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ABSTRACT
Proportion data from dose-response experiments are often
overdispersed, characterised by a larger variance than assumed by
the standard binomial model. Here, we present different models
proposed in the literature that incorporate overdispersion. We also
discuss how to select the best model to describe the data and
present, using R software, specific code used to fit and interpret
binomial, quasi-binomial, beta-binomial, and binomial-normal
models, as well as to assess goodness-of-fit. We illustrate
applications of these generalised linear models and generalised
linear mixed models with a case study from a biological control
experiment, where different isolates of Isaria fumosorosea
(Hypocreales: Cordycipitaceae) were used to assess which ones
presented higher resistance to UV-B radiation. We show how to
test for differences between isolates and also how to statistically
group isolates presenting a similar behaviour.
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Introduction

The class of generalised linear models (GLM) was introduced by Nelder and Wedderburn
(1972) as a general framework for handling a range of statistical models for normal and
non-normal data. The GLM framework allows us to analyze proportion data.

An extension of these models are the generalised linear mixed models (GLMM), which
include random effects in the linear predictor, and can be used to adequately accommo-
date extra variability. When the variation is greater than expected by the standard Poisson
and binomial models, natural starting points for the analysis of count and proportion data,
respectively, this phenomenon is referred to as overdispersion (Hinde & Demétrio, 1998).
In the presence of overdispersion, an alternative is to include random effects in the linear
predictor of the model to explain the extra-variability.

Germination data are usually overdispersed (Hinde & Demétrio, 1998). This may be
due to individual variability of the experimental units, or due to some correlation
between these units. For example, experimental units consisting of a Petri dish or a test
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tube that are set up using the same solutions have a higher correlation than units with
different solutions. The main problem of not considering overdispersion in the model
when it is present is the under estimation of standard errors and, consequently, erroneous
interpretation and conclusions drawn.

One of the interests of fungus germination data is to assess the Ultraviolet radiation
(UV-B) tolerance of reproductive structures (conidia) of entomopathogenic fungi. The
conidia germination is valued to select the most tolerant fungal isolate that could be
used for the development of biopesticides. However, some isolates may present similar
resistance and, in this case, it is necessary to cluster them according the statistical results.

In this paper, we discuss how to select models to properly analyze overdispersed pro-
portion data, using R (R Core Team, 2017). We then illustrate applications of generalised
linear models and generalised linear mixed models, using fungal germination data. Finally,
once the final model is selected, we present methods for grouping isolates and testing for
differences between them.

Case study

An experiment in a randomised block complete design was conducted in a laboratory to
study the UV-B radiation tolerance on fourteen isolates of Isaria fumosorosea (Wize). The
entomopathogenic fungus Isaria fumosorosea (Wize) Brown & Smith (Ascomycota: Hypo-
creales: Cordycipitaceae) is commonly found in soil and infecting several species of arthro-
pods (Zimmermann, 2008). Mycoinsecticides based on I. fumosorosea were developed and
commercialised in the world being used to control insects of the order Hemiptera
(whitefly, aphids and scales), Thysanoptera (thrips), Acari (spider mites) and Coleoptera
(Faria &Wraight, 2007; Zimmermann, 2008). However, in Brazil there is only one biopro-
duct based on this pathogen to Diaphorina citri control. The objective of this experiment
was to select one strain of I. fumosorosea with high UV-B radiation tolerance for develop-
ing of a new mycopesticide based on I. fumosorosea. The I. fumosorosea strains were
obtained from soil and insects of different Brazilian biomes and preserved in the entomo-
pathogen collection of the Laboratory of Pathology and Microbial Control of Insects at the
‘Luiz de Queiroz’ College of Agriculture (ESALQ), University of Sao Paulo (USP), located
in Piracicaba, SP, Brazil. The conidia suspension of each isolate was inoculated in a one
Petri dish containing culture medium and all Petri dishes were placed to a wooden
chamber with four fluorescent lamps emitting UV-B light. Irradiation experiments were
conducted in a chamber with four UV-B 313EL lamps (Q-lab Cleveland, OH, USA).
The lamps were aged prior to the start the experiments, resulting in a stable level of
irradiation of 1312.4 mW/m2 and 5.20 KJ/h. Therefore, the exposure times were 0, 2, 4,
6 and 8 h, which correspond to total UV-B irradiation of 0, 4.76, 9.52, 14.28 and
19.04 KJ/m2, respectively. The Petri dishes were covered with a 0.13 mm–thick cellulose
diacetate film (Málaga Ltda), which had a cutoff point at 290 nm. This permitted the
passage of most UV-B and UV-A (290–360 nm), with was selected based on the spectral
characteristics of fungal responses reviewed by Paul, Rasanayagam, Moody, Hatcher, and
Ayres (1997). After exposure to UV-B light, the Petri dishes were maintained in a growth
chamber set to 26 ± 2°C under a 12 h photophase for 48 h to allow the recovery and ger-
mination of conidia. The control treatment consisted of Petri dishes containing the
conidia suspension of each isolate without exposure to UV-B radiation. Germination of
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this treatment was quantified after 24 h of incubation in a growth chamber at 26°C and
12 h of photophase. The direct count of germinated and non-germinated conidia was per-
formed under a light microscope following the methodology of Oliveira, Pauli, Mascarin,
and Delalibera (2015). After that, the dishes were incubated for 48 h to allow for fungi
recovery and conidia germination. The direct counting of the number of germinated
and non-germinated conidia was carried out using an optical microscope (400x), and
conidia were considered as germinated if their germ tube was twice as long as the
spore. All treatments were repeated four times in the same conditions. In each of
the replicates (blocks), was prepared one conidia suspension of each isolate and used
for inoculation in five Petri dishes corresponding to each exposure time (0, 2, 4, 6
and 8 h), adding up to 14 isolates × 5 exposure time (hours) × 4 blocks (replicates) =
280 observations. In this case, we may expect correlation between the isolates per
block. There is also an inherent variability of the application of fungal suspensions
in the centre of the Petri dishes due to the use of hand-held instruments (micropip-
ette), or conduction by different people. We present the observed means and standard
errors for each combination between isolate and exposure time as online Supplemen-
tary Material.

