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Capacity-Achieving Guessing Random
Additive Noise Decoding

Ken R. Duffy , Jiange Li , and Muriel Médard, Fellow, IEEE

Abstract— We introduce a new algorithm for realizing max-
imum likelihood (ML) decoding for arbitrary codebooks in
discrete channels with or without memory, in which the receiver
rank-orders noise sequences from most likely to least likely.
Subtracting noise from the received signal in that order, the first
instance that results in a member of the codebook is the
ML decoding. We name this algorithm GRAND for Guessing
Random Additive Noise Decoding. We establish that GRAND
is capacity-achieving when used with random codebooks. For
rates below capacity, we identify error exponents, and for rates
beyond capacity, we identify success exponents. We determine
the scheme’s complexity in terms of the number of computations
that the receiver performs. For rates beyond capacity, this
reveals thresholds for the number of guesses by which, if a
member of the codebook is identified, that it is likely to be
the transmitted code word. We introduce an approximate ML
decoding scheme where the receiver abandons the search after
a fixed number of queries, an approach we dub GRANDAB,
for GRAND with ABandonment. While not an ML decoder,
we establish that the algorithm GRANDAB is also capacity-
achieving for an appropriate choice of abandonment threshold,
and characterize its complexity, error, and success exponents.
Worked examples are presented for Markovian noise that indicate
these decoding schemes substantially outperform the brute force
decoding approach.

Index Terms— Discrete channels, maximum likelihood decod-
ing, approximate ML decoding, error probability, channel coding.

I. INTRODUCTION

CONSIDER a discrete channel with inputs, Xn , and out-
puts, Y n , consisting of blocks of n symbols from a finite

alphabet A of size |A|. Assume that channel input is altered
by random, not necessarily memoryless, noise, Nn , that is
independent of the channel input and also takes values in A

n .
Assume that the function, ⊕, describing the channel’s action,

Y n = Xn ⊕ Nn , (1)

is invertible, so that knowing the output and input the noise
can be recovered:

Xn = Y n � Nn . (2)
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To implement Maximum-Likelihood (ML) decoding, the
sender and receiver first share a code-book Cn = {cn,1, . . . ,
cn,Mn } consisting of Mn elements of A

n . For a given
channel output yn , denote the conditional probability
of the received sequence for each code-word in the
code-book by

p(yn|cn,i ) = P(yn = cn,i ⊕ Nn) for i ∈ {1, . . . , Mn}. (3)

The decoding produced by GRAND is then an element of
the code-book that has the highest conditional likelihood of
transmission given what was received,

cn,∗ ∈ arg max
�

p(yn|cn,i ) : cn,i ∈ Cn

�

= arg max
�

P(Nn = yn � cn,i ) : cn,i ∈ Cn

�
, (4)

where we have used the invertibility of ⊕ for the final equality.
Code-book sizes are typically exponential in the block

length n, Mn ∼ |A|nR and, taking logs throughout the article
as base |A|, we define the normalized rate of the code-book to
be R = limn 1/n log(Mn). Thus ML decoding would appear
to be infeasible in practice for reasonable rates as it would
seem that the receiver would have to either: A) perform |A|nR

conditional probability computations described in equation (3)
followed by a rank ordering every time a signal is received;
or B), in advance, perform |A|n(R+1) computations described
in equation (3), one for every (cn,i , yn) pair, storing in a
look-up table the resulting |A|n ML decodings, one for each
possible received sequence.

In the present paper we consider a distinct algorithm for
ML decoding. The principle underlying the approach is for
the receiver to rank-order noise sequences from most likely to
least likely and then sequentially query whether the sequence
that remains when the noise is removed from the received
signal is an element of the code-book. For the channel
structure described above, irrespective of how the code-book
is constructed, the first instance where the answer is in the
affirmative corresponds to the ML decoding. More formally,
the receiver first creates an ordered list of noise sequences,
G : A

n �→ {1, . . . , |A|n}, from most likely to least likely,
breaking ties arbitrarily:

G(zn,i ) ≤ G(zn, j )

if and only if P(Nn = zn,i ) ≥ P(Nn = zn, j ), (5)

where throughout this article lower case letters correspond
to realizations of upper-case random variables, apart from
for noise where z is used as n denotes the code block-
length. For each received signal, the receiver executes the

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 27,2020 at 14:45:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5587-9356
https://orcid.org/0000-0002-5201-4338


4024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 7, JULY 2019

TABLE I

DESCRIPTION OF ML DECODING BY GRAND. THE RECEIVER CREATES A RANK-ORDERED LIST OF NOISE FROM MOST LIKELY TO LEAST LIKELY

BREAKING TIES ARBITRARILY, zn,1, zn,2, . . .. IN THAT ORDER, GIVEN A RECEIVED SIGNAL yn , THE RECEIVER SEQUENTIALLY SUBTRACTS

THE NOISE zn,i AND QUERIES IF THE STRING THAT RESULTS, yn � zn,i , IS AN ELEMENT OF THE CODE-BOOK, Cn . THE FIRST STRING

THAT IS IN THE CODE-BOOK, IS THE ML DECODING. IN THIS EXAMPLE, cn,i1 IS THE FIRST ELEMENT OF THE CODE-BOOK TO

BE IDENTIFIED, WHICH OCCURS ON THE THIRD NOISE GUESS. IN APPROXIMATE ML DECODING, GRANDAB, AFTER A

FIXED NUMBER OF QUERIES THE RECEIVER ABANDONS THE QUESTIONING AND DECLARES AN ERROR

following algorithm, which we call GRAND for Guessing
Random Additive Noised Decoding:
• Given channel output yn , initialize i = 1 and set zn to be the

most likely noise sequence, i.e. the zn such that G(zn) = i .
• While xn = yn � zn /∈ Cn , increase i by 1 and set zn to

be the next most likely noise sequence, i.e. the zn such that
G(zn) = i .

• The xn that results from this while loop is the decoded
element.

An example of this process is described in Table I.
To see that GRAND corresponds to ML decoding for

channels of the sort described in equations (1) and (2), note
that, owing to the definition of cn,∗ in equation (4),

P(Nn = yn � cn,∗)≥ P(Nn = yn � cn,i ) for all cn,i ∈ Cn .

Thus the scheme does, indeed, identify an ML decoding. The
premise of the present paper is that this new scheme, GRAND,
has a complexity that decreases as code-book rate increases
even though the more direct approach described in equation
(4) sees steeply increasing complexity.

In Section III-A, the performance of the algorithm is estab-
lished in terms of its maximum achievable rate, which is a
property of ML decoding rather than being particular to the
present GRAND scheme, and the number of computations the
receiver must perform until decoding, which is dependent on
the scheme. With some mild ergodicity conditions imposed on
the noise process, we prove that GRAND is capacity achieving
with uniform-at-random code-books. We determine asymptotic
error exponents, as well as providing success exponents for
rates above capacity. We identify the asymptotic complexity
of GRAND in terms of the number of local operations the
receiver must perform per received block in executing the
algorithm.

Based on this new noise-centric design ethos for ML decod-
ing and the intuition that comes from its analysis, we introduce
a new approximate ML decoder in Section III-B, an approach
we dub GRANDAB for GRAND with ABandonment. In this
variant of GRAND, the receiver abandons identification of
the transmitted code word if no element of the code-book is
identified after a pre-defined number of noise removal queries.
GRANDAB is not a ML decoder, as the algorithm sometimes
terminates without returning an element of the code-book.
Despite that, we establish that GRANDAB is also capac-
ity achieving for random code-books once the abandonment
threshold is set for after all elements of the Shannon Typical
Set of the noise are queried, and we determine the exponent

for the likelihood of abandonment. By abandoning after a fixed
number of queries, an upper-bound on complexity is ensured.

To determine these algorithmic properties, we leverage
recent results in the study of guesswork. We recall one theorem
from the literature and establish several new ones. As they
may appear somewhat mathematically involved, we begin by
explaining the intuitive meaning behind them.

