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We review the statistical methods currently in use to estimate past changes in cli-
mate. These methods encompass the full gamut of statistical modeling approaches,
ranging from simple regression up to nonparametric spatiotemporal Bayesian
models. Often the full inferential challenge is broken down into many submodels
each of which may involve multiple stochastic components, and occasionally
mechanistic or process-based models too. We argue that many of the traditional
approaches are simplistic in their structure, handling, and presentation of uncer-
tainty, and that newer models (which incorporate mechanistic aspects alongside
statistical models) provide an exciting research agenda for the next decade. We
hope that policy-makers and those charged with predicting future climate change
will increasingly use probabilistic paleoclimate reconstructions to calibrate their
forecasts, learn about key natural climatological parameters, and make appropriate
decisions concerning future climate change. Remarkably few statisticians have
involved themselves with paleoclimate reconstruction, and we hope that this article
inspires more to take up the challenge.
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1 | INTRODUCTION

The study of past climate or paleoclimate is an international focus of research effort, as evidenced by the work of the Intergovern-
mental Panel on Climate Change (Stocker, 2014). This is because paleoclimate provides a useful test-bed for estimating natural
climate variability, for judging the size and speed of potential changes, and for calibrating our complex models of the climate
system (Haslett et al., 2006; Li, Nychka, & Ammann, 2010). However, the study of paleoclimate is impeded by the fact that, in
general, we do not have direct observational measurements of past climate. Instead we rely on proxy (or fossil) climate markers,
which take the form of imprecise chemical, geological, and biological records that have been left behind in long environmental
archives such as lake, ocean, and ice deposits. There are several statistical challenges of note. First, the individual proxy sources
are on different temporal scales and observed at multiple distinct spatial locations. Second, the chronology of the fossil proxy
data is largely unknown, associated with perhaps a few samples of the fossil record with age estimates from scientific dating
methods, such as radiocarbon dating. Third, as reconstruction approaches typically rely on the uniformitarianism principle, that
is, the knowledge of an organism's present-day environmental preferences can be used to make statements about the past envi-
ronmental conditions of a fossil sample, an additional challenge is to incorporate knowledge of the climate system supplied by
mechanistic vegetation and climate models to guide reconstructions when this assumption of uniformity is inappropriate.
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In this article, we provide an overview of these and further statistical issues, including computational challenges, in the
context of modern paleoclimate reconstruction methods. In the following section, we provide a brief introduction to some of
the proxy climate data sources used for the reconstruction of past climates. The remainder of this article is structured as fol-
lows. In section 2, we broadly sketch the process of past climate estimation from multiple sources of uncertain information
and highlight a number of challenging obstacles. In section 3, we provide a brief overview of the literature for classical climate
reconstruction methods. We consider three commonly used classical methods for paleoclimate reconstruction, outlining the
limitations and statistical challenges encountered by each approach. In section 4, we present a Bayesian implementation of
classical models including a discussion on chronological uncertainty and Bayesian inference. Section 5 presents an extension
of the approaches to the spatiotemporal, multiproxy setting where all information and sources of uncertainty are accounted for
in a coherent manner. Finally, section 6 contains a summary of the broad statistical challenges that remain.

1.1 | Proxy sources of information for past climate

Climate is a multidimensional space–time process which, for the purposes of statistical modeling, needs to be quantitatively
defined. Thus, climate is usually described in terms of the familiar elements of observed weather and is often measured as
30-year averages of these weather-related variables, assuming stationarity of the climate system over this time frame. In the
examples we discuss later in the paper, climate might simply be northern hemisphere mean temperature over time (Mann,
Bradley, & Hughes, 1998), or a more complex measurement, such as multivariate temperature and moisture variables across a
region or continent (Parnell et al., 2015). Climate data may be chemical or biological, involving simple direct measurements
of climate or intricately indirect observations. Direct measures of climate may come from the more recent past where avail-
able, such as climate measurements from satellites. However, we do not discuss the use of direct temperature measurements in
estimating past climate changes because these, though often useful, are only available from the very recent past.

Indirect measurements of climate are broadly described as proxy data and here we review some of the most common types
that might form part of a paleoclimate reconstruction. Many reconstructions rely on just one or two types of proxy; a major
research challenge is the combining of multiple proxies into a suitable model. Many papers that use more than two types of
proxy (e.g., Mann et al., 1998) suffer from the uncertainty quantification problems we outline in the remainder of the paper. In
Figure 1, we provide a simplified diagram of the sequence of steps involved in obtaining proxy data from which we attempt to
make inference on past climate.

Perhaps the most common and widely used proxy data type in paleoclimate reconstruction is that of tree rings (dendrocli-
matology; e.g., Briffa et al., 2008). These proxies, for some species, exhibit a very high temporal resolution down to a yearly
or sometimes even seasonal signal. The traditional approach has been to calibrate the width of the rings with an overlapping
instrumental temperature period (e.g., see Jones, Briffa, Barnett, and Tett, 1998; Mann et al., 1998; Mann et al., 2008). More
modern approaches (Tolwinski-Ward, Tingley, Evans, Hughes, & Nychka, 2015) use richer versions of this calibration where
the relationship between proxy and climate is tempered by some limitations of the growth rate of the rings. The ages for the
rings can be estimated via dendrochronology (matching tree-ring widths across trees and sites with known ages) to produce a
very high resolution reconstruction. Since good matching requires lots of overlapping records, most dendro-based reconstruc-
tions extend only to the previous 1,000 years. The major issue with such reconstructions is the unknown extent of their spatial
link with perhaps local or regional climate features. Further complications exist in that younger trees tend to grow rings faster
so the growth rate needs to be taken into account. For a more detailed description of dendroclimatology, see Hughes,
Swetnam, and Diaz (2011).

For reconstructions going back into the Holocene (approximately 10,000 years before present), pollen is the most common
proxy data source, and the proxy we primarily focus on in this article. The attraction of plant pollen as a climate proxy is its
ubiquity and diversity; for example, Wilson, Peet, Dengler, and Pärtel (2012) and Mora, Tittensor, Adl, Simpson, and Worm
(2011) cite the number of plant species worldwide as being in the hundreds of thousands. Each plant species has a preferred
range of climate(s), and thus the presence or absence of an individual species provides a clue, albeit extremely noisy, to the
prevailing climate at the time the pollen was produced. Fossil pollen can be found in lake and ocean sediments and, under
expert analysis, can be recognized down to the species (i.e., a grouping of similar plant subspecies) level. This higher level
grouping is due to the difficulty in distinguishing the pollen of similar subspecies from one another, for example,
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FIGURE 1 General overview of the various processes that lead to the proxy paleodata used in climate reconstructions. In the example of pollen, the sensor
system is the plant ecosystem. The archive systems are the lakes or mires where pollen is deposited. The observation system includes the field and laboratory
measures such as core sampling, pollen counting, and radiocarbon dating among others
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distinguishing between the pollen of a mountain ash tree versus that of a river ash tree. The pollen counts from these similar
subspecies are thus aggregated to a species level, that is, “ash.” A slice from a core can contain hundreds of different species,
and usually the top 50 or so are counted to produce a compositional vector of, for example, 400 pollen grains. This composi-
tional vector can be compared/calibrated against modern samples to determine the past climate. The age information associ-
ated with the proxy data is harder to reconstruct, as usually only imprecise radiocarbon dates can be taken from the core. This
adds a considerable blurring of uncertainty to the reconstructions, which makes it more difficult to obtain the underlying cli-
mate signal. For a more detailed description of the statistical issues in reconstructing climate from pollen data, see Parnell
et al. (2015), or Parnell et al. (2016) for a less technical description.

