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Abstract—We introduce a new algorithm for Maximum Like-
lihood (ML) decoding for channels with memory. The algorithm
is based on the principle that the receiver rank orders noise
sequences from most likely to least likely. Subtracting noise from
the received signal in that order, the first instance that results
in an element of the code-book is the ML decoding. In contrast
to traditional approaches, this novel scheme has the desirable
property that it becomes more efficient as the code-book rate
increases. We establish that the algorithm is capacity achieving
for randomly selected code-books. When the code-book rate is
less than capacity, we identify asymptotic error exponents as
the block length becomes large. When the code-book rate is
beyond capacity, we identify asymptotic success exponents. We
determine properties of the complexity of the scheme in terms of
the number of computations the receiver must perform per block
symbol. Worked examples are presented for binary memoryless
and Markovian noise. These demonstrate that block-lengths that
offer a good complexity–rate tradeoff are typically smaller than
the reciprocal of the bit error rate.

Keywords—ML Decoding; Noise Guessing; Complexity Analy-
sis; Error and Success Exponents.

I. INTRODUCTION

Consider a channel with inputs, Xn, and outputs, Y n,
consisting of blocks of n symbols from a finite alphabet A
of size |A|. Assume that channel input is altered by random,
not necessarily memoryless, noise, Nn, that is independent of
the channel input and also takes values in An. Assume that
the function, ⊕, describing the channel’s action Y n = Xn⊕Nn,
is invertible, so that knowing the output and input the noise
can be recovered: Xn = Y n 	Nn. To implement Maximum-
Likelihood (ML) decoding, the sender and receiver first share
a code-book Cn = {cn,1, . . . ,cn,Mn} consisting of Mn elements
of An. For a given channel output yn, denote the conditional
probability of the received sequence for each code-word in the
code-book by

p(yn|cn,i) = P(yn = cn,i⊕Nn) for i ∈ {1, . . . ,Mn}. (1)

The ML decoding is then an element of the code-book that has
the highest conditional likelihood of transmission given what
was received,

cn,∗ ∈ argmax
{

p(yn|cn,i) : cn,i ∈ Cn
}

= argmax
{

P(Nn = yn	 cn,i) : cn,i ∈ Cn
}
, (2)

where we have used the invertibility of ⊕ in the final equation.

To realize this ML decoding, it would appear that the
receiver would have to perform the Mn computations de-
scribed in equation (1) every time a signal is received. Code-
book sizes are typically exponential in the block length n,

Mn ∼ |A|Rn, and, taking logs throughout the article as base
|A|, we define the normalized rate of the code-book to be
R = limn 1/n log(Mn). As R increases, the code-book becomes
denser in An, so the number of computations required in
(1) increases exponentially, potentially making this approach
infeasible in practice.

In the present paper we propose an entirely distinct algo-
rithm for ML decoding. The principle underlying the approach
is for the receiver to rank-order noise sequences from most
likely to least likely and then sequentially query whether the
sequence that remains when the noise is removed from the
received signal is an element of the code-book. For the channel
structure described above, the first instance where the answer
is in the affirmative corresponds to the ML decoding. More
formally, the receiver first creates an ordered list of noise
sequences, G : An 7→ {1, . . . , |A|n}, from most likely to least
likely, breaking ties arbitrarily (throughout lower case letters
correspond to realizations of upper-case random variables,
apart from for noise where z is used):

G(zn,i)≤ G(zn, j) iff P(Nn = zn,i)≥ P(Nn = zn, j). (3)

For each received signal, the receiver executes the following
algorithm:

• Given channel output yn, initialize i = 1 and set zn to be the
most likely noise sequence, i.e. the zn such that G(zn) = i.

• While xn = yn	 zn /∈ Cn, increase i by 1 and set zn to be
the next most likely noise sequence, i.e. the zn such that
G(zn) = i.
• The xn that results from this while loop is the decoded

element.

To see that this algorithm corresponds to ML decoding, note
that owing to the definition of cn,∗ in equation (2),

P(Nn = yn	 cn,∗)≥ P(Nn = yn	 cn,i) for all cn,i ∈ Cn.

