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ABSTRACT

Modelling can be applied to all aspects of healthcare systems but

one area in particular, clinical pathways, are of great interest cur-

rently due to many flow-oriented issues that are well-documented

in the media. These pathways typically describe sequences of sort-

ing and treatment activities such as surgical procedures or the care

process for managing injuries, for example bone fractures. Previ-

ous efforts in using modelling languages have not been promoted

as being highly generalizable nor have emphasised the inclusion

of constraints defining rules for particular treatment activities. In

this paper, we propose a workflow for building flexible models for

healthcare systems by exploiting the combination of UML, OCL,

and SMT solving. This paper serves as an exposition of an idea

that can be developed into a more complete framework that could

be used to create workflow models for improving the efficiency

and safety of more complex clinical activities. A good application

would be to tackle the prevalent problems of emergency depart-

ments and some of the challenges in this respect are discussed.
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1 INTRODUCTION

Healthcare systems across the world are coming under enormous

strain due to a combination of factors. These include rising life ex-

pectancy that has led to greater numbers seeking help along with

more complicated treatment procedures. The situation worsens if

individuals are suffering frommultiplemedical conditions. The use
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of computerization to support traditional manual systems for ad-

ministration has introduced benefits of efficiency and cost reduc-

tion. However, the ever-growing medically complex and tighten-

ing regulatory environment that surrounds these healthcare sys-

tems means that the level of automation must keep pace. Many

challenging problems exist. One in particular is that if rigorous

analysis is to be used to improve healthcare systems, how can cor-

rect software models be built that will formally capture the rules

and regulations associated with healthcare activities and services?

Achieving this means that health care staff and patients can com-

pletely place their trust in their application.

In this paper, we pursue this challenge by proposing a Model-

Driven Engineering (MDE) basedworkflow for building healthcare

systems. MDE is an ever-growing methodology for designing dif-

ferent kinds of systems. It is typically tailored to address software

engineering requirements related to productivity, flexibility and re-

liability by using multiple types of models at different stages of a

system design. These models are used to capture a process or a

structural aspect of a system and therefore can also be applied to

any system including healthcare. In fact, the idea of using MDE to

model health care services is not new. A variety of different types

ofmodels have been proposedwith example applications including

care monitoring, community care, collaborative care, and dynamic

healthcare checklists [2, 7, 11, 13, 16].

However, these models are limited by the fact that they do not

take necessary constraints into account. We believe that the use

of models excluding constraints are formally insufficient. This in-

hibits verifying the correctness of a model. Our approach to build-

ing healthcare systems distinguishes itself from others by speci-

fying constraints in Object Constraint Language (OCL) and solv-

ing these constraints using a Satisfiability Modulo Theories (SMT)

solver. The combination of OCL and a SMT solver in our workflow

gives us two advantages. First, it allows us to specify constraints

without introducing ambiguities since OCL is based on first-order

logic (FOL). Second, with recent advances in SMT solvers, solv-

ing/verifying a variety of different kinds of constraints in an ef-

ficient manner is now possible. Particularly, one can treat an SMT

solver as a black-box engine. This enables the automation of the

proving/disproving of the correct behaviours of a systemwithmin-

imal effort.

2 OUR WORKFLOW

Our workflow for modelling a healthcare system consists of four

main steps as depicted in Figure 1. First, medical experts analyse

documents specifying rules and regulations for particular clinical

pathways that are written in natural language. At this step, they
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focus on comprehending the semantics of the documents and ex-

tracting the necessary information that is interpreted as entities,

relationships (among them), conditions and constraints. Once the

semantics are well understood, an appropriate UML model such

as a class diagram can be established. More importantly, a set of

mandatory constraints can also be specified in the form of either

class invariants or operational contracts in OCL. The third step

requires users to translate the complete model along with the con-

straints into a set of logic sentences that can be solved by SMT

solvers. This step can now be done via many tools. For example,

our previous research in verifying UML models allows us to auto-

matically translate a model annotated with OCL constraints into

first-order sentences [21, 22]. The final step of our workflow is to

use an SMT solver to verify the translated logic sentences and pro-

duce either an instance of the model or a counterexample that con-

tradicts the semantics captured by the model.