The main method for reconstructing climate from nonbiological proxies concerns the use of stable isotopes. These are geo-
chemical measurements of the abundance of a particular element compared to a reference standard. Many different elements
are often collected and these are variously interpreted to be representative of past climate. For example, the stable isotope of
oxygen, measured as δ18O, is often considered to be a proxy for the temperature of summer rainfall, and is measured, over
hundreds of thousands of years, in ice cores (Dansgaard et al., 1993). Surprisingly the quantification of uncertainty in ice core
reconstructions is still very simplistic, often given only as a percentage value. Perhaps because of the simplified uncertainty
structure, such reconstructions disagree at even local spatial scales (see Doan, Haslett, and Parnell, 2015), and counting layers/
seasons in ice to provide the age of these reconstructions can also prove problematic (Klauenberg et al., 2011).

Although the above three represent the most-used proxies for paleoclimate in general, hundreds of others exist. These
include chironomids (nonbiting midges), speleothems (cave formations, e.g., stalactites), diatoms (microalgae), corals, forami-
nifera (single cell, shelled marine species), and many others. From a statistical perspective the issues involved in each are sim-
ilar. The field or laboratory measurements must be transformed into estimates of climate using mechanistic/statistical
methods, which may involve modern calibration datasets, and they must each be dated to provide the time scale for recon-
structions. We provide a pictorial overview of the process in Figure 2. However, a minutiae of detail remain in how each may
represent aspects of climate and their spatial and temporal resolutions. Much of this can be modeled using Bayesian inference
with appropriate expert information, and this is our preferred paradigm for reconstructing paleoclimate with uncertainty.

2 | THE GRAND CHALLENGE

The ultimate goal of paleoclimate reconstruction is estimation of the mechanics of past climate given all available data. In
order to make inference on the paleoclimate from all such data, a statistical model is required. Once the model has been
described we may choose to proceed using classical or Bayesian approaches. In either scenario the focus is on estimating the
paleoclimate with suitably quantified uncertainties. For simple methods the uncertainty might just be a single measure such as
root mean square error (RMSE), but for the richer more recent Bayesian approaches it is likely be a set of simulations or cli-
mate histories in multidimensional space and time, which capture the full joint probability distribution of all climate variables.
Figure 3 displays a more detailed flow chart of the paleoclimate reconstruction process for pollen, with radiocarbon dating
providing the chronological information.
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FIGURE 2 Overview of some of the
climatological processes, which lead to the
proxy paleodata used in climate
reconstructions, including an overview of the
intermediate stages involved in data
acquisition. The arrows represent the flow or
causal direction of the steps, which lead to the
proxy data. As an example, the processes that
lead to fossil pollen data obtained from lake
sediment are highlighted in red with two
climate variables of interest identified. One is
GDD5 (growing degree days above 5 �C), a
measure of the length of the growing season
(days above 5 �C), and the other is MTCO
(mean temperature of the coldest month), a
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To meet this challenge, we have to define the climate variables that we want to reconstruct. Unfortunately, however, the
climate variables that are often used by climate scientists (e.g., global sea levels, global mean temperature) are not the climate
variables that can accurately be inferred from paleodata—in the case of pollen, it is well known (Huntley, 2012) that many
plants and trees do not respond to broad brush measures of climate. For example, where we to set up a model to estimate
global mean temperature from pollen counts taken from a core in central Italy, we are likely to obtain a poor reconstruction. If
we additionally used a simplistic model to describe the pollen–climate relationship, such as a Gaussian linear model with
parameter estimation via classical least squares, such a reconstruction might be naively precise and lead to false inference.
This is due to the pollen response to climate being highly nonlinear for most species (ter Braak, 1995). However, it is impor-
tant to note that even with a richer model and inference approach the reconstruction is likely to be highly uncertain, which is
at least honest, if not useful. Ideally we wish to choose a climate measurement, which is both reasonably informed by the
proxy data, and yet of interest to those who need to evaluate climate models and make decisions.

It is easy to find large sets of proxy data online (e.g., Pangea: https://www.pangaea.de), and it is relatively simple to pro-
duce paleoclimate estimates by treating these proxy data as explanatory variables in a regression type model, such as we will
observe in the overview of classical reconstruction methods. However, we would caution against such an approach for three
main reasons.

1. Cause and effect: It is inadvisable to model climate as a function of proxy response as this is an inversion of the true
causal relationship.

2. Combining all of the various uncertainties involved in the precision of the proxy response, the climate measurements, and
that of estimated model parameters is extremely difficult.

3. It is difficult to see how underlying physical processes, which govern the generating of response data, and which vary
across proxies, can explicitly be accounted for.

As an example, different proxy variables will respond to different aspects of the (multivariate) climate, possibly over dif-
ferent time ranges, and this response might change across time (Garreta et al., 2009). For example, it might take many years to
grow an oak forest, and so pollen counts taken from a fossil core beneath a lake nearby are likely to change slowly. In con-
trast, oxygen isotope measurements from an ice core can reflect much faster changes in the temperature/precipitation regime
and so will provide a richer, higher resolution record, albeit only in places where ice cores exist (Doan et al., 2015). A further
important issue to note is that response of vegetation to climate will also depend on atmospheric CO2 concentrations, which
change over time.

Many of the more basic models we discuss focus on creating statistical approximations of the proxy–climate relationship.
More advanced approaches use combined physical/statistical models of the proxy–climate relationship with a hope of captur-
ing its changing dynamics. We term any model that provides estimated proxy data from given climate data, rather than the
reverse, a forward or proxy systems model. A key part of the grand challenge is combining many of these models (i.e., for
multiple different proxies) together. Figure 3 provides a clear schematic guide for how a forward model could be created for
pollen proxy data.
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FIGURE 3 Key components of a model for
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The usual scenario when creating proxy datasets is that a core is extracted from a long environmental archive (e.g., ice,
lake sediments, speleothems or tree rings) and partitioned into slices. Each slice is analyzed to produce the proxy data, and
represents a time window of past climate. The size of this time window will be highly dependent on the accumulation rate of
the cored deposit. If the accumulation is slow, a slice may contain decades or even hundreds of years’ worth of proxy informa-
tion. Thus, a considerable effort associated with paleoclimate reconstruction is the creation of accumulation models (Parnell
et al., 2015) to estimate the ages of the proxy slices. The accumulation models are usually created from a smaller set of slices
that have been scientifically dated (e.g., radiocarbon dated, which is expensive), though some archives (e.g., ice and trees)
allow for more precise relative dating via annual or other layer counting. In either scenario this adds a considerable statistical
hurdle to the overall challenge, because the timing of the proxy slices is uncertain. A further challenge for proxies such as pol-
len is the issue of zero-inflation within the dataset. It is important to recognize that excesses of zeros observed for a given
proxy may be due either to sampling error or to environmental factors at individual sites. If unaccounted for, this zero-inflation
may result in the underestimation of response models.

The proxy data and the climate variables are usually separated into two parts. First, there is the modern calibration period
where all the proxy data and all the climate variables are known. For this period the timing of the data is usually known
exactly and there is no need to resort to accumulation models. The second part is the fossil period when we have only the
proxy data, and usually only the accumulation rate as a guide to the age of each slice. There are thus several statistically chal-
lenging parts to the grand challenge. One part is to estimate the relationship between the modern proxy and climate data,
another is to estimate the relationship between accumulation and age, and yet another is to infer past climate based on the
modern relationships and accumulation models. Deeper goals might include estimating the mechanics or underlying parame-
ters governing this climate change, or incorporating mechanistic information in the proxy–climate relationship, again with the
goal of inferring underlying parameters. Once estimated, we often would like to create a map or time series of how past cli-
mate has changed on a regular location/time grid with properly quantified measures of uncertainty. We will observe in later
sections how each of these goals pose challenges of computation, particularly so when a Bayesian approach is chosen.