The exploratory plots of the data (Figure 1) show the proportions of germinated conidia
for each fungus, over time of exposure. At the beginning of the experiment, the isolate is
less exposed to UV-B radiation, thus, has a higher germination rate. However, the longer
the exposure time, greater is the damage to the isolate, which causes the germination
reduction and, in some cases, the death of the conidia. There is large variability
between blocks within isolates (Figure 1(a)) and also between isolates (Figure 1(b)).
Also, there are different starting points for each curve at time 0 (Figure 1(b)), i.e. the iso-
lates have different initial proportions of conidia germination.

Figure 1. Plots of (a) observed proportion of germinated conidia vs. exposure time per isolate and (b)
averages of observed proportion of germinated conidia vs exposure time for each isolate.
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Statistical methods

Here, the outcome of interest is the proportion of germinated conidia, hence the response
variable is the ratio between the number of germinated conidia, represented by the
random variables Yi, i = 1, . . . , n, and the total number of conidia in the i-th Petri
dish, mi, i = 1, . . . , n.

If we assume each conidia has the same germination probability, then we can assume
the binomial distribution for our variables of interest Yi. The binomial model is a reason-
able starting point to analyze these data, and extensions are available, such as the ones dis-
cussed in latter sections. This is a specific example of a generalised linear model (Nelder &
Wedderburn, 1972).

Introduction to generalized linear models (GLMs)

The class of GLMs consists of three components: (i) the random component of the model,
i.e. a univariate distribution belonging to the exponential family, with probability

density function (pdf)

f (yi; ui; f) = exp{f−1[yiui − b(ui)]+ c(yi, f)} i = 1, . . . , n; (1)

where b(·) and c(·) are known functions, ui is called the natural parameter and f the dis-
persion parameter (for the normal distribution, for example, we have u = m and f = s2,
the mean and variance, respectively); (ii) a linear predictor related to the explanatory vari-
ables

hi = bTxi

where β is a vector of p unknown parameters and xi = [x1, . . . , xn]
′ is the i-th column of

the n × p design matrix; and (iii) a link function g(mi) = hi, relating the systematic to the
random component (Demétrio, Hinde, & Moral, 2014). We have that the mean is
E[Yi] = mi and the variance is Var[Yi] = fb′′(ui) = fV(mi), where V(mi) is called var-
iance function.

Nelder and Wedderburn (1972) proposed the analysis of deviance, generalising the
ideas in standard ANOVA, to assess the significance of effects in the linear predictor.
In this framework, a measure that compares a fitted model to the saturated model (i.e.
a model that has one parameter per observation), and, for known f, can be used as a
measurement of goodness-of-fit for the fitted model, is the residual deviance. For the bino-
mial model, the residual deviance can be written as

DB = 2
∑n
i=1

yi log
yi
m̂i

( )
+ (mi − yi) log

mi − yi
mi − m̂i

( )[ ]

where m̂i, i = 1, 2, . . . , n, are the fitted values for the current model. Asymptotically (i.e.
for a large sample size), DB has an approximate x2 distribution with n− p degrees of
freedom (df).

To compare nested models, which are models that contain the same terms and one has
at least one additional term, by writing Dp for the residual deviance of the full model and
Dq for the reduced model, the statistic Dq − Dp � x2q−p can be used to test the hypothesis
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that true coefficient values of omitted terms are zero. This test corresponds to a likelihood-
ratio test, and if Dq − Dp . x2q−p;(1−a), the upper 100× a percentile of the x2q−p distri-
bution, we reject the null hypothesis that the additional parameter is zero at a significance
level of a, which means that the parameters tested are important to describe the data and
should remain in the model (Demétrio et al., 2014).

To detect possible model failure we can use diagnostic plots. In general, we compare
observed and fitted values using some type of residuals, usually the deviance residuals.
Atkinson (1985) proposed the addition of a simulated envelope to half-normal plots to
check the goodness-of-fit of a given model to a set of observations. The half-normal
plots show the residuals (or any other model diagnostic) should behave if the observed
data were a plausible realisation of the fitted model, making it possible to detect overdis-
persion in the data. If many points are outside the envelope, then the fitted model is not
suitable for analyzing the data. A fit is usually considered satisfactory when the number of
points outside of the simulation envelope falls below 5%. In R, these plots are implemented
as the hnp package (Moral, Hinde, & Demétrio, 2017).

