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Abstract
Motivated by a recently proposed design for a DNA coded randomised algorithm that
enables inference of the average generation of a collection of cells descendent from a
common progenitor, here we establish strong convergence properties for the average
generation of a super-critical Bellman–Harris process. We further extend those results
to a two-type Bellman–Harris process where one type can give rise to the other, but
not vice versa. These results further affirm the estimation method’s potential utility
by establishing its long run accuracy on individual sample-paths, and significantly
expanding its remit to encompass cellular development that gives rise to differentiated
offspring with distinct population dynamics.

Keywords Bellman–Harris process · Sample-path properties · Average generation
inference · Average tree depth inference · DNA coded algorithm · Two-type process

Mathematics Subject Classification 92D25 · 60J85

1 Introduction

Consider a collection of cells subject to proliferation, differentiation and death. Define
the generation of each descendent to be the number of divisions that led to that cell.
Generation dependent behaviour has been implicated in the risk of cancer and its
evolution (Frank et al. 2003; Merlo et al. 2006; Tomasetti and Vogelstein 2015), as
well as being a determiner in the complex differentiation dynamics of proliferating
cell systems (Hodgkin et al. 1996; Tangye et al. 2003; Turner et al. 2008; Hills et al.
2009; Duffy et al. 2012; Zhang et al. 2013; De Boer and Perelson 2013; Marchingo
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et al. 2014). If a cell population expands asynchronously or is subject to death as well
as division, then the average generation of a collection of cells cannot be inferred
solely from knowledge of cell numbers, Fig. 1a, and additional information is needed
to determine this quantity Fig. 1b.

A range of experimental techniques have been developed that allow evaluation or
estimation of the generations of cells. Entire lineages can be recorded in vitro via time
lapsemicroscopy so long as cells can be continuously tracked (Powell 1955; Smith and
Martin 1973; Sulston et al. 1983; Hawkins et al. 2009; Gomes et al. 2011; Giurumescu
et al. 2012; Richards et al. 2013). An alternate methodology is to stain initial cells with
a fluorescent dye (Lyons and Parish 1994; Lyons 2000; Hawkins et al. 2007a; Quah
and Parish 2012) such that with each division cells inherit approximately half of the
molecules from their parent and thus fluoresce with half their intensity. A cell’s gen-
eration can thus be inferred from its luminous intensity via flow cytometry. This high
throughput approach is suitable for adherent cells that cannot be tracked optically, and
can be used for in vivo adoptive transfer experiments where cells are transplanted from
one animal into another. The transplanted cells typically exhibit a heritable marker,
e.g. constitutive expression of a fluorescent protein (Hawkins et al. 2016; Duarte et al.
2018), so that their offspring are distinguishable from endogenous cells in the new
animal. Experiments based on adoptive transfer have been instrumental, for example,
in understanding immune responses (Buchholz et al. 2013; Marchingo et al. 2014),
as well as reconstitution of the blood system after bone marrow transplant (Akinduro
et al. 2018).

In most applications division tracking dyes are used to determine the distribution of
a population across generations, but recent developments have created an experiment
design where the offspring of individual clones can be identified via colour multi-
plexes of distinct division diluting dyes (Marchingo et al. 2016; Horton et al. 2018).
Genetically modified mice also exist that enable an inducible equivalent of a division
diluting dye in vivo without the need for adoptive transfer of ex-vivo stained cells
(Tumbar et al. 2004; Foudi et al. 2009; Mascré et al. 2012). These methods enable
6–10 generations to be followed before fluorescent signal-to-noise ratio is too low for
a cell’s generation to be reliably determined.

Methods to estimate replicative tree depth in vivo have been proposed that involve
measurement of average telomere length (Harley et al. 1990; Allsopp et al. 1992;
Vaziri et al. 1994; Weinrich et al. 1997; Rufer et al. 1999; Hills et al. 2009) or the
number of somatic mutations introduced during DNA duplication (Shibata et al. 1996;
Tsao et al. 2000; Shibata and Tavaré 2006;Wasserstrom et al. 2008; Reizel et al. 2011;
Carlson et al. 2012). Methods in this direction rely on inference rather than direct
determination, but they offer the possibility of tracing more than 10 generations in
vivo.

We recently proposed a new design for in vivo inference of average generation that
relies on a DNA coded randomised algorithm (Weber et al. 2016). For illustration,
consider a single initial cell at time t = 0. As in Fig. 1a, b, let Z(t) be the number
of offspring alive at time t and G(t) be the sum of the generations of all living cells
at that time. The proposal to infer G(t)/Z(t) in Weber et al. (2016) is to equip the
initial cell with a neutral label, i.e. one whose presence or absence has no ramifications
for population dynamics, such that during each cell’s lifetime, immediately prior to
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Fig. 1 Average generation. a If a population of cells grows asynchronous or is subject to death, knowledge
of the number of cells alive at a single time (orange box, time t , Z(t) = 2) does not uniquely determine
the average number of divisions that lead to to the living cells (i.e. the depth of the family tree). b With
the progenitor being defined to be in generation 0, the total generation of the process at any time is the
sum of the generations, the number of edges back to the root of the tree, of living cells (orange box,
G(t) = 3 + 3 + 2 = 8) and the average generation is the total generation divided by the number of
living cells, G(t)/Z(t) = 8/3. c The randomised algorithm proposed in Weber et al. (2016) for inferring
G(t)/Z(t) is based on having a neutral label in the initial cell that is independently lost with probability p
during each cell’s lifetime (indicated by the black cloud) and is not regained by further offspring once lost.
If the proportion of label-positive cells can be measured and the probability of label loss, p, is small, then
the following relationship holds G(t)/Z(t) ≈ −1/p log(Z+(t)/Z(t)) in two approximate senses more
fully explained in the main text (colour figure online)

cell division, with a small probability p the label is irrevocably and heritably lost.
Thus either all the offspring of a label-positive cell have the label, which occurs with
probability 1− p, or all do not, which occurs with probability p. With Z+(t) denoting
the number of label positive cells at time t , as in Fig. 1c, the suggested estimator is