2.1 | Notation and estimation for the grand challenge

We now describe a statistical framework for the grand challenge by introducing the notation we will use throughout the paper.
We define the following:

• c(s, t) is a multidimensional measurement of climate at location s and time t. We assume both s and t are continuous, with
the former also being multivariate. In the paleoclimate literature, time is often written in years before present (Years BP,)
where present refers to the year 1950 AD.

• yk(s, d) is a multidimensional proxy measurement taken from a slice at depth d for proxy k at location s. yk might be a set
of multivariate counts of N species (possibly multinomial) for a given proxy, such as pollen counts for several plant spe-
cies, or be a continuous multidimensional variable (e.g., isotope measurements from an ice core). The depth d is usually
treated as a univariate continuous measurement.

• ak(s, d) is the age of the slice at depth d for proxy k at site s in years before present. In many cases ak(d) at an individual
site is necessarily a monotonic function of d, as older slices must lie deeper in the core. An alternative approach is pro-
vided by working with radiocarbon age rk(d) instead, as we do in later sections, which sidesteps the issues involved in con-
verting radiocarbon age to calendar age; we refer the interested reader to Blackwell and Buck (2008) and Parnell, Buck,
and Doan (2011) for a more in-depth introduction to the difficulties involved.

We further superscript the three above objects with m to indicate modern (or calibration) data for which both the proxy,
time, and climate variables are all known, and f to indicate fossil measurements where the climate variables are missing. The
grand challenge can be elucidated thus:

Estimate cf(s, t) with quantified uncertainty for a set of chosen s and t values, given yfk s,dð Þ,afk s,dð Þ,rfk s,dð Þ,ymk sð Þ,cm sð Þ
for a set number of proxies k = 1, …, M.

The grand challenge is thus to find π cf s, tð Þjyf1:M s,dð Þ,af1:M s,dð Þ,rf1:M s,dð Þ,ym1:M sð Þ,cm sð Þ
� �

, where all of the sources of

uncertainty involved in the climate reconstruction process are represented via a probability distribution on climate at each time
t and location s.

In the following sections, we provide an overview of existing climate reconstruction strategies and, within each section,
sketch the main statistical and computational challenges, which must be overcome for the grand challenge to be achieved.
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3 | CLASSICAL APPROACHES TO PAST CLIMATE ESTIMATION

Here we provide a review of classical approaches to paleoclimate reconstruction for the single proxy setting and defer discus-
sion of the more complex multiproxy approaches to later sections. In the following we refer to as “classical” any method
where inference approaches are non-Bayesian in nature. Typically these reconstruction methods do not consider temporal
uncertainty in the fossil record and reconstruct climate on a slice-by-slice basis at individual sites with a focus on a single
proxy at a time. As a result, these methods are less subject to the problems of computation which plague the Bayesian
approaches introduced in subsequent sections. As the focus is on individual sites, we temporarily omit the explicit s notation
in the following.

Classical methods for paleoclimate reconstruction can be divided into two contrasting approaches, namely the choice of
whether to model the modern proxy data ymk as a function of modern climate variables cm, for example, ymk = f cmð Þ+ error, or
conversely, to model cm as a function of ymk , for example, cm = g ymk

� �
+ error. This latter case is an inversion of what is under-

stood as the typical cause and effect mechanism in that the environment variable is treated as the response variable and the
proxy data the explanatory variable. The former approach, which follows along conventional cause and effect lines, that is, cli-
mate ! proxy response is referred to by various authors (Haslett et al., 2006; Salonen et al., 2012) as a “forward” modeling
approach, and is the foundation of many of the Bayesian approaches to the reconstruction problem. ter Braak (1995) refers to
the latter method as an “inverse” modeling approach, a terminology we continue here.

These contrasting choices of approach are inspired in part by the nature of the datasets available for model training, with
many proxy datasets (e.g., for pollen, chironomids, or foraminifera) each comprised of up to 300 species (Juggins & Birks,
2012; ter Braak, 1995), and often multivariate climate measurements. If a forward modeling approach is pursued, then the first
stage will involve the consideration of models for extremely high-dimensional sum-constrained species counts data, which
typically cannot be reasonably explained by simple functional forms of the multivariate climate. The challenges of computa-
tion in fitting such models increase with the number of species jointly considered for each proxy and the more nonlinear
(or multimodal) the species response is in respect to multivariate climate. In contrast, inverse models avoid these problems by
modeling individual climate variables as a function of the multivariate species response, drastically reducing the challenges of
computation.

In the interests of brevity we limit our exploration to three of the more commonly used classical approaches for past cli-
mate estimation, which include:

1. Modern analogue techniques (MAT)
2. Weighted averaging (WA) and weighted averaging partial least squares (WAPLS)
3. Response surface methods

The first two are so called “inverse” modeling approaches, with the third a “forward” modeling approach.

3.1 | Modern analogue technique

The modern analogue technique (MAT) is the simplest and most intuitive method of estimating the past climate of a fossil
proxy sample (Juggins & Birks, 2012), following along the lines of the traditional k-nearest neighbors approach (ter Braak,
1995). Essentially, given a modern training dataset comprised of counts at i = 1, …, n sites for the N species of an individual
climate proxy, say pollen, and known climate variables of interest, we find a measure of dissimilarity δi(d) between the fossil

sample of an individual proxy slice at depth d, yfk dð Þ, and those at each of the i = 1, …, n sites in the modern training dataset.
The typical dissimilarity measure for δi(d) is the sum of the squared differences between the fossil pollen of the slice at depth
d and the modern pollen at site i. The closest modern analogue for the fossil sample at depth d is the climate of the modern
training dataset sample that has the smallest δi(d). A form of smoothing, or robustness, is provided by taking a weighted aver-
age (WA) of the climate values of the K most similar modern analogues, ordered by magnitude of δi(d). K is usually chosen as
the value that minimizes the RMSE between the observed climates in the training dataset and those predicted for these data by
WA of the K most similar (ter Braak, 1995) analogues.

The approach avoids the specification of complex models for climate–proxy interaction, and provides additional benefits:
If the magnitudes of the δi(d) for the fossil values of a given slice are large compared to those observed in the training set, then
this is an indication that none of the modern analogues are a good match for the fossil sample (Juggins & Birks, 2012). How-
ever, Birks, Heiri, Seppä, and Bjune (2010) outline several statistical limitations. First, there is a problem of bias of the esti-
mates at the edges of climate space due to the minority of samples in these regions. Furthermore, extremely large training sets
are typically required in order for the method to be effective in providing accurate reconstructions as the method requires a
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broad coverage of samples in climate space; this becomes increasingly difficult for increasing number of climate variables
being considered jointly due to the curse of dimensionality. The method also provides no way to interpolate or extrapolate to
climates unobserved in the training set. In terms of challenges of computation, the training datasets considered are not typi-
cally large enough to encounter temporal bottlenecks familiar to nearest neighbor methods in the identification of the k-nearest
modern analogues.

3.2 | WA and WA-partial least squares

Juggins and Birks (2012) note the popularity of WA approaches to past climate estimation in paleolimnology, citing as a key
reason the ecologically appealing conformity of these approaches with Shelford's law of tolerance (Shelford, 1931). Shelford's
law in principle states that an organism, plant species, or otherwise has a preferred optimal environmental range. On the basis
of this, unimodal response models may adequately describe the relationship climate and species response. Toivonen, Manila,
Korhola, and Olander (2001) also cite good performance of WA approaches in settings involving noisy, compositional data,
that is, data where the counts of individual species are correlated due to the data collection process, which involves counting
until a predefined total number of samples is obtained. As each of the species for a given proxy tend to be most abundant at
sites with a climate variable close to the species optimum, an estimate of the optimum is thus obtained by a simple WA of the
climate values over the n sites at which the species is observed. Model inversion is extremely simple, with the climate estimate

for a fossil proxy yfk dð Þ provided as a WA of the j = 1, …, N species optima of that proxy in the sample.
ter Braak (1995) outlines how species tolerances in terms of the breath of the growing range either side of the optima can

also be taken into account in a down-weighting fashion, by accounting for the “tolerance” of the species to climate values
away from the optimum. This is achieved by giving more weight to the counts of species with more precisely identified
(lower-tolerance) optima. Juggins and Birks (2012) note that this can produce moderate improvements over non–down-
weighted versions. However, the authors note drawbacks of WA methods including their sensitivity to an uneven distribution
of climate values in the training dataset, particularly where the training set is not large. The method also suffers from edge
effects, which potentially result in biases in predicted values (ter Braak, 1995). In addition, the method does not account for
variability or error in the species record, with zero counts reflecting species unavailability as opposed to sampling error.