Binomial model

Let Yi be a random variable representing counts of successes out of a sample of sizemi, i =
1,… ,n, then a reasonable assumption would be that Yi � Bin(mi, pi), with probability
function (pf)

P[Yi = yi] = mi

yi

( )
p
yi
i (1− pi)

mi−yi , yi = 0, 1, . . . , mi.

We have that E[Yi] = mi = mipi and

Var[Yi] = mipi(1− pi) (2)

The GLM framework allows us to model the expected proportions pi in terms of expla-
natory variables x1, . . . , xn (Hinde & Demétrio, 1998). The usual (canonical) link func-
tion for the binomial GLM is the logit

g(mi) = ln
pi

1− pi

( )
(3)

This link function maps the probabilities pi to the real line, and yields the characteristic
sigmoid curve used to describe the behaviour of the response variable in dose-response
experiments.

Because pi is bounded between 0 and 1, Var[Yi] = (1− pi)E[Yi] , E[Yi] and hence,
when the variability of the data is larger than the mean, this model is not able to accom-
modate overdispersion. Therefore, extensions of the binomial model can be used to
analyze overdispersed data, such as the ones described in the following sections.

Quasi-binomial model

The simplest way to deal with overdispersion is based on a quasi-likelihood approach,
which requires the specification of the first two moments of the distribution, i.e, the
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mean and the variance. For the binomial GLM, Equation (2) is replaced by

Var[Yi] = fmipi(1− pi), (4)

where f is called the dispersion parameter. Differently from the binomial model, in which
f is known (f = 1), here it is considered as an unknown parameter and a way of estimat-
ing f is through

f̃ = X2
B

n− p

where X2
B = ∑n

i=1 (yi −mi p̂i)
2
/(mi p̂i(1− p̂i)) is the generalised Pearson statistic for the

binomial model, a measure of goodness-of-fit, such as the residual deviance.

Beta-binomial model

One of the assumptions of the binomial model is that the probability of success is the same
for every Bernoulli trial.1 An alternative is to allow the probability of success to vary
according to some distribution. Because this probability is continuous and can assume
values in the interval (0,1), the beta distribuition is a suitable option. Let
Yi|Pi � Binomial (mi, Pi), with Pi � Beta(ai, bi). Then marginally, Yi has a beta-bino-
mial distribution with mean and variance given by

E[Yi] = mipi (5)

and

Var[Yi] = mipi(1− pi)[1+ f(mi − 1)], (6)

where pi = ai/(ai + bi) and f = 1/(ai + bi + 1) with (ai + bi) considered to be constant.
This model is often used when the binomial denominador mi is variable (Demétrio et al.,
2014).

Hence, if f = 0 the variance function in Equation (6) will be of the same form as in the
binomial model (Equation (2)). If the mi are equal, the variance function in Equation (6)
will be of the same form as in the quasi-binomial model (Equation (4)).

Logistic-normal model

Another way to incorporate overdispersion is to assume that there is random variation in
the linear predictor hi. This can be done by including a random effect in the linear pre-
dictor, i.e. hi = x′ib+ Zi, with Zi � N(0, s2). Using a logit link (Equation (3)), we
obtain the logistic-normal model. The expectation of Yi is the same as in Equation (5),
and the variance may be approximated by

Var[Yi] ≈ mipi(1− pi)[1+ s2(mi − 1)pi(1− pi)]

This is the simplest case of a GLMM, because it includes fixed and random effects in the
linear predictor.

In some applications these random effects can be interpreted, e.g. when there is random
variation in the conidia concentration of the solutions, this may increase data variability,
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and observational-level random effects can be included in the linear predictor to explain
this extra-variability.

Here, we use likelihood-ratio tests to assess the significance of the variance components.
The null hypothesis for a variance component s2 is H0: s2 = 0 versus the alternative
H1: s2 . 0. Because this test is on the boundary of the parameter space (i.e. the

variance cannot be negative), the resulting asymptotic distribution of the test statistic is
a mixture of chi-square distributions. For more details, see Verbeke and Molenberghs
(2003).

Analysis the case-study

Fitting the binomial model

We begin by fitting a standard binomial logit model (M1), using the maximal linear pre-
dictor for this case, i.e. with different logistic regression curves (one for each of the
different isolates, with different intercept by block):

hjik = gj + b0i + b1itk, j = 1, . . . 4, i = 1, . . . , 14 and k = 1, . . . , 5, (7)

where gj is the effect of j-th block, b0i and b1i are the intercept and slope for the i-th
isolate, respectively and tk is the k-th exposure time. Here, the outcome variable is the pro-
portion of germinated conidia and we have two covariates: the identification of the fungus
isolate, represented as a categorical variable in the model, and the dose of exposure time
represented in the model as a continuous variable. The R code to carry out the analysis is
given in Box 1.

Box 1. R code to fit the standard binomial model to the germination data.