Reference [1, Th. 1] provides a Large Deviation Princi-
ple (LDP) as the block length, n, becomes large, for the
distribution of the logarithm of the number of guesses needed
until the actual noise in the channel is queried, G(Nn). On its
own, this result provides us with an upper-bound on the
complexity of the scheme, but it can be augmented in the case
of uniformly selected code-books. That is, where the input
elements Xn in equation (1) are chosen uniformly at random
from a code-book Cn that itself consists of a collection of
uniformly selected elements of A

n .
Theorem 2 is new and establishes properties of the number

of guesses that would be made until an element of the code-
book that was not the channel input is identified. Here we
leverage the fact that for uniformly distributed code-books
the location of each of these elements in the guessing order
outlined in Table I are uniform in {1, . . . , |A|n}. As a result,
the distribution of the number of guesses until any non-
input element of the code-book is hit upon is distributed as
the minimum of Mn such uniform random variables. When
Mn ≈ |A|nR and n becomes large, the resulting minimum
is essentially the discretization of an exponential distribution
with rate |A|−n(1−R) so that the receiver will identify a code-
word in, on average, approximately |A|n(1−R) guesses. Note,
in particular, that as R increases and the code-book becomes
more dense and efficient, while the number of computations in
the brute-force approach to ML decoding increases, the noise
guessing approach experiences the reverse phenomenon.

The ML decoding algorithm introduced in the present paper
is essentially a race between the two guessing processes
mentioned above. If the number of guesses required to identify
the true noise is less than the number of guesses to identify
any other element of the code-book, then GRAND provides
the correct answer on termination. Combining the two earlier
results in two different ways first recovers the Channel Coding
Theorem as Proposition 1 via this new guessing argument.
Namely, with R being the normalized code-book rate, H
being the normalized Shannon entropy rate of the noise base
|A|, and with 1 − H being the channel capacity, so long as
R < 1 − H then the ML decoder will correctly identify the
input for long enough blocks. The guessing argument provides
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asymptotic exponents for the probability that the ML decoding
is an error if the code-book is within capacity, as well as
for the probability that the ML decoding is correct if the
code-book rate is beyond capacity. Both of these error and
success exponents are convex functions of the code-book rate
near capacity and approach zero at capacity, hinting at smooth
degradation in performance near capacity.

Combining Theorems 1 and 2 in a distinct fashion akin to
that used in [2] to study multi-user guesswork, Proposition 2
characterizes the complexity of the scheme in terms of the
distribution of the number of guesses to termination. This
approach allows us to determine some subtle performance
features of the scheme when code-books rates are beyond
capacity. Theorem 3 establishes that the circumstances beyond
capacity under which the ML decoding is likely to be correct
decoding should the noise guessing complete quickly. In par-
ticular, this phenomenon occurs if the code-book rate is less
than one minus the min-entropy rate of the noise.

Interpreting the results of Propositions 1 and 2 in light
of the noise guessing algorithm leads us to propose a new
approximate ML decoder, GRANDAB. In GRANDAB, if no
code-book element is identified by the receiver after |A|n(H+δ)

queries for some δ > 0, the receiver abandons guessing
and decoding results in an error. While it is not an ML
decoder, we prove in Proposition 3 that GRANDAB is also
capacity-achieving for any δ > 0. Thus GRANDAB has the
capacity achieving qualities of ML decoding with a guaranteed
upper bound on the number of computations performed by the
receiver. This can result in a significant saving over GRAND in
terms of complexity as the average number of queries required
to identify the true noise in the system grows with an exponent
of Rényi entropy rate 1/2.

In Section IV the performance of GRAND and GRANDAB
are illustrated for bursty Markovian channel noise as, crucially,
all of the results in this paper hold for channels with memory,
a point we investigate in Section V. For memoryless channels,
however, the guessing approach enables finer approximations
to the computation of block error probabilities than asymptotic
exponents and these are used for the BSC in Section IV-C.
In Section V we conclude with a discussion of implementation
and further potential of the principles underlying the decoding
algorithms introduced here.

II. RELATED WORK

Large deviation style arguments that are employed to estab-
lish error exponents in both source and channel coding are
typically variants of Sanov’s Theorem [3] and the method
of types. If sources are assumed to have properties such
as being independently and identically distributed (IID) or
Markovian, identification of non-asymptotic pre-factors can be
possible. For error exponents in source coding, these methods
have been used extensively, originally for asymptotically error-
free source coding with IID and Markov sources [4]–[6],
and then for variable-length and lossy source coding of IID
and stationary sources [7]. For channel coding of Discrete
Memoryless Channels (DMCs), error exponents were first
identified by Gallager [8] by direct arguments. In unpublished
notes that are available on the web, Montanari and Forney [9]

provide a relationship between Gallager’s error exponent and
the exponent obtained through large deviation considerations
of channel coding arguments using asymptotic equipartition
principles. More recently, an approach along these lines has
been used to study joint source-channel coding [10]. As an
aside, we remark that an alternate means of establishing the
results in [10] would have been be to combine the results
of [7] with the generalization in [11] of [12] and [13] using a
method of types.

While the arguments used in the papers referenced above
are essentially based on variants and refinements of the Large
Deviation Principle (LDP) for empirical measures, we instead
analyze our proposed approach starting from a completely
distinct angle: the recently established LDP for Massey’s
guesswork [14]. That LDP is a development from earlier
results that identify scaling exponents for moments of guess-
work in terms of Rényi entropy rates [15]–[17]. Given the
explicit relationship between the guesswork process and the
noise guessing approach, this seems the most natural line of
attack. In [18] Arikan establishes LDP bounds for conditional
probability rank. The full large deviation principle, which we
employ here, is proven in [1].

The connection between source coding and guesswork
was first noted by Arikan and Merhav [19], and has been
established by Hanawal and Sundaresan [20]. For channel
coding, a connection between guesswork and error exponent
analysis was proved by Arikan for sequential decoding of tree
codes [15], such as classic convolutional codes [21]. Sequen-
tial decoding, introduced by Wozencraft [22] and Wozencraft
and Reiffen [23], is a variant of ML decoding for tree codes.
To ensure low computational complexity of sequential decod-
ing of convolutional codes, rates are generally kept below a
computational cutoff rate [15], [22], [24]–[29]. A survey of
the historical rationale for cut-off rate design can be found
in [30]. Several schemes have sought to improve the cut-off
rate, including Pinsker’s concatenated code with an inner block
code and outer sequential decoder [31], as well as Massey’s
“splitting” argument for quaternary erasure channel [32].
A general framework for designing codes that increase the
cutoff rate is discussed in [33]. Polar Coding, which is capacity
achieving for binary DMCs [34], fits into that framework.

For linear block codes, an ML decoding method exists that
has complexity bounded by 2n(1−R) (in the current article’s
notation) [35]. As the complexity of brute force ML decoding
is 2nR , that approach is preferable when 1 − R < R, that is
when R > 1/2. For rates below capacity, R < 1−H and hence
H < 1 − R. GRANDAB’s complexity 2n(H+δ), for arbitrary
δ > 0, is thus lower than the one provided by [35], except
for low code rates where the complexity of brute force ML
decoding is preferable. The approach taken in [35] is based on
a trellis decoding method for linear convolutional codes akin
to the one independently derived in [36], in which terminated,
or so called blocked, convolutional codes are also considered.

To formally establish capacity and complexity results, in
the present work, we do not envisage designing codes, but
using random ones. For the channels we are considering,
Shannon’s [37] uniform random code-book plus ML decoding
argument affords capacity, but for codes of sufficient length
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that approach capacity, decoding methods for random codes
are prohibitively complex with existing methods, as explained
in the introduction. The core performance idea here is to
leverage the fact that the noise is typically highly non-uniform,
rendering its identification through guessing less onerous than
performing a computation for every element of the code-book.

While our model employs uniformly distributed code-words,
we analyze substantially more general noise processes than
the DMC. For the DMC, the error exponent we derive neces-
sarily matches Gallager’s. That is unsurprising, as he proves it
was tight for the average code [38], and this fact has recently
generalized to random linear codes [39] for channels for which
uniform code-books are optimal. As an aside, we remark that
the result in [38] is echoed in the source coding domain in [7],
which shows, via asymptotic equipartition style arguments,
that almost all random code-books provide in effect the same
compression performance. Thus, one might suspect that results
analogous to those in [39] are likely to hold also for source
coding [40] and network coding [41], [42].

The mathematical approach we take naturally lends itself
to the determination of decay exponents in the probability
of success when coding above capacity. The question of
success for codes operating above capacity is a long-standing,
though perhaps less well studied than that of errors below
capacity [43]–[45]. For a DMC, lower bounds [46] that are
coincident with upper bounds [47] are known to exist. Here,
the derivation of these exponents come hand-in-hand with the
determination of error exponents, and hold for the same broad
class of noise processes.

GRAND employs ordered statistics of noise for decoding,
but the code-book is only used when checking if a proposed
decoded code word pertains to the code-book. The noise
statistics may be obtained by arbitrary means and are not
dependent on examining the decoder’s output. This approach
differs from Ordered Statistics Decoding (OSD) [48], [49],
which uses the statistics derived from syndrome computations
to update soft information in decoding linear bock codes,
or from Turbo-style systems that blend decoding with soft
information, see for instance [50]–[53].

