers.

However, processing compressed data poses non-trivial
technical challenges, especially in a distributed environ-
ment. Traditional solutions to this question are mainly based
on indexing techniques [16] [17] [18]. They are developed
for traditional information retrieval systems and focus on
random access to, and querying of, immutable data con-
tent with a cost of high complexity and a constraint on
being application or domain specific. Since big data analysis
often requires manipulating data, this requires a special
data compression where the element of information being
compressed is independent of its context, allowing the com-
pressed data to be freely manipulated.

Note that, to improve disk I/O performance, data size
needs to be reduced as much as possible. Inevitably, this
means employing high compression schemes, such as Gzip
and Bzip, which are generally based on transformation
and/or contextualization compression techniques. On the
other hand, in order to allow a MapReduce program to
process compressed data without any decompression, a
context-free compression scheme must be used. The fact
is that we cannot apply two different conflict compression
schemes to a single dataset at the same time. However,
observations have indicated that the two approaches can
be employed at different stages (data loading and data
processing) of MapReduce processing. Thus, designing a
layered architecture so that a MapReduce program can,
at different stages, take advantage of the corresponding
compression layers. In other words, we firstly compress data
using a context-free compression scheme and then apply a
customized modern compressor to the compressed data. As
a result, we can achieve data compression ratios close to
the Bzip compressor and gain a substantial improvement on
analysis performance over using original data.

Our contributions lie in the design and concrete im-

plementation of novel compression schemes for improving
performance and reducing resource requirements for big
data analysis. In Section 2, we discuss current compres-
sion schemes developed for textual big data , followed in
Section 3 by a presentation of the proposed compression
scheme with detailed explanations. The integration of the
proposed scheme and Hadoop is explained in Section 4.
The proposed scheme is then evaluated for several standard
MapReduce jobs with a collection of real-world datasets
using an on-site Hadoop cluster, presented in Section 5. Fi-
nally, we summarize our work and indicate future directions
in Section 6.

2 BACKGROUND

We have witnessed a rapid growth in research and de-
velopment on big data technologies. Important current con-
cerns include efficient algorithms, parallel computational
frameworks, comprehensive analytic platforms, scalable de-
ployment strategies, and auxiliary services that contribute
to an effective big data ecosystem. However, related liter-
ature on incorporating compression schemes with big data
analysis is limited. Current emerging techniques for com-
pressing big data are mostly ad-hoc approaches optimized
for data-specific and domain-specific datasets. They are not
provided as principled solutions. In this section, we firstly
analyze how big data is organized in modern distributed
file systems, specifically the Hadoop Distributed File Sys-
tem (HDFS) [19], followed by explaining how big data
is processed using the MapReduce computational frame-
work [20]. We then discuss recent literature on emerging
techniques including splittable compression, probabilistic
data structures and data de-duplication compression.

2.1 Big Data Organization in Hadoop
Hadoop is a widely adopted data analysis ecosystem. It con-
sists of several components that together provide a platform
for managing and analyzing data on a large scale.

Typically, a Hadoop cluster consists of a group of physi-
cal servers in which one of the servers acts as a controller of
the cluster, namely the NameNode, and the other servers pro-
vide storage space and computation power, namely DataN-
odes. The NameNode is responsible for coordinating MapRe-
duce jobs and managing HDFS Meta-data. The DataNodes
are responsible for storing data and providing computation
power for MapReduce programs. Each DataNode contributes
a part of its local storage space (e.g., a partition of the local
hard disk) to HDFS. Thus, HDFS is a virtualized storage
system that is comprised of a number of geographically
distributed physical hard disks. A file stored in HDFS is
split into a series of fixed-size data blocks. Data blocks
and their replications are distributed across DataNodes, but
are virtually continuous in HDFS. Unlike the traditional
organization of storage systems such as NTFS and Ext3/4
that uses 4KB data blocks, HDFS uses a very large data
block size (128MB by default) chosen for better hard-disk
read/write performance.

2.2 Data Analysis in MapReduce
HDFS only provides a logical view of data and hides the
complexity of organizing data in the underlying distributed

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 3

storage system. It is an independent service (file system
service) provided as a part of Hadoop for data organi-
zation and management. Data analysis is carried out by
the MapReduce computational framework. As the name
implies, a MapReduce program consists of two phases: Map
and Reduce. The Map phase operates on a set of key/value
pairs. The Reduce phase reduces the outputs from the Map
phase by values which share the same key. Each Map
process will be assigned to a data block. Moreover, a data
block is further broken into logical records (this depends on
the dataset, for example a logical record can be a sentence
in a text file or a row in a database table). The record
parsing process is done by the MapReduce Record Reader
component. A Map process will deal with a record at a
time. However, HDFS simply splits data by size. It is very
likely that a data block will contain incomplete records at
the boundaries. To ensure record completeness, MapReduce
further organizes data blocks into data splits. Essentially,
a data split is a logical view of a data block which is
guaranteed to contain a set of complete records.

Intermediate output data from each Mapper is firstly
cached in an in-memory buffer. When the utilization of the
caching buffer reaches a certain threshold, all cached data
in the buffer will be materialized to persistent storage (local
hard disks, but not part of HDFS). This process is called
Spilling in the context of MapReduce. Data in a Spill will then
be sorted by keys and partitioned according to the number
of Reduce processes configured for the job. Upon comple-
tion of the Map processes, each sorted data partition will be
distributed to a corresponding Reducer over the network.
This intermediate data distribution process is referred to as
Shuffling. At each Reduce node (the physical server that runs
the Reduce phase of the program), the received partitions
will be sorted again and merged into a single data block,
and then fetched to the Reduce process. The final results
(Reduce output data) will be stored in HDFS eventually.

2.3 Data Compression

Considering the dynamic nature of the compressed con-
tents, block-based compression will work favourably for
HDFS, because each compressed block can be made self-
contained. Due to the variable size of the compressed
blocks, an additional indexing process must be applied to
the compressed contents to log the block sizes, so that
the MapReduce Record Reader component (referring to [21])
can effectively and safely parse records. In principle, any
block-based compression can be indexed. In practice, LZO-
splittable [22] used by Twitter implements such an approach.
LZO-splittable uses standard LZO for data compression, then
uses a separate program to scan through the LZO com-
pressed data and log the block boundaries in separate files.
In order to consume the LZO-splittable compressed data, a
MapReduce program will need both the compressed data
and the log file(s). If a dataset contains several files, each
compressed file must be associated with a dedicated log file.
This makes a MapReduce program more complex and error-
prone due to the tracking of block boundaries.

As well as of LZO-splittable, [23] builds inverted file
indexing on compression blocks. This allows a MapRe-
duce program to quickly identify desired information in

a compressed block without decompression. On the other
hand, the LZO compression scheme is speed-oriented. It
compresses data at a relatively low ratio. Adding extra
indices to the compressed data makes the aggregate com-
pression ratio even lower. More importantly, as Mappers are
independent processes, partitioning and distributing indices
while maintaining data locality can be very problematic.
Hadoop++ [24] is other independent work on indexing big
data for MapReduce. Hadoop++ does not relax the HDFS
storage burden as indices are built on top of source data.
Moreover, indices are built when source data is being up-
loaded to HDFS. This implies that the indices on source data
are static. The same indices my not suit different types of
analysis jobs. In contrast, [25] provides an adaptive indexing
technique for HDFS. Indices are built gradually during the
Map processes. The main drawback is that sharing the adap-
tively built indices across clusters may cause synchroniza-
tion problems. The majority of those compression methods
developed for Hadoop and MapReduce are targeted on
source data. They provide better performance for specific
types of MapReduce jobs at a cost of more storage space
and higher complexity.

In big data query systems, column-wise compression
[26] [27] [28] is commonly seen. [26] uses a method that sim-
ply compresses column data into a series of self-contained
blocks. A group of in-order blocks are then packed into
HDFS-Blocks. This makes the compressed data splittable.
However, coordinating column-wise blocks horizontally
(columns aligned in rows) during data processing can be
very difficult. Another scheme, Llama [27] allows grouped-
column compression with different schemes best suitable
for groups of records, and builds indices for compression
blocks. Hive [28] is a data management system that allows
column-wise compression. Data is organized like database
tables in Optimized Record Columnar (ORC) format which
is specific to Hive. Internally to ORC, data is partitioned into
groups of records, namely stripes. Within each stripe, records
are separated into columns. Each column is compressed
twice. The first level compression is based on a dictionary
method. This is because data in the same column is con-
sidered to have similar attributes and therefore shares a
common vocabulary. Using a dictionary method can achieve
better compression. The first level compression results are
then forwarded to the second level compression which uses
general purpose compressors such as LZO to pack data into
fixed-size blocks. Hive ORC can potentially achieve high
compression ratios and it is splittable. A concern is that ORC
is data agnostic. Many datasets cannot simply be formatted
in columns. For example, XML and JSON formatted data
often contains nested records.