Thus the scheme identifies an ML decoding. Our fundamental
premise is that this new scheme is practically feasible, even
though the more direct approach described in equation (2) is
not.

To determine the asymptotic properties of the core scheme
for random code-books as the block length becomes large, we
recall one theorem from the literature and establish several new
ones. As they may appear somewhat mathematically involved,
we begin by explaining the intuitive meaning behind them.

Theorem 1 is taken from [1] and provides a Large Devi-
ation Principle (LDP) as the block length, n, becomes large,
for the distribution of the logarithm of the number of guesses
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needed until the actual noise in the channel is queried, G(Nn).
For uniform-at-random code-books, Theorem 2 is new and
gives a LDP for the distribution of the logarithm of the number
of guesses that would be made until an element of the code-
book that was not the channel input is identified. Here we
leverage the fact that for uniformly distributed code-books
the location of each of these elements in the guessing order
is uniform in {1, . . . , |A|n}. As a result, the distribution of
the number of guesses until any non-input element of the
code-book is hit upon is distributed essentially the same as
the minimum of Mn such uniform random variables. In the
asymptotic analysis presented here where Mn ≈ |A|nR and n
becomes large, this number is essentially uniformly distributed
in {1, . . . , |A|n(1−R)} so that the receiver will identify a code-
word in no more than approximately |A|n(1−R) guesses. Note,
in particular, that as R increases and the code-book becomes
more dense and efficient, while the number of computations
in traditional approaches to ML decoding increases, the noise
guessing approach experiences the reverse phenomenon.

The ML decoder introduced in the present paper is es-
sentially a race between these two guessing processes. If the
number of guesses required to identify the true noise is less
than the number of guesses to identify any other element of the
code-book, then the ML decoder provides the correct answer
on termination. Combining the two earlier theorems in two
different ways first recovers the Channel Coding Theorem as
Proposition 1 via this new guessing argument. Combined in
a distinct fashion, Proposition 2 characterizes the asymptotic
complexity, in terms of the distribution of the number of
guesses to termination, of the scheme.

II. RELATED WORK

Large deviation style arguments employed to establish error
exponents in both source and channel coding are typically
variants of Sanov’s Theorem and the method of types. For
error exponents in source coding, these methods have been
used extensively, originally for asymptotically error-free source
coding with IID and Markov sources [2], [3], [4], and then for
variable-length and lossy source coding of IID and stationary
sources [5]. For channel coding of Discrete Memoryless Chan-
nels (DMCs), error exponents were first identified in [6]. More
recently, an approach along these lines has been used to study
joint source-channel coding [7].

We analyse our proposed approach starting from a com-
pletely distinct angle: the recently proved LDP [1] for Massey’s
guesswork [8]. That LDP is established based on earlier results
[9], [10], [11] that identify scaling exponents for moments of
guesswork in terms of Rényi entropy rates. The connection
between source coding and guesswork was first noted in [12],
and has since been established [13]. For channel coding, a
connection between guesswork and error exponent analysis
was proved by Arikan for sequential decoding of tree codes
[9]. A general framework for designing codes that increase the
cutoff rate is discussed in [14]. Polar coding, which is capacity
achieving, fits into that framework.

III. ANALYSIS

We begin with the assumption we shall make on the noise
process. Recall that log is taken base |A| throughout.

Assumption 1. Assuming it exists, define the Rényi entropy
rate of the noise {Nn} process with parameter α ∈ (0,1)∪
(1,∞) to be

Hα = lim
n→∞

1
n

1
1−α

log

(
∑

zn∈An
P(Nn = zn)α

)
,

with H = H1 being the Shannon entropy rate of the noise.
Denote the min-entropy rate of the noise by Hmin = limα→∞ Hα .
Assume that

Λ
N(α) = lim

n→∞

1
n

logE(G(Nn)α) =

{
αH 1

1+α

for α ∈ (−1,∞)

−Hmin for α ≤−1,
(4)

and that the derivative of ΛN(α) is continuous on the range
α ∈ (−1,∞).