G(t)

Z(t)
≈ − 1

p
log

(
Z+(t)

Z(t)

)
, assuming p is small. (1)

123



676 G. Meli et al.

This surprising formula is desirable for a number of reasons: (1) it allows for cell
death; (2) it does not require knowledge of cell cycle times; and (3) for inference it
requires only a proportional measurement rather than absolute numbers. Moreover, to
infer the relative developmental depth of two populations equipped with the system,
one does not need to know p, the probability of label loss per cell lifetime, if it is the
same for both. A DNA coded randomised algorithm, based on the existing FUCCI
cell cycle reporter (Sakaue-Sawano et al. 2008), to realise the design is proposed in
Weber et al. (2016).

Two distinct derivations of the approximation (1) are provided in Weber et al.
(2016). One, based on properties of cumulant generating functions, establishes that
for an arbitrary lineage relationship between the cells constituting Z(t), the expected
number of label-positive cells, E(Z+(t)), over all possible delabellings recovers the
correct value as the probability of label loss goes to zero:

G(t)

Z(t)
= lim

p→0
− 1

p
log

(
E(Z+(t))

Z(t)

)
.

For a single realisation of the delabelling process, as would occur experimentally, this
provides no assurance. To establish such a result, some structure is needed on the
family tree. Consequently, a complementary result is also established in Weber et al.
(2016) within the context of the standard model of an asynchronously developing
tree, the Bellman–Harris branching process (Harris 1963; Athreya and Ney 1972;
Jagers 1975; Haccou et al. 2005). That is, a growing tree model where cells have
i.i.d. lifetimes and independent i.i.d. numbers of offspring numbers at the end of their
lives.With Z(t) being number of cells alive at time t in a super-critical Bellman–Harris
branching process, so long as the label-positive sub-population Z+(t) is super-critical,
it is established in Weber et al. (2016) that

lim
t→∞

E(G(t))

tE(Z(t))
= lim

p→0
lim
t→∞ − 1

pt
log

(
Z+(t)

Z(t)

)
, almost surely if lim inf

t→∞ Z+(t) > 0.

(2)

The right hand side of this equation says that as long as the label-positive sub-
population continues to exist, ultimately the estimate of average generation converges
on each single path of the process. To provide an intuitive explanation as to how this
equality arises in the context of a branching process, we require some additional con-
cepts. With L being the lifetime distribution and h > 1 being the average number of
offspring, let α := α(h) be the Malthusian parameter, i.e. the solution to

hE(e−α(h)L) = 1. (3)

Proposition 1 of Weber et al. (2016) proves that α(h) is a real analytic function of h
and hence it coincides with its Taylor expansion. Based on well-known almost sure
convergence results (Jagers 1969b; Athreya and Kaplan 1976), Theorem 1 of Weber
et al. (2016) establishes that the behaviour of Z+(t) for small p is given by
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Z+(t) ≈ Z+
p e

α(h(1−p))t = Z+
p e

[α(h)−hα′(h)p+O(p2)]t ,

where Z+
p := limt→∞ e−α(h(1−p))t Z+(t) is a random pre-factor. Using the exponen-

tial growth rate of E(Z(t)) (e.g. Harris 1963, pg. 142), by identifying the growth rate
of E(G(t)) (Weber et al. 2016, Theorem 2), it is shown that both sides of (2) con-
verge to the constant hα′(h). While this branching process result further motivates the
estimator, the left hand side of (2) is not entirely satisfactory. It is an average quan-
tity over realisations of the branching process and it forms the ratio of expectations,
E(G(t))/E(Z(t)), rather than the expectation of the ratio E(G(t)/Z(t))).

In the present paper we make two mathematical advances that further enhance
the promise of the proposed method. We first rectify this shortcoming by proving a
substantially stronger result: that for a Bellman–Harris branching process the sample-
path average generation divided by time converges almost surely to a constant, giving

lim
t→∞

G(t)

t Z(t)
= lim

p→0
lim
t→∞ − 1

pt
log

(
Z+(t)

Z(t)

)
, almost surely if lim inf

t→∞ Z+(t) > 0.

(4)

The convergence result on the left hand side greatly strengthens the only previous result
we are aware of, that proved in Samuels (1971) where convergence in probability of
average generation is established for processes in which there is no death. Given the
ubiquity of Bellman–Harris processes, it is likely to be of interest for other reasons,
but for our purposes it is most significant in providing extra support for merits of the
proposed average generation inference methodology.

In order to establish this fact we prove a collection of surprising results for the paired
processes (Z(t),G(t)) of a super-critical Bellman–Harris process. In particular, we
show that

lim
t→∞

(
e−αt Z(t), t−1e−αtG(t)

)
= (c1Z, c2Z), (5)

where Z is a random variable and c1, c2 are constants. Namely, even though the total
generation advances at a different rate to the population size, the random element of
the prefactor is the same for both, and properties of the ratio G(t)/Z(t) follow.