These problems motivated the improvement of this simple method by harnessing further information available in the com-
positional species data, resulting in the WA-partial least squares method (WAPLS) (ter Braak & Juggins, 1993). The approach
is simply a combination of WA and partial least squares (PLS), and combines the unimodal response models of WA with the
dimension reduction benefits of PLS to address both multicollinearity and residual structure in the species counts (ter Braak,
1995). There are several important limitations to the WAPLS method, however, foremost of which is that the method is
designed for the situation where the species–climate relations for a given proxy are unimodal, exhibiting one absolute climate
preference, which is not typical for species where subspecies data may be grouped together (such as in the case of pollen).
PLS is used to guard against multicollinearity; however, it also implies linearity in the relationships across species which is
not necessarily a reasonable assumption. Furthermore, the method may identify structure or patterns in the species observa-
tions which are due to other climate variables, as opposed to relationships between species, resulting in biases (Birks
et al., 2010).

3.3 | Response surface methods

The response surface approach is a form of modern analogue technique (Birks et al., 2010) and is a forward modeling
approach. As opposed to modeling each species response to each climate variable separately, the forward model provides a
smoothing of the data over a multidimensional climate domain, which is then used in place of the species compositions to pre-
dict the climate associated with a fossil sample. The primary benefits of the approach are both conceptual (modeling proxy
response as a function of climate) as well as ecological in that the response surface method allows for more than one climate
preference for each species, a problem noted and encountered by several authors (Haslett et al., 2006; Huntley, 1993; ter
Braak, 1995).

This multimodal response was first modeled by Bartlein, Prentice, and Webb (1986), who use polynomial regression to
estimate the response surfaces for eight pollen species for two climate variables jointly. The global nature of the polynomial
bases used for the response surfaces resulted in undesired boundary effects however. Prentice, Bartlein, and Webb (1991) sur-
mount the boundary effects problem by using locally weighted regression to infer nonparametric response surfaces, and thus
obtain response surfaces for 13 different pollen species considering three climate variables jointly. Quantitative climate recon-
structions are provided from the fitted response surfaces by “inverting” the model as follows:
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1. Climate values are inferred for the fossil pollen data by scanning the predicted pollen percentages, discretized to a regular
grid, and comparing them to the observed pollen percentages.

2. The 10 climates whose associated pollen compositions are closest to the observed fossil pollen compositions are identified
using a squared distance dissimilarity measure. To address multimodality in the output, the final (single) inferred climate
value is taken as the centroid of the 10 proposed climate values, each weighted by their inverse squared distances to the
fossil sample.

Huntley (1993) cites a number of benefits of the approach over competing methods, noting that they provide a useful
explanation of the climate–proxy distribution or abundance patterns and increased resistance to outliers in the pollen record.
However, he also notes that, similar to MAT methods, the approach suffers from the “no modern analogue problem”, though
it does allow for limited interpolation and extrapolation. Further, there is a problem of multiple modern analogues, where indi-
viduals among the 10 closest identified can be extremely contrasting in their climate predictions. Taking the centroid, as per
Prentice et al. (1991), will result in an aggregated estimate of climate which is potentially far from the 10 nearest identified.
Birks et al. (2010) identified further issues including the necessity that modern and fossil information are from the same sedi-
mentary environment in order to minimize the impact of further variation on the process, a result that potentially limits the
amount of data available for model training.

3.4 | Further challenges and the uncertainty of estimates

Forward modeling approaches that primarily focus on modeling the observed proxy response as a function of one or more cli-
mate variables are hampered by a number of additional challenges, the majority of which are computational in nature:

1. Likelihood: When the proxy data are compositional in nature, likelihoods for sum-constrained data such as the multino-
mial should be specified. However, the complex functional form of the multinomial can result in challenges of inference
(Baker, 1994), as the sum constraint requires that parameters of the models for the responses to climate for all species are
jointly estimated. As the number of species within a given dataset is potentially large, the number of parameters requiring
inference can be much larger than can be feasibly considered in the available computing time. Even Bayesian approaches
are not immune to this problem—Haslett et al. (2006) consider a flexible Bayesian nonparametric smoothing model for
the multinomial response of 14 pollen species to two climate variables with inference on model parameters taking the
order of weeks. Furthermore, their model did not account for additional complications such as zero-inflation within the
counts dataset. Addressing this feature would introduce additional modeling complexity and thus further exacerbate the
computational burden of inference.

2. Forward models: Shelford's law of tolerance (Shelford, 1931) is typically invoked, which states that each species has a
preferred optimal climate range, and results in the fitting of simple unimodal models for the climate–proxy relationship.
However, these relationships often cannot be described by simple models (Birks et al., 2010; Toivonen et al., 2001;
Vasko, Toivonen, & Korhola, 2000), especially in the case of pollen where the counts data for an individual species are
formed by aggregating the counts of a number of subspecies, each of which may have a distinct preferred climate range.
For example, the pollen of both Pinus (ter Braak, 1995) and Graminaeae (Salonen et al., 2012) exhibit signs of multimod-
ality in their preferred climate ranges. As a result, more flexible (and thus more parameter heavy) models allowing for
multiple climate preferences per species are to be preferred, introducing further challenges of computation. If the CO2

dependence of vegetation response is also accounted for via a mechanistic model, computational challenges worsen
further.

3. Model inversion: The prediction of past climates using the fitted models is challenging due to the computational complex-
ity of inverting models for prediction, which involves numerical optimization over potentially multimodal response sur-
faces in several climate variables. This can be difficult due to the multimodal nature of the climate–proxy interaction, and
particularly so if several climate variables are jointly considered.

Inverse modeling approaches, which seek to avoid the difficult inversion step required for forward approaches by instead
modeling the inverse relationship, also encounter several further difficulties:

1. The climate variables are modeled as a function of highly correlated species counts/proportions. Models based on linear
methods, which harness the species counts as predictor variables, common in the paleolimnology literature, will thus suf-
fer from multicollinearity in the species compositions due to the high correlations between species with similar climate
preferences.
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2. It is not clear how to account for correlation in the relationships between the climate variables as they are unknown or not
fully understood, and are difficult to model in this inverse format (ter Braak, 1995). As a result, inverse modeling
approaches typically focus on single climate variables at a time which ignores the fact that the proxy response can jointly
depend on several climate variables (Huntley, 2012).