Assumption 1 is known to be satisfied for a broad range
of sources including i.i.d. [9], Markovian [10], a large class
of general, stationary processes [11] and others [15]; the
condition for α ≤−1 is established for all of these processes
in [1]. Note that by setting α = 1, from equation (4) one has
that the average number of guesses required to identify the
true noise grows exponentially in block size, n, with Rényi
entropy rate at parameter 1/2, H1/2, which is no smaller than
the Shannon entropy rate, H, of the noise.

From equation (4), ΛN can be identified as the scaled
cumulant generating function for the process {1/n logG(Nn)}
[16] and so ΛN is necessarily convex. Moreover, that identifica-
tion suggested that this process may satisfy a Large Deviation
Principle (LDP) [12], [17], which was proven in [1].

Theorem 1 (LDP for Guessing the Noise [1]). Under as-
sumption 1, {1/n logG(Nn)} satisfies the Large Deviation
Principle with the convex lower-semi continuous rate function,
IN : [0,1]→ [0,∞],

IN(x) := sup
α∈R
{xα−Λ

N(α)}, (5)

which is the Legendre-Fenchel transform of ΛN . In particular:
IN(0) =Hmin, the min-entropy rate of the noise; IN(x) is linear
on [0,γ], where γ := limα↓−1 d/dα ΛN(α), and then strictly
convex thereafter while finite; and IN(x) = 0 if and only if
x = H, the Shannon entropy rate of the noise.

The second theorem provides a LDP for the number of
guesses on the noise that will be made until identifying an
element of the code-book that is not the transmitted code-word.
The key realization is that if elements of the code-book have
been uniformly selected, the location of the non-transmitted
code-book elements in the ordered list of noise guesses is also
uniform.

Theorem 2 (LDP for Guessing a Non-transmitted Code-word).
Assume that limn→∞ n−1 logMn = R for some R > 0, and
that Un,1, . . . ,Un,Mn are independent random variables, each
uniformly distributed in {1, . . . , |A|n}. Define Un = mini Un,i.
Then {1/n logUn} satisfies the large deviation principle with
lower semi-continuous rate function

IU (x) =
{

1−R− x if x ∈ [0,1−R]
+∞ otherwise.

(6)
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Proof: It is sufficient [16] to prove that for all x ∈ [0,1]

lim
ε↓0

liminf
n→∞

1
n

logP
(

1
n

logUn ∈ (x− ε,x+ ε)

)
= lim

ε↓0
limsup

n→∞

1
n

logP
(

1
n

logUn ∈ (x− ε,x+ ε)

)
=−IU (x).

This begins by observing that

P(Un > |A|xn) =
Mn

∏
i=1

P
(
Un,i > |A|xn)= (1− d|A|

xne
|A|n

)Mn

.

Thus we have the following limiting equality for the comple-
mentary cumulative distribution function

lim
n→∞

1
n

logP
(

1
n

logUn > x
)
=

{
0 if x ∈ [0,1−R]
−∞ if x ∈ (1−R,1),

confirming equality for x∈ (1−R,1]. The corresponding equal-
ity for the cumulative distribution function can be obtained by
first noting that by the Binomial theorem

lim
n→∞

(
1−|A|n(x−1)

)|A|nR

1−|A|n(R+x−1) = 1 if x ∈ [0,1−R),

while if x = 1− R the limit of the numerator in the above
equation is 1/e. Using this, for x ∈ [0,1−R] one obtains

lim
ε↓0

lim
n→∞

1
n

logP
(

1
n

logUn ∈ (x− ε,x+ ε)

)

= lim
ε↓0

lim
n→∞

1
n

log

1−

(
1− d|A|

(x+ε)ne
|A|n

)Mn


−

1−

(
1− d|A|

(x−ε)ne
|A|n

)Mn


= lim
ε↓0

lim
n→∞

1
n

log
(
|A|n(min(R+x+ε−1,0))−|A|n(R+x−ε−1)

)
=−(1−R− x).