# read data
germination <- read.table(’data.txt’,header=TRUE,dec=’,’,sep=’\t’)
# examining first 6 rows of the dataset
head(germination)
FUNG DOSE BLOCK TOTAL GERM
1 1296 0 1 126 126
2 1296 2 1 112 111
3 1296 4 1 110 108
4 1296 6 1 68 66
5 1296 8 1 74 24
6 1296 0 2 88 88
resp <- with(dados,cbind(GERM,TOTAL-GERM))
# fitting binomial model (M1) using block and fung as factor,
# dose as numeric and the linear predictor (7)
M1 , − glm(resp ~ BLOCK+FUNG*DOSE, family=binomial,
data=germination)
# check adequacy of model using hnp
require(hnp)

Looking at the half-normal plot with simulated envelope for the deviance residuals
(Figure 2(a)), there is evidence that the model does not fit the data satisfactorily. We
are looking here for clear patterns of systematic deviations from the expected shape of
the envelope, which will mean that the observed values are not a plausible realisation of
the fitted model and thus it should not be used to analyze the data. Here, the reason for
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this is that there is more variability than the binomial model accommodates, and hence the
data is overdispersed.

As suggested by Demétrio et al. (2014), as a next step we may try to accommodate the
extra variability by estimating the dispersion parameter with a quasi-binomial model.

Fitting the quasi-binomial model

As we can see from Equation (4), the quasi-likelihood approach estimates the dis-
persion parameter to allow for greater variability. The quasi-binomial model (M2),
with the same linear predictor (7), is easily fitted in R using the quasi-binomial
family in the glm function, and the hnp function can still be used to assess good-
ness-of-fit (Box 2).

Box 2. R code to fit the quasi-binomial model to the germination data.

# fitting the quasi-binomial model (M2) using block and fung as
# factor, dose as numeric and the linear predictor (7)
M2 <- glm(resp ~ BLOCK + FUNG*DOSE, family=quasibinomial,

data=germination).
# check adequacy of model using hnp
hnp(M2, paint.out=TRUE,print=TRUE)

Again, there is strong evidence of an inadequate model fit, with 80.71% of the observed
residuals lying outside the simulated envelope (Figure 2(b)).

Fitting the beta-binomial model

The beta-binomial distribution is an alternative approach to account for overdispersion.
We can easily fit the beta-binomial model (M3) with the same linear predictor (7) in R
(Box 3) by making use of the aods3 package (Lesnoff & Lancelot, 2013).

Figure 2. Germination data – Half-normal plot with simulation envelopes for deviance residuals of: (a)
binomial model; (b) quasi-binomial model; (c) Beta Binomial model; all of them with maximal linear
predictor (Equation (7)).
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Box 3. R code to fit the beta binomial model to the germination data.

require(aods3)
# fitting the beta-binomial model (M3) using block and fung as
# factor, dose as numeric and the linear predictor (7)
M3 <- aodml(resp ~ BLOCK+FUNG*DOSE, family=’bb’, data= germination)
# check adequacy of model using hnp
hnp(M3, paint.out=TRUE,print=TRUE)

It appears that this model provides a better fit to the data when compared to the quasi-
binomial model. However, there is still a considerable amount of points outside of the
simulated envelope when looking at the half-normal plot of the deviance residuals
(Figure 2(c)). The next step is to try a model that incorporates random effects to
capture this extra-variation.

Fitting the logistic-normal model

In each of the blocks, the same suspensions were used for the inoculation. Then we can
add a random effect to account for the correlation between proportions taken on the
same isolate and block. Using the logistic-normal model (M4), we can add to the linear
predict (7) a normal random effect on the intercept

hjik = gj + b0i + b1itk + b0ij, j = 1, . . . 4, i = 1, . . . , 14 and k = 1, . . . , 5, (8)

where b0ij is the random effect for the intercept of the i-th isolate and j-th block with var-
iances s2

I . We may easily fit different logistic-normal model (M5) in which a random effect
to slope is also included in the linear predictor (8)

hjik = gj + b0i + b1itk + b0ij + b1ij tk, (9)

where b1ij is the random effect for the slope of the i-th isolate and j-th block with variances

s2
S and

b0ij
b1ij

[ ]
� N2

0
0

( )
,
∑[ ]

with
∑ = s2

I
sIS

,
sIS

s2
S

[ ]
. These two normal random

effects will account for part of the variability induced by the use of the different fungal
suspensions.

Another practical explanation for the extra-variation could be the random variation of
the conidia concentration. This can be taken into account in the model by adding in the
linear predictor (9) an observation-level random effect (M6)

hjik = gj + b0i + b1itk + b2j + b0ij + b1ij tk + z jik, (10)

where zjik � N(0, s2
O) is the observation level random effect. For the models presented in

Equations (9) and (10) we assume
b0ij
b1ij

[ ]
� N2

0
0

( )
,
∑[ ]

with
∑ = s2

I
sIS

,
sIS

s2
S

[ ]
.

We now consider fitting these models making use of the lme4 package (Bates,
Maechler, Bolker, & Walker, 2014) as showed in Box 4. When adding random
effects, some convergence problems may arise due to numerical integration problems,
so it is important to take into consideration different approaches. Here we are using the
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bobyqa method (Powell, 2009) with maximum number of function evaluations
allowed equal to 500.000, as it yielded better convergence in our case. The purpose
of bobyqa is to minimise a function of many variables by a trust region method
that forms quadratic models by interpolation. Another option is to use the Nelder-
Mead method, which is the in glmer.