Besides indexing techniques, recently, we have seen the
use of probabilistic data structures and associated algo-
rithms for dealing with big data in computational biol-
ogy [29] [30]. Probabilistic data structures are based on
Bloom Filters [31] which provide an efficient way of veri-
fying whether a given item exists in a dataset. Using Bloom
Filters can significantly reduce data size as a group of
messages will be transformed into a single finite series of
bits. However, the information transformation is a one-way
process. In other words, we can query a Bloom Filter, but we
cannot retrieve information that has already been stored in

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 4

it due to the use of hash functions. This limits the applica-
bility of probabilistic data structures to domain-specific use
only, such as Genome Sequencing. Another application of
probabilistic data structures is big data queries, for instance,
BWand [32] for fast query on Twitter tweets, content filtering
in MapReduce programs [21], and NoSQL databases such
as Google BigTable, Apache HBase and Apache Cassandra.
In these cases, the probabilistic data structures are used
as an indexing technique to quickly locate information
in a distributed storage system. Yet, the original datasets
are still needed. There are many other constraints such
as immutability and uncertainty that limit the scope of
using probabilistic data structures in big data analysis, for
example, when modifying the original messages or reading
financial records. Generally, probabilistic data structures are
suitable for assisting queries on large datasets and applica-
tions that can tolerate errors.

Data de-duplication is another popular compression
technique used for compressing textual data. Traditionally,
it is used in storage systems for backup services and soft-
ware patching. The basic idea of data de-duplication is to
organize information in a hierarchical structure in which the
commonality of information flows from top to bottom. It is
recently becoming popular for big data due to achieving
very high compression ratios. Industry applications such as
Google Drive, Dropbox, and RainStor [33] heavily rely on
data de-duplication for saving storage space. RainStor has
demonstrated that using composite de-duplication schemes
can reduce data size by up to 97%. Although, the achieve-
ment on compression ratio is surprisingly good, retrieving
original text can be time consuming due to the need to go
through several de-duplication processes from byte-level to
field-level.

In summary, emerging techniques developed for big data
mainly focus on reducing data size for saving storage space.
In general, these techniques are data- or application-specific
schemes which often result in much higher compression
ratios as the algorithms are optimized for the particu-
lar data with respect to format and contents, compared
to general purpose compressors. This makes the current
emerging compression schemes uni-functional. By the same
token, conventional compression schemes (e.g., Gzip and
Bzip) endeavor to achieve higher compression ratios by
leveraging preprocessing techniques and/or data contextual
information. As this process creates strong dependencies,
data accessibility is forced to be sequential. In order to
consume compressed data in a seamless fashion, in a dis-
tributed environment, an effective compression algorithm
must fulfill the requirements of being splittable and allow
random access without sacrificing too much compressibility.

It should also be noted that Unicode is the dominant
encoding scheme on the Internet at present. The majority
of textual contents are encoded in, for example, UTF-8 or
UTF-16 format. Current schemes do not deal with Unicode
data effectively. More importantly, these schemes compress
data without concern for the organization and format of
the underlying data. This makes the compressed data non-
transparent to the existing analysis algorithms and software
packages. Therefore, new compression schemes, that are
content-aware and able to effectively deal with Unicode
contents, are needed.

3 COMPRESSION SCHEME

In this work, we introduce the Record-aware Partial Com-
pression (RaPC) scheme suitable for textual big data analy-
sis in Hadoop. RaPC is an embedded two-layer compression
scheme. Each layer is designed for the corresponding stage
of data processing. The design goal for the outer layer
compression scheme is to maximally reduce the data size for
minimizing data loading time while making the compressed
data splittable to the HDFS. It is based on a modified Deflate
algorithm [34]. The inner layer is a word-based, context-
free compression scheme which makes the compressed data
directly consumable by MapReduce programs using RaPC
supporting libraries.

3.1 RaPC Layer-1 Compression
The RaPC Layer-1 (RaPC-L1) encoding is a byte-oriented,
word-based partial compression scheme. RaPC-L1 separates
informational contents and functional contents. Any charac-
ter or group of consecutive characters from the range [a -
z], [A - Z] and [0 - 9] are considered to be informational
contents; other characters are treated as functional contents.
RaPC-L1 only compresses informational contents.

The RaPC-L1 code length grows from one byte to the
maximum of three bytes depending on the number of
compressible strings in the text. A compressible string is
a string that is firstly categorized as informational content.
Secondly, its length must be longer than the current code-
length (because code-length grows dynamically during the
compression). Functional characters are used as delimiters
to split informational contents. Every unique compressible
string will have an integer value assigned to it in the order
of their discovery. The integer value is then used to fill in
the coding templates. The coding templates consists of one
to three bytes with the Most Significant Bit (MSB) of each
code-byte set to one. This ensures that the code-bytes are
distinguishable from uncompressed contents. For example,
given a message ”Big Data Analysis”, the encoded message is
”10000000*00100000*10000001*00100000*10000010”. During
the compression, the three strings are discovered in order.
Their corresponding codes are therefore the integer values 0,
1, 2. The integer values will be used to fill in the coding tem-
plate and subsequently replace the corresponding strings in
the compressed message. The byte ”00100000” is the white-
space character defined in the standard ASCII scheme. It
is not RaPC-L1 compressed, but used as a delimiter to
split strings. The asterisk symbols are only used to indicate
byte boundaries for clear presentation in this example. In
addition, Unicode characters often use the extended ASCII
codes which have the MSB set to one. In order to avoid
conflict, Unicode characters are enclosed with a pair of
special characters (0x11 and 0x12). These characters are
never used in text data, therefore, it is safe to use them for
RaPC-L1 compression.

The RaPC-L1 encoding scheme offers a code space of
size 221. Before the actual compression process starts, a
lightweight sampling process is carried out to gather statis-
tics on the most frequently used words. The top 27 words
will then be selected. Each selected word will have an
integer value assigned to it. This guarantees that these most
frequently used words from a given text have the shortest

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 5

code of one byte. Increasing the number of selected words
and/or the sample size will improve the compression ratio.
Compression speed will be slower, however, since the pro-
cess of sorting words by frequency requires O(nlog(n)) time,
where n is the number of words observed from the samples
to be sorted. During the compression, compressible strings
and their corresponding codes are temporarily stored in a
HashMap data structure. Thus, searching for existing strings
is O(1) complexity. The compressible strings will be replaced
by their corresponding code-byte(s) and non-compressible
strings will be sent to the output intact. This gives the RaPC-
L1 compression sub-linear complexity in time.

RaPC-L1 generates two output files: one is the com-
pressed file(s), another is the compression model. The sep-
aration of the compressed data and the model are driven
by the MapReduce framework. In a MapReduce program,
Map processes are independent of each others (the same
applying to Reduce processes) in general. For many cases
in textual data analysis, the textual contents often need
to be converted into other data types (e.g., text to integer
values, yes/no to boolean values, and strings to dates). This
requires transforming the compressed data into its original
format, then converting to other data types accordingly.
Because each Mapper loads and processes its assigned data
blocks independently, this requires the compression model
file to be available to all Mappers and/or Reducers when
it is needed. Technically, the HDFS Distributed Cache can
be the place for storing the compression model file. The
compression model file is a list of compressible strings
collected during compression. The index of each string in
the list is determined by its corresponding code converted
to an integer value. The RaPC-L1 decompression process
reads the compression codes and converts them into integer
values. Based on the values, we can quickly identify their
corresponding original strings. Also consider that data is
partially compressed by RaPC-L1, therefore the RaPC-L1
decompression has also sub-linear complexity in time. An-
other point worth noting is that the compression model file
can be reused for compressing future data. If data files are
generated from the same source, they often share a common
vocabulary, as, for example, data generated by machines.

Recall that the RaPC-L1 scheme compresses data par-
tially. Functional characters such as white-space, comma
and new-line are left untouched. This unique feature allows
a program to manipulate the compressed data freely, for
example, splitting fields by a comma, removing words, and
adding new contents etc. Furthermore, it guarantees the ma-
nipulated contents are still decodable. However, it should be
noted that using the RaPC-L1 compressed data on Hadoop
poses a concern. Hadoop currently only supports ISO-8859-
1 and UTF-8 encoding for text. The RaPC-L1 compressed
contents are no longer in a traditional text format. In another
words, the data cannot be simply converted to strings (e.g.,
UTF-8 encoded format). This is because of the irregular use
of the extended ASCII characters (MSB set to 1). Thus, the
RaPC-L1 compressed data must be treated as byte sequences
and processed as byte sequences.

3.2 RaPC Layer-2 Compression
The RaPC Layer-2 (RaPC-L2) compression can be used
with the original text or used to compress the RaPC-L1

compressed data. The purpose of RaPC-L2 is to maximumly
reduce data size and package logical records into fixed-
length blocks which makes the compressed data splittable
to the HDFS.

In the design of RaPC, the aim is to reduce the data
size as much as possible. This is driven by the fact that
data size is the predominant factor affecting the overall
performance of MapReduce programs. Also based on the
results of our previous study comparing speed-oriented
and space-oriented compression algorithms [14] and our
preliminary study RaPC scheme [35], the decompression
time is insignificant compared to the time used for loading
data from hard disks to memory. RaPC Layer-2 needs to be
a scheme that is best the balance between compression ratio
and speed. Gzip is the best candidate for RaPC-L2 and it
is based on the Deflate algorithm. Thus, the RaPC Layer-2
compression is based on the Deflate algorithm.