As ML decoding is generally too onerous from a complexity
perspective, the use of approximate ML decoding is, under dif-
ferent guises, almost omnipresent in decoding algorithms. The
approach GRANDAB takes, that of stopping after a given set
of guesses, is redolent of limited search approaches commonly
used in the decoding of convolutional codes, such as reduced
state sequence estimation (RSSE) and related techniques that
limit the search space in sequential decoding [54]–[61]. This
latter family of techniques uses the received sequence as a
starting point, rather than consider the noise itself as we do
in GRANDAB, and most have not been formally established
to be capacity achieving.

III. ANALYSIS

A. ML Decoding by Guesswork
We begin with the assumption we shall make on the noise

process. Recall that log is taken base |A| throughout.
Assuming it exists, define the Rényi entropy rate of the

noise {Nn} process with parameter α ∈ (0, 1) ∪ (1,∞)

to be

Hα = lim
n→∞

1

n

1

1 − α
log

⎛
⎝ �

zn∈An

P(Nn = zn)α

⎞
⎠,

with H = H1 being the Shannon entropy rate of the
noise. Denote the min-entropy rate of the noise by Hmin =
limα→∞ Hα.

Assumption 1. We assume that

�N (α) = lim
n→∞

1

n
log E(G(Nn)α)

=
	

αH1/(1+α) for α ∈ (−1,∞)

−Hmin for α ≤ −1,
(6)

and that the derivative of �N (α) is continuous on the range
α ∈ (−1,∞).

Assumption 1 is known to be satisfied for a broad range
of sources including i.i.d. [15], Markovian [16], a large class
of general, stationary processes [17] and others [62]; the
condition for α ≤ −1 is established for all of these in [1].

Note that, by setting α = 1, as first identified by
Arikan [15], from equation (6) one has that the average
number of guesses required to identify the true noise grows
exponentially in block size, n, with Rényi entropy rate at
parameter 1/2, H1/2, which is no smaller than the Shannon
entropy rate, H , of the noise. Note also that �N (α) has a con-
tinuous derivative everywhere except potentially at α = −1.
An operational meaning to the discontinuous derivative when
evaluated from above is identified in [1], where the value of
the discontinuity captures the exponential growth in n of the
size of the set of most-likely noise sequences.

Example. For a BSC with A = {0, 1} and an additive channel
mod 2, and P(N1 = 1) = p,

�N (α)=
	

(1+α) log


(1 − p)

1
1+α + p

1
1+α

�
if α ∈ (−1,∞)

log(max(1 − p, p)) if α≤−1.

(7)

Plots of �N (α) can be found in Fig. 1.
From equation (6), �N can be identified as the scaled cumu-

lant generating function for the process {1/n log G(Nn)} [3]
and so �N is necessarily convex. Moreover, that identification
suggested that this process may satisfy a Large Deviation
Principle (LDP) [19], [63], which is proved in [1] and used
in [64]–[67].

Theorem 1. (LDP for Guessing the Noise [1]). Under
Assumption 1, {1/n log G(Nn)} satisfies the Large Deviation
Principle with the convex lower-semi continuous rate function,
I N : [0, 1] → [0,∞],

I N (x) := sup
α∈R

{xα − �N (α)}, (8)

which is the Legendre-Fenchel transform of �N .
In particular: I N (0) = Hmin, the min-entropy rate

of the noise; I N (x) is linear on [0, γ ], where γ :=
limα↓−1 d/dα �N (α), and then strictly convex thereafter while
finite; and I N (x) = 0 if and only if x = H , the Shannon
entropy rate of the noise.
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Fig. 1. Guesswork rate function. Example: A = {0, 1}, BSC channel, noise Nn made of i.i.d. Bernoulli symbols with P(N1 = 1) = p ∈ (0, 1). Left
panel: scaled cumulant generating function, �N , for the noise process {1/n log G(Nn)} as determined by the explicit expression in (7). Right panel: rate
function for the same process, I N , defined in equation (8) and determined numerically. Roughly speaking log P(n−1 log G(Nn) ≈ x) ≈ −nI N (x). Note that
I N (0) = Hmin, the min-entropy of the noise, and that the rate function is zero at the Shannon entropy of the noise, I N (H ) = 0.

Intuitively, this result says that, for fixed (a, b), as n goes
to infinity

log P

�
1

n
log G(Nn) ∈ (a, b)


≈ −n inf

x∈(a,b)
I N (x)

for large n. As well as providing this approximation, one of
the primary advantages of a LDP over knowing how moments
scale from �N is that it is covariant in the sense that LDPs
are preserved by continuous maps [3, Th. 4.2.1], and we shall
repeatedly use that property to combine distinct LDPs.

Example. While there is no closed form expression for I N for
the BSC, it can be readily computed numerically and examples
are provided in Fig. 1.

For random code-books, the second theorem provides a
LDP for the number of guesses on the noise that will be
made until identifying an element of the code-book that is
not the transmitted code-word. The key realization is that,
if elements of the code-book have been selected uniformly
at random, the location of the non-transmitted code-book
elements in the ordered list of noise guesses are also uniform.
Let Un,1, . . . , Un,Mn be independent random variables, each
uniformly distributed in {1, . . . , |A|n} and define

Un = min
i

Un,i .

Assumption 2. Assume that limn→∞ n−1 log Mn = R for
some R > 0.

Theorem 2. (LDP for Guessing a Non-Transmitted Code-
Word). Under Assumption 2, as n becomes large, Un is
approximately exponentially distributed with rate |A|−n(1−R),

lim
n→∞ P(|A|−n(1−R)Un > x) = e−x for all x > 0. (9)

Moreover, {1/n log Un} satisfies the large deviation principle
with lower semi-continuous rate function

I U (x) =
	

1 − R − x if x ∈ [0, 1 − R]
+∞ otherwise

(10)

and

lim
n→∞

1

n
log E(Un) = 1 − R.

Proof: We begin by observing that

P
�
Un > |A|xn� =

Mn�
i=1

P



Un,i > |A|xn
�

=
�

1−�|A|xn�
|A|n

Mn

.

Setting x = 1 − R and making use of L’Hospital’s rule, as
limn→∞ n−1 log Mn = R we have that for y > 0

lim
n→∞ P(|A|−n(1−R)Un > y)= lim

n→∞



1−y|A|−nR
�|A|nR

=e−y,

giving equation (9).
As [0, 1] is compact, in order to establish the LDP it is

sufficient [3] to prove that

lim
�↓0

lim inf
n→∞

1

n
log P

�
1

n
log Un ∈ (x − �, x + �)



= lim
�↓0

lim sup
n→∞

1

n
log P

�
1

n
log Un ∈ (x − �, x + �)



= −I U (x) (11)

for all x ∈ [0, 1]. Using the earlier observation, we have the
following limiting equality for the survival function

lim
n→∞

1

n
log P

�
1

n
log Un > x


= lim

n→∞
Mn

n
log

�
1 − �|A|xn�

|A|n


= lim
n→∞

|A|nR

n
log



1−|A|n(x−1)

�

=− lim
n→∞

1

n
|A|n(R+x−1)

=
	

0 if x ∈ [0, 1 − R]
−∞ if x ∈ (1 − R, 1).

From this, we can confirm the veracity of equation (11) for
all x ∈ (1 − R, 1]:

lim
�↓0

lim
n→∞

1

n
log P

�
1

n
log Un ∈ (x − �, x + �)



≤ lim
�↓0

lim
n→∞

1

n
log P

�
1

n
log Un > x − �


= −∞.
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Fig. 2. Example: A = {0, 1}, block length n = 16 and R = 4/5. Upper panel:
compares exact computation of P(Un = k) (blue line) with the exponential
distribution approximation given in equation (9) (orange circles) for first
100 guesses. Lower panel: the difference between the exact and approximate
values.