Box 4. R code to fit the logistic-normal models (M4) and (M5) with linear predictors shown in Equations (8)
and (9).

require(lme4)
# fitting logistic normal-model (M4) with the linear predictor (8)
M4 <- glmer(resp ~ BLOCK+FUNG*DOSE+(1|FUNG:BLOCK), family=binomial,

data=germination,control=glmerControl(optimizer=’bobyqa’,
optCtrl=list(maxfun=500000)))

# fitting logistic normal-model (M5) with the linear predictor (9)
M5 <- glmer(resp ~ BLOCK+FUNG*DOSE+(DOSE|FUNG:BLOCK),family=binomial,

data=germination,control=glmerControl(optimizer=’bobyqa’,
optCtrl=list(maxfun=500000)))

# check adequacy of models using hnp
hnp(M4, paint.out=TRUE,print=TRUE)
hnp(M5, paint.out=TRUE,print=TRUE)

The inclusion of these random effects alone were not enough to explain the
extra variation (see Figure 3(a) and (b)). A good alternative, with a practical expla-
nation, to model this extra-variation is to add in the linear predictor (9) a random
effect to each experimental unit (M6). This could explain variation induced by
random variation of conidia concentration by dish when preparing the solutions
(Box 5).

Box 5. R code to fit the logistic-normal model (M6) with the linear predictor shown in Equation (10).

# fitting logistic normal-model (M6) with the linear predictor (10)
ind <- gl(nrow(germination),1)
M6 <- glmer(resp ~ BLOCK+FUNG*DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial,data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=500000)))
# check adequacy of models using hnp
hpn(M6, paint.out=TRUE,print=TRUE)

The half-normal plot (Figure 3(c)) shows no evidence of an inadequate model with
most observed residuals lying inside the simulated envelope. It is important to note that
every time we produce a simulated envelope, it will slightly change and hence the
number of observations lying within the envelope may differ. Now we can assess the
significance of the variance components and compare fitted models with one another
(Box 6). The suitability of the logistic-normal model is consistently verified by
comparing the Akaike Information Criteria (AIC) (Akaike, 1973) for the binomial (M1,
AIC = 6437), beta-binomial (M3, AI = 1896), and logistic-normal models (M7, AIC =
1749.3). A smaller AIC gives evidence of a better-fitted model, and hence the logistic-
normal model would be selected here.
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Box 6. R code for comparing models (M4), (M5) and (M6).

# get deviance for models
-2*logLik(M4)
‘log Lik.’ 3036.34
-2*logLik(M5)
‘log Lik.’ 2110.31
Dif1 <- 3036.34-2110.31
-2*logLik(M6)
‘log Lik.’ 1679.27
Dif2 <- 2110.31-1679.27

# p-value for comparing M4 and M5
p <- 0.5*pchisq(Dif1,df=1, lower.tail=F) + 0.5*pchisq(Dif1,df=2,
lower.tail=F);p
[1] 4.212566e-202 # M5 (most complex) is selected because p < 0.05

# p-value for comparing M5 and M6
p <- 0.5*pchisq(Dif2,df=0, lower.tail=F) + 0.5*pchisq(Dif2,df=1,
lower.tail=F);p
[1]1.315649e-96 # M6 (most complex) is selected because p < 0.05

The linear predictor (8) includes random intercepts only, assuming all measurements
on the i-th isolate and j-th block are correlated. The linear predictor (9) includes random
linear dose effects b0ij correlated with the random intercepts b1ij and the linear predictor
(10) includes all effects in the linear predictor (9) besides the observation level random
effect zijk. Here, by using likelihood-ratio tests, we can conclude that model (M6) is the
most suitable to analyze the data (see Table 1).

After the selection of random effects is concluded, we may now test for parallelism
of linear predictors. In this experiment, if we select the linear predictor with separate
lines, this will mean that each isolates curve presents different intercepts and slopes (see
Box 7). If we select the parallel lines linear predictor, the curves present different inter-
cepts but the same slope for all isolates (linear predictor (11)). Finally, by selecting the

Figure 3. Germination data – Half-normal plots with simulation envelopes of deviance residuals for (a)
logistic-normal model with linear predictor (Equation (8)); (b) logistic-normal model with linear predic-
tor (Equation (9)) and (c) logistic-normal model with linear predictor (Equation (10)).
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coincident line linear predictor, all isolates present the same intercept and slope (linear
predictor (12)).

njik = gj + b0i + b1tk + b2j + b0ij + b1ijtk + zjik (11)

njik = gj + b0 + b1tk + b2j + b0ij + b1ijtk + zjik (12)

The parallel lines logistic-normal model (M7) was selected through likelihood-ratio
tests (see Table 2). The fitted curves presented in Figure 4 are constructed using the
linear predictor (11) and the mean of the estimated effects of the blocks, presented
in Table 3 (see Box 8) The half-normal plot to model (M7) is presented in Figure 5.

Box 7. R code to fit linear predictors (11) and (12), and LR test for models (M6), (M7) and (M8).