2.1 Fracture Treatment Model

In this section, we use a clinical pathway for fracture treatment

presented in [6] as an example to illustrate our workflow 1. We

first read, analyse and interpret the documents ourselves to iden-

tify the relationships between different entities and necessary con-

straints. For example, a fracture can be typically treated using: cast ,

repositioninд,surдery and slinд. Thus, it is natural to identify those

as 4 entities. Similarly, for the operations described in each sen-

tence in the document we identify the subject, verb and object. We

then map a verb to an operation call, an object to a parameter and

a subject to an entity that contains an operation call 2. For exam-

ple, cast treatment applies a cast to the patient. We model cast as

an entity, apply as an operation call that is contained in cast and

patient as a parameter of apply.

We then build a UML class diagram for fracture treatment.

This diagram is shown in Figure 2 along with a set of con-

straints. The diagram consists of 7 classes and 3 enumeration

types. In particular, this UML class diagram models a relationship

(FractureTreatment ) between FracturePatient and Treatment .

For each patient, the general information (modelled as attributes)

such as Gender and Severity are preserved in the Patient

class. The special purpose information for a fracture patient

such as cast_done and cast_removed are stored in the subclass:

FracturePatient .

In our example, there are four types of treatments available for

fractures: Repositioninд,Cast , Surдery and Slinд. Applying a cast

is probably the most common treatment for fractures. The Cast is

removed after the fracture is healed. Dislocations are treated by

Repositioninд, and Surдery is required for complex injuries. Addi-

tionally, a Slinд could also be used for a prescribed period of time.

For each treatment, it is modelled as a subclass of Treatment .

Each different treatment has its own operation calls that represent

the necessary operations that might be used for a fracture patient.

For example, the operation call apply(p : FracturePatient) in the

Cast class denotes that a cast is applied to a specific patient.

1We choose this example because it is easy enough to be understood and also allows
us to demonstrate the use of constraints in both OCL class invariants and operational
contracts
2Note that this is not a general rule and it depends on different documents.

The use of a UML class diagram itself is not enough due to the

fact that it is missing constraints that can capture the appropriate

treatment process. Hence, we introduce a set of OCL constraints

as shown enclosed in a box in Figure 2. These constraints spec-

ify the necessary restrictions when treating a patient with a frac-

ture. The OCL constraints presented in the box in Figure 2 can

be divided into two categories: class invariants (inv) and opera-

tional contracts (pre/post ). The class invariants are used for ex-

pressing constraints that should hold all stable states. For example,

the invariant for the class Patient states that every patient must

be assigned with a unique identifier. Similarly, the invariant for

the FracturePatient class suggests that every patient should be

treated by at least one of the four treatments.

The OCL operational contracts are expressed as pre/post condi-

tions for an operation call. A precondition specifies the conditions

to be met before executing an operation call while a postcondition

indicates what is to be achieved after executing an operation call.

For example, the precondition for the operation call apply in the

Cast class specifies that a patient must be x-rayed before applying

a cast. The postcondition here implies that once the precondition

is met, the cast procedure is complete. To ensure an appropriate

precondition for each operation call, we use boolean attributes to

store information such as whether a patient has been examined,

checked, x-rayed and had a cast applied. For example, the precondi-

tion of xray inTreatment class requires the attribute risk_checked

to be true . Hence, the set of OCL constraints defined in Figure 2

specifies the following constraints:

1. Every patient must have a unique id.

2. Every fracture patient must be treated using one of the four

treatments.

3. Before prescribing any medicine, a patient must be exam-

ined.

4. Before taking an x-ray, a risk check must be performed.

5. A cast can only be removed after it is applied.

6. The doctor must perform an x-ray before applying a cast,

performing repositioning or surgery.

These constraints listed above altogether essentially model the

fracture treatment process for a patient.

2.2 Solving Constraints

To solve the constraints defined in Figure 2, we convert them into a

set of logic sentences and then solve them using an SMT solver [8].

Each successful assignment found by the SMT solver is mapped to

an instance of our model as shown in Figure 2. Our previous work

on translating UML class diagrams along with OCL constraints

allows us to automatically translate class invariants into SMT in-

stances [20, 21]. We have also developed an approach that allows

us to synthesise a call sequence from OCL operational contracts.

This approach uses an SMT solver as a back-end engine for con-

straint solving.