The corresponding equality for the cumulative distribution
function can be obtained by first noting that, by the Binomial
theorem,

lim
n→∞

�
1 − |A|n(x−1)

�|A|nR

1 − |A|n(R+x−1)
= 1 if x ∈ [0, 1 − R),

while if x = 1 − R the limit of the numerator in the above
equation is exp(−1). Thus to prove that equation (11) holds
for x ∈ [0, 1 − R], we have

lim
�↓0

lim
n→∞

1

n
log P

�
1

n
log Un ∈ (x − �, x + �)



= lim
�↓0

lim
n→∞

1

n
log

�
P

�
1

n
log Un<x +�


−P

�
1

n
log Un ≤ x −�



= lim
�↓0

lim
n→∞

1

n
log

⎛
⎝

⎛
⎝1 −

�
1 − �|A|(x+�)n�

|A|n
�Mn

⎞
⎠

−
⎛
⎝1 −

�
1 − �|A|(x−�)n�

|A|n
�Mn

⎞
⎠

⎞
⎠

= lim
�↓0

lim
n→∞

1

n
log



|A|n(min(R+x+�−1,0)) − |A|n(R+x−�−1)

�

= −(1 − R − x),

as R + x − � − 1 < 0 for x ∈ [0, 1 − R].
The scaling result for the mean of Un follows from the

application of Varadhan’s Theorem [3, Th. 4.3.1], giving

lim
n→∞

1

n
log E(Un) = sup

x∈[0,1−R]



x − I U (x)

�
= 1 − R.

Equation (9) provides a highly accurate approximation of
the distribution of Un , that it is essentially exponentially
distributed with rate |A|−n(1−R) giving rise to a mean of
|A|n(1−R). This is illustrated in Fig. 2 for a block length of
n = 16 and a code-book of rate R = 4/5, and becomes
more precise as n increases. We will use this approximation
to make near exact computations of block error probabilities

and complexity for the BSC in Section IV-C. To establish
the general channel coding and complexity results, however,
it is the LDP that is needed. On the scale of large deviations,
Theorem 2 effectively says that, for large n, the first non-
transmitted code-word will be encountered in no more than
order |A|n(1−R) guesses.

Combining Theorems 1 and 2 enables us to provide a
guessing based proof of Channel Coding Theorem. Recalling
that logarithms are taken base |A|, let h denote the Shannon
entropy of a random variable and let I denote mutual informa-
tion. For channels introduced in equations (1) and (2), capacity
is upper bounded by 1 − H as follows:

C ≤ lim sup
n→∞

1

n
sup I (Xn; Y n)≤1− lim

n→∞
h(Nn )

n
= 1 − H,

where we have upper-bounded the entropy rate of the
input, h(Xn), by its maximum, n, and used the fact that the
channel is invertible [i.e. equation (2)], while the entropy rate
of the noise exists, owing to Assumption 1. The proposition
that follows establishes, through the use of a uniform-at-
random code-book and GRAND, that this upper bound is
achieved for all noise processes satisfying Assumption 1. We
define the success rate

s(R) = − lim
n→∞

1

n
log P(Un ≥ G(Nn)),

which is the decay rate in the probability of correct decoding,
and evaluate it in the case where the code rate exceeds
capacity.

Proposition 1 (Channel Coding Theorem With GRAND).
Under Assumptions 1 and 2, with I U defined in equation (10)
and I N in equation (8), we have the following.

1) If the code-book rate is less than the capacity, R < 1−H ,
then

lim
n→∞

1

n
log P(Un ≤G(Nn))=− inf

a∈[H,1−R]{I U (a)+ I N (a)}<0,

so that the probability that GRAND does not correctly identify
the transmitted code-word decays exponentially in the block
length n. If, in addition, x∗ exists such that

d

dx
I N (x)|x=x∗ = 1, (12)

then the error rate simplifies further to

�(R) = − lim
n→∞

1

n
log P(Un ≤ G(Nn))

=
	

1 − R − H1/2 if R ∈ (0, 1 − x∗)
I N (1 − R) if R ∈ [1 − x∗, 1 − H ).

(13)

Moreover,

s(R) = lim
n→∞

1

n
log P(Un ≥ G(Nn)) = 0

so that the probability that GRAND does not provide the true
channel does not decay exponentially in n.

2) If, instead, the code-book rate is greater than the capac-
ity, R > 1−H , then the probability of an error is not decaying
exponentially in n,

lim
n→∞

1

n
log P(Un ≤ G(Nn)) = 0.
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However,

s(R) = I N (1 − R), (14)

is strictly positive, so that the probability that decoding
produced by GRAND is the transmitted code-word does decay
exponentially in n.

Proof: As {1/n log G(Nn)} and {1/n log Un} are inde-
pendent processes, {(1/n log G(Nn), 1/n log Un)} satisfies the
LDP with rate function I N (x) + I U (y). The LDP for
{1/n log Un/G(Nn)} then follows from an application of con-
traction principle, [3, Th. 4.2.1], with the continuous function
f (x, y) = x − y, giving

I U/N (x) = inf
a,b

�
I N (a) + I U (b) : f (a, b) = a − b = x

�

= inf
a∈[0,1−R]{I U (a) + I N (a − x)}.

Noting the following equality

P(Un ≤ G(Nn)) = P

�
1

n
log

Un

G(Nn)
≤ 0


,

we can use the LDP for {1/n log Un/G(Nn)} to determine
asymptotics for the likelihood that fewer queries are necessary
to determine a non-transmitted element of the code-book than
the truly transmitted element. From the LDP lower and upper
bounds,

− inf
x<0

I U/N (x) ≤ lim inf
n→∞

1

n
log P

�
1

n
log

Un

G(Nn )
≤ 0



≤ lim sup
n→∞

1

n
log P

�
1

n
log

Un

G(Nn)
≤ 0



≤ − inf
x≤0

I U/N (x).

For the limit to exist, we require that infx<0 I U/N (x) =
infx≤0 I U/N (x). Consider I U/N (0) = infa∈[0,1−R]{I U (a) +
I N (a)} = I U (a∗)+ I N (a∗) < ∞, where a∗ necessarily exists
as I U and I N are lower-semicontinuous. As we have assumed
H > 0, a∗ > 0 and I U (a∗) + I N (a∗) is then arbitrarily well
approximated by I U (a∗) + I N (a∗ − �) as I N is continuous
where it is finite, so the above limit exits. The following
simplification is achieved by changing the order the infima
are taken in:

lim
n→∞

1

n
log P(Un ≤G(Nn))=− inf

x≤0
I U/N (x)

=− inf
x≤0

inf
a∈[0,1−R]{I

U(a)+I N (a−x)}
=− inf

a∈[0,1−R]{I U (a)+ inf
y≥a

I N (y)}.
(15)

Starting from

P(Un ≥ G(Nn)) = P



1
n log U n

G(Nn ) ≥ 0
�
,

similar logic, but with an additional simplification due to the
form of I U found equation (10), leads to

lim
n→∞

1

n
log P(Un ≥ G(Nn))=− inf

x≥0
I U/N (x)

=− inf
x≥0

inf
a∈[0,1−R]{I

U (a)+ I N(a−x)}
=− inf

a∈[0,1−R]{I U (a) + inf
y≤a

I N (y)}
=− inf

x∈[0,1−R] I N (x). (16)

(a) For the within-capacity result, if R < 1 − H , then H <
1− R. Considering the right hand side of equation (15) as both
I U and I N are decreasing on [0, H ] and I N is either infinite
or increasing on [H, 1 − R],

inf
a∈[0,1−R]{I U (a)+ inf

y≥a
I N (y)}= inf

a∈[H,1−R]{I U (a)+ I N (a)}.

This quantity is strictly positive, as I U is strictly decreasing
to zero on [H, 1 − R], while I N is strictly increasing from
zero on the same range. To get the additional simplification
to equation (13), note that, as I N is strictly convex to the
right of H , I U is decreasing at rate 1 and x∗ is defined
to be the value at which I N is increasing with rate 1, then
infa∈[H,1−R]{I U (a)+ I N (a)} is either I N (1− R) if x∗ > 1− R
or I U (x∗) + I N (x∗). Now I N (x∗) = x∗ − H1/2, so that
I U (x∗) + I N (x∗) = 1 − R − x∗ + x∗ − H1/2 and the result
follows. On the other hand,

inf
x∈[0,1−R] I N (x) = I N (H ) = 0

and so the right hand side of equation (16) is zero.
(b) For the beyond-capacity result if, alternatively,

R > 1 − H , then H > 1 − R and

inf
a∈[0,1−R]{I U (a)+ inf

y≥a
I N (y)}= I U (1 − R)+ I N (H )=0,

and so the right hand side of equation (15) is zero. While

inf
x∈[0,1−R] I N (x) = I N (1 − R) > 0,

so that the right hand side of (16) is strictly greater than
zero.

Proposition 1 not only proves the Channel Coding Theorem,
but also provides exact asymptotic error exponents when
the rate of the code-book, R, is within capacity, 1 − H ,
and success exponents for when the rate is beyond capacity.
For memoryless channels, the error rate in equation (13)
coincides with that in [8, Th. 2], where the linear followed by
strictly convex phenomenon was first identified. Proposition 1
establishes that phenomenon for more general noise processes.