Theorem 2 says that on the scale of large deviations,
for large n the first non-transmitted code-word that will be
encountered in the noise guesswork list is approximately
uniformly distributed in {1, . . . , |A|n(1−R)}. Moreover, on the
scale of large deviations, one will never make more than order
|A|n(1−R) guesses before encountering some element of the
code-book.

Combining Theorems 1 and 2 enables us to provide a
guessing based proof of Channel Coding Theorem, where
capacity is upper bounded by 1−H. The proposition that
follows establishes this is achieved for all noise processes
satisfying Assumption 1 through the use of a uniformly-at-
random code-book and ML decoding.

Proposition 1 (Channel Coding Theorem). Under the assump-
tions of Theorems 1 and 2 with IU is defined in equation (6)

and IN in equation (5), we have the following. If the code-book
rate is less than the capacity, R < 1−H, then

lim
n→∞

1
n

logP(Un ≤ G(Nn)) =− inf
a∈[H,1−R]

{IU (a)+ IN(a)}< 0,

so that probability that the ML decoding is not the transmitted
code-word decays exponentially in the block length n. If,
in addition, x∗ exists such that d/dx IN(x)|x=x∗ = 1, then,
recalling H1/2 is the Rényi entropy rate of the noise with
parameter 1/2, the error rate simplifies further to

ε(R) =− lim
n→∞

1
n

logP(Un ≤ G(Nn))

=

{
1−R−H1/2 if R ∈ (0,1− x∗)
IN(1−R) if R ∈ [1− x∗,1−H).

(7)

If, instead, the code-book rate is greater than capacity,

s(R) =− lim
n→∞

1
n

logP(Un ≥ G(Nn)) = IN(1−R), (8)

which we call the success rate, is strictly positive.

Proof: As {1/n logG(Nn)} and {1/n logUn} are in-
dependent processes, {(1/n logG(Nn),1/n logUn)} satisfies
the LDP with rate function IN(x) + IU (y). The LDP for
{1/n logUn/G(Nn)} then follows from an application of con-
traction principle, [16][Theorem 4.2.1], with the continuous
function f (x,y) = x−y, giving IU/N(x) = infa,b{IN(a)+IU (b) :
f (a,b) = a−b = x}= infa∈[0,1−R]{IU (a)+ IN(a− x)}.

Noting the following equality P(Un ≤ G(Nn)) =
P(1/n log(Un/G(Nn))≤ 0), we can use the LDP for
{1/n logUn/G(Nn)} to determine asymptotics for the
likelihood that fewer queries are necessary to determine a
non-transmitted element of the code-book than the truly
transmitted element. From the LDP lower and upper bounds,

− inf
x<0

IU/N(x)≤ liminf
n→∞

1
n

logP
(

1
n

log
Un

G(Nn)
≤ 0
)

≤ limsup
n→∞

1
n

logP
(

1
n

log
Un

G(Nn)
≤ 0
)

≤− inf
x≤0

IU/N(x).

For the limit to exist, we require that infx<0 IU/N(x) =
infx≤0 IU/N(x). Consider IU/N(0) = infa∈[0,1−R]{IU (a) +
IN(a)}= IU (a∗)+ IN(a∗)< ∞, where a∗ necessarily exists as
IU and IN are lower-semicontinuous. As we have assumed
H > 0, a∗ > 0 and IU (a∗) + IN(a∗) is then arbitrarily well
approximated by IU (a∗) + IN(a∗ − ε) as IN is continuous
where it is finite, so the above limit exits. The following
simplification is achieved by changing the order the infima
are taken in:

lim
n→∞

1
n

logP(Un ≤ G(Nn)) =− inf
x≤0

IU/N(x)

=− inf
a∈[0,1−R]

{IU (a)+ inf
y≥a

IN(y)}.