The conventional Deflate algorithm is block-based [36]. It
consists of a dictionary method (LZ77 [37]) and a statistical
method (Huffman Coding [38]). The basic algorithm works
as follows. It takes a stream of input and moves the data
through a Sliding Window buffer (32KB by default). It starts
by checking if there is any string with length up to 258
bytes in the Sliding Window matching the string starting
from the current position (the position in the Sliding Window)
backwards up to a length of 258 bytes maximum. The
longest match wins. The matched string will be replaced by
a literal l and a pair of values. The literal is the immediate
succeeding character of the matched string. The first value
of the pair is the length of the matched string m; the second
value is the distance d from the current position to the
matched string. Then, the Deflater advances m characters in
the input stream. If there is no match, the algorithm moves
one character forward. This process iterates until the current
input buffer is exhausted or the Deflater decides to start a
new block of input when the current Huffman trees become
inefficient.

The output from LZ77 is a set of literals and pairs of
values ”l (m, d)”. The Deflate algorithm splits them into two
columns. The literals and value m are encoded by a Huff-
man tree, the distance d is encoded by a separate Huffman
tree. Both encoding results are merged and prepended with
the two Huffman trees (both of the Huffman trees will be
further encoded by the Huffman algorithm) for the final
outputs. Each output block corresponds to an input block.
In principle, if each output block is self-contained and the
boundaries of each block can be recorded, the default Deflate
output data could be splittable to the HDFS. But, the Deflate
algorithm tends to use the contents of the previous input
buffer for the Sliding Window of its immediate succeeding
input block in order to improve the compression ratio.
These linkages between the input blocks create dependen-
cies between the output blocks and cause the decompression
process to be sequential as shown in Figure 1 (upper). If we
simply remove these linkages, the overall compression ratio
will degrade significantly.

In the RaCP-L2 scheme, we design a higher level buffer
with a much larger and fixed size. We refer to this buffer
as L2-Block and a Deflate output data block as DO-Block
to avoid confusion. The L2-Block is used to accommodate
a variable number of DO-Blocks. We force a break in the

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 6

HT1
CD1

HT2

Deflate
Output Block 1

Sliding Widow Linkage

HT1
CD2

HT2

HT1
CD3

HT2

HT1
CD4

HT2

HT1
CD5

HT2

HT1
CD n

HT2

HT1
CD1

HT2

HT1
CD2

HT2

HT1
CD3

HT2

HT1
CD4

HT2

Deflate Output Block-size (Variable Length)

RaPC-L2 Block-size (Fixed Length)

Deflate
Output Block n

Fig. 1. RaPC Layer-2 block packaging.

HT1
CD1

HT2

HT1
CD2

HT2

HT1
CD3

HT2

HT1
CD4

HT2

HT1
CD5

HT2

Intra-DO-Block Inter-DO-Block

Intra-L2-Block Inter-L2-Block

Intra-HDFS-Block

HDFS-Block L2-Block DO-Block

Fig. 2. RaPC Layer-2 data organization hierarchical structure.

linkage between the last DO-Block in the current L2-Block
and the first DO-Block in the succeeding L2-Block as illus-
trated in Figure 1 (lower). Thus, the compressed data in each
L2-Block is completely self-contained (each L2-Block can
be decompressed independently) which makes the RaPC-
L2 splittable to the HDFS. The size of the L2-Block strikes
a balance between the MapReduce analysis performance
and the compression ratio. It will be further discussed in
Section 5.

Moreover, recall that, in the MapReduce framework, the
Record Reader supplies one logical record to a Mapper at a
time. If we blindly compress data per block, it is very likely
that the beginning and/or end of each Deflate input block
(DI-Block) will contain incomplete record(s). An example
is given in Figure 3 (upper). This makes the Record Reader
complicated and inefficient at runtime in either of the two
possible scenarios.

Scenario 1: the first scenario (Intra-L2-Blocks) is about de-
termining record completeness between two adjacent DO-
Blocks in an L2-Block (Figure 2). In Hadoop, each HDFS-
Block is processed by a dedicated Map process. The Record
Reader that serves the Map process will firstly decompress
one L2-Block (containing a number of Compressed Data –
CD blocks) at a time. Before fetching the decompressed data
to the Map process, the Record Reader needs to determine
whether the data contains partial records at both the begin-
ning and end of the data. In fact, without decompressing
the immediate succeeding L2-Block, we cannot be sure
whether the last record is partial or complete. Therefore,
we must remove and temporarily store the last record from
the current decompressed data, then wait until the next L2-
Block is due for processing.

Scenario 2: the second scenario (Inter-L2-Blocks) is about

HT1
CD1

HT2

HT1
CD2

HT2

HT1
CD3

HT2

HT1
CD4

HT2

RaPC-L2 Block-size (Fixed Length)

Entropy is usually expressed by
the average number of bits
needed to store or communicate
one symbol in a message.| A key

Input Block 2

A key measure of information is
entropy which is usually expressed
by the average number of bits
needed to store or communicate
one symbol in a message.

Input Block 3

P
o

st
p

o
n

ed
ed

Record Delimiter (Specified by User)

Fig. 3. RaPC Layer-2 record-aware compression.

determining record completeness between L2-Blocks (Fig-
ure 2). Recall that Hadoop HDFS organizes big files by split-
ting them into a series of fixed-size blocks (HDFS-Block). A
series of HDFS-Blocks are distributed across the Hadoop
cluster Data Nodes. There is no guarantee that logically ad-
jacent HDFS-Blocks will be stored consecutively and/or on
the same physical hard disk. Both the L2-Blocks (referring to
Figure 2 CD4 and CD5) belong to separate HDFS-Blocks and
are possibly on different physical Data Nodes. The L2-Block
(containing CD5) needs to be streamed to the current Map
node (which is processing the L2-Block containing CD4) and
decompressed. Then, record completeness must be checked.
Both scenarios are time consuming and error-prone.

To remove this complication and improve the MapRe-
duce work-flow efficiency, we ensure record completeness
at the boundaries of each L2-Block during the data compres-
sion phase, hence making it record-aware. What constitutes
a record is often dataset specific. To determine records,
record delimiters must be given at the beginning of the
data compression. At the last DI-Block (corresponding to
the last DO-Block) of each L2-Block, we check for record
completeness. Any partial record will be postponed to the
next DI-Block which will eventually be packed into the next
L2-Block. This process only occurs between DO-Blocks. An
example is shown in Figure 3. Complex delimiters can be
expressed in Regular Expressions. The compression scheme
guarantees that each L2-Block contains a set of complete
logical records.

As we have noted, DO-Blocks have variable length and
L2-Blocks have fixed size. When packaging a number of
consecutive DO-blocks in a L2-Block, there is no guarantee
that the L2-Block will be filled up exactly. We need to define
a packaging format to tell RaPC how much of the payload
is contained in the L2-Block. The gaps at the end of each L2-
Block are filled by trailing bytes. The last two bytes of the L2-
Block are reserved and used to indicate how many trailing
bytes are used. In addition, the MSB of the second last byte
is used to indicate whether there is a giant record that spans
multiple L2-Blocks. This is designed for an occasion when a
dataset contains very long records. Overall, the trailing byte
indicator can only allow 215 = 32KB of trailing bytes to be
inserted. In the case where there are only a small number of
DO-Blocks left for packaging at the end of the compression,
the number of trailing bytes needed may exceed this limit.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 7

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

256KB
512KB

768KB 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 9MB 10MB 20MB 30MB

RaPC Block Size

C
om

pr
es

se
d

S
iz

e
(G

B
)

Fig. 4. RaPC Layer-2 block size verses compression ratios

For this reason, an exception is made so that the size of the
last L2-Block is the total length of the last several DO-Blocks
exactly. That is, no trailing bytes are inserted into the very
last L2-Block.

Note that an increase in L2-Block size will slightly im-
prove the compression ratio. Figure 4 shows the results from
compressing the dataset DS-WikiEN (the original dataset is
47GB, referring to Table 4) with various L2-Block sizes. In
this experiment, we start with a L2-Block size of 256KB and
gradually increase the block size to 30MB. In Figure 4, we
observe a rapid drop in compressed data size (increased
compression ratio) from 256KB to 2MB, and show decrease
in compressed data size when the L2-Block size is beyond
2MB. This is due to two reasons.

Firstly, we break the Inter-DO-Block linkages to make
the compressed data splittable. This implies that the current
DI-Block cannot use the information from its immediate
predecessor for the contents of the current Sliding Window.
The disconnection leads to the compression for the current
DI-Block to accumulate its own new context, and at the
beginning of this context accumulation phase, much less
information can be compressed. This results in a lower
compression ratio.

In addition, the Sliding Window is 32KB by default, so
that in the worst case scenario, if no information can be
compressed during the context accumulation phase, there
will be 32KB of incompressible data at the beginning of
every L2-Block. When the L2-Block size is small, the 32KB
incompressible data will occupy a relatively large propor-
tion of the total (32KB

L2−Block size) and thus have a bigger
influence on the compression ratio. This is the main cause
of the rapid drop in the compressed data size (increase in
compression ratio) as the L2-Block size increases.