To establish those results we use a combination of both old and novel arguments,
essentially following the methodology described by Harris (1963), but relying on
a peculiar renewal theorem, inspired by results of Asmussen (1998), for what are
is known as defective probability measures, which are measures whose total mass
is smaller than 1 (Resnick 2013, Chapter 3). The Malthusian parameter can be
thought of as determining an exponential tilt that identifies a measure with density
h exp(−αt)dP(L ≤ t). That is a probability measure as it integrates to 1 thanks to
Eq. (3). Defective probability measures, however, naturally arise in the study of the
higher moments of branching processes as one encounters renewal equations with
more extreme exponential tilts, exp(−kαt) for k > 1, resulting in measures that inte-
grate to less than 1. The new results allow us to obtain an integral formulation for
the probability generating functions of the prefactors described above. To clinch the
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result, we essentially insert the guess that the randomness in the prefactors of the two
processes is the same.

The second contribution of the present paper is to provide mathematical support
that significantly extends the remit of the average generation estimation scheme by
considering a two-type super-critical Bellman–Harris process with one-way differen-
tiation, where cells of the first type can differentiate into cells of the second, but not
vice versa (e.g. Fig. 2). Assuming, as before, a cell of the first type is equipped with a
neutral label that is heritably lost at each division with a given probability, we estab-
lish that a relationship akin to that given in (4) holds for both cell types irrespective
of the relative size of their Malthus exponents. Namely, if one starts with a single
cell of one type that can differentiate and generate a second type, one can ultimately
drawn inferences about the average generation of each cell type. This encompasses,
for example, scenarios where healthy cells may give rise to quickly growing cancer
cells, or quickly expanding multipotent progenitors that give rise to slowly dividing
terminally differentiated cells.

In the current article, our focus is on the relationship in a closed population between
the population size, and the sum of the generations of all living cells. As a result, we
employ the original Bellman–Harris branching process framework where cells only
give rise to offspring at the end of their lives, and the key quantities recorded are
population number and, for our study, total generation. For the applications we have
in mind, this suffices.

Since their introduction, however, age dependent branching processes have been
subject to extensive mathematical study, and naturally arise in diverse applications
from the life-sciences to queueing theory and beyond. Those studies have resulted
in substantial generalisations of the framework that include, for example, popula-
tions with exogenous immigrants, populations where individuals can give rise to
offspring during their lives or can have offspring number distributions that depend
upon lifetimes,multi-type populations that consist of individuals ofmore thanone type,
each with distinct proliferation and differentiation parameterizations. Other important
mathematical developments include the treatment of branching random walks and
generalisations that allow the study of general functionals of the population (Athreya
and Ney 1972; Jagers 1975, 1989, 1992; Asmussen and Hering 1983; Haccou et al.
2005; Athreya and Jagers 2012).

So many of these developments have found application in the study of cell systems
that it is not possible to provide a comprehensive list, and so we give only a few
illustrative examples. The classical, experimentally-supported model of cell cycle
model, the Smith–Martin Model (Smith and Martin 1973), has been studied through
the lense of a multi-type branching process (Nordon et al. 2011). The widely used
Cyton Model (Hawkins et al. 2007b) of lymphocyte can be naturally described as a
binary branching process where offspring numbers are not independent of life-times
and has been analysed as such (Subramanian et al. 2008; Duffy and Subramanian
2009). A recent high-profile study drawing inferences on the differentiation order in
immune responses relied on emperical fitting of distinct multi-type branching process
to data (Buchholz et al. 2013).
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Fig. 2 Two-type process. In addition to division and death, a cell may differentiate into another type
(indicated here by a change in colour) with distinct proliferation properties. For many scientific questions,
one is interested in the average generation of cells of each type. The figure describes the growth of a
population that starts with one cell of type-1 at time 0 and, after consecutive divisions, consists of 5 cells
at time t . The average generation of cells of type-1, the blue cells, is (3 + 2)/2 = 2.5, while for cells of
type-2, the red cells, it is 4 (colour figure online)

2 Motivation for themainmathematical result

A time-dependent model of a family tree is necessary to investigate the temporal
dyamics of average generation. Analysis is trivial in the simplest such stochastic
model, the Galton–Watson branching process (Watson and Galton 1875; Harris 1963;
Kimmel and Axelrod 2002). It assumes that all cells of a given generation share a
common lifetime at the end of which they produce i.i.d. numbers of offspring for the
next generation. If tn is the time of birth of the nth generation, then the total generation
is simplyG(tn) = nZ(tn). Consequently, the well known result for the limit behaviour
of Z(tn) as n becomes large in the super-critical case (Harris 1963, Chapter 1) also
describes the prefactor on front of the distribution of G(tn),

lim
n→∞

Z(tn)

hn
= Z �⇒ lim

n→∞
G(tn)

nhn
= Z (6)

where h > 1 is the average number of offspring, Z is a non-negative random variable
such that E(Z) = 1, and the equalities in (6) are meant in distribution.