# fitting the logistic normal-model (M7) with fung, dose and without interaction
effect – linear predictor (11) (Parallel lines)
M7 <- glmer(resp ~ BLOCK+FUNG+DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))
# fitting the logistic normal-model (M8) with dose, without fung and interaction
effect – linear predictor (12) (Coincident lines)
M8 <- glmer(resp ~ BLOCK+DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))
# LR tests for nested models
anova(M6, M7, M8)

Table 1. Summary of the results of likelidood ratio (LR) tests for the comparison of generalised linear
mixed models (M4), (M5) and (M6).
Model Distribuition of random effects Covariance matrix Null Hypothesis LR test (Dq − DP)

M4: b0ij � N(0,
∑

) ∑ = ( s2
I )

M5:
b0ij
b1ij

[ ]
� N2

0
0
,
∑[ ] ∑ = s2

I sIS

sIS s2
S

( )
H0:s2

s = s2
IS = 0 3036.34− 2110.3 = 926

Reference distribution:

1
2
x21 +

1
2
x22

p , 0.0001

M6:
b0ij
b1ij
zijk

⎡
⎣

⎤
⎦ � N

0
0
0
,
∑⎡

⎣
⎤
⎦ ∑ =

s2
I sIS 0

sIS s2
S 0

0 0 s2
O

⎛
⎝

⎞
⎠ H0:s2

O = 0 2110.3− 1679.3 = 431
Reference distribution:

1
2
x20 +

1
2
x21

p , 0.0001

Table 2. Likelihood-ratio tests for the logistic-normal models with separate, parallel and coincident
linear predictors.
Test x2 df p-value

Separate vs parallel 12.46 13 0.4904
Parallel vs coincident 27.49 13 0.0090
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Figure 4. Fitted proportions using (M7a) for (a) each isolate in the same plot and (b) each isolate in
different plots with points representing the observed values.

Table 3. Parameter estimates and Standard Errors for the selected model (M7), without intercept (M7a),
before and after grouping the treatments (M12a).

Model M7a – Before Grouping Model M12a – After Grouping

Effect Estimate (Std. Error) Effect Estimate (Std. Error)

Block 1 8.2183(0.6456) Block 1 8.2307(0.6646)
Block 2 7.3519(0.6428) Block 2 7.3440(0.6606)
Block 3 8.3111(0.6771) Block 3 8.2635(0.6906)
Block 4 8.6385(0.6510) Block 4 8.6476(0.6697)
Fung 1741 −1.3479(0.7608) Group 2 8.6473(0.6697)
Fung 1998 −1.2948(0.7455) Group 3 −2.6047(0.6115)
Fung 2778 −1.4004(0.7457) Exposure time −0.9002(0.0542)
Fung 3300 −2.4699(0.7361)
Fung 3302 −2.4699(0.7361)
Fung 3307 −3.2694(0.7398)
Fung A152-I −2.5329(0.7397)
Fung C23-I −2.5329(0.7397)
Fung 149-I −2.3015(0.7302)
Fung E71-I −2.5032(0.7298)
Fung IT1-I2 −1.1730(0.7507)
Fung IT2-10 −1.3875(0.7767)
Fung SB4-I7 −1.4418(0.7440)
Exposure time −0.9003(0.0541)
Observation (s2

O) 0.9024 Observation (s2
O) 0.8958

Intercept Block:Fung (s2
I ) 1.7906 Intercept Block:Fung (s2

I ) 1.7272
Slope Block:Fung (s2

S ) 0.1078 Slope Block:Fung (s2
S ) 0.1092

Covariance (sIS) −0.3602 Covariance (sIS) −0.3560
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Box 8. R code to create the function to calculate exposure time for germination of 75% and 95%
germination of conidia.

# fitting logistic normal-model without intercept (-1) to obtain every
# block effects
M7a <- glmer(resp ~ -1+BLOCK+FUNG+DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))

# get block effects 1 to 4, fung effects 2 to 14 and Dose.
block<-(summary(M7a)$coef[1:4,1])
fungus<-(summary(M7a)$coef[5:17,1])
slope<-(summary(M7a)$coef[18,1])

# the next functions presented only works for this specific model!

# creating function to calculate the estimated exposure time from
# 1° Fung Isaria 1296
dg_1296 = function(percentil){

dg_1296 = as.data.frame(round((log(percentil/(1-percentil)) -
(1/4)*(block[1]+block[2]+block[3]+block[4]))/slope, 2))
colnames(dg_1296) = paste(’germination’,percentil*100,’%’)

return (dg_1296)
}

cbind(dg_1296(0.75),dg_1296(0.9))

# creating function to calculate the estimated exposure time from other # fungus
dg = function(percentil){

dg = as.data.frame(round( (log(percentil/(1-percentil)) -
(1/4)*(block[1]+block[2]+block[3]+block[4])-fungus[1:13])/slope, 2)
colnames(dg) = paste(’germination’,percentil*100,’%’)

return (dg)
}
cbind(dg(0.75),dg(0.9))

We may now use the selected model to determine the exposure time that resulted in
some specified proportion of germination, say 75% and 90%. We can obtain these esti-
mates using the code presented in Box 8.