Secondly, during the L2-Block packaging processes, trail-
ing bytes and indicator bytes must be appended to the last
DO-Block to fulfil the requirements for a record-aware L2-
Block. By increasing the L2-Block size, we have statistically
reduced the number of trailing bytes and indicator bytes
needed, thus improving compression ratio.

This experiment gives us a general idea how the L2-
Block size affects the compression ratio. The results in
Figure 4 may vary slightly depending on the contents of a
given dataset. Choosing a bigger L2-Block size can improve
compression ratio, but it has side-effects on MapReduce pro-
gram performance. This will be studied further in Section 5.

4 RAPC ON HADOOP

In order to use RaPC compressed data on Hadoop with
maximum transparency to MapReduce programs and de-
velopers, we provide a set of utility functions including:
a customized RaPC Record Reader for decoding the RaPC-
L2 compressed data; a RaPC TextWritable data type which
implements equivalent operations found in the Hadoop Text
data type for handling the RaPC-L1 compressed data; and a
SequenceFileAsBinaryOutputFormat Record Writer for writing
RaPC-L1 compressed data and general binary data to the
HDFS.

The RaPC work-flow is as follows. The RaPC com-
pressed files must be stored in the HDFS, and if it is needed,
the RaPC-L1 compression model file must be loaded to the
HDFS Distributed Cache. A MapReduce program must set
the provided record reader (RaPCInputFormat) as the default
input format class. This ensures that the RaPC Layer-2 com-
pressed data can be correctly read and decoded. The input
value type for Mappers must be set to RaPCTextWritable or
the regular Text type. If the data is compressed by RaPC-
L2(L1) (RaPC-L1 embedded in RaPC-L2), then the records
received by the Mapper are in fact a block of binary data
in the RaPC Layer-1 compressed format, and the RaPCTex-
tWritable data type must be used. If the data is compressed
by RaPC Layer-2 only, the decoded data is the original text,
and then the regular Text data type (in the context of the
MapReduce framework) can be used.

For many data analysis jobs, parsing data records is
necessary. For the original text, manipulating data is simple
as the data contents are readable by developers. In RaPC,
we provide a transformation function T() that converts
between original text and RaPC-L1 compressed data. For
example, if we write a regular Java clause for searching
a phrase ”value.contains(”big data”);”, then in RaPC it is
simply ”value.contains(RaPC.T(”big data”));”. In this example,
the variable ”value” in the regular program can be a String
data type. In RaPC, the variable ”value” needs to be declared
as a RaPCTextWritable data type. The ”contains()” function
in RaPC is an implementation of the ”contains()” function
found in the regular Java String class for the RaPCTex-
tWritable data type. Indeed, the transformation requires the
RaPC-L1 compression model file to be loaded at the Map
and/or Reduce initialization phase. This may incur a small
delay due to loading the model files from HDFS Distributed
Cache to the local computational nodes. For some types of
job, for example, N-Grams analysis, there is no need to load
model files, and those MapReduce programs can take full
advantage of using RaPC.

Another point worth mentioning is that the final MapRe-
duce output can be in the original text format or RaPC-
L1 compressed format. In the former case, the RaPC-L1
decompression needs to be carried out at each Reducer
before writing any results to HDFS. The second case needs
more attention. By default, writing binary records to HDFS
requires the SequenceFileAsBinaryOutputFormat provided by
the MapReduce framework. This default Record Writer also
writes some auxiliary information about each binary record
including record key/value length and it periodically inserts
synchronization points (0xFF). The record key/value length
are directly converted from their numerical values to the

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 8

byte sequences; this makes the final output specific to
Hadoop. Furthermore, the synchronization point is a char-
acter drawn from the extended ASCII codes which is very
likely to clash with RaPC-L1 codes and confuse the RaPC-L1
decompression process. An additional requirement for writ-
ing the RaPC-L1 compressed output to HDFS is therefore to
use our customized RaPCSequenceFileAsBinaryOutputFormat
which has synchronization points removed and has well
formatted key/value length.

In general, for a RaPC-L2-enabled MapReduce program,
configuring file input format is the only major difference;
for an RaPC-L2(L1)-enabled program, we need to load the
model file, configure the file input format, output format,
and corresponding data types.

5 EVALUATION

We evaluate the effectiveness of RaPC in an on-site Hadoop
cluster. The cluster consists of six nodes. Each node is
configured with dual core Intel E8400 (3.0GHz) CPU, 8GB
RAM and 1TB SATA3 hard drive. Nodes are connected
to a NetGear GS716T Gigabit Ethernet switch. Specifically,
the cluster is configured with Hadoop version 2.6.0 and
Linux kernel 2.6.32. The HDFS is configured with single
replication and 64MB block size. The MapReduce jobs used
in the evaluation are summarized in Table 1. We use several
real-world datasets as listed in Table 4 for the evalua-
tion. The evaluations of the RaPC compressor and RaPC
with MapReduce include measuring analysis performance,
cluster storage requirements, memory constraints and com-
pression performance. In the experiments, the number of
Mappers and Reducers are optimized for each job. RaPC-
L2 block-size was set to 1MB across all the experiments. We
compare RaPC with the state-of-the-art Hadoop-LZO (also
know as LZO-splittable), version 0.4.20.

5.1 Performance

Table 1 contains our main evaluation results. We use ten
different MapReduce jobs to evaluate the effectiveness of
RaPC on Hadoop with a range of real-world datasets having
different properties. We run each job three times with origi-
nal, RaPC-L2, and RaPC-L2(L1) compressed data. We record
the input data size, intermediate output (Map output) size,
final output (Reduce output) size, memory allocation, and
analysis duration for each job with the three different input
data types.

The Site Rank job is selected to demonstrate the full
advantages of using RaPC with MapReduce. In this job,
we calculate the rank for each website in the given dataset
based on a ranking algorithm defined for an undirected
graph. According to [39], given an undirected graph G(V, E),
calculating the rank for vertex vi in G is equivalent to calcu-
lating the degree distribution of vi defined by d(vi)

2|E| , where
d(vi) is the degree of vertex vi in G. Thus the site rank job is
to obtain a vector as given by 1

2|E| · [d(v0, d(v1), · · · , d(vn)],
where the edges E are the connections between websites V.

In fact, the calculation part of the Site Rank job is rel-
atively lightweight. The heavy part is parsing the dataset
and finding out all of the connections between websites. The
MapReduce job involves parsing the URLs for each website,

then finding and formatting edges E. Using the RaPC-
L2 compressed data for the Site Rank job, we accelerated
the calculation speed by 59.8% compared to that same job
with the original text data. The performance gains come
from two sources. Firstly, the RaPC-L2 compressed data
is approximately four times smaller than the original data
(RaPC-L2 reduces the original data size by 74.3%). Loading
the RaPC-L2 compressed data from hard disks to memory
requires much less time. Secondly, due to the MapReduce
Local Combiner effects, the intermediate data is smaller. This
reduces the time required to transmit data from Mappers to
the Reducers over the network.

Additional to the job with RaPC-L2 compressed data,
using RaPC-L2(L1) compressed data can further improve
the analysis performance. When parsing the URLs, we need
to split each URL using the forward slash character ”/”.
The results of splitting gives an array of sub-strings drawn
from the Web link. We are interested in the website link part
only. The access protocol and the page identifier parts must
be omitted. The string splitting process is about searching
for the delimiter ”/” and taking the sub-string from the
link iteratively. By default, the Java implementation of the
string split function invokes the indexOf() function to locate
patterns which takes O(m(n − m)) time, where m and n
are the pattern length and source string length, respectively.
In this case, m = 1, therefore each search on pattern ”/”
takes O(n − 1) time. Recall that the RaPC-L1 compression
does not compress functional contents. We can search for
the forward slash character from the RaPC-L1 compressed
data directly without using the model files. The compression
ratio for this particular dataset can be found in Figure 6. It
is approximately 49%. Theoretically, this implies searching
the same pattern from the new source O(n′ − 1) is approxi-
mately twice as fast as O(n− 1), where n′ = 0.49n.

In the second job, we use a N-gram task for evaluating the
RaPC under intensive disk I/O operations. N-gram analysis
is a common technique for speech recognition. We use 5-
Gram to produce sufficient in-memory data to increase the
frequency of memory to disk I/O operations. The job con-
sists of Map tasks only. There are no Shuffling and Reducing
phases, thus the network I/O is kept to a minimum. Com-
paring the results of the original and RaPC-L2 compressed
data, RaPC-L2 improves the processing speed by 33.4%. Be-
cause both analyses generate the same size output, therefore
the main performance gain is from distributing MapReduce
data-splits to Mappers. Using RaPC-L2(L1) compressed data
can further improve the analysis speed by ∼2.2% because of
the smaller input and output data in RaPC-L1 compressed
format.

Besides the efficiency, there is a useful side-effect when
using RaPC-L2(L1) compressed data. Recall that the 5-Gram
job reads, manipulates, and writes data in the RaPC-L1
compressed format. During the lifetime of the job, the RaPC-
L1 model files are not required. As the RaPC-L1 compres-
sion encrypts (encodes) the informational contents, using the
RaPC-L2(L1) compressed data can provide a certain level of
protection on data privacy in a shared cluster or in a public
cloud environment.