On relaxing the constraint that all lifetimes are equal, however, there seems to be
little a priori reason why the analogous quantity to Z in (6), which is Z in (5), should
be shared by both Z(t) and G(t). Moving away from synchronicity, if the lifetimes
of cells are i.i.d. positive and non-lattice random variables, the development forms
a Bellman–Harris branching process (Harris 1963; Kimmel and Axelrod 2002). In
that setting, cells are spread across generations and the ratio G(t)/Z(t) is no longer
deterministic. As E(G(t))/(tE(Z(t))) converges to a constant (Weber et al. 2016), it
is reasonable to suspect that the average generation will still grow linearly in time.
That possibility is also suggested by Fig. 3, where, for independent simulations of
a super-critical Bellman–Harris process with Malthusian parameter α defined in (3),
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Fig. 3 Growth rates of population size, Z(t), total generation, G(t), and average generation, G(t)/Z(t), of
a super-critical Bellmann–Harris process. Each plots present 20 Monte Carlo simulations of a Bellmann–
Harris branching process starting at t = 0 with a single cell, where paths are conditioned to have living
cells at the final time-point of the simulation. Lifetimes are lognormal with mean 9.3 hours and standard
deviation 2.54, which coincide with those measured for murine B cells stimulated in vitro with CpG DNA
Hawkins et al. (2009). At the end of each cell’s life it gives rise to no cells with probability 1/5 and two with
probability 4/5. aWith Z(t) being the population size at time t and α > 0 being the Malthusian parameter
defined in Eq. (3), this figure plots the evolution of Z(t)/eαt , which is known to converge almost surely
and in mean square to a random variable A (Harris 1963). b With G(t) denoting the total generation of
the process (see Fig. 1) at time t , for the same paths this plot shows G(t)/eαt , which grows linearly over
time with a random slope B. Results in Sect. 3.4 establish that A and B are almost surely the same, up to
a multiplicative constant, on a path-by-path basis. Thus the average generation process, G(t)/Z(t), grows
linearly in time, but with the same slope for every path. This can be seen empirically in panel c where 20
instances of this process are plotted (solid lines with markers), as well as E(G(t))/E(Z(t)) (solid black
line)

Z(t)e−αt , G(t)e−αt , and G(t)e−αt/Z(t)e−αt are plotted, illustrating the factor t in
the ratio between the first two.

Collating observations across multiple simulations, however, Fig. 4 suggests some-
thing analogous to (6) is taking place. Figure 4a plots the empirical cumulative
distribution function of the renormalised total cell numbers and total generation at
a large time, suggesting equality in distribution. Figure 4b displays a scatter plot of
the per-simulation prefactors of those quantities for large t . There is a strong positive
correlation in these values, hinting at their relatedness. Finally Fig. 4c shows sample-
paths of the difference between the renormalised total cell numbers less renormalised
total generation, which appears to be converging to zero. This further suggests con-
vergence in probability of the sample-path average generation of a Bellman–Harris
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Fig. 4 Comparison between simulations of Z(t)/eαt and G(t)/(teαt ). These show results from 100 Monte
Carlo simulations of a Bellman–Harris process with paramaterization as in Fig. 3. a At t = 4 days,
empirical cumulative distribution function (ECDF) of Z(t)/(c1e

αt ) and G(t)/(c2te
αt ) are shown, where

c1 and c2 are constants that normalise the limit behaviour of means of the two processes and are computed
numerically. The ECDFs of the prefactor on the population size and the slope of the total generation process
are similar suggesting that they follow the same distribution. b Also at t = 4 days, the scatter plot of
Z(t)/(c1e

αt ) versus G(t)/(c2te
αt ) on a path-by-path basis suggests a stronger result, that there is equality

almost surely. This impression is further informed by plot (c) where 20 paths describing the evolution over
time of Z(t)/(c1e

αt ) − G(t)/(c2te
αt ), which appear to converge to zero as t increases, are displayed

process, conditional on survival. Thus, even though G(t)/Z(t) is no longer determin-
istic, the randomness in G(t)/Z(t) does not reside in the linear term, but in something
smaller. This is something that we formally establish in this paper. It arises as conse-
quence of Theorem 3 and is stated formally in Corollary 3.

3 Convergence of the normalised average generation of a
super-critical Bellman–Harris process

3.1 Assumptions, notation and previous results

The following notation and assumptions are in force throughout Sect. 3. We consider a
Bellman–Harris branching processes with strictly positive non-lattice lifetime random
variable L and non-negative offspring random variable N . We define h := E(N ) and
v := E(N (N − 1)), and assume that both are finite. We work within the super-critical
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case, h > 1, so that the population has a positive probability of escaping extinction
(Harris 1963).

We make use of the Malthusian parameter α defined in (3). As h > 1, α > 0 exists
and is unique. For h > 1, it is established in Proposition 1 of Weber et al. (2016) that
the Malthusian parameter α is a real analytic function of h. For our purposes, we don’t
need to consider α as a function of h, but we will sometimes use the notation α′ to
indicate the value dα(x)/dx |x=h . To study the limit behaviour of the scaled version of
the process (Z(t),G(t)) we use standard notions of convergence in distribution (D),
in mean square (L2), and almost surely (a.s.) (Rudin 1976; Feller 1968). Convolution
between functions will be denoted by the operator ∗. Occasionally in the text we will
refer to the underlying measurable space or the probability space, which we denote
as (Ω,B(Ω)) and (Ω,B(Ω), P), respectively. Example constructions of such spaces
can be found in Harris (1963), Chapter VI.2.

A brief summary of known results concerning Z(t) andG(t)will follow. According
to Harris (1963), Jagers (1969b), under the above assumptions, the limit behaviour of
Z(t) satisfies

Z(t)

eαt

a.s.,L2−−−−→ cZ, (7)

where Z is a non-negative random variable such that E(Z) = 1, and

c = lim
t→∞

E(Z(t))

eαt
=

∫ ∞
0 P(L > t)e−αt dt

h
∫ ∞
0 ue−αudP(L ≤ u)

= h − 1

h2α
∫ ∞
0 ue−αudP(L ≤ u)

.