(9)

Starting from P(Un ≥ G(Nn)) = P(1/n log(Un/G(Nn))≥ 0),
similar logic, but with an additional simplification due to the
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form of IU found equation (6), leads us to

lim
n→∞

1
n

logP(Un ≥ G(Nn)) =− inf
x∈[0,1−R]

IN(x). (10)

For the within-capacity result, if R < 1−H, then H < 1−R.
Considering the right hand side of equation (9) as both IU

and IN are decreasing on [0,H] and IN is either infinite or
increasing on [H,1−R], infa∈[0,1−R]{IU (a) + infy≥a IN(y)} =
infa∈[H,1−R]{IU (a)+ IN(a)}. This quantity is strictly positive
as IU is strictly decreasing to zero on [H,1−R] while IN is
strictly increasing from zero on the same range. To get the
additional simplification to equation (7), note that as IN is
strictly convex to the right of H, IU is decreasing at rate 1 and
x∗ is defined to be the value at which IN is increasing with
rate 1, then infa∈[H,1−R]{IU (a)+ IN(a)} is either IN(1−R) if
x∗ > 1−R or IU (x∗)+ IN(x∗). Now IN(x∗) = x∗−H1/2, so that
IU (x∗)+ IN(x∗) = 1−R−x∗+x∗−H1/2 and the result follows.
On the other hand infx∈[0,1−R] IN(x) = IN(H) = 0, and so the
right hand side of equation (10) is zero.

For the beyond-capacity result if, alternatively, R > 1−H,
then H > 1−R and infa∈[0,1−R]{IU (a)+ infy≥a IN(y)}= IU (1−
R)+ IN(H) = 0, and so the right hand side of equation (9) is
zero. While infx∈[0,1−R] IN(x) = IN(1−R)> 0, so that the right
hand side of (10) is strictly greater than zero.

For memoryless channels, the error rate in equation (7)
coincides with that identified by Gallager’s [6][Theorem 2].
Proposition 1 establishes that phenomenon for more general
noise processes, and also provides success exponents for when
the rate is beyond capacity.

The algorithm terminates after Dn := min(G(Nn),Un)
guesses; i.e. at either determination of the noise or when a
non-transmitted element of the code-book is unintentionally
identified, whichever occurs first. Combining Theorems 1 and
2 in a distinct way determines the asymptotic complexity of
the new decoding scheme for random code-books.

Proposition 2 (Guessing Complexity of ML Decoding). Un-
der the assumptions of Theorems 1 and 2, if the code-book rate
is below capacity, R< 1−H, {1/n logDn} satisfies a LDP with
a lower-semicontinuous rate function

IML(x) =
{

IN(x) if x ∈ [0,1−R]
+∞ if x > 1−R,

(11)

where the input code-word will be recovered in the large
deviations limit with unaffected likelihoods, and the impact
of the code-book is to curtail guessing of unlikely inputs. The
average number of guesses until an ML decoding is found
satisfies limn→∞ 1/n logE(Dn) = min

(
H1/2,1−R

)
.

Proof: As {1/n logG(Nn)} and {1/n logUn} are indepen-
dent processes, {(1/n logG(Nn),1/n logUn)} satisfies the LDP
with rate function IN(x)+ IU (y). The LDP for {1/n logDn =
1/n logmin(G(Nn),Un)} follows from an application of con-
traction principle, [16][Theorem 4.2.1], with the continuous
function f (x,y) = min(x,y), giving

IML(x) = inf
a,b

{
IN(a)+ IU (b) : f (a,b) = min(a,b) = x

}
= min

{
IN(x), inf

y≥x
IN(y)+ IU (x)

}
. (12)

where the last line follows from the form of IU in equation
(6). The simplification of equation (12) into (11) comes about
about due to considerations from the following structure. By
Theorem 1, the noise guessing rate function starts at the min-
entropy rate, IN(0) = Hmin. As the min-entropy rate is always
less than or equal to the Shannon rate, Hmin ≤ H, IN(H) = 0
and IN is convex, IN cannot lie above line from (0,Hmin) to
(H,0). If R < 1−H, then H < 1−R and IN(x)≤ IU (x) for all
x≤ H from the definition of IU in equation (6). For H ≤ x≤
1−R, IN is non-decreasing and so min(IN(x), infy≥x IN(y)+
IU (x)) = IN(x).