In addition to these challenges of whether to adopt forward or inverse modeling approaches, the primary weakness of clas-
sical approaches to the climate estimation problem is that there appears to be no consistent way to make statements of uncer-
tainty in the quantitative reconstructions that are produced. None of the introduced approaches adequately quantify and
propagate the full range of uncertainties involved in both the modeling and sedimentation processes to the final estimates of
climate that are produced. These include issues of temporal and spatial correlation—classical reconstruction methods do not
typically consider temporal uncertainty and reconstruct climate on a slice-by-slice basis at individual sites. Paleoclimate recon-
structions are typically presented in terms of single climate values that are estimated from multimodal outputs with only cur-
sory measures of uncertainty provided, such as an RMSE or a squared chord distance. The models used are typically simple in
nature, and involve the consideration of a limited range of relationships. This deficiency is noted by Holden, Mackay, and
Simpson (2008) who state “the major weakness of these [classical] approaches is that they do not explicitly model the uncer-
tainty associated with individual reconstructions,” a sentiment also expressed in Haslett et al. (2006) and Birks et al. (2010).
Furthermore, Birks et al. (2010) cite “an obsession with models with the lowest RMSE” as being a particular problem with the
use of classical approaches and state that the best manner of dealing holistically with the various sources of uncertainty is via
the harnessing of the modern Monte Carlo simulation methods of Bayesian statistics.

4 | BAYESIAN JOINT MODELS

The attraction of a Bayesian approach is the potential to allow for the various sources of uncertainty impacting on the recon-
struction problem in a holistic and coherent manner (Birks et al., 2010). Whereas classical approaches learn about model
parameters from the training datasets and then treat these parameters as fixed constants for prediction (Birks et al., 2010),
Bayesian implementations involve the consideration of joint models for the probability of the climate variables of interest, the
proxy data, and all other model parameters. The result is a full joint probability distribution on climate which is neatly summa-
rized via climate histories and/or maps. These are individual simulations of climate through time and/or space (Parnell et al.,
2016), which carefully reflect each source of climate information and dependence. An example is presented in Figure 4.

However, when performing reconstructions in a Bayesian setting there is a severe computational barrier to be overcome.
Typically inference is via Markov Chain Monte Carlo (MCMC; Gilks, Richardson, & Spiegelhalter, 1995), a mechanism for
simulating from probability distributions with unknown normalizing constants. This is computationally intensive and thus far
the challenging task of climate reconstruction in a Bayesian setting has been performed using one of two approaches:
(a) simplification of the model to one for which inference is tractable or (b) approximation of the inferential routines. We will
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FIGURE 4 Glendalough reconstruction of the mean temperature of the coldest month. The red region represents the 95% probability intervals for climate
over time. The darker shading represents the 50% intervals. Overlain in green is a “most representative” climate history across all of the sampled climates
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first define the task of Bayesian paleoclimate reconstruction and then introduce approaches under these two categories. We
initially constrain the discussion to climate reconstruction at a single site s given a single proxy k, and once more omit explicit
s dependence. A further simplification in the following is that the calendar age ak(d) at each depth is assumed known, and thus
no temporal uncertainty in the age of fossil samples is considered.

A key element of Bayesian approaches to climate reconstruction is the forward model which describes the data-generating
process (Salonen et al., 2012), that is, the model specified for the response surface which incorporates a priori ecological
knowledge to describe the relationship between proxy and climate. As previously, the primary interest is in the predictive dis-

tribution for unknown paleoclimate cf(t) at an individual site s given a sample of fossil proxy information from that site yfk dð Þ,
that is, π cf tð Þjcm,ymk ,yfk dð Þ

� �
, where the end product is a list of plausible climate values with associated posterior probabili-

ties. In the following we denote by θ the unknown parameters of the forward model describing this relationship, which must
first be inferred. Following the notation outlined in section 2, again omitting s dependence due to the focus on a single site,
the Bayesian formulation is:

π cf tð Þ,θjcm,ymk ,yfk dð Þ
� �

/ π yfk dð Þ,ymk jcm,cf tð Þ,θ
� �

π cf tð Þ,θ� �
: ð1Þ

where π ymk ,y
f
k dð Þjcm,cf tð Þ,θ

� �
is the likelihood of observing the proxy data, given the climate measurements, and the model

parameters and π(cf(t), θ) represent any prior climatological beliefs (Salonen et al., 2012). The challenge of inference in the
Bayesian setting is that the normalizing constant of the left-hand side is unknown. Brute force estimation of it is intractable
due to the high dimensionality of (cf(t), θ).

MCMC (Brooks, Gelman, Jones, & Meng, 2011) methods proceed by iterative sampling from a distribution without
requiring the normalizing constant. These samples may then be summarized or otherwise interrogated to provide information
about π(cf(t), θ). In Metropolis–Hasting MCMC each successive sample is generated by proposing a stochastic perturbation of
the current sample and then either rejecting it or accepting it, thus producing a chain of samples. Whether to accept or reject
each proposed sample is based on examination of the product of the ratio of the unnormalized posteriors (left-hand side of

Equation 1) and proposal probability densities π cf
*
tð Þ,θ*jcfi tð Þ,θi

� �
, which denotes the probability of proposing a move from

sample i in the chain to a new sample indexed with an *.
Detailed theory shows that this scheme does in fact sample from the target, but that it is only guaranteed to do so after an

infinite number of iterations. Examination of this routine shows that samples are not independent and that a suitable proposal
density must be specified that will allow the chain to move around the posterior target density (mixing). A proposal density
that generates large changes in θ will be inefficient as it will rarely leave areas of high posterior probability. Conversely, a pro-
posal that generates conservative moves in (cf(t), θ) will generate highly correlated samples and move slowly around the tar-
get. Therefore to create an efficient sampler, a sensible choice of proposal is required.

Finally, by integrating this over θ, the posterior distributions for climate will fully reflect the uncertainty in model parame-
ters. In the following we expand on the simplified setting presented here to identify the main statistical challenges hindering
Bayesian approaches to past climate estimation, including addressing the uncertainty in the chronology of the fossil record.

4.1 | Unimodal response surfaces based on Shelford's law

We now discuss Bayesian approaches to paleoclimate reconstruction by building up from simple models for which MCMC-
based inference is practical to more complex models that necessitate approximate inference, with reference to the relevant
literature.

A Bayesian framework for the problem of paleoclimate reconstruction was first described in a series of important papers
by authors in the University of Helsinki. First, Toivonen et al. (2001) (released as a working paper in 2000, referenced in
Vasko et al., 2000) proposed a Bayesian unimodal response model BUM, invoking Shelford's law of tolerance in order to
achieve tractable inference.

Furthermore, in BUM the compositional nature of the data was ignored so that chironomid species could be modeled as
responding independently to univariate climate variables (summer surface-water temperature or mean July air temperature).
Comparison with WA, WAPLS, and other classical calibration techniques was favorable under cross validation. Vasko
et al. (2000) then extend the approach to a Bayesian hierarchical multinomial regression model to address the compositional
constraint. They demonstrate that this approach, named BUMMER, outperforms BUM and classical WA-based methods in
terms of cross validation to surface-sediment chironomid data; Korhola, Vasko, Toivonen, and Olander (2002) then presented
extensive results of the BUMMER model applied to long-term summer temperatures to reconstruct Holocene climate patterns
in Finnish Lapland.
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More recent Bayesian work by Holden et al. (2008) also invokes Shelford's law and avoids MCMC inference entirely by
discretizing the low-dimensional posterior of their simple model. As the data are zero-inflated, presence and abundance-when-
present are modeled as functions of a single underlying process, which reduces the number of model parameters. Reconstruc-
tions of mean annual temperature based on chironomids or pollen, and pH based on diatoms, using the Holden et al. (2008)
model, are available in the the BUMPER (Bayesian user-friendly model for paleo-environmental reconstruction; Holden et al.,
2017) software package. They find good performance for chironomids and diatoms but poorer performance for the pollen-
based reconstructions, which they attribute to some pollen types comprising multiple species and thus having multimodal
responses, violating Shelford's law. This result is also experienced by Salonen et al. (2012), who note the poor performance
and bimodal response of several plant species in a pollen application. These examples illustrate the challenging problem of
response surface modeling—the computational conveniences of harnessing parametric unimodal response surfaces for the
climate–proxy relationship are offset by their unsuitability in applications where species are potentially comprised of several
subspecies, such as in the pollen setting.