For the expected value of G(t), the following is proven in Theorem 2 of Weber et al.
(2016)

lim
t→∞

E(G(t))

teαt
= hα′c, where α′ = 1

h2
∫ +∞
0 ue−αudP(L ≤ u)

. (8)

There, we find also information concerning the asymptotic covariance of G(t) and
Z(t) and the ratio of their expectations,

lim
t→∞

E(G(t)Z(t))

te2αt
= c2hα′k and lim

t→∞
E(G(t))

tE(Z(t))
= hα′,

where k = v
∫ ∞
0 e−2αudP(L ≤ u)

1 − h
∫ ∞
0 e−2αudP(L ≤ u)

, (9)

recalling that v = E(N (N − 1)). The scaling of means in Eqs. (7) and (8) suggest the
definition of normalised versions of the processes Z(t) and G(t),

Zt := Z(t)

ceαt
and Gt := G(t)

chα′teαt
, (10)

whose use will simplify notation in the proofs.
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In order to establish one of themain results of the paper, Eq. (4), stated inCorollary 3
of Sect. 3.5, we study the limit behaviour of the process {Gt }. We do that in two steps:
first, in Sect. 3.3 we consider {Gt } as an L2 process and determine its mean square
limit; then, in Sect. 3.5 we reinforce that result by proving that the convergence is
also valid with probability 1 under a condition on the speed of the L2 convergence. In
Sect. 3.3, we make extensive use of a particular version of Key Renewal Theorem for
defective measures that we establish in Sect. 3.2. Once we prove in Sect. 3.4 that Gt
and Zt share the same random prefactor on front of their dominant term for large t ,
we are finally able to characterise the limit behaviour of G(t)/(t Z(t)).

3.2 A new renewal theorem for defective measures

In order to prove (8) in Weber et al. (2016), a version of the Renewal Theorem,
Theorem 6.2(b), of Asmussen (1998), is used in a fundamental way. In this section we
generalise that theorem tomake it applicable for defectivemeasures, i.e.measureswith
total mass less than one, which appear in Renewal Theory in the context of transient
renewal processes (Resnick 2013, Chapter 3). Before going to the main result of the
section, Theorem 1, we first state a non-standard version of the classical Dominated
Convergence Theorem (DCT), which can be applied to a collection of sequences of
functions {( ft,τ )t∈R≥0 : τ ∈ R≥0}, each one converging pointwise, when t → ∞,
to a same function f , uniformly for τ ≥ 0. This can be proved essentially repeating
the same steps of the classical DCT, including the use of Fatou’s lemma, but this time
the hypothesis of the uniformity in τ allows a stronger conclusion. This proposition
is followed by a lemma that depends on it.

Proposition 1 (Non-standard DCT) Let (R,B(R), μ) be a measure space, and for
every τ ≥ 0 let ( ft,τ )t≥0 be a sequence of functions in L1(μ) that converges pointwise
to f uniformly for τ ∈ [0,∞), i.e. given ε > 0 and u ∈ R there exists a tε,u > 0 s.t.
for every t ≥ tε,u and τ ≥ 0we have | ft,τ (u)− f (u)| < ε. Assume there is g ∈ L1(μ)

s.t. | ft,τ (u)| ≤ g(u) for every t, τ , and u. Then, f ∈ L1(μ) and

lim
t→∞

∫
R

ft,τ (u)dμ(u) =
∫
R

f (u)dμ(u) uniformly for τ ≥ 0,

i.e. given ε > 0 there exists a t∗ε > 0 s.t. for every t ≥ t∗ε and τ ≥ 0 we have
| ∫

R
ft,τ (u) − f (u)dμ(u)| < ε.

We are now going to use this version of the DCT to study the limit behaviour of
convolutions between functions and probability measures. We are interested in these
particular structures because we will show that the moments of G(t) can be written in
that form.

Lemma 1 (Convolution with a finite measure doesn’t change convergence rates) Con-
sider f = f (t, τ ) : R≥0 × R≥0 → R locally bounded in t and s.t., for every τ ≥ 0,
f (t, τ )/[t p(t + τ)q ] → c1 when t → ∞, with c1 < ∞, p, q ≥ 0, and let μ be a
finite measure on (R≥0,B(R≥0)). Then, for every τ ≥ 0
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lim
t→∞

1

t p(t + τ)q

∫ t

0
f (t − u, τ )μ(du) = c1μ([0,∞)). (11)

Furthermore, if | f (t, τ )| ≤ f1(t) f2(t + τ), with fi (t) : R≥0 → R≥0 locally bounded
functions for i ∈ {1, 2}, f1(s)/s p → a1, f2(s)/sq → a2, and f (t, τ )/[t p(t +
τ)q ] −−−→

t→∞ c1 uniformly for τ ≥ 0 with a1, a2, c1 < ∞ and p, q ≥ 0, then (11)

is true uniformly for τ ∈ [0,∞).

Proof We only prove the second part of the lemma, as the first part follows from the
same rationale with the use of the classical Dominated Convergence Theorem instead
of Proposition 1.

For the following, we extend the functions f , f1, and f2 to R × R≥0, R, and R,
respectively, by defining f (t, τ ) = f1(t) = f2(t) = 0 when t < 0. If we can establish
that | f (t − u, τ )|/[t p(t + τ)q ]1[0,t)(u) is bounded by a constant M , for every u ∈ R,
τ ≥ 0, and t sufficiently large, we can apply the DCT in Proposition 1 and conclude
that Eq. (11) holds uniformly for τ ∈ [0,∞).