To synthesise a call sequence with respect to each pre/postcon-

dition and invariant, we model each operation call as a transition

from one system state to another. For example, Figure 3 illustrates

a transition of applying a cast to a fracture patient. Our logic sen-

tences encode all possible transitions from the operation calls de-

fined in Figure 2. We then let the SMT solver explore the search

space for us in order to find the correct sequence. Our previous
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Figure 1: Our workflow for modelling software healthcare services.

Figure 2: A UML class diagram for fracture treatment with class invariants and operational contracts specified in OCL.

experience of using SMT solvers has proved to us that those well-

engineered tools are best suited to solve different kinds of con-

straints [21, 22].

The basic idea of our encoding is to use a state function to en-

code every object in each state after an operation call is invoked.

This includes those properties specified to be changed in the post-

condition and those that are not meant to be changed (frame con-

ditions). For example, the state function for the operation call xray

indicating the is_xrayed attribute is changed to be true after exe-

cuting this call and leaves other attributes unchanged. When the

SMT solver finds an assignment for our state function, we interpret

it back into a valid call sequence. For example, the blue sequence

in Figure 4 shows a valid call sequence (with respect to the con-

straints) found by the SMT solver and the red one shows an invalid

call sequence when one ignores the precondition for the operation

call xray 3.

3Here, we constrain that every call sequence must begin with an operation call
examine , and each operation call applies to the same patient.

Figure 3: An example showing a transition from one system

state to another via calling the apply operation defined in

Figure 2.
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Figure 4: Two call sequences: the one in blue conforms to

the constraints and the red one is invalid due to the missing

x-ray risk check operation.

3 DISCUSSION

The results of the example (Figure 2) illustrate our initial effort

in building a formal workflow model of patient treatment by in-

troducing both OCL and SMT solving. Ultimately, our ambition is

to generalize and extend our workflow to a larger framework and

then apply it to more complex situations. We are particularly inter-

ested in Emergency Departments (ED) because they are constantly

associated with problems such as overcrowding and staff schedul-

ing [14]. EDs are extremely complicated, high-stress environments

that require significant cross-departmental and cross-role coordi-

nation [3]. Hence, they impose many challenges on existing mod-

elling techniques. Here, we outline some of those challenges and

discuss how our workflow could possibly be further developed to

tackle them.

Resource Scheduling. Resources in emergency departments

should be allocated carefully. Planning an appropriate schedule for

different resource will have impacts on care quality, budgets and

staff morale [5, 18]. One direction to tackle this is by introducing

a UML-based domain-specific language (DSL) that can model the

dynamic aspect of the scheduling. One could then use this DSL to

design different objective functions with respect to different sce-

narios. Then, SMT solving in our workflow here could be adjusted

to solve the optimising of the schedule. Many SMT solvers have

very dedicated algorithms for solving this type of optimisation [1].

Improving flow through Triage. The aim of the triage process

is to improve medical staff preparedness and standardise the clin-

ical response according to best practice [4, 9]. It is applied in

Emergency Departments to incoming patients. Different practices

for Triage exist. The workflow of Triage process currently relies

on paper-based documents [10]. This makes interdependent con-

straints between different treatment procedures difficult to achieve.

One possible way to improve this is we can explicitly express those

interactive constraints in OCL and add an additional step in our

workflow that allows its integration with guideline-based decision

support and the electronic health record (EHR) systems. By imple-

menting such a computer-supported early-assessment Triage pro-

cedure followed by a prompt initiation of treatment should lead to

a reduction in the amount of time spent by patients in the emer-

gency department [12].

4 CONCLUSION

In this paper, we propose a workflow for modelling for healthcare

systems. This workflow exploits UML, OCL and SMT solving. Our

workflow is exemplified with a fracture treatment pathway. The

application of MDE to healthcare is an active topic currently [17].

The use of tools and techniques from formal verification is very

attractive for building healthcare systems [15, 19].

We admit that the work presented here is an intial idea and re-

quires more thorough evaluations. In the future, we plan to com-

pare our modelling proposal against other formal approaches such

as Alloy and Event-B by applying it to real-world healthcare sce-

narios. This inlcudes fully utlising different SMT solvers at both

the specification and computational levels.
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