The Word Count job is used as a standard benchmark for
results comparison. Also, the Word Count job generates com-
paratively larger intermediate and final output data. Using

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 9

TABLE 1
A summary of MapReduce jobs used for evaluating RaPC on Hadoop.

Job Dataset
Input
Type

Input Intermediate Output
Memory

Allocation
Duration

Performance
Gain

Size Reduction
(Input)

Site Rank DS-
Memes

O : 52.5 GB 2.1 GB 20.7 MB 7.5 GB 16m32s
H-LZO : 21.0 GB 2.0 GB 20.7 MB 4.1 GB 8m56s 46.0% 60.0%

L2 : 13.5 GB 2.0 GB 20.7 MB 3.1 GB 6m39s 59.8% 74.3%
L2(L1) : 10.9 GB 1.3 GB 13.8 MB 2.2 GB 4m38s 72.0% 79.2%

5-Gram DS-
WikiEN

O : 47.0 GB – 150.9 GB 12.7 GB 25m19s
H-LZO : 20.5 GB – 150.9 GB 10.0 GB 19m19s 23.7% 65.1%

L2 : 13.4 GB – 150.9 GB 8.8 GB 16m52s 33.4% 71.5%
L2(L1) : 10.9 GB – 87.6 GB 7.1 GB 16m18s 35.6% 76.8%

Word Count DS-
StackEX

O : 40.6 GB 30.6 GB 9.0 GB 24.1 GB 74m39s
H-LZO : 17.3 GB 19.5 GB 9.0 GB 15.8 GB 30m35s 59.0% 57.4%

L2 : 11.5 GB 19.1 GB 9.0 GB 14.7 GB 28m33s 61.8% 71.7%
L2(L1) : 9.6 GB 16.4 GB 6.3 GB 13.7 GB 26m22s 64.7% 76.4%

Publication
Indexing

DS-
PubMed

O : 3.1 GB 2.3 GB 482.8 MB 873.2 MB 2m01s
H-LZO : 2.1 GB 2.2 GB 482.8 MB 777.4 MB 1m47s 11.6% 32.3%

L2 : 1.3 GB 2.2 GB 482.8 MB 736.4 MB 1m38s 19.0% 58.1%
L2(L1) : 1.0 GB 1.0 GB 198.6 MB 368.2 MB 1m09s 21.3% 67.7%

Music Rank DS-
Yahoo

O : 10.2 GB 235.6 MB 3.2 MB 3.4 GB 6m48s
H-LZO : 4.2 GB 294.6 MB 3.2 MB 2.9 GB 5m39s 16.9% 58.8%

L2 : 2.4 GB 166.1 MB 3.2 MB 2.3 GB 4m35s 32.6% 76.5%
L2(L1) : 2.2 GB 156.6 MB 2.8 MB 2.4 GB 4m37s 32.1% 78.4%

L2(L1-C) : 2.2 GB 156.6 MB 3.2 MB 2.5 GB 4m45s 30.1% 78.4%

Customer
Satisfaction

DS-
Amazon

O : 33.4 GB 223.1 MB 496.2 MB 4.8 GB 10m16s
H-LZO : 17.1 GB 194.2 MB 496.2 MB 3.2 GB 6m50s 33.4% 48.8%

L2 : 11.1 GB 183.3 MB 496.2 MB 2.0 GB 4m24s 57.2% 66.8%
L2(L1) : 8.3 GB 154.8 MB 350.7 MB 3.5 GB 6m48s 33.8% 75.1%

L2(L1-C) : 8.3 GB 154.8 MB 496.2 MB 3.5 GB 6m54s 32.8% 75.1%

Data
Preprocessing

DS-
Memes

O : 52.5 GB 15.1 GB 29.5 GB 7.9 GB 17m56s
H-LZO : 21.0 GB 15.0 GB 29.5 GB 4.8 GB 11m33s 35.6% 60.0%

L2 : 13.5 GB 15.0 GB 29.5 GB 3.7 GB 8m46s 51.1% 74.3%
L2(L1) : 10.9 GB 11.0 GB 16.3 GB 2.3 GB 5m57s 66.8% 79.2%

Format
Conversion

DS-
Twitter

O : 17.3 GB – 30.4 GB 3.2 GB 6m34s
H-LZO : 10.0 GB – 30.4 GB 2.5 GB 5m01s 23.6% 42.2%

L2 : 6.5 GB – 30.4 GB 2.0 GB 3m58s 39.6% 62.4%
L2(L1) : 6.1 GB – 28.1 GB 1.6 GB 3m18s 49.7% 64.7%

Event
Identification

DS-
Google

O : 158.9 GB 282.1 MB 32.7 KB 18.1 GB 39m52s
H-LZO : 60.9 GB 108.7 MB 32.7 KB 9.5 GB 19m55s 50.0% 61.7%

L2 : 36.0 GB 64.8 MB 32.7 KB 6.4 GB 13m12s 66.9% 77.3%
L2(L1) : 31.1 GB 56.6 MB 20.9 KB 8.4 GB 16m41s 58.2% 80.4%

L2(L1-C) : 31.1 GB 56.6 MB 32.7 KB 8.4 GB 16m49s 57.8% 80.4%

Server Log
Analysis

DS-
Google

O : 158.9 GB 1.0 GB 371.1 KB 26.3 GB 54m57s
H-LZO : 60.9 GB 414.1 MB 371.1 KB 14.6 GB 29m08s 47.0% 61.7%

L2 : 36.0 GB 246.8 MB 371.1 KB 11.4 GB 22m26s 59.2% 77.3%
L2(L1) : 31.1 GB 196.2 MB 273.5 KB 12.1 GB 23m16s 57.7% 80.4%

L2(L1-C) : 31.1 GB 196.3 MB 371.1 KB 12.5 GB 24m04s 56.2% 80.4%
O: Original dataset; H-LZO: Hadoop-LZO; L1: RaPC Layer-1 compression; L2: RaPC Layer-2 compression. The final output is in original
format; L2(L1): RaPC Layer-1 embedded in RaPC Layer-2 compression. The final output is in RaPC Layer-1 compressed format; L2(L1-C):
RaPC Layer-1 embedded in RaPC Layer-2 compression. The final output is in original format. 1GB = 1,073,741,824 Bytes

RaPC-L2 or RaPC-L2(L1) compressed data, we can reduce
the size of the intermediate output by 33.5% and 43.5%,
respectively. Thus, the transport cost of distributing the
Map output to corresponding Reducers over the network
(MapReduce Shuffling phase) can be reduced significantly.
It also reduces the cost of materializing in-memory data to

local persistent storage (local hard disks). The reduction of
the size of the intermediate output is due to the MapReduce
Local Combiner effects.

Recall the work-flows in the Map phase, and note that
the following parameters are the default values in Hadoop
version 2.5.0 or above. When processing a data split, the

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 10

Map outputs are temporarily stored in an in-memory buffer
(100MB). When the buffer fills to a certain threshold (80%), a
background process starts materializing the in-memory data
to the local persistent storage. During this spilling phase, the
buffered data is firstly partitioned according to the number
of Reducers configured for this particular job. Within each
partition, records are sorted by keys. The sorting results are
then fetched to the Local Combiner process to combine the
records with duplicate keys. The output of the Local Combiner
is called a ”Spill” and it is then written to local hard disks.
Generally, the data processed by a Local Combiner is much
smaller depending on the number of records with duplicate
keys found. Thus, we can reduce the time used to write Spill
data to disks.

For each individual Mapper, if the generated interme-
diate data is larger than the in-memory buffer size, each
Mapper will produce a series of Spills. Upon the completion
of processing a data split, all partitions from the group of
Spills that belong to the same Mapper will be merged based
on their partition number and then sorted by record keys.
The sorting results are again fetched to the Local Combiner to
further examine records with duplicate keys. This is the place
where the RaPC can reduce the intermediate data size. The
reasons are as follows. In any given cluster environment,
the HDFS-Block size is fixed. Assume processing each data
split will generate m records on average. With the original
text data, the Local Combiner process is about finding records
with duplicate keys in m. With RaPC compressed data, each
Mapper will receive a block of data with the same size,
but in compressed format. Given the compression ratio ϕ,
defined as ϕ = So−Sc

So
, where So denotes the size of the

source file, and Sc denotes the size of the compressed file.
Each Mapper will actually receive Sc

1−ϕ size data. For in-
stance, in this Word Count job, assuming that the number of
Map output records are proportional to the Map input data
size, using the original text data, each Mapper will receive
64MB (equal to the HDFS-Block size) data split on average
and produce m records. For the RaPC-L2 compressed data
with a compression ratio of 71.7%, each Mapper will receive

64MB
(1−0.717) ≈ 226MB data (after RaPC-L2 decompression)
and produce ∼3.5m number of records. When m increases,
we will have a statistically greater chance of finding more
records with duplicate keys and/or more duplicate keys for
a record, thus further reducing the size of the intermediate
outputs. In general the bigger the size of L2-Block, the
more the effects of Local Combiner with RaPC are further
enhanced.