Given ε > 0, from the hypotheses made, we know that there exists uε > 0 s.t. for
every u ≥ uε we have f1(u)/u p ≤ a1 + ε and f2(u)/u p ≤ a2 + ε. Without loss of
generality we can suppose t ≥ tε,u := max{uε, 1}. So, for every u ∈ R, we have

0 ≤ gt (u) := f1(u)

t p
1[0,t)(u) = f1(u)

t p
1[0,uε )(u) + f1(u)

t p
1[uε ,t)(u)

≤ f1(u)1[0,uε )(u) + f1(u)

u p
1[uε ,∞)(u)

≤ sup
[0,uε )

f1(u) + a1 + ε = M1 < ∞, (12)

where in the last equality we have used the fact that f1 is a locally bounded function.
From (12), we have that gt (u) is dominated by M1 for every u ∈ R and t ≥ tε,u . So,
the same will be true for gt (−u), and for its translation gt (t − u). A similar reasoning
can be done with f2, obtaining

f1(t − u)

t p
1[0,t)(u) ≤ M1,

f2(t − u)

tq
1[0,t)(u) ≤ M2,

for every u ∈ R and t ≥ tε,u . Remembering that for hypothesis | f (t, τ )| ≤ f1(t) f2(t+
τ), for every u ∈ R, t ≥ tε,u , and τ ≥ 0 we have

| f (t − u, τ )|
t p(t + τ)q

1[0,t)(u)≤ f1(t − u)

t p
1[0,t)(u)

f2(t+τ − u)

(t+τ)q
1[0,t+τ)(u)≤M1M2=:M

That concludes the proof. �


Armed with that lemma, we can now prove the main result of this section.
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Theorem 1 (A defective measure version of Theorem 6.2(b) Asmussen (1998)) Con-
sider the integral equation

K (t, τ ) = f (t, τ ) +
∫ t

0
K (t − u, τ )ρ(du), (13)

where K , f : R≥0 × R≥0 → R, and ρ is a positive defective measure on
(R≥0,B(R≥0)), i.e. ρ([0,∞)) < 1. If f (t, τ ) is locally bounded in t and s.t., for
every τ ≥ 0, f (t, τ )/[t p(t + τ)q ] → c1 when t → ∞, with c1 < ∞, p, q ≥ 0, then
for every τ ≥ 0

lim
t→∞

K (t, τ )

t p(t + τ)q
= c1

1 − ρ([0,∞))
. (14)

Furthermore, if f is s. t. | f (t, τ )| ≤ f1(t) f2(t + τ), with fi (t) : R≥0 → R≥0
locally bounded functions, i ∈ {1, 2}, s.t. f1(t)/t p → a1, f2(t)/tq → a2, and
f (t, τ )/[t p(t+τ)q ] −−−→

t→∞ c1 uniformly for τ ≥ 0 with a1, a2, c1 < ∞ and p, q ≥ 0,

then (14) is true uniformly for τ ≥ 0.

Proof From (Resnick 2013, Theorem 3.5.1), the only solution of (13) that is bounded
on every finite interval of t has the form

K (t, τ ) = (U ∗ f )τ (t) =
∫ t

0
f (t − u, τ )U (du), (15)

where U ([0, t)) = ∑∞
n=0 ρ∗n([0, t)), ρ∗n([0, t)) = (ρ ∗ ρ∗(n−1))([0, t)), and

ρ∗0([0, t)) = �[0,∞)(t). Using Lemma 1 and the fact that U ([0,∞)) = 1/(1 −
ρ([0,∞))) (Resnick 2013, Sect. 3.11), we obtain (14). �


Thanks to the linearity of integration, we have the following mild generalisation.

Corollary 1 If in Theorem 1 we substitute the condition | f (t, τ )| ≤ f1(t) f2(t + τ)

with | f (t, τ )| ≤ ∑n
i=1 f2i−1(t) f2i (t + τ), where fi are locally bounded functions s.t.

f2i−1(t)/t p → a2i−1, f2i (t)/tq → a2i and a2i−1, a2i < ∞ for every 1 ≤ i ≤ n, then
the conclusions of Theorem 1 hold.

3.3 Mean square convergence

Equation (8) states that E(Gt ) → 1. A natural question that this result rises is whether
there exists a non-negative random variable G, s.t. E(G) = 1, to which Gt converges
in mean. Studying the behaviour of the second moment of Gt , in Theorem 2, the main
result of the section, we will prove something stronger than that: the convergence is
true also in L2. To achieve that we will need a version, stated in Proposition 2, of one
of the results presented in Weber et al. (2016) concerning the Probability Generating
Function (PGF) of (G(t), Z(t)), that better fits our purpose. We use it in Lemmas 2
and 3 where a study of the covariance between G(t) and Z(t), and of the relation
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between different terms of the total generation process is made. This will lead us to
Corollary 2, which allows us to finally prove Theorem 2.

Proposition 2 (A reformulation of Theorem 2 ofWeber et al. (2016))For s1, s2, r1, r2,
t, τ ∈ R≥0, define F(s1, s2, r1, r2, t, τ ) := E(sG(t)

1 sG(t+τ)
2 r Z(t)

1 r Z(t+τ)
2 ). Then, we

have

F(s1, s2, r1, r2, t, τ ) =r1r2P(L > t + τ)

+ r1

∫ t+τ

t
ρN

(
E

(
sG(t+τ−u)
2 (s2r2)

Z(t+τ−u)
))

dP(L ≤ u)

+
∫ t

0
ρN

(
F(s1, s2, s1r1, s2r2, t − u, τ )

)
dP(L ≤ u), (16)

where ρN (s) = E(sN ), the probability generating function of the offspring number,
N .