The point 1− x∗ in equation (13), where the error exponent
goes from being linear in the code-book rate to strictly convex
in equation (13), is dubbed the critical rate by Gallager for
memoryless channels and can be given a simple interpretation
in terms of the noise guessing GRAND undertakes for general
noise processes. For code-book rates R beyond the critical
rate, in the large n limit an error occurs because the uniform
code-book is typical, but the noise is exceptionally unlikely
and far down the guessing order. For code-book rates below
the critical rate, it requires an average number of guesses to
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Fig. 3. GRAND decoding error and success exponents. Example: A =
{0, 1}, BSC channel, noise Nn made of i.i.d. Bernoulli symbols with P(N1 =
1) = p ∈ (0, 1). Code-book consisting of Mn ≈ 2n R code-words, uniformly
selected in A

n . When the code-book rate, R, is less than channel capacity,
1 − H , the probability that a code-word that was not sent is encountered
during noise guessing before the transmitted code-word, P(Un < G(Nn)),
decays exponentially in block length n with rate �(R) given by the solid line as
determined by equation (13), which coincides in this case with Gallager’s error
exponent. The point 1−x∗ marks the critical rate where the error-rate changes
from linear to strictly convex. For code-books rates that are beyond capacity,
R > 1− H , the probability that the transmitted code-word is identified before
a non-transmitted code-word, P(G(Nn) < Un), decays exponentially in n
with rate s(R) from equation (14), indicated by the dashed line.

identify the true noise, which is why the Rényi entropy rate
with parameter 1/2 appears, but the uniform code-book has
an unusually early entry in the noise-guessing ordered list,
resulting in an error.

Proposition 1 also provides success exponents for rates
above capacity. Here the interpretation of the success rate in
equation (14) is that, if the code-book rate R is too high for
capacity, 1− H , in the large n limit a successful decoding will
occur if the non-transmitted code-book elements are typically
distributed, but the noise is unusually highly likely, such that
it is identified first, just prior to a non-transmitted element of
the code-book.

Example. For the BSC, example plots of these curves are
provided in Fig. 3. Note that as I N is a convex function that
is zero at H , the error and success exponents are both smooth,
near-zero functions around capacity, R = 1−H . This suggests
that GRAND experiences graceful degradation in performance
near capacity.

We can combine Theorems 1 and 2 in a distinct way to
determine the asymptotic complexity of the new ML decoding
scheme in terms of the number of guesses until an ML
decoding, correct or incorrect, is identified:

Dn := min(G(Nn), Un). (17)

That is, GRAND terminates at either identification of the
noise that was in the channel or when a non-transmitted ele-
ment of the code-book is unintentionally identified, whichever
occurs first. On the scale of large deviations, if the code-book

is within capacity, R < 1 − H , then the sole impact of the
code-book is to curtail excessive guessing when unusual noise
occurs.

Proposition 2 (Guessing Complexity of GRAND). Under
Assumptions 1 and 2, {1/n log Dn} satisfies a LDP with a
lower-semicontinuous rate function, I D.

1) If R < 1− H , then the input code-word will be recovered
in the large deviations limit with unaffected likelihoods, and
the impact of the code-book is to curtail guessing of unlikely
inputs:

I D(x) =
	

I N (x) if x ∈ [0, 1 − R]
+∞ if x > 1 − R.

(18)

The average number of guesses until GRAND finds a decoding
satisfies

lim
n→∞

1

n
log E(Dn) = min

�
H1/2, 1 − R

�
.

2) If R > 1− H , the code-book rate is higher than capacity
and

I D(x) =
	

min
�
I N (x), I U (x)

�
if x ∈ [0, 1 − R]

+∞ if x > 1 − R.
(19)

This rate function need not be convex, and whichever of I N

or I U is smaller dictates whether the ML decoding is the true
code-word or a non-transmitted one. The average number of
guesses until GRAND identifies a decoding is governed by the
beyond-capacity code-book rate,

lim
n→∞

1

n
log E(Dn) = 1 − R.

Proof: As {1/n log G(Nn)} and {1/n log Un} are inde-
pendent processes, {(1/n log G(Nn), 1/n log Un)} satisfies the
LDP with rate function I N (x) + I U (y). The LDP for
{1/n log Dn = 1/n log min(G(Nn), Un)} follows from an
application of contraction principle, [3, Th. 4.2.1], with the
continuous function f (x, y) = min(x, y), giving

I D(x) = inf
a,b

�
I N (a) + I U (b) : f (a, b) = min(a, b) = x

�

= min

�
I N (x) + inf

y≥x
I U (y), inf

y≥x
I N (y) + I U (x)

�

= min

�
I N (x), inf

y≥x
I N (y) + I U (x)

�
, (20)

where the last line follows from the form of I U in equa-
tion (10).

The simplification of equation (20) into (18) and (19) come
about owing to considerations from the following structure.
By Theorem 1, the noise guessing rate function starts at the
min-entropy rate, I N (0) = Hmin. As the min-entropy rate is
always less than or equal to the Shannon rate, Hmin ≤ H ,
I N (H ) = 0 and I N is convex, I N cannot lie above line from
(0, Hmin) to (H, 0).

If R < 1 − H , then H < 1 − R and I N (x) ≤ I U (x)
for all x ≤ H from the definition of I U in equation (10).
For H ≤ x ≤ 1 − R, I N is non-decreasing and so
min(I N (x), inf y≥x I N (y) + I U (x)) = I N (x).
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Fig. 4. GRAND complexity. Example: A = {0, 1}, BSC channel, noise Nn made of i.i.d. Bernoulli symbols with P(N1 = 1) = 0.1, and channel capacity
is approximately 0.53. Code-book consisting of Mn ≈ 2n R code-words, uniformly selected in A

n . Left panel: rate function, I N defined in equation (8), for
the number of guesses until the noise is identified {1/n log G(Nn)}. Also plotted is the rate function IU defined in equation (10) for the number of guesses
until a non-transmitted element of the code-book is identified, {1/n log Un}. Vertical dashed lines indicate that IU (x) = +∞ for x to the right of that line.
Right panel: as established in Proposition 2, the rate function, I D, that results for the number of queries until an ML decoding is proposed in each of those
three cases. Vertical dashed lines indicate that I D(x) = +∞ for x to the right of that line. If R < 1 − H (red line) so that the code-book rate is within
capacity, the zero of I N occurs before the zero of IU and the ML decoding mimics the number of guesses until the transmitted word is identified, but with
the rate function curtailed at 1 − R. With 1 − H < R < 1 − Hmin (yellow line), if the algorithm completes before x∗ such that I N (x∗) = IU (x∗), whose
likelihood is decaying exponentially in n, the true code-word dominates, but ultimately a non-sent code-word is returned. If R > 1 − Hmin (purple line), then
in this limit, an erroneous code-word is always returned. The super-critical guessing point y∗, which is the supremum over all y satisfying the conditions of
Theorem 3, marks the greatest threshold below which, should the ML algorithm declare a decoding has been found, in the large block-length limit, it will be
correct, even if the code-book rate is greater than capacity.

If, instead, R > 1−H , then 1− R < H and inf y≥x I N (y) =
0 for all x ≤ 1 − R, so that I D(x) = min

�
I N (x), I U (x)

�
.

To obtain the scaling result for E(Dn) we reverse the trans-
formation from the rate function I D to its Legendre-Fenchel
transform, the scaled cumulant generating function of the
process {n−1 log Dn} via Varadhan’s Theorem [3, Th. 4.3.1].
In particular, note that, regardless of whether I D is convex or
not,

lim
n→∞

1

n
log E(Dn) = lim

n→∞
1

n
log E



|A|log Dn

�

= sup
x∈R

�
x − I D(x)

�
.

If R < 1−H , this equals min(H1/2, 1−R), while if R > 1−H
it equals 1 − R.

One interpretation of the first part of that proposition is
that, if the code-book is such that R < 1 − H , and so
within capacity, identification of the correct code-word occurs
because it is likely that all elements in the typical set of the
noise will be queried before a non-transmitted element of the
code-book is identified. Owing to the long tail of guesswork,
in the absence of the other elements, of the code-book stopping
the guessing algorithm, the average number of guesses that
would be made would grow with rate H1/2 [15]. If, however,
one minus the normalized code-book rate R is less than that,
the long tail of the scheme is clipped. While this clipping is
not enough to make an error likely, it is enough to reduce
the average number of queries that will be made before an
element of the code-book is identified.