Holmström, Ilvonen, Seppä, and Veski (2015) attribute the potential multimodal pollen problems to the use of European-
wide pollen vegetation datasets. The authors circumvent the issue in a pollen application by limiting the training set to loca-
tions in Scandinavia and the Baltic region coincident to the fossil proxy sites; however, this is an undesirable solution as the
full amount of model training data potentially available is not utilized, resulting in uncertainty estimates for reconstructions
that are potentially naively precise due to the exclusion of subspecies data.

4.2 | Multimodal response surfaces

We now turn our attention to more sophisticated models that require more approximating assumptions in the inferential algo-
rithms or other computational efficiencies to be made. The first serious attempt to address the complexity required by fully
Bayesian models for climate reconstruction came in by Haslett et al. (2006). They address the issues of univariate climate vari-
able modeling and multimodality in the pollen response surfaces. Unlike the BUMMER model, which fits to a single climate
variable at a time, responses are jointly modeled on two climate dimensions. This is performed nonparametrically to allow for
the multimodal responses observed in pollen species. The term “climate-space” is used to refer to this two-dimensional
(2D) climate and the variables chosen were aspects of climate that plants (and thus pollen) are sensitive to, namely growing
degree days above 5 �C (GDD5, a measure of the length of growing season) and mean temperature of the coldest month
(MTCO, a measure of harshness of winter). Fourteen pollen species were selected, with each having a distinct preferred cli-
mate in terms of these two variables.

However, computational overhead was the primary obstacle, with MCMC-based inference of the high-dimensional poste-
rior having run times being of the order of weeks, despite measures taken to improve efficiency of the algorithms and running
on high-performance computers. Thus, cross validation to compare models and to assess accuracy of reconstruction was
impossible. In order to model the response surfaces in a nonparametric fashion each species response in 2D climate space is
modeled as smooth, but with no constraint on shape of response. This model was well suited to pollen data where species that
respond quite differently to climate may have indistinguishable pollen spores. This required a response parameter in θ for each
of the approximately 8,000 modern sampling sites and a large-scale hierarchical Bayesian model was formed with inference
via MCMC. The article was also the first to attempt to coherently account for temporal correlation in the fossil record by sam-
pling paleoclimates conditional on the fitted models and the fossil pollen data—a t8 distribution for the smoothness of the
paleoclimate was imposed as a prior, informed by Greenland ice core data, and the paleoclimates were thus modeled jointly in
a temporal sense. However, despite of the number of advances, the paper also identified several remaining challenges:

• The nonparametric modeling of responses requires high numbers of unknown parameters. This leads to a long running
time for the MCMC-based methodology, and poor mixing and convergence, that is, the typical model fitting issues when
using MCMC methods.

• Zero-inflation of the pollen counts where sampling sites may not have had particular species present, despite a suitable cli-
mate, is not addressed. This results in many additional zeros in the data over and above that explained by simple counts
models and potential underestimation of species responses.

• Dependency among species over and above that caused by the constraint of sum-to-one nature of compositional counts.
Vasko et al. (2000) showed that accounting for the compositional nature of data collection methods improved model fit to
chironomid assemblage data; however, there is dependency beyond this simple model that is due to competition among
pollen species/species.

• The laminar nature of the Greenland ice core that inspired a t8 model for climate change is unsuitable for the uneven time
sampling of the fossil proxy data such as occurs with pollen.
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• The dates of the fossil pollen are assumed known rather than uncertain. Radiocarbon dating of a subset of the slices of the
sediment core and linear interpolation are crude approximations to the true processes involved.

In light of these shortcomings, several attempts to improve the model have been attempted while simultaneously addres-
sing the computational complexity issue. In particular, Salter-Townshend and Haslett (2006) introduce a parsimonious model
for the overabundance of zero counts. The probability of absence from a sampling site is assumed to be functionally related to
the abundance when present so that the response surfaces now account for both the abundance when present and the probabil-
ity of presence. This model introduces a single additional parameter for each pollen species modeled and model fit is shown to
be superior in terms of cross-validation prediction accuracy. Salter-Townshend and Haslett (2012) then used this model along
with a nesting structure on the species to account for additional dependency (richer covariance structure) and demonstrate
superior performance in terms of cross validation of the modern data.

In order to accommodate these modeling extensions, MCMC-based inference is replaced by an integrated nested
Laplace approximations approach (Rue, Martino, & Chopin, 2009), which speeds up the inference tasks by several orders
of magnitude. However, this comes at the cost of enforcing compromises in the likelihood structure. The continuous 2D cli-
mate space is approximated by a regularly spaced 50 × 50 lattice and the climate measurements of each observation
adjusted to their nearest grid point. Flexibility in the response surfaces, and efficiencies in computation, are achieved by
imposing a Gaussian Markov random field (GMRF; Rue & Held, 2005) on this regular lattice, making a discrete approxi-
mation to the continuous nonparametric multivariate Gaussian response surface model. A GMRF approximation of the
gridded θ response surfaces posterior is then found, without recourse to MCMC or other sampling methodology. This
approximation is demonstrated to be highly accurate; however, the GMRF-based approach does not currently extend to cli-
mate dimensions greater than three due to the substantial computational cost imposed by the discretization of multidimen-
sional climate space.

4.3 | Accounting for temporal uncertainty in the chronology

In order to fully account for temporal uncertainty in the climate reconstructions, the prediction for climate at time t must take
into account the uncertainty in the relationship between the unknown calendar ages ak(d) of the fossil slices at depth d, which
are estimated from the associated radiocarbon age rk(d) obtained from a laboratory. Addressing some further limitations in
Haslett et al. (2006), Haslett and Parnell (2006) introduce a model for radiocarbon-dated depth-chronologies to address vary-
ing sedimentation rates, where depth d and age a are not linearly related, and model the uncertainty in the fossil dates jointly.
An accompanying R package Bchron (Parnell, 2016) performs age-depth modeling and date calibration with uncertainty. Par-
nell et al. (2015) use this model, and a normal inverse gamma process prior, to model the stochastic volatility of paleoclimate
for a number of pollen cores. By making two small and conservative simplifying assumptions to the model (firstly that unob-
served paleoclimate and fossil pollen contribute negligible information to learning response surface model parameters and sec-
ondly that the expected impact of a changing climate on the sedimentation process is zero), the reconstruction task can be
broken down into three discrete stages:

1. Response surface module: π θjymk ,cm
� �

2. Chronology module: π(a, ψ |r, d)
3. Reconstruction module:

π cf tð Þ,ak,θ,ψ ,νjyfk dð Þ,r,d,ymk ,cm
� �

/ ,

YN f

i=1

π yfk dið Þjcf ak dið Þð Þ,θ
� �

π cf tð Þjak dið Þ,ν� �
π ak,ψ jr,dð Þπ θjymk ,cm

� �
π νð Þ:

where ak(di) is the unobserved calendar age at depth di and Nf is the number of fossil pollen slices, each of which contain the
counts of the N species (i.e., Nf × N pollen counts). Furthermore, ν are parameters for the climate process, ψ are a set of
parameters governing the sedimentation process (i.e., linking age and depth), r is the radiocarbon age of a sample, and d is the
depth, as previously. Each of the stages is still computationally intensive in their own right. Computational savings are made
by pre-processing the response surface posteriors of the forward model stage, resulting in efficient low-dimensional MCMC
inference of the jointly inferred posterior for paleoclimate in stage 3. Specifically, marginal data posteriors (MDPs) are first
calculated—these are independent posteriors for climate given pollen only (i.e., no other fossil slices) for slice i. Assuming
known ymk , c

m,
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π cf ak dið Þð Þjyfk dið Þ,ymk ,cm
� �

/ π yfk dið Þjcf ak dið Þð Þ,ymk ,cm
� �

π cf tið Þ� �
, ð2Þ

/
ð
πðyf dið Þ j cf ak dið Þ,θð Þπ θjymk cm

� �
dθ: ð3Þ

cf(t = ak(di)) is assigned a flat prior; changes in climate are modeled without making a priori statements about marginal values
at a slice. The MDPs are approximated with a mixture of Gaussians to simplify integration steps, with the mixture approxima-
tion performed once per slice, before integration with the depth-chronology part of the model.