Using Proposition 2, we analyse the limiting behaviour of the covariance between
Z(t) and G(t).

Lemma 2 (Limit behaviour of the covariance of Gt and Zt ) Using the previous nota-
tion, we have

lim
t→∞ E(GtZt+τ ) = k = lim

t→∞ E(Gt+τZt ) uniformly for τ ≥ 0, (17)

where k is defined in (9).

Proof We prove only the first of the equalities in (17) as the other one can be obtained
in a similar way.

Consider the integral Eq. (16) and take the derivative first for s1, secondly for r2,
and then evaluate it at (1, 1, 1, 1, t, τ ). We obtain that

E(G(t)Z(t + τ)) = v

∫ t

0
[E(G(t − u))E(Z(t + τ − u))

+ E(Z(t − u))E(Z(t + τ − u))] dP(L ≤ u)

+ h
∫ t

0
E(Z(t − u)Z(t + τ − u))dP(L ≤ u)

+ h
∫ t

0
E(G(t − u)Z(t + τ − u))dP(L ≤ u),

where we recall that h = E(N ) and v = E(N (N − 1)). Multiplying both sides of this
equation by e−αt e−α(t+τ), and denoting

K (t, τ ) := E(G(t)Z(t + τ))

eαt eα(t+τ)
,

dP(L ≤ u) := he−2αudP(L ≤ u), dP
′(L ≤ u) := ve−2αudP(L ≤ u),
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f (t, τ ) :=
∫ t

0

[
E(G(t − u))

eα(t−u)

E(Z(t + τ − u))

eα(t+τ−u)
+ E(Z(t − u))

eα(t−u)

E(Z(t + τ − u))

eα(t+τ−u)

]

× dP
′(L ≤ u) +

∫ t

0

E(Z(t − u)Z(t + τ − u))

eα(t−u)eα(t+τ−u)
dP(L ≤ u), (18)

we have that

K (t, τ ) = f (t, τ ) +
∫ t

0
K (t − u, τ )dP(L ≤ u). (19)

Observe that P is a defective measure. In fact,

∫ +∞

0
dP(L ≤ u) = h

∫ +∞

0
e−2αudP(L ≤ u) < h

∫ +∞

0
e−αudP(L ≤ u)

(3)= 1.

(20)

AsE(GtZt+τ ) = E(G(t)Z(t+τ))/[hα′c2teαt eα(t+τ)], in order to conclude the proof,
we would like to apply Theorem 1 at (19) with p = 1 and q = 0. So, we need to prove
that the hypotheses on f (t, τ ) are verified.

Note that f (t, τ ) is the sum of three integrals, where each integrand, divided by t ,
converges to a constant when t → ∞, uniformly for τ ≥ 0 (see (8),(7), and (Harris
1963, pg. 145)). Furthermore, each of these integrands is dominated by the product
of two locally bounded functions (the moments of Z(t) and G(t) are locally bounded
solutions of integral equations of the type in Eq. (19), see (Harris 1963, pg. 142) and
(Weber et al. 2016, Theorem 2)), one depending on t and another one depending on
t + τ (for the last integrand, use the Cauchy–Schwartz inequality to see it). As these
dominant functions satisfy the hypotheses of Lemma 1 with p = 1 and q = 0 (see (8)
and (7)), we can conclude that

lim
t→∞

f (t, τ )

t
=hα′c2

∫ ∞

0
dP

′(L ≤ u) = hα′c2v
∫ ∞

0
e−2αudP(L ≤ u)

uniformly for τ ≥ 0.

Moreover, if we consider the first of the integrals in (18) and apply the Cauchy–
Schwartz inequality, we obtain

∫ t

0

E(G(t − u))

eα(t−u)

E(Z(t + τ − u))

eα(t+τ−u)
dP

′(L ≤ u)

≤
(∫ t

0

∣∣∣∣E(G(t − u))

eα(t−u)

∣∣∣∣
2

dP
′(L ≤ u)

)1/2

×
(∫ t+τ

0

∣∣∣∣E(Z(t + τ − u))

eα(t+τ−u)

∣∣∣∣
2

dP
′(L ≤ u)

)1/2

=: f1(t) f2(t + τ),
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with f1(t) and f2(t) satisfying the hypotheses of Theorem 1. As the same reasoning
holds for the other integrals in (18) (for the last integral we use Cauchy–Schwartz
inequality twice), thanks to Theorem 1, with p = 1 and q = 0, and Corollary 1 we
obtain

lim
t→∞

K (t)

t
= hα′c2v

∫ ∞
0 e−2αudP(L ≤ u)

1 − h
∫ ∞
0 e−2αudP(L ≤ u)

uniformly for τ ≥ 0.

Recalling the definition of k, Gt , and Zt+τ at (9) and (10), we have completed the
proof of the first inequality in (17). �


We now study the covariance between the total generation process at two distinct
times, for which we will need to use Lemma 2.

Lemma 3 (Limit behaviour of the covariance of Gt and Gt+τ ) Using the previous
notation, we have

lim
t→∞ E(Gt+τGt ) = k uniformly for τ ≥ 0,

where k is defined in (9).