Example. An example of the range of behaviors described
in Proposition 2 for a BSC can be found in Fig. 4. The non-
convex rate function corresponds to a code-book rate beyond
capacity, R > 1 − H .

If the code-book rate is beyond capacity, R > 1 − H , then
implicit in the results of Proposition 2 is that there are cir-
cumstances where, conditioned on the unlikely event that the
algorithm terminates after a relatively small, but exponentially
growing, number of guesses, the decoded code-word GRAND
identifies is certain to be the transmitted code-word in the
large block length limit. While this property can appear under
more nuanced circumstances, we provide one condition where
the resulting characterization is simple. Namely if the code-
book rate is between channel capacity and one minus the min-
entropy rate of the noise, 1 − H < R < 1 − Hmin, then one
can determine an exponent below which, in the limit as the
block length becomes large, if the ML algorithm terminates
after a number of guesses below the threshold governed by that
exponent, the decoded code-word will correctly correspond to
the transmitted code-word.

Theorem 3. Under Assumptions 1 and 2, if 0 < y < 1 − R
is such that I N (y) < I U (y), then the probability of a correct
decoding given fewer than |A|ny queries are made before the
algorithm terminates converges to 1,

lim
n→∞ P

�
G(Nn) < Un

����
1

n
log Dn ≤ y


= 1.

Such a y necessarily exists if the code-book rate is less than
one minus the min-entropy rate of the noise, R < 1 − Hmin.
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Proof: To see that such a y exists if R < 1−Hmin, observe
that as R < 1 − Hmin we have that the noise guessing rate
function starts strictly below the non-transmitted guessing rate
function, I N (0) = Hmin < 1 − R = I U (0). As both I N and
I U are continuous, the existence of such a y is guaranteed.

Defining the continuous function f : [0, 1]2 → [0, 1]3 by
f (x, y) = (x, y, min(x, y)), then by the contraction principle,

��
1

n
log G(Nn ),

1

n
log Un,

1

n
log Dn

�

satisfies the LDP with rate function

I N,U,D(x, y, z) =
	

I N (x) + I U (y) if z = min(x, y)

+∞ otherwise .

We apply the [68, Th. 3.1] to establish the concentration of
measure conditioned on the rare event that the algorithm termi-
nates within |A|ny guesses. By that theorem, we have that for
any open neighborhood B of (min(y, H ), 1 − R, min(y, H )),

lim
n→∞P

��
log G(Nn)

n
,
log Un

n
,
log Dn

n


∈ B

����
log Dn

n
≤ y


=1,

from which the result follows.
If the code-book rate is less than capacity, Theorem 3

recovers what we already knew from Proposition 1: that we
have concentration of measure onto correct decodings. Even if
the code-book rate is beyond capacity, however, it establishes
that, conditioned on the algorithm terminating early, there are
circumstances where we shall have concentration onto correct
decodings. Examples to this effect are presented in the right
hand panel of Fig. 4, where the supremum over all y satisfying
the condition of Theorem 3, y∗, which we call the super-
critical guessing threshold, is marked. For code-book rates that
are greater than capacity, i.e. the left two lines, y∗ < H and
the ML decoding is only likely to be correct if the GRAND
algorithm terminates in a number of queries in the guesswork
order that is below approximately |A|ny∗

.

B. Approximate ML Decoding With GRANDAB
While Proposition 2 identifies the computational complexity

of GRAND and so is directly related to the decoding algo-
rithm, Proposition 1 provides a version of the Channel Coding
Theorem for ML decoding in general. That is, it relates to
the likelihood that an ML decoding is in error, irrespective
of the algorithm used to identify the ML decoding. Its proof
via noise guessing, however, suggests an approximate ML
decoding scheme, GRANDAB, with constrained complexity.

If the code-book rate is within capacity, R < 1 − H ,
the likelihood of erroneous decoding is strictly decaying in n.
Essentially this occurs as the likelihood of identifying a
transmitted noise sequence is dominated by queries to up to,
and including, the Shannon Typical Set, a fact made clear by
I N (H ) = 0. The expected guessing location to the first non-
transmitted element encountered is governed by one minus the
code-book rate, I U (1 − R) = 0. Thus when R < 1 − H ,
H < 1 − R and guessing the true input dominates over
identifying a non-transmitted code-word.

That guessing the noise has a long tail beyond H is a
consequence of large growth in the number of sequences to be
queried when compared to the rate of acquisition of probability
on querying them, leading to the undesirable H1/2 growth
rate for unconstrained noise guessing. For dense code-books,
this guessing tail is clipped with an error at 1 − R, but -
despite that error - capacity is achieved so long as the code is
within capacity R < 1− H . Further contemplation of this fact
suggests the following algorithm: perform the GRAND, but
abandon guessing after |A|n(H+δ) queries, for some δ > 0,
declaring an error. This algorithm does not implement ML
decoding, but it is still capacity achieving.

Proposition 3. (GRANDAB Coding Theorem and Guessing
Complexity). Under the assumptions of Theorems 1 and 2.
If the code-book rate is less than the capacity, R < 1 − H ,
then the GRANDAB error rate is

lim
n→∞

1

n
log P

��
Un ≤ G(Nn)

� ∪
�

1

n
log G(Nn) ≥ H + δ

�

= − min

�
inf

a∈[H,1−R]{I U (a) + I N (a)}, I N (H + δ)

�
< 0,

so that probability that the ML decoding is not the trans-
mitted code-word decays exponentially in the block length n.
If, in addition, x∗ defined in equation (12) exists then this
simplifies to what we call the GRANDAB error rate

�AB(R) = min


�(R), I N (H + δ)

�
(21)

where �(R) is the ML decoding error rate in equation (13).
The expected number of guesses until GRANDAB termi-
nates, {Dn

AB}, satisfies

lim
n→∞

1

n
log E(Dn

AB) = min
�
H1/2, 1 − R, H + δ

�
.

For rates above capacity, R > 1 − H , the success probability
is identical to that for ML decoding, given in equation (14).

Proof: By the principle of the largest term,
[3, Lemma 1.2.15] or [69],

lim sup
n→∞

1

n
log P

��
Un ≤G(Nn)

� ∪
�

1

n
log G(Nn)≥ H +δ

�

= max

�
lim sup

n→∞
1

n
log P

�
Un ≤ G(Nn)

�
,

lim sup
n→∞

1

n
log P

�
1

n
log G(Nn) ≥ H + δ


,

with a similar equation holding for lim inf. The behavior of
the first term is identified in Proposition 1. The behavior
of the second term is established directly from the LDP in
Theorem 1 on noting that

inf
x≥H+δ

I N (x) = I N (H + δ),

as I N is strictly increasing beyond H . Coupled with the
continuity of I N , we obtain equation (21). The expected
number of guesses until the algorithm completes is determined
in an identical manner to that in Proposition 2.

The interpretation of this result is straight-forward:
GRANDAB results in an error if either the ML decoding
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Fig. 5. BSC GRAND and GRANDAB decoding. Bit flip probability p = 10−4, code-book rate R and block length n. Dashed vertical lines in three of the
panels indicate channel capacity. Top left panel: complexity of ML decoding by noise guessing (solid lines) or by brute force (dashed lines) as a function of
code-book rate. Circles indicate the rate beyond which computing within the code-book has higher complexity than noise guessing. Diamonds indicate the rate
below which block error probability is less than 10−3. Top right panel: complexity of GRANDAB as a function of code-book rate, where the free parameter
δ in GRANDAB is selected as described in Section IV. The inflection in complexity in these top two panels occurs at the cut-off rate. Bottom left panel:
with a zoomed in x-scale, to the left of capacity the curves show approximate error probability of GRANDAB for a range of n. To the right of capacity the
curves show approximate success probability of both GRAND and GRANDAB. Bottom right panel: for each block length and both GRAND and GRANDAB,
the maximum achievable rate, as a percentage of capacity, while keeping the block error probability below 10−3 is plotted against the highest complexity of
the code, which occurs for low-rate code-books.

is erroneous, as governed by Proposition 1, or if the algorithm
abandons guessing before an element of the code-book is
identified. Whichever of these two events is more likely
dominates the error rate. So long as the algorithm does not
abandon until after querying all elements in the typical set of
the noise, it is capacity achieving.

The earlier Theorem 3 also suggests an abandonment rule
when code-books are at rate beyond capacity. One could
curtail querying and declare an error after approximately
|A|ny∗

guesses, where y∗ is maximum over all y satisfying
the conditions of Theorem 3. Before that point, it is likely
that the decoding is correct, while afterwards it is likely to be
incorrect.