In the Publication Indexing job, we calculate the descrip-
tive statistics for each publication based on the importance
of the author(s) which is further defined by the number of
publications from the author. Thereafter, the index of the
publication can be sorted by designated statistics. We use
the PubMed database records [40] for this job. The dataset
contains ∼22 million publications and ∼11 million authors.
Referring to Table 1, RaPC-L2 compresses the data by 58.1%
which is the lowest ratio among the ten jobs. Considering
the similar intermediate and final output data size, this low
compression ratio leads directly to the low performance gain
of 19%. Further improvement of 2.3% is given by using
the RaPC-L2(L1) compressed data which is the combined
contribution from the smaller intermediate and final output

data size.

TABLE 2
Comparison of Map input records for the original, RaPC-L2

compressed and RaPC-L2(L1) compressed data.

Number of Map Input Records
Job Original RaPC-L2 RaPC-L2(L1)

Site Rank 919061195 13810 11160
5-Gram 805750261 13823 11027
Word Count 6126845962 11745 9881
Publication Indexing 21788173 1370 1020
Music Rank 699640226 2435 2268
Customer Satisfaction 381554470 11397 8490
Data Preprocessing 919061195 13810 11160
Format Conversion 468854886 6622 6232
Event Identification 1232799308 36915 31840
Server Log Analysis 1232799308 36915 31840

In the Music Rank job, we use the Yahoo! Music Rating
dataset [41] which contains a large number of very small
records (approximately 16 characters per record on average).
The dataset contains∼700 million ratings on∼136 thousand
songs provided by Yahoo! Music services. The task is to
calculate the mean scores and standard deviation for each
song. For this task, the MapReduce Record Readers are heav-
ily loaded supplying records to the corresponding Mappers.
The default Record Reader provided by the MapReduce
framework treats a line as a record. The records processed
by a Mapper will have on average 16 characters. This makes
the default Record Reader inefficient and wastes a lot of clus-
ter resources such as Java Heap Space (memory) assigned
to the Mapper. With compressed contents, our RaPCRecor-
dReader is in fact supplying a set of records to a Mapper at
a time. Table 2 shows the number of records received by
Mappers for each job with different input data. It works by
reading a fixed-size block of data (L2-Block, the size of L2-
Block is adjustable). The block of data will be decompressed
in-memory and then forwarded to a Mapper. Because the
L2-Block size is fixed, and more importantly, each L2-Block
contains a set of complete records, there is no need to
track record length and worry about partial records at the
boundaries of L2-Blocks and HDFS-Blocks. This makes the
RaPCRecordReader more efficient and lightweight than the
default MapReduce Record Reader. Additional to the RaPC-
L2(L1) compressed data, in order to calculate music scores,
we must convert the text contents to real numerical values.
This conversion requires loading the RaPC-L1 compression
model files to each Mapper. The loading process and the text
to numerical value conversion take extra time and occupy
more memory. This leads to the job with the RaPC-L2(L1)
compressed data being slightly slower than the job with
RaPC-L2 compressed data.

The Customer Satisfaction job is a special case. When
processing RaPC-L2 compressed data, the job results in
a relatively high performance gain of 57.2%. Two sources
contribute most to this result. The first source is the lower
data transmission cost due to the smaller data size. The
second source is the Group Record Effect. Records in this
particular dataset are split by empty line(s). Each record
consists of multiple fields delimited by a new line character.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 11

Records contain a variable number of fields. By default, the
MapReduce framework treats the new line character as the
delimiter. The default Record Reader supplies a line of text
to a Mapper at a time. This requires Mappers to wait for
the Record Reader until a full logical record is received. The
waiting time is the main cause of the delay. With RaPC
compressed data, a group of complete records are given to
one Mapper at a time, and therefore, it saves on waiting
time. Indeed, writing a customized Record Reader using a
traditional approach for this particular dataset can improve
the analysis performance on the original dataset. But, it will
incur extra programming and will still suffer from the big
data size.

The Data Preprocessing job is used to evaluate the effec-
tiveness of RaPC-L2(L1) when dealing with highly skewed
giant records. In this job, we create records that have a
source website link as the key and all web pages that refer
to the source website as the value. The preprocessed data
thereafter can be used for other calculations, for example,
web site popularity and centrality analysis. We can use the
Memetracker memes dataset [42]. It contains∼418 million web
page URLs. Some extremely popular websites are referenced
by many web pages. Formatting and appending the refer-
ring web page links to a source website can result in a giant
record. If the size of the giant record is larger than the size
of the Java Heap Space that is currently available to the
Mapper, it will cause very frequent in-memory data to disk
swapping processes. The disk I/O bursts were observed in
both the tasks with original text and RaPC-L2 compressed
text. This irregular event also causes extra delay to the job
completion time.

In contrast, when processing RaPC-L2(L1) compressed
data, it is hard to identify any obvious disk I/O bursts.
Referring to Figure 6, the RaPC-L1 compression ratio for
this particular dataset is ∼49%. Generally, the Map output
records are half the length of those produced by the same
tasks with either original or RaPC-L2 compressed text.
Additionally, in the previous version of Hadoop, when the
record size is larger than the size of the Java Heap Space
available to the Mapper, the MapReduce framework will
throw Java Heap Space Errors, and the corresponding parame-
ter ”mapred.reduce.child.java.opts” needs to be re-adjusted to a
bigger value and then the entire cluster needs to be restarted
to pick up the changes. The Format Conversion job is similar
to the previous task.

The Server Log Analysis and the Event Identification jobs
are used to evaluate RaPC with comparatively large jobs.
The main task of the Server Log Analysis is to determine
the over/under utilized servers from Google Cluster Log
files [43]. The dataset contains ∼1.2 billion records in
Comma Separated Value (CSV) format. For this particular
dataset, RaPC-L2 and RaPC-L2(L1) can reduce the original
data size by 77.3% and 80.4%, respectively. The size of the
intermediate output is significantly smaller because of the
MapReduce Local Combiner effects discussed above and the
highly repetitive nature of the data. Due to the significant
data size reduction (both input and intermediate output),
we have achieved 59.2% and 57.7% performance gains from
the job with RaPC-L2 and RaPC-L2(L1) compressed data,
respectively. During the analysis, numerical values in the
RaPC-L1 format need to be decoded to standard strings

SiteRank 5-Gram WordCount PublicationIndexing MusicRank

CustomerSatisfaction DataPreprocessing FormatConversion EventIdentification ServerLogAnalysis

0
20

0
40

0
60

0
80

0

0
20

0
40

0
60

0

0
20

0
40

0
60

0

0
10

20
30

40
50

0
50

10
0

15
0

0
20

0
40

0

0
20

0
40

0
60

0
80

0

0
10

0
20

0

0
10

00
20

00

0
10

00
20

00

Dataset

N
um

be
r

of
 M

ap
 P

ro
ce

ss
es

Hadoop-LZO Original RaPC-L2 RaPC-L2(L1)

Fig. 5. Number of Map processes for each job (default to Hadoop) with
original, RaPC-L2 compressed and RaPC-L2(L1) compressed data.

and then converted into real numerical values. This requires
the RaPC-L1 compression model file to be available for
each Mapper, which makes RaPC-L2(L1) job slower than
the job with the RaPC-L2 compressed data. The level of the
performance degradation is influenced by the number of
Mappers and how much RaPC-L1 compressed data needs
to be decoded during the analysis. If we increase the HDFS-
Block size (equivalent to reduce the number of Mappers),
we can improve analysis speed and memory consumption,
accordingly. Note that the RaPC-L1 compression model file
needs to be loaded to each Mapper separately. The smaller
number of Mappers results in less memory (aggregated)
being used to hold the RaPC-L1 models. Rationally, if a
considerable portion of the RaPC-L1 data needs to be de-
coded during the job execution, then just using the RaPC-L2
compression for the data is a more appropriate approach.
This also applies to the Event Identification job.

In general, using the RaPC-L2 or RaPC-L2(L1) com-
pressed data requires much less memory. The reasons are
as follows. Firstly, Mappers are independent processes and
require dedicated Java Virtual Machines (JVMs). Each has a
default and dedicated Java Heap Space assigned to it. The
more Mappers the more memory is required. Because the
input data size is the dominant factor affecting the number
of Mappers, the compressed data size is significantly smaller
resulting in a smaller number of Mappers and consequently
less aggregate memory consumption. Figure 5 shows the
default number of Mappers configured for each job with
the original, RaPC-L2, and RaPC-L2(L1) compressed data.
Moreover, supplying a block of data to a Mapper at a time
can make more efficient use of the memory .