To obtain the scaling result for E(Dn), one reverses the
transformation from the rate function IML to its Legendre-
Fenchel transform, the scaled cumulant generating function of
the process {n−1 logDn} and evaluates it at argument 1.

One interpretation of the first part of that proposition is that
if the code-book is such that R< 1−H, and so within capacity,
identification of the correct code-word occurs because it is
likely that all elements in the typical set of the noise will be
queried before a non-transmitted element of the code-book is
identified. Owing to the long tail of guesswork, in the absence
of the other elements of the code-book stopping the guessing
algorithm, the average number of guesses that would be made
would grow with rate H1/2 [9]. If, however, one minus the
normalized code-book rate R is less than that, the long tail
of the scheme is clipped. While this clipping is not enough
to make an error likely, it is enough to reduce the average
number of queries that will be made before an element of the
code-book is identified.

IV. EXAMPLES AND DISCUSSION

We consider binary noise sequences, A= {0,1}, with and
without memory. For complexity of ML decoding by noise
guessing, we use the average number of guesses per symbol
to a decoding identified in Proposition 2, ≈ 2nmin(1−R,H1/2)/n.
For comparison, we define the complexity of (2) as 2nR/n, the
number of conditional probabilities that must be computed per
bit before rank ordering and determining the most likely code-
book element. Here we are equating the work in one noise
guess with one computation of a conditional probability. As
both of these schemes result in the same ML decoding, they
share the same error and success probabilities. By Proposition
1, the error probability is approximated by ≈ 2−nε(R) for R <
1−H, and the success probability by ≈ 2−ns(R) for R > 1−H.

Consider binary noise sequences, {Nn} whose elements are
chosen via a process a Markov chain with transition matrix

Π =

(
1−a a

b 1−b

)
.

Assuming that a,b > 0, the second eigenvalue of this matrix is
1−a−b, which captures the burstiness of the Markov chain.
The Rényi entropy rate of the noise source can be evaluated
explicitly [10], so that the scaled cumulant generating function
given by equation (4) can be determined. While there is an
explicit expression for ΛN , the rate function IN cannot be
calculated in closed form, but is readily evaluated numerically.
If 1−a = b, this Markovian noise reduces to the BSC.

The left two panels of Fig. 1 consider BSCs with bit error
probabilities of p = 10−2 and 10−3, respectively, while the
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Fig. 1. Complexity of ML decoding by guessing noise (solid lines) vs. computing conditional probabilities (dashed lines). Circles indicate the rate beyond
which computing within the code-book has higher complexity than noise guessing. Diamonds indicate the rate below which block error probability is less than
10−2. Upper Left: BSC, p = 10−2. Lower Left BSC, p = 10−3. Upper Right: Markovian p = 10−2 obtained by a = 10−2/5 and b = a(1− p)/p≈ 0.198. Lower
Right: Markovian p = 10−3 obtained by setting a = 10−3/5 and b = a(1− p)/p≈ 0.1998.

right two consider highly bursty Markov channels with the
same long run average bit error probabilities. The computa-
tional complexity of computing conditional probabilities for
the code-book leads it to become infeasible for even modest
rates. The complexity of guessing the noise only decreases
as rates increase, with the circles indicating the threshold
beyond which the complexity of guessing within the code-book
exceeds the complexity of guessing from outside it. Several of
the block lengths shown would be feasible in practice as the
number of computations per bit per second is normally several
orders of magnitude greater than the number of bits received
over the channel per second. Moreover, guessing is readily
parallelizable, offering further efficiencies. Note that here the
scheme has been directly applied to Markovian noise with no
need for interleaving to reduce correlations.

Rates to the left of the diamonds can be achieved with
a block error probability of less than 10−2. These limits are
impressive and illustrate the inherent promise of ML decoding,
which motivated the introduction of our new approach to
unlock that potential. Observe that block lengths are no larger
than the reciprocal of the corresponding bit error rate, 1/p,
in these examples. This is an unusual and desirable feature of
the scheme that we have consistently observed across scenarios
not presented here.
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