IV. EXAMPLES

As all of the results in this paper hold for channels with
memory, to illustrate the complexity, error and success proba-
bilities of GRAND and GRANDAB decoding we treat binary
A = {0, 1} noise sequences {Nn} whose elements are chosen
via a Markov chain with transition matrix�

1 − a a
b 1 − b


,

and assume that 1 > a, b > 0. The initial distribution of the
Markov chain can go unspecified as it plays no role in the
asymptotic results. This model includes the BSC by setting

p = a = 1 − b, but, in general, the second eigenvalue is
1−a−b, which characterizes the burstiness, memory or mixing
of the Markov chain.

The Rényi entropy rate of this noise source can be evalu-
ated [16] for α �= 1 to be

Hα = 1

1 − α
log



(1−a)α+(1−b)α+

�
((1−a)α−(1−b)α)2+4(ab)α

�

− 1

1 − α
.

While with h(a) = −a log(a) − (1 − a) log(1 − a) being
the binary Shannon entropy, H1 = H = h(a)b/(a + b) +
h(b)a/(a + b) is the Shannon entropy rate of the Markovian
source. Thus using equation (6) we have an explicit expression
for the resulting scaled cumulant generating function, �N ,
of the logarithm of the noise. While the rate function I N

defined in equation (8) cannot be calculated in closed form,
it is readily evaluated numerically, only requiring the solution
of a one-dimensional concave optimization.

While prefactors are not captured in that asymptotic analysis
in Propositions 1, 2 and 3, they allow the following approxi-
mations. For GRAND and GRANDAB decoding, our measure
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Fig. 6. BSC GRAND and GRANDAB. Same display as for Fig. 5, but with bit flip probability p = 10−2 and a block-error probability floor of 10−2.

of complexity is the average number of guesses per bit:

GRAND ave. no. guesses / bit ≈ 2n min(1−R,H1/2)

n

GRANDAB ave. no. guesses / bit ≈ 2n min(1−R,H1/2,I N (H+δ))

n
.

For comparison, we define the complexity of the straight
computation of the ML decoding in (4) to be the number of
conditional probabilities that must be computed per bit before
rank ordering and determining the most likely code-book
element:

No. conditional prob. computations / bit = 2nR

n
.

Thus we are equating the work performed in one noise
guess with one computation of a conditional probability.
As this direct scheme results in the ML decoding as by noise
guessing, it shares the same error and success probabilities
as GRANDAB.

For error and success probabilities we employ: GRAND
probability of error ≈ 2−n�(R) for R < 1 − H ; GRANDAB
probability of error ≈ 2−n�AB(R) for R < 1 − H ; GRAND &
GRANDAB probability of success ≈ 2−ns(R) R > 1 − H ;
where �, �AB, and s are given in equations (13), (21) and (14).

We use the following rule to select the parameter δ that
determines how far beyond the Shannon typical set queries are
made before abandonment in GRANDAB. With the stationary
probability of noise per bit being p, for a given block-length
n we identify δ such that the probability of abandonment is
no more than pabandon times the expected uncoded block error
probability; i.e we solve the following equation numerically

for δ(n):

2−nI N (H+δ(n)) = pabandon min(pn, 1).

Selecting this δ sets a floor for the block-error probability
generated by abandoned guessing that is a fraction of the
uncoded block-error probability.

We set pabandon = 10−3 if the average bit error rate in the
channel is 10−4 and pabandon = 10−2 if it is 10−2 indicating
we are willing to tolerate block-error probabilities that are of
order at least 100 or 1000 times less likely than an uncoded
block error.

For complexity, as the number of computations per bit
per second is normally several orders of magnitude greater
than the number of bits received over the channel per second,
we will consider a complexity feasible if it is in the range of
103 −104 guesses per bit. For both GRAND and GRANDAB,
this is likely to be a conservative constraint as the guessing is
readily parallelizable.

A. Binary Symmetric Channel (BSC)
For the BSC with bit error probability p = 10−4,

a GRANDAB decoding abandonment probability of
pabandon = 10−3, and a range of block lengths, n, the
approximate complexity and error performance of GRAND
and GRANDAB is shown in Fig. 5.

The top left panel shows the complexity (average number
of guesses per received bit) for GRAND (solid lines) and by
brute force (dashed lines) for a range of block lengths, n,
with the vertical dashed line indicating capacity, 1 − H . The
computational complexity of the brute force approach, com-
puting conditional probabilities for all elements of the code-
book rapidly grows with rate. The complexity of guessing
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Fig. 7. GRAND and GRANDAB decoding with binary Markovian noise. Average bit flip probability p = 10−4, making it comparable to the BSC plots
in Fig. 5, but for a Markovian channel with a = p/5 = 2 × 10−5 and b = (1 − p)/pa ≈ 0.2, so making an extremely bursty noise channel. Four displayed
panels are analogous to those described in the caption of Fig. 5.

Fig. 8. GRAND and GRANDAB with Markovian noise. Same display as for Fig. 7, but with average bit flip probability p = 10−2.

the noise only decreases as rates increase, with the circles
indicating the threshold above which the complexity of guess-
ing within the code-book is less than that of brute force
determination. The diamond marks the code-book rate after
which the block error probability for GRAND is pblock = 10−3

and so sets an upper-threshold on the code-book rate. The
top right panel shows the equivalent complexity plot for
GRANDAB decoding. The effect of abandonment is to reduce
the maximum complexity for the longest block-length, with no
impact on smaller block-lengths in this instance.
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Fig. 9. Example: A = {0, 1}, BSC channel, bit flip probability p = 10−2, block length n = 75, capacity 1 − H = 0.919 and a code-book rate of R = 0.72.
Upper panel: The x-axis is the total number of queries per-bit on a log-scale. The y-axis is the number of queries per-bit that are made to sequences of
increasing Hamming distance, also on a log-scale. Each rectangle demarcates a distinct Hamming distance. The color coding indicates the probability that
is accumulated by guessing through a layer of given Hamming distance and runs from blue, 0, to red, 1. The white layer is where 2nH guesses have been
made, at the core of the Shannon Typical Set. Accumulation of probability around the white layer is asymmetric. Prior to it, probability is quickly obtained,
but the decreasing probability per sequence coupled with the increasing number of sequences with the same probability results in 2nH1/2 , asymptotically the
average guesswork, being in the black layer. The cyan layer indicates the guessing layer by the end of which there is a 99% chance of identifying true noise.
Abandoning guessing here if no code-word had been identified would result in 205 fewer guesses per bit than would, on average, be necessary to identify
the true noise sequence. With a code-book rate of 0.72, using the approximation in (9), the magenta layer is where a non-transmitted code-word would,
on average, be identified. Lower Panel: Cumulative probability of guesswork with the same color coding as the upper panel, but with a truncated y-axis to
show more detail. The dashed vertical cyan line is located at the average number of guesses per-bit per GRANDAB decoding, E(DAB)/n ≈ 16. The magenta
line is the cumulative distribution of the number of guesses per bit until a non-transmitted code-word is identified, using the approximation to Un found in
equation (9). Note that, with a log x-scale, it is tightly centered around its mean, resulting in a block error probability of pblock = 3.15 × 10−3.

The bottom left panel shows the approximate block-error
and block-success probabilities below and above capacity,
respectively, for GRANDAB as a function of code-book rate.
The ML curves would be identical at higher rates, but would
drop further at lower code-rates as the abandonment of guess-
ing of GRANDAB is what places a floor on the block-error
rate.

For both GRAND and GRANDAB, the final panel, bottom
right, shows the maximum complexity for a given block
length, n, versus the % of capacity achievable with a code-
book rate that provides a block error probability below
pblock = 10−3. With the rule of thumb that 103 − 104 guesses
per bit is acceptable, then choosing n = 700 could realize up
to 96.5% of capacity. Note that this occurs for a block length
that is substantially smaller than the reciprocal of the bit error
rate, 1/p = 10, 000.

The inflection in complexity for the top two panels occurs
at the cut-off rate. This illustrates an intriguing property of
GRAND and GRANDAB. While for sequential decoding of
tree codes, decoding complexity increases steeply when the
rate exceeds the cut-off rate, for decoding by guessing noise,
complexity decreases past the cut-off rate.