Most importantly, this modular form is computationally attractive as new sites for paleoclimate reconstruction can be ana-
lyzed without re-doing the computationally expensive response surface module. In Figure 4 we present a temperature recon-
struction (mean temperature of the coldest month) for a pollen core at Glendalough, Ireland, over the past 14k years which
coherently brings together uncertainty in the sedimentation history age, in addition to model uncertainty, using the approach
outlined in Parnell et al. (2015) and implemented in the R package Bclim (Parnell & Sweeney, 2016).

Other authors have since utilized the benefits of this modular form for the reconstruction problem—Ilvonen, Holmström, Seppä,
and Veski (2016) reconstruct Finnish mean annual temperature, this time using the BUMMER model for the response surface mod-
ule, but in conjunction with the Bchron model for depth-chronologies. Unimodal responses are justified as only a single climate var-
iable is modeled, modern training data are carefully chosen to be very focused, and the unimodal assumption is appropriate.

5 | EXTENSIONS TO SPATIAL, MULTIPROXY, AND MECHANISTIC MODELS

In this section, we review some recent approaches that build on the Bayesian approaches outlined in previous sections. These
fall into the broad categories of spatial models, where multiple datasets are combined across sites with a view to a spatiotem-
poral climate reconstruction; mechanistic models, which aim to incorporate physical processes into the model; and multiproxy
models, where multiple climate proxies are combined in a consistent manner to utilize more information, and so reduce uncer-
tainty. In Figure 5, we seek to provide a summary of the structure of four of the approaches we review, linking them back to
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the structure for pollen-based climate reconstruction in Figure 3. The idea with all these extensions is simultaneously to reduce
uncertainties and allow for more detailed causal analysis of the parameters governing climate change. When fitted into the
Bayesian framework, all of these approaches are only in their infancy. Many of the papers referenced are proof-of-concept
attempts toward the goal of combining data in joint probabilistic models. There has been even slower progress made on the
meta-combination of spatial, multiproxy, and mechanistic models, and we hope that this is a key goal of future research.

5.1 | Spatial and spatiotemporal approaches

In spatial approaches to paleoclimate reconstruction, the target of inference is cf(s), where s denotes a location in space. This
may be two- or three-dimensional if altitude is further included with latitude and longitude. When time is included as well the
target is cf(s, t). Much progress has been made in developing advanced spatial statistical models for uncertain data (Lindgren,
Rue, & Lindström, 2011), and some of these approaches have been applied in paleoclimate research (Salter-Townshend &
Haslett, 2012). However, in the main, the approaches taken in the paleoclimate literature use traditional Gaussian process
approaches (Banerjee, Gelfand, Finlay, & Sang, 2008). This Gaussian process approach proceeds by defining a correlation
function by which neighboring sites will have similar climate values. The degree to which sites are deemed “neighboring” is
determined by the correlation function chosen and the distance between sites, and is controlled by one or more unknown
parameters.

We cover two of the most widely read and cited papers, which also follow the Bayesian forward approach outlined previ-
ously, and so are compatible with many of the other ideas in this section. A key challenge is that the data are usually irregu-
larly observed time series at each site. The challenge is to temporally align the series so as to produce a spatiotemporal grid of
climate values. This is most effectively achieved by using a statistical model that works in continuous time, for example, the
continuous time stochastic volatility model of Parnell et al. (2015).

The first approach we discuss is that of Tingley and Huybers (2010) (known as BARCAST), which aims to produce a spa-
tial reconstruction of temperature based on the Climatic Research Unit (CRU) dataset (Brohan, Kennedy, Harris, Tett, &
Jones, 2006) using pseudo-proxies (simulated proxy data) to validate the approach. Adjusting their notation slightly, they
work with discretized time, and write:

cft s1ð Þ
cft s2ð Þ

..

.

cft snð Þ

2
6664

3
7775= α

cft−1 s1ð Þ
cft−1 s2ð Þ

..

.

cft−1 snð Þ

2
6664

3
7775+ ϵt,

where cft sið Þ indicates the mean temperature at time t and location si. The discrete time approach is acceptable here because
the CRU dataset they use is gridded and so is amenable to standard auto-regressive models. The spatial aspect is captured in ϵt
which is given a multivariate Gaussian process with covariance matrix Σ, such that:

Σij = σ2 exp −φjsi−sjj
� �

:

Thus the model is space–time separable with the spatial field unchanging over time. This is a severe simplification of real-
ity but, given the complexities of the datasets involved, remains computationally tractable. The above equations form the spa-
tiotemporal process part of the model, with further parts being added to take account of the proxy data.

A more advanced approach is that of Holmström et al. (2015), which allows for more realistic data with differing chronol-
ogies (i.e., differing time scales) for different sites, and still produces gridded spatiotemporal climate reconstructions. Again,
adjusting their notation to match ours, they have:

cf si, tj
� �

= cf si, tj−1
� �

+
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ tj− tj−1
� �q ϵtj ,

where tj now represents continuous time point j at location s. κ here represents a time smoothing parameter, and ϵtj captures
the spatial covariance, again given the exponential form as in Tingley and Huybers (2010) above. The time difference tj − tj−1
accounts for nonregular temporal differences between sites. Holmström et al. (2015) fit their model to a set of four lakes using
MCMC techniques. They use informative prior distributions on many of the parameters of interest but ignore the time uncer-
tainty in each of the four lake chronologies. The spatial smoothness parameter is informed by climate model simulations. The
space–time separability of the covariance, despite still suffering from many of the drawbacks of the BARCAST model,
enables some computational shortcuts.
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5.2 | Mechanistic approaches

In mechanistic approaches, physical processes are included in the model. These physical processes can range from the inclusion
of simple differential equations governing climate change over time, to advanced models involving multidimensional stochastic
partial differential equations. Although the goal is, as always, to reduce uncertainties and increase explanation, these types of
models involve a considerable computational overhead which is exacerbated when incorporated into a Bayesian model due to
the repeated simulations/iterations that are often required to capture uncertainty. There is a long literature of mechanistic models
used in paleoclimate (Crucifix, 2012). Here we focus solely on papers that discussed the embedding of mechanistic models in a
statistical framework, and can be included in the general Bayesian solution as posed at the start of the paper. An excellent discus-
sion of the issues involved in using statistical methods with mechanistic models can be found in Crucifix (2012).

There are two primary places where mechanistic models can be incorporated. The first is in the climate component of the model,
for example, replacing the statistical time series model (Ilvonen et al., 2016; Parnell et al., 2015) with a set of differential equations.
Although the time series approaches have parameters that represent, say, smoothness or volatility of climate over time, the differential
equations can allow for parameters that capture mechanistic climate feedbacks or the complex effects of other variables or forcings.
In some cases, for example, Li et al. (2010), the time series model may incorporate both statistical and mechanistic ideas. The second
place where mechanistic models can be incorporated is in the transfer from proxy to climate: the forward model. As described above,
a statistical model may capture the main features of the proxy–climate relationship, but may not allow for known mechanistic actions
of the proxy, such as being able to incorporate the CO2 dependence of the response. Cases where proxies may compete, or when dif-
ferential lags occur between proxy and climate, may also be particularly suited to mechanistic involvement.