Figure 5. Germination data – Half-normal plot with simulation envelopes of deviance residuals for
logistic-normal model with the parallel lines (M7) with linear predictor (Equation (11)).
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The I. fumosorosea 1296 was the most tolerant isolate because presented a time to
reduce viability of 7.81 and 6.59 hours compared to the most susceptible isolate, I. fumo-
sorosea 3307 which presented 4.18 and 2.97 h (see Table 4).

Grouping

Because of the similarity observed between isolates in Figure 4(a), some of them were grouped
and a likelihood-ratio test was performed to test these differences. The groups were con-
structed according to the predicted curves in order to group the ones that had a similar behav-
iour. For example the test of groups to be created consisted of 5 groups (Table 5).

This test was not significant (see Box 9), hence there is no evidence against a simpler
adequate model, and the isolates within groups are concluded to not differ statistically.

Box 9. R code to create and to test groupings.

# creating the Factor Grouping 1
germination$Grouping1 <- germination$FUNG
levels(germination$Grouping1)
[1] "1296" "1741" "1998" "2778" "3300" "3302"
[7] "3307" "A152.I" "C23.I" "E149.I" "E71.I"
[12] "IT1-I2" "IT2-I10" "SB4-I7"
levels(germination$Grouping1) <- c(1,2,2,2,4,4,5,4,3,4,4,2,2,2)
# model fitted with factor Grouping 1 instead of Fung
M8 , − glmer(resp ~ BLOCK + Grouping1 + DOSE + (DOSE|FUNG:BLOCK)

+(1|ind), family=binomial, data=germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))
# testing grouping (equality between isolates of the same group)
anova(M8,M7,test=’Chisq’)
Data: germination
Models:
M8: resp ~ BLOCK + Grouping1 + DOSE + (DOSE|FUNG:BLOCK) + (1|ind)
M7: resp ~ BLOCK + FUNG + DOSE + (DOSE|FUNG:BLOCK) + (1|ind)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
M8: 13 1718.1 1765.4 -846.06 1692.1
M7: 22 1735.7 1815.7 -845.86 1691.7 0.396 9 1
# M8(simplest) is selected, because p>0.05, i.e. the isolates within
# the groups do not differ statistically

Table 4. Exposure time (in hours) for 75 and 90% germination by fungus.
75% germination 90% germination

Fungus Exposure time Exposure time

1296 7.81 6.59
IT1-I2 6.51 5.29
1998 6.37 5.15
1741 6.31 5.09
2778 6.25 5.03
IT2-I10 6.27 5.05
SB4-I7 6.21 4.99
C23.I 5.69 4.47
E149.I 5.25 4.03
3300 5.07 3.85
E71.I 5.03 3.81
A152.I 5.00 3.78
3302 4.93 3.70
3307 4.18 2.97
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Once the five groups described above were constructed, more similarities were sought
between these isolates by testing the clustering of these groups in the attempt to identify
the most resistant group. Grouping 2 was created to test resistance similarities between
Isaria 1296 and isolates of Group 2 (Table 5), but this hypothesis was rejected (see
Box 10). Grouping 3 was created to test similarities between Isaria C23.I and Group 2
(Table 5). Grouping 4 was created to test similarities between Groups 2, 3 and 4
(Table 5), but this hypothesis was rejected (Box 10). Finally, Grouping 5 was created to
test equality of Groups 4 and Group 5 (Table 5).

Box 10. R code to created and test different groupings of isolates.

# creating factor Grouping 2
germination$Grouping2 <- germination$FUNG
levels(germination$Grouping2) <- c(2,2,2,2,4,4,5,4,3,4,4,2,2,2)
# creating factor Grouping 3
germination$Grouping3<- germination$FUNG
levels(germination$Grouping3) <- c(1,2,2,2,4,4,5,4,2,4,4,2,2,2)
# creating factor Grouping 4
germination$Grouping4<- germination$FUNG
levels(germination$Grouping4) <- c(1,2,2,2,2,2,5,2,2,2,2,2,2,2)
# creating factor Grouping 5
germination$Grouping5<- germination$FUNG
levels(germination$Grouping5) <- c(1,2,2,2,4,4,4,4,2,4,4,2,2,2)
# model fitted with factor Grouping 2
M9 , − glmer(resp ~ BLOCK + Grouping2 + DOSE + (DOSE|FUNG:BLOCK)

+ (1|ind), family=binomial, data=germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))
# model fitted with factor Grouping 3
M10 , − glmer(resp ~ BLOCK + Grouping3 + DOSE + (DOSE|FUNG:BLOCK)

+(1|ind), family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))
# model fitted with factor Grouping 4
M11 = glmer(resp ~ BLOCK + Grouping4 + DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,
optCtrl=list(maxfun=50000)))

# model fitted with factor Grouping 5
M12 = glmer(resp ~ BLOCK + Grouping5 + DOSE + (DOSE|FUNG:BLOCK) + (1|ind),

family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))

# testing equality between isolates of Group 2 and Isolate 1926
anova(M9,M8,test=’Chisq’)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
M9: 12 1721.1 1764.7 -848.56 1697.1

Table 5. Grouping 1 – first grouping according to the proximities between the curves presented in
Figure 4(a).
Group1 Group2 Group3 Group4 Group5