Furthermore, we compare the RaPC scheme with the
state-of-the-art Hadoop-LZO. Using Hadoop-LZO compressed
data in Hadoop is similar to our RaPC scheme. Hadoop-
LZO compresses data using the standard LZO compres-
sor. The compressed data is then uploaded to HDFS. A
special indexer program is used to index and record the
splittable boundaries of the compressed data. The output of
the indexer is a set of indexing files which are associated
with each individual dataset. In MapReduce, each Mapper
uses the indexing files to calculate splittable boundaries
and take the data block for processing. As the number of
datasets increases, maintaining and processing the indexing
files can be complicated. The main comparison results are
shown in Table 1. In general, using RaPC compressed data

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 12

Configured with default compression level

0

10

20

30

40

50

60

70

80

90

100

DS-Amazon
DS-Google

DS-Memes
DS-PubMed

DS-Reddit
DS-StackEX

DS-Twitter
DS-Yahoo

DS-WikiEN
DS-WikiML

C
om

pr
es

si
on

 R
at

io
 (

%
)

Algorithms

RaPC-L1 Only
RaPC-L2 Only
RaPC-L2(L1)
Gzip

Bzip
LZO
Snappy

Fig. 6. RaPC compression ratio comparing to Bzip, Gzip and LZO with
default compression level .

can improve MapReduce performance by 13.5% (RaPC-L2)
and 15.1% (RaPC-L2(L1)), and can further reduce data size
by 16.2% (RaPC-L2) and 21.0% (RaPC-L2(L1)), on average,
compared to that using Hadoop-LZO compressed data.

In brief, we have demonstrated the flexibility and effec-
tiveness of using RaPC with MapReduce using a variety of
standard MapReduce jobs. Using RaPC-L2 does not exhibit
any shortcomings and RaPC-L2(L1) can further improve
efficiency of analysis speed, cluster memory usage, and
storage usage. It can be most beneficial to clusters that
are I/O bound and for whom storage space is a concern.
For some jobs that need many conversions, for example,
financial report analysis, using the T() function frequently
can affect the overall performance. In those cases, using
RaPC-L2 compression alone may be more appropriate.

5.2 RaPC Characteristics
In this section, we evaluate the characteristics of RaPC-L1, -
L2, and -L2(L1) schemes in terms of compression ratio, com-
pression speed and decompression speed. The results are
thereafter compared with four common compressors that
are currently supported by the Hadoop system, including
Gzip (v1.6), Bzip (v1.0.6), LZO (v1.03) and Snappy (v1.1.2).
Exactly 2GB of data is drawn from each dataset (as shown
in Table 4) for the experiments. There are five runs for each
experiment. The compression ratio for Gzip, Bzip, LZO and
Snappy are identical across the five runs. In contrast, there
are some slight variations in the RaPC-L1, -L2, and -L2(L1)
compression results due to the random sampling effects. The
compression and decompression speed also varies slightly
due to system variation of the testbed. The mean values and
standard mean errors are calculated and included in the ex-
perimental results. All experiments are carried out on Linux
kernel version 3.19.0 and x86 64 architecture platform with
dual WD5000AAKS-75V0A0 500GB hard disks (7200RPMs)
and Ext4 (version 1.0) file system.

5.2.1 Compression Ratio
Compression ratio is content dependent. Figure 6 shows the
compression results for RaPC, Gzip, Bzip, LZO and Snappy.
Specifically, Gzip, Bzip and LZO are configured with the
default compression level settings. RaPC-L1 can compress
data by ∼50% on average. There are two exceptions: dataset
DS-Twitter and dataset DS-WikiML. Recall that RaPC-L1
does not compress Unicode contents. Dataset DS-WikiML is

multi-language Wikipedia articles, where the majority of the
contents are complex Unicode texts which are incompress-
ible. Additionally, we must use the 0x11 and 0x12 character
pair to enclose any Unicode strings. This leads to the low
RaPC-L1 compression ratio on dataset DS-WikiML. Dataset
DS-Twitter contains ∼490 million Twitter tweets collected
world wide. A large number of records contain Unicode
texts. Moreover, each tweet record is comprised of a time-
stamp, anonymized user ID which is often a hash code,
and tweet topics. This makes the vocabulary size for the
dataset much larger. Considering that the RaPC-L1 code
length increases with the vocabulary size, this makes the
average code-length longer for the dataset. In practice, if the
the data is known to contain many Unicode strings, it is
better to avoid using RaPC-L1 compression at all.

RaPC-L2 is a block-based compression based on the De-
flate algorithm. In principle, RaPC-L2 can achieve the same
compression ratio as Gzip. Recall that, in RaPC-L2 compres-
sion, we intentionally break the connections between DO-
Blocks and stuff trailing bytes at the end of each L2-Block;
this makes RaPC-L2 compression slightly worse than Gzip.
In fact, RaPC-L2 compression ratio is very close to Gzip.

RaPC-L2(L1) is a composite compressor. It applies the
RaPC-L2 compression on the RaPC-L1 compressed data.
In practice, it can achieve compression ratios close to Bzip
and sometimes even better than Bzip. For example, the
compression results from Bzip and RaPC-L2(L1) for dataset
{DS-Google, DS-Memes, DS-Twitter, DS-WikiEN} are given
by {{152.2MB, 150.5MB}, {465.6MB, 442.4MB}, {663.5MB,
663.3MB}, {456.3MB, 427.1MB}}, respectively.

5.2.2 Compression Speed

Configured with default compression level

0

50

100

150

200

250

300

350

400

DS-Amazon
DS-Google

DS-Memes
DS-PubMed

DS-Reddit
DS-StackEX

DS-Twitter
DS-Yahoo

DS-WikiEN
DS-WikiML

C
om

pr
es

si
on

 S
pe

ed
 (

se
cs

)

Algorithms

RaPC-L1 Only
RaPC-L2 Only
RaPC-L2(L1)
Gzip
Bzip
LZO
Snappy

Fig. 7. RaPC compression speed comparing to Bzip, Gzip and LZO with
default compression level .

For compression speed, the current implementation of
RaPC-L2 achieves similar speed to Gzip, and RaPC-L2(L1)
is similar to Bzip. Figure 6 shows the compression speed
with default compression levels configured for Gzip, Bzip
and LZO. In general, Bzip is the slowest compressor, because
it has an extra step for block sorting. The speed is often
influenced by block size. LZO is the fastest on decompres-
sion. In contrast, RaPC-L2 and Gzip are relatively stable
and consistent. Figure 6 shows the decompression speed
for each compressor configured with default compression
levels. Furthermore, we compare the RaPC scheme with the
state-of-the-art Hadoop-LZO. Using Hadoop-LZO compressed
data in Hadoop is similar to our RaPC scheme. Hadoop-
LZO compresses data using the standard LZO compressor.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 13

Configured with default compression level

0

10

20

30

40

50

60

70

80

90

DS-Amazon
DS-Google

DS-Memes
DS-PubMed

DS-Reddit
DS-StackEX

DS-Twitter
DS-Yahoo

DS-WikiEN
DS-WikiML

D
ec

om
pr

es
si

on
 S

pe
ed

 (
se

cs
)

Algorithms

RaPC-L1 Only
RaPC-L2 Only
RaPC-L2(L1)
Gzip

Bzip
LZO
Snappy

Fig. 8. RaPC decompression speed comparing to Bzip, Gzip and LZO
with default compression level .

TABLE 3
Performance of the Hadoop-LZO compression.

Dataset Compression Time Indexing Time Index Size
DS-Amazon 6m44s 6m46s 1.0 MB
DS-Google 30m17s 10m04s 5.1 MB
DS-Memes 10m17s 3m53s 1.6 MB
DS-PubMed 0m38s 0m54s 98 KB
DS-StackEX 8m19s 2m53s 1.3 MB
DS-Twitter 3m34s 4m10s 555 KB
DS-WikiEN 8m38s 4m41s 1.5 MB
DS-Yahoo 1m50s 0m45s 325 KB

A special indexer program is used to index and record the
splittable boundaries of the compressed data. The output of
the indexer is a set of indexing files which are associated
with each individual file in the given dataset. Table 3 shows
the performance of the Hadoop-LZO, in terms of compression
speed and the size of the indexing file(s). As the number of
files increases, maintaining and processing the indexing files
can be complicated.

6 CONCLUSION

The real value of big data has been gradually realized and
boosted recently by successes in both public and private
sectors. This encourages decision makers to accumulate
more data and perform analysis at an increasingly larger
scale. As the ever-increasing volume of data is continuously
challenging data analysis tools, algorithms and platforms,
data compression is an effective way of reducing data
size. However, existing compression schemes do not offer
significant benefits to big data analysis. In order to get
the maximum value out of using data compression for big
data analysis, designing new compression schemes that take
into consideration data content, computational model and
analytics platform is necessary. In response, we have devel-
oped the RaPC scheme which leverages novel compression
for improving performance and reducing resource require-
ments for textual big data analysis in Hadoop. It has been
implemented as a full solution supporting ease of use by
developers and orthogonal to other possible optimizations.
The advantages of the RaPC scheme for textual data analysis
have been demonstrated using a variety of standard real-
world benchmarks.

REFERENCES

[1] T. H. Davenport and J. Dyché, “Big data in big companies,”
International Institute for Analytics, Thomas H. Davenport and
SAS Institute Inc., Report, May 2013.

[2] D. K. Peter Groves, Basel Kayyali and S. V. Kulken, “The big
data revolution in healthcare: Accelerating value and innovation,”
Center for US Health System Reform Bussiness Technology Office,
Report, Jan 2013.

[3] V. Kellen, A. Recktenwald, and S. Burr, “Applying big data in
higher education: A case study,” Cutter Consortium, Data Insight
& Social BI Executive Report 8, December 2013.