Tolwinski-Ward et al. (2015) present a forward model for tree rings, which contain some mechanistic elements. They
reconstruct two climate variables: temperature and moisture, and define ramp functions for each, which represents the tree-ring
growth response. The parameters of these growth response functions represent the limits at which the trees will grow. The
remainder of the model is fitted using the Bayesian approach.

A far more sophisticated forward model is used by Garreta et al. (2009). They build a statistical framework that incorpo-
rates the stochastic LPJ-GUESS vegetation model (Smith et al., 2014), which simulates pollen counts from climatic inputs.
The vegetation model accounts not only for the production of pollen based on climate, but also includes pollen dispersal and
spatial accumulation. This involves estimating a far richer set of parameters governing such relationships, which causes con-
siderable computational challenges.

The state of the art in mechanistic modeling of paleoclimate over time is that of Carson, Crucifix, Preston, and Wilkinson
(2017). They evaluated a competing set of stochastic differential equation models over the glacial–interglacial cycle. Using some
of the more recent statistical methods, for example, particle MCMC (Andrieu, Doucet, & Holenstein, 2010), they were able to
efficiently estimate the parameters of the competing models, and subsequently the marginal likelihoods and Bayes factors. The
results and methods used in the paper seem highly promising for future research directions when including mechanistic models.

5.3 | Multiproxy

The idea of combining multiple proxies together dates back to the seminal papers of Mann, Bradley, and Hughes (1999) and before,
where classical (non-Bayesian approaches) are adopted. These methods, such as the composite plus scaling method (Jones et al., 2009),
regress standardized and weighted multiple modern proxies (e.g., tree-ring, marine sediment, speleothem, lacustrine, ice core, and coral
data) against the modern instrumental record to combine into an average representation of the temperature histories originally constructed
only on the basis of the individual records (Holmström et al., 2015). This represents a multiproxy extension of the inverse methods intro-
duced in earlier sections. We caution against this approach to multiproxy analysis as, similar to the classical inverse approaches, sources
of uncertainty within and across proxies are not fully and coherently accounted for. In this regard, McShane and Wyner (2011) carried
out a careful Bayesian analysis of theMann et al. (1999) dataset, and concluded that the reconstructions provided in the article are perhaps
unreliable; although their mean reconstructions do replicate the “hockey stick” shape found byMann et al., they found very large uncer-
tainties and speculated that the long “handle” shape is due to regression to themean of themodel rather than a climate signal.

The overriding challenge in multiproxy reconstructions is to take account of the differing relationships between the proxies
and the climates, and to account for uncertainty in both. A list of the potential problems in these relationships can be found in
Huntley (2012). The Bayesian solution to this problem is to stitch together forward models in a Bayesian likelihood assuming
some conditional independencies:

π ym1 ,y
m
2 ,…,ymM jcm1 ,cm2 ,…

� �
=

YM
k=1

π ymk jcm1 ,cm2 ,…
� �

where yk represents the proxy data for proxy k = 1, …, M, and c1, c2, … represents the different climate variables. The assumption
here is that, when all the important climate variables are known, the proxies are conditionally independent and forward models can

SWEENEY ET AL. 15 of 18



be built for them separately. In this sense, even multiple variables of the same proxy type (e.g., pollen counts from different species)
can be treated as separate proxies. This framework is in direct contrast to the approach of Mann et al. (1999), which assumes that
proxies are observed without uncertainty and marginally independent, that is, independent sources of information.

Surprisingly, given that the above framework allows for simple combinations of proxies, there is relatively little literature
on the combination of substantially different proxy types. This may be in part because, although the mathematics is relatively
simple, in practice different proxy types respond to different but related aspects of climate, so tying them together can be a
challenge. For example, some plant pollen counts may respond to the harshness of the winter, while certain trees may respond
to the length of the growing season. Both these climate variables are correlated, and so any climate model (either stochastic or
mechanistic) must estimate these jointly. Another challenge is that the proxies may respond to climate variables on different
timescales, but this problem is already present in many multispecies single proxy reconstructions (Haslett et al., 2006).

The approach outlined above was first described in detail by Li et al. (2010) using a simulation (pseudo-proxy) dataset
combined with a simple climate model to reconstruct a univariate temperature variable. They reconstruct northern hemisphere
mean temperature using tree-ring, pollen, and borehole data, with different regression type models on each. This is a clear
improvement on the multiproxy methods of Mann et al. (1999) but lacks the richness of the forward models proposed by, for
example, Ohlwein and Wahl (2012).

A more focused approach using real data from multiple proxies in the Bayesian framework is that of Cahill, Kemp, Hor-
ton, and Parnell (2016). In their example, the variable to be reconstructed is sea level at a specific site. The proxy data are fora-
minifera which live within the tidal range, and a stable isotope measurement (δ13C) which provides an additional constraint.
The forward model is a Bayesian nonparametric spline, with a Gaussian process to model the changing rates of sea level. The
multiproxy model works well here because both proxies provide information on a single climate variable of interest. We hope
such models will find more widespread use.

6 | DISCUSSION

The ultimate goal of paleoclimate reconstruction is to estimate the mechanics of past climate given all available data. These
reconstructions provide an understanding of past climate and of environmental changes, provide a method for the evaluation
of climate models and the uncertainty in their estimates, and help to improve our predictions of the future. In this article, we
have provided an overview of the methods currently used to achieve this goal and identified that the challenges involved are
multidisciplinary, comprising problems of an ecological, computational, and statistical nature. We conclude the article by
touching briefly on a number of these issues, and proposing further areas for development.

From an ecological point of view, the challenges include a proper addressing of the quality and consistency of the data used
for model training (Salonen et al., 2012), which are subject to errors in the identification of the proxy data, as well as errors of
omission such as the expression of proxy data in proportion rather than count form. Another challenge is the addition of further
sources of proxy information to the modern training record (Birks et al., 2010), with the hope that this will result in improve-
ments in the precision of climate inferences. Furthermore, there is a requirement to develop a broader understanding of the cli-
mate variables, which drive the response of individual proxies—the absence of important explanatory climatological variables
results in confounding correlations between proxies being identified, and potentially erroneous inferences being made.

From a statistical point of view, the challenges are numerous. In this article, we have presented an attractive modular form
for paleoclimate estimation, which breaks the paleoclimate reconstruction challenge into separable modules of forward model
building, the addressing of spatial and temporal uncertainty, and the harnessing of mechanistic models. This enables the
embedding of the reconstruction process in a Bayesian statistical framework, which allows for coherent and holistic account-
ing of all the sources of uncertainty that impact at each stage of the process. This modular form allows the isolation of a num-
ber of key statistical challenges, each of which offers the scope for substantial methodological contributions. One challenge is
the requirement to move from simplistic one-dimensional unimodal forward models, to flexible modeling approaches which
allow for individual species to express multiple climate preferences in multiple climate dimensions. A further progression will
hopefully involve the simultaneous harnessing of several forward models for climate estimation, as opposed to the present use
of individual models, by weighting models with a model averaging approach (Raftery, Madigan, & Hoeting, 1997). Surpris-
ingly little research has been carried out in this regard and we see it as an area of substantial research potential, in addition to
the development of more refined forward models.

A more fundamental challenge is to move away from the uniformitarianism principle of current methods via the incorpora-
tion of mechanistic models into the estimation process. This offers the scope to address the issue of a lack of modern ana-
logues for fossil samples; however, these models require understanding of complex processes, and testing and evaluation with
data, and may present substantial computational challenges. Indeed, perhaps the most pressing and useful contribution is via
the development of software for the dissemination of Bayesian approaches and methods for the reconstruction problem, and
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the speeding up of inference through computational advances. Unfortunately, existing Bayesian approaches are often regarded
as slow and computationally intensive and these problems are perhaps the most substantial impediment to their adoption by
researchers (Birks et al., 2010) who currently favor classical approaches.
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