1296 1741 C23.I 3300 3307
1998 A152.I
2778 E149.I
IT1-12 E71.I
IT2-10 3302
SB4-I7
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M8: 13 1718.1 1765.4 -846.06 1692.1 5.0031 1 0.0253 *
# M8 (most complex) was selected, because p < 0.05, i.e.
Isolate 1296 differs from isolates in Group 2

# testing equality between isolates from Group 2 and Isolate C23.I
anova(M10,M8,test=’Chisq’)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
M10: 12 1717.2 1760.8 -846.61 1693.2
M8: 13 1718.1 1765.4 -846.06 1692.1 1.1056 1 0.293
# M10 (simplest) was selected, because p > 0.05, i.e. Isolate C23.I
does not differs from isolates in Group 2

# testing equality between Group 2 plus Isolate C23.I and Group 4
anova(M11,M10,test=’Chisq’)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
M11: 11 1727.3 1767.2 -852.63 1705.3
M10: 12 1717.2 1760.8 -846.61 1693.2 12.031 1 0.0005231 ***
#M10 (most complex) was selected, because p < 0.05, i.e. the isolates in Group 2 plus
Isolate C23.I differ from the isolates in Group 4

# testing equality between Group 4 and Isolate 3307
anova(M12,M10,test=’Chisq’)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
M12: 11 1717.3 1757.3 -847.64 1695.3
M10: 12 1717.2 1760.8 -846.61 1693.2 2.0582 1 0.1514
#M12 (simplest) was selected, because p > 0.05, i.e. the isolates in Group 4 does not
differ from the Isolate 3307

# fitting M12 without intercept (-1) to obtain every block effects
M12a = glmer(resp ~ -1+BLOCK + Grouping5 + DOSE + (DOSE|FUNG:BLOCK)

+ (1|ind), family=binomial, data= germination,
control=glmerControl(optimizer=’bobyqa’,

optCtrl=list(maxfun=50000)))

Figure 6. Fitted group proportions using a parallel lines logistic-normal for (a) each isolate in the same
plot and (b) each isolate in different plots with points representing the observed values.
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According to tests shown above, we can group the isolates in three groups in which the
fungi belonging to distinct groups are significantly different at a significance level of 5%.

Group 1: I. fumosorosea 1296
Group 2: I. fumosorosea 1741, 1998, 2778, IT1-12, IT2-I10, SB4-I7, C23.I
Group 3: I. fumosorosea 3300, 3302, A152.I, E149.I, E71.I, 3307

Fitted proportions (M12a) are shown in Figure 6 and the half-normal plot for the
deviance residuals in Figure 7. This graphics indicates that this is also an adequate
model fit, and hence this model can be used to make inference on the data. The parameter
estimates are given in Table 3.

Discussion

The aim of this paper was to propose a tutorial, using software R, on how to fit and to
assess goodness-of-fit for a range of different models for overdispersion data. We
described and showed, step by step, how to fit and interpret the simplest, binomial
model, as well as the more complex logistic-normal model.

We use, as a motivation for this tutorial, a dataset from an experiment involving ger-
mination of conidia from different species of entomopathogenic fungi, focusing on how to
identify and account for specific issues arising from experimental design (such as corre-
lated observations) and extra-variation (i.e. overdispersion).

For the case study presented here, we concluded that the logistic-normal model pro-
vided a good fit to the data, and included three random effects: a random intercept per
block, a random slope per block and an observation-level random effect to capture over-
dispersion. Due to the inclusion of three random effects, some convergence problems
occurred because of numerical integration problems, so it is important to take into con-
sideration different numerical integration approaches (e.g. Laplace approximation, Adap-
tive Gauss-Hermite quadrature, Monte-Carlo methods) available to tackle this problem.
As a practical outcome, the selected model allowed us to identify the strain of

Figure 7. Germination data – Half-normal plot with simulation envelopes of deviance residuals for
fitted group proportions using a parallel lines logistic-normal model (M12).

18 M. B. FATORETTO ET AL.



I. fumosorosea that presented the highest UV-B radiation tolerance. We were also able to
group similar isolates using likelihood-ratio tests, which yields important information in
the context of biological control.

The simpler binomial model could have led to mistaken conclusions, such as the selec-
tion of the separate linear predictors model or different groupings of isolates. The use of a
GLMM solved this issue and allowed us to model the correlation between observations
within each block. Hence, we advocate for the use of half-normal plots with simulation
envelopes, and other goodness-of-fit assessment techniques, to ensure inference made
using the fitted model is reliable.

Finally, we would like to stress that this paper does not present a recipe for analyzing
this type of data, since each experiment is different and is carried out to test different types
of hypotheses. It is of utmost importance that the modelling takes into account the exper-
imental design and the nature of the data, and that the appropriate hypothesis tests are
performed. Every dataset presents its own peculiarities which may guide the statistical
analyses one way or another.

Note

1. If the random variables in a finite or infinite sequence X1, X2, . . . , Xn are independent and
identically distributed, and if each random variable Xi has the Bernoulli distribution with
parameter p, then it is said that X1, X2, . . . , Xn are Bernoulli trials with parameter p
(Degroot & Schervish, 2012).
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