[4] V. Morabito, “Big data and analytics for government innovation,”
in Big Data and Analytics. Springer Science & Business Media,
2015, ch. Chapter 2: Big Data and Analytics for Government
Innovation, pp. 23–45.

[5] J. Grimmer, “We are all social scientists now: How big data, ma-
chine learning, and causal inference work together,” PS: Political
Science & Politics, vol. 48, no. 01, pp. 80–83, dec 2014.

[6] Kenneth Neil Cukier and Viktor Mayer-Schoenberger , “The rise
of big data,” 2013.

[7] J. F. G. Vernon Turner, David Reinsel and S. Minton, “The Digital
Universe of Opportunities: Rich Data and the Increasing Value of
the Internet of Things,” IDC Analyze the Future, IDC Analyze the
Future, Tech. Rep. 1672, Apr 2014.

[8] PODS ’97: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. ACM, 1997.

[9] P. Russom, “BI Search and Text Analytics: New Addition to the
BI Technology Stack,” TDWI Best Practices Report, The Data
Warehousing Institute, Tech. Rep., Second Quarter 2007.

[10] O. Goonetilleke, T. Sellis, X. Zhang, and S. Sathe, “Twitter analyt-
ics: A big data management perspective,” SIGKDD Explor. Newsl.,
vol. 16, no. 1, pp. 11–20, Sep. 2014.

[11] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Commun. ACM, vol. 58, no. 7, pp. 56–68, Jun. 2015.

[12] C. Otero and A. Peter, “Research directions for engineering big
data analytics software,” Intelligent Systems, IEEE, vol. 30, no. 1,
pp. 13–19, Jan 2015.

[13] M. Banko and E. Brill, “Scaling to very very large corpora for nat-
ural language disambiguation,” in Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, ser. ACL ’01.
Association for Computational Linguistics, 2001, pp. 26–33.

[14] D. Dong and J. Herbert, “Record-aware compression for big tex-
tual data analysis acceleration,” in Big Data (Big Data), 2015 IEEE
International Conference on, Oct 2015, pp. 1183–1190.

[15] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
mapreduce: An in-depth study,” Proc. VLDB Endow., vol. 3, no.
1-2, pp. 472–483, Sep 2010.

[16] R. B.-Y. Donna Harman, Edward Fox and W. Lee, Information
Retrieval: Data Structures and Algorithms, Inverted files. Prentice-
Hall, Inc., 1992, ch. 3.

[17] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proceedings of the 41st Annual Symposium on Foun-
dations of Computer Science, ser. FOCS ’00. IEEE Computer Society,
2000, pp. 390–.

[18] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes (2Nd
Ed.): Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers Inc., 1999.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), May 2010, pp. 1–10.

[20] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[21] D. Miner and A. Shook, MapReduce Design Patterns: Building Effec-
tive Algorithms and Analytics for Hadoop and Other Systems, 1st ed.
O’Reilly Media, Inc., 2012.

[22] S. Kumar, F. Morstatter, and H. Liu, Twitter Data Analytics.
Springer, 2013.

[23] J. Lin, D. Ryaboy, and K. Weil, “Full-text indexing for optimizing
selection operations in large-scale data analytics,” in Proceedings of
the Second International Workshop on MapReduce and Its Applications,
ser. MapReduce ’11. ACM, 2011, pp. 59–66.

[24] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” Proc. VLDB Endow., vol. 3, no. 1-2, pp.
515–529, Sep 2010.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2721431, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 14

TABLE 4
List of public and private datasets used for the evaluation of RaPC

Index Dataset and Source Format Size (GB) Description

DS-Amazon Amazon Product Reviews [44] TXT 33.4 ∼35 million reviews on ∼2.5 million products from ∼6.6 million
users.

DS-Google Google Server Logs [43] CSV 158.9 ∼1.2 billion server usage traces from a Google cluster (US Eastern)
of ∼11 thousand machines.

DS-Memes Memetracker Memes [42] TXT 52.5 ∼96 million documents; ∼211 million memes; and over 418 mil-
lion URL links from Memetracker.

DS-PubMed PubMed Records [40] CSV 3.1 ∼22 million publication records of ∼11 million authors from
PubMed database.

DS-StackEX StackExchange Posts [45] XML 40.6 An anonymized dump of user-contributed contents on the Stack
Exchange network.

DS-Twitter Tweet Topics [46] TSV 17.3 ∼490 million tweet records. Each record consists of timesamp,
anonymized user id, and topics.

DS-Yahoo Yahoo! Music Ratings [41] TSV 10.2 ∼700 million ratings on ∼136 thousand songs from ∼1.8 million
users of Yahoo! Music service.

DS-WikiEN Wikipedia Article Abstract [47] XML 47.0 The latest article abstracts (English) from Wikipedia.

1GB = 1,073,741,824 Bytes

[25] S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and J. Dittrich, “Towards
zero-overhead static and adaptive indexing in hadoop,” The VLDB
Journal, vol. 23, no. 3, pp. 469–494, Jun 2014.

[26] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “Column-
oriented storage techniques for mapreduce,” Proc. VLDB Endow.,
vol. 4, no. 7, pp. 419–429, Apr 2011.

[27] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu, “Llama:
Leveraging columnar storage for scalable join processing in the
mapreduce framework,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’11.
ACM, 2011, pp. 961–972.

[28] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major
technical advancements in apache hive,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. ACM, 2014, pp. 1235–1246.

[29] R. S. Rozov, Roye and E. Halperin, “Fast lossless compression via
cascading bloom filters,” BMC Bioinformatics, vol. 15, no. 13, p. S7,
Sep 2015.

[30] H. Stranneheim, M. Käller, T. Allander, B. Andersson, L. Arvestad,
and J. Lundeberg, “Classification of dna sequences using bloom
filters,” Bioinformatics, vol. 26, no. 13, pp. 1595–1600, 2010.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul 1970.

[32] N. Asadi and J. Lin, “Fast candidate generation for real-time tweet
search with bloom filter chains,” ACM Trans. Inf. Syst., vol. 31,
no. 3, pp. 13:1–13:36, Aug. 2013.

[33] RainStor, http://rainstor.com/, [Accessed on 20-Sep-2015].
[34] J. loup Gailly and M. Adler, http://www.gzip.org, [Accessed on

20-May-2015].
[35] D. Dong and J. Herbert, “Record-aware two-level compression

for big textual data analysis acceleration,” in 2015 IEEE 7th In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom), Nov 2015, pp. 9–16.

[36] P. Deutsch, “DEFLATE Compressed Data Format Specification
version 1.3,” Internet Requests for Comments, RFC Editor, RFC
1951, May 1996.

[37] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” Information Theory, IEEE Transactions on, vol. 23,
no. 3, pp. 337–343, May 1977.

[38] D. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–
1101, Sep 1952.

[39] V. Grolmusz, “A note on the pagerank of undirected graphs,”
Information Processing Letters, vol. 115, no. 68, pp. 633 – 634, 2015.

[40] G. LaRowe, S. Ambre, J. Burgoon, W. Ke, and K. Brner, “The
scholarly database and its utility for scientometrics research,”
Scientometrics, vol. 79, no. 2, pp. 219–234, 2009.

[41] Yahoo! Webscope Dataset, “dataset ydata-ymusic-user-artist-
ratings-v1.0,” http://research.yahoo.com/Academic Relations,
2002 - 2006, [Accessed on 20-Apr-2015].

[42] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and
the dynamics of the news cycle,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’09. ACM, 2009, pp. 497–506.

[43] J. W. Charles Reiss and J. L. Hellerstein, “Google cluster-usage
traces: format and scheme,” Nov 2011.

[44] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
Modeling the evolution of user expertise through online reviews,”
in Proceedings of the 22Nd International Conference on World Wide
Web, ser. WWW ’13. International World Wide Web Conferences
Steering Committee, 2013, pp. 897–908.

[45] Internet Archive, “Stack exchange data dump,” https://archive.
org/details/stackexchange, [Accessed on 29-Jan-2015].

[46] L. Weng and F. Menczer, “Topicality and social impact: Diverse
messages but focused messengers,” arXiv, Tech. Rep., 2014.

[47] Wikimedia Database Backup EN, http://dumps.wikimedia.org/
enwiki/enwiki-latest-abstract.xml, [Accessed on 02-Dec-2014].

Dapeng Dong is a senior Postdoctoral Re-
searcher at the Boole Centre for Research in
Informatics of University College Cork, Ireland.
He received his Ph.D. in computer science and
M.Sc. in Software and Systems for Mobile Net-
works from University College Cork, Ireland.
His research interests include self-organizing
and self-managing cloud architecture, cloud re-
source optimization, and efficient methods for
big data analytics.

John Herbert is a senior lecturer at University
College Cork, Ireland. He received his Ph.D. in
computer science from the University of Cam-
bridge, M.Sc. in Physics from University Col-
lege Cork, Ireland. He has worked for SRI In-
ternational, USA, Cambridge, UK, and the Uni-
versity of Cambridge Computer Laboratory. His
research interests include modeling and imple-
mentation of architectures for pervasive comput-
ing, cloud computing, and big data analytics.