Analogous information is displayed for the BSC with bit
error probability p = 10−2 in Fig. 6, but with pabandon = 10−2.
Again, the computational complexity of the brute force
approach makes it infeasible even for modest rates. For these
higher bit error probabilities, the effect of GRANDAB’s trun-
cation is felt at smaller block sizes. This might be expected,
given the Shannon entropy of the noise has increased. As the
likelihood of noise is increased, block-lengths must be reduced
to keep guesswork down to the 103–104 guesses per-bit range.
For p = 10−2, complexity considerations reduce n to 75, for
which rates providing up to 72.4% of capacity are achievable
with a block error probability no more than pblock = 10−2.

B. Bursty Markovian Noise
A core feature of the proposed schemes is that they can be

applied in channels with correlated noise without the need for
interleaving and other methods that attempt to mask the impact
of memory. The equivalent of Fig. 5 is presented in Fig. 7
where the long run average probability of bit-error is set to
be the same, p = 10−4, in both, but here a = 10−4/5 and
b = 1/5. These have been selected to give a highly bursty
source where the likelihood of a bit flip is small, but the
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Fig. 10. Example: A = {0, 1}, BSC channel, bit flip probability p = 10−4, block length n = 700, capacity 1 − H = 0.999 and a code-book rate of
R = 0.965. Upper panel: Same layout as in Fig. 9. Abandoning guessing after 99.9% probability is accumulated if no code-word had been identified would
result in 115 fewer guesses per bit than would, on average, be necessary to identify the true noise sequence. Lower Panel: As in Fig. 9. Average number of
guesses per-bit per GRANDAB decoding E(DAB)/n ≈ 0.172. Block error probability of pblock = 4.69 × 10−5.

likelihood of an additional bit flip given one has occurred is
3 orders of magnitude higher. The block-lengths displayed for
the Markovian channels are the same as for the corresponding
BSC example and again pabandon = 10−3, to enable ready
comparison.

For this parameterization, the complexity of GRAND is
much higher for this Markovian noise than the BSC equivalent.
Consequently, GRANDAB plays a more significant role in
reducing that complexity for large block lengths by abandon-
ment. Based on the criteria set for the BSC, for reasons of
complexity n = 500 would be selected. While this is shorter
than the block length for the equivalent BSC, it is still the
case that 95.4% of capacity is achievable with a block error
rate of less than pblock = 10−3.

Fig. 8 can be compared with the BSC in Fig. 6, having
p = 10−2 obtained by a = 10−2/5 and b = a(1 − p)/
p ≈ 0.198. For this noisy channel, again GRANDAB provides
a reduction in algorithmic complexity at a cost of introducing
an error floor. Limit complexity at the receiver, one would
select n = 75. With a threshold of a block-error rate set at
10−2, 71.2% of capacity is available.

Note that, in all examples presented here, the best block
lengths are no larger than the reciprocal of the corresponding
bit error rate, 1/p. This behavior may be unexpected if
we consider error exponents for Markov channels based on
interleaving of the order of the mixing time of the Markov
noise model [70], yet it is a desirable feature of the scheme,
which we have consistently observed.

C. Finer Approximations for the BSC

For uniform-at-random code-books, Proposition 1 provides
error exponents for general noise processes. In the case of
the memoryless channel, however, a more exact computation
of the block error probability is possible. This is achieved
by availing of the precision of the finer approximation to the
distribution of the number of guesses until a non-transmitted
code-word is identified, Un , given in equation (9).

The error probability is one minus the success probability,

P(Un ≤ G(Nn)) = 1 − P(G(Nn ) < Un),

and we shall provide a more exact computation of the latter.
Restricting to a BSC, there are n choose 0 noise strings with
no errors, n choose 1 strings with one error, and so forth. Thus
we define l−1 = 0 and

lk =
�

n

0


+

�
n

1


+ · · · +

�
n

k



for each k ∈ {0, . . . , n}. Consequently in guesswork order we
have

P(G(Nn ) = m) = pk(1 − p)n−k

for every m ∈ {lk−1 + 1, . . . , lk}. Thus

P(G(Nn )<Un)=
n�

k=0

pk(1− p)n−k
lk�

m=lk−1+1

P(Un >m).
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Approximating the distribution of Un by

P(Un > m) ≈ exp(−m2−n(1−R)),

as suggested by equation (9), and computing the resulting
geometric sum gives

P(G(Nn ) < Un)

≈
n�

k=0

pk(1 − p)n−k

�
e−(lk−1+1)2−n(1−R) − e−(lk+1)2−n(1−R)

1 − e2−n(1−R)

�
.

Thus, for a BSC we can compute a finer approximation to the
block error probability, pblock, by a sum of only n + 1 terms.

Fig. 9 reconsiders the scenario treated via the large devia-
tions analysis in Fig. 6, but with this finer approximation for
the block error probability. The n and R used correspond to
those deduced from the asymptotic analysis as maximizing
rate subject to constraints on block error probability while
maintaining a certain degree of complexity. The true block
error probability is 3×10−3, when the target in the asymptotic
regime was 10−2 indicating good accuracy.

In all cases we have examined beyond those shown here,
the asymptotic results compare well with the more precise
computations which, if anything, suggest that higher rates can
be obtained while still meeting block error targets.

V. DISCUSSION AND CONCLUSIONS

We have introduced and analyzed two decoding algorithms
based on guessing that are suitable for a broad class of noise
processes. Subtracting noise from a received signal in order
from most likely to least likely, the first instance that is in the
code-book corresponds to the ML decoding. Both GRAND,
which identifies an ML decoding by noise guessing, and
GRANDAB, an approximate ML decoding by noise guessing
algorithm in which the receiver quits its attempts to identify an
element of the code-book after a given number of unsuccessful
queries that is determined by the Shannon entropy of the noise,
are capacity achieving when used with uniform-at-random
code-books. To establish capacity results, we have assumed
that the source is uniform. Depending on channel conditions,
GRANDAB has the potential benefit over ML decoding of
decreased complexity, even for DMCs. Analytically leveraging
this noise-focused view, we provide explicit error and success
exponents for code-book rates that are within and beyond
capacity, respectively, providing a version of the Channel
Coding Theorem.

While DMCs form the classic model in information theory,
real communication channels are not memoryless, e.g. [71],
and commonly are made artificially so by interleaving for
many existing decoding schemes to function well, leading
to additional delays in encoding and decoding. In contrast,
all of the results presented in the present paper for GRAND
and GRANDAB hold directly for noise processes with more
involved structures, and no interleaving is required for their
use. To illustrate that, we have presented analytic examples
based on bursty Markovian noise.

The noise guessing approach underlying GRAND and
GRANDAB has other desirable features. For example,
both schemes are universally applicable in the sense that their

execution only depends on the structure of the noise rather than
how the code-book was constructed. Moreover, guesswork
orders are known to be robust to mismatch [63].

For both GRAND and GRANDAB, we provide asymptotic
results on the number of queries that the receiver must make
per received code-word for uniform-at-random code-books.
Notably, the approach becomes less complex as the code-book
rate increases.

While testing a string’s membership of a uniform-at-random
code-book can be achieved efficiently with the code-book
stored in a A-ary tree, the code-book description requires
substantial memory, limiting utility for large block-lengths.
Any use of a random code-book also requires techniques
for encoding, and for converting a code-word to an informa-
tion word, but both of these can be performed with linear
complexity. To encode, potential inputs can be stored in
a lexicographically ordered A−ary tree of depth n R with
a final leaf that contains a string of length n, the code-
word to be transmitted. Thus finding an encoding entails a
tree search, i.e. n R operations. When mapping a code-word
to an information word, the code-book can be stored as a
lexicographically ordered A−ary tree of depth n with a final
leaf that contains a string of length n R, the corresponding
information-word. Thus, identifying an information word also
requires a tree search, i.e. n operations.

An alternative instantiation of the schemata would be real-
ized in combination with linearly constructed code-books such
as Hamming, LDPC, or random linear code-books. While
binary linear code-books can be capacity achieving for the
BSC [44], random linear code-books have recently been shown
to be capacity-achieving [39] for DMCs. To describe a linear
code-book, one need solely record its generator matrix and so
storage is small. Using the parity check matrix associated with
the generator, testing a string for membership of the code-book
is efficient as it only requires the computation of the syndrome
of the received string less guessed noise. Using ML decoding
by noise guessing with linear code-books effectively results in
replacing the usual coset leader of each syndrome, the noise
string in the coset with minimum Hamming weight, with the
most likely noise string in the coset. A thorough investigation
of that possibility, along with small block size properties,
integration into outer coding schemes, and so forth, is the topic
of ongoing work. The current work treats only a hard detection
model where only discrete data is presented to the decoder.
Extending the principles of these noise guessing techniques to
a continuous case where soft detection information is available
imputes quantization issues that merit their own investigation,
and is the subject of further ongoing work.
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