Proof The proof is similar to that in Lemma 2, so some details are omitted.
If we take the derivative of Eq. (16) first for s1, secondly for s2, and then evaluate

it at (1, 1, 1, 1, t, τ ), we obtain

E(G(t + τ)G(t)) = v

∫ t

0
E(G(t + τ − u))E(G(t − u))dP(L ≤ u)

+ v

∫ t

0

[
E(Z(t + τ − u))E(Z(t − u)) + E(G(t + τ − u))

× E(Z(t − u)) + E(Z(t + τ − u))E(G(t − u))
]
dP(L ≤ u)

+ h
∫ t

0

[
E

(
G(t + τ − u)Z(t − u)

) + E
(
Z(t + τ − u)G(t − u)

)

+ E
(
Z(t + τ − u)Z(t − u)

)]
dP(L ≤ u)

+ h
∫ t

0
E(G(t + τ − u)G(t − u))dP(L ≤ u). (21)

Multiplying both sides of this equation by e−αt e−α(t+τ) and denoting

K (t, τ ) := E(G(t + τ)G(t))

eαt eα(t+τ)
, dP(L ≤ u) := he−2αudP(L ≤ u),

dP
′(L ≤ u) := ve−2αudP(L ≤ u),

f (t, τ ) :=
∫ t

0

E(G(t + τ − u))

eα(t+τ−u)

E(G(t − u))

eα(t−u)
dP

′(L ≤ u)
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+
∫ t

0

[
E(Z(t + τ − u))

eα(t+τ−u)

E(Z(t − u))

eα(t−u)
+ E(G(t + τ − u))

eα(t+τ−u)

E(Z(t − u))

eα(t−u)

+ E(Z(t + τ − u))

eα(t+τ−u)

E(G(t − u))

eα(t−u)

]
dP

′(L ≤ u)

+
∫ t

0

[
E

(
G(t + τ − u)Z(t − u)

)
eα(t+τ−u)eα(t−u)

+ E
(
Z(t + τ − u)G(t − u)

)
eα(t+τ−u)eα(t−u)

+ E
(
Z(t + τ − u)Z(t − u)

)
eα(t+τ−u)eα(t−u)

]
dP(L ≤ u), (22)

we have that

K (t, τ ) = f (t, τ ) +
∫ t

0
K (t − u, τ )dP(L ≤ u). (23)

As already observed in (20), P is a defective measure. In order to conclude the
proof, we would like to apply Theorem 1 to (23), and so we need to prove that the
hypotheses on f (t, τ ) are verified. This will be easier by proving a weaker version of
Lemma 3 which states that limt→∞ E(G(t)2)/[t2e2αt ] = (hα′c)2k. This result, that
now we prove, is obtained applying the first part of Theorem 1 to (23), when τ = 0.

For τ = 0, we have that K (t, 0) = E(G(t)2)/e2αt and

f (t, 0) =
∫ t

0

[
E(G(t − u))2

e2α(t−u)
+ E(Z(t − u))2

e2α(t−u)
+ 2

E(G(t − u))

eα(t−u)

E(Z(t − u))

eα(t−u)

]
dP

′(L ≤ u)

+
∫ t

0

[
2

E
(
G(t − u)Z(t − u)

)
e2α(t−u)

+ E(Z(t − u)2)

e2α(t−u)

]
dP(L ≤ u). (24)

Notice that all five terms inside the integrals in (24) are locally bounded in t (the
moments and the covariance of Z(t) andG(t) are locally bounded solutions of integral
equations of the type (23), see (Weber et al. 2016, Theorem 2)) and, divided by t2,
they converge to constants. So, we can use Lemma 1 with p = 2 and q = 0, obtaining

lim
t→∞

f (t, 0)

t2
= (hα′c)2

∫ ∞

0
dP

′(L ≤ u) = (hα′c)2v
∫ ∞

0
e−2αudP(L ≤ u).

(25)

As f (t, 0) is locally bounded in t (it is finite sum of convolutions of locally bounded
functions), Eq. (25) allows us to apply Theorem 1 obtaining

lim
t→∞

K (t, 0)

t2
= lim

t→∞
E(G(t)2)

t2e2αt
= (hα′c)2v

∫ ∞
0 e−2αudP(L ≤ u)

1 − h
∫ ∞
0 e−2αudP(L ≤ u)

= (hα′c)2k.

(26)

Let’s go back to the proof of Lemma3 and see that f (t, τ ) satisfies the hypotheses of
Theorem 1. In (22), each of the seven integrands, when divided by t(t + τ), converges
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to a constant when t → ∞, uniformly for τ ≥ 0 (see (8),(7),(17), and Harris 1963,
pg. 145). Furthermore, each of these integrands is dominated by the product of two
locally bounded functions, one depending on t and another one depending on t + τ

(use the Cauchy–Schwartz inequality for the last three integrands to see it). As these
functions satisfy the hypotheses of Lemma 1 (see (8),(7), and (26)), we can conclude
that

lim
t→∞

f (t, τ )

t(t + τ)
=(hα′c)2

∫ ∞

0
dP

′(L ≤ u) = (hα′c)2v
∫ ∞

0
e−2αudP(L ≤ u)

uniformly for τ ≥ 0.

Moreover, using the Cauchy–Schwartz inequality (for the last three integrals we
have to use it twice), each of the integrals in (22) are dominated by the product of two
functions, one depending on t and the other one on t +τ , which satisfy the hypotheses
of Theorem 1. So, Corollary 1 implies

lim
t→∞

K (t)

t(t + τ)
= (hα′c)2v

∫ ∞
0 e−2αudP(L ≤ u)

1 − h
∫ ∞
0 e−2αudP(L ≤ u)

uniformly for τ ≥ 0.

The definitions of k and Gt at (9) and (10), respectively, allow to conclude the proof.
�


An immediate consequence of this lemma is the following.

Corollary 2 (Gt is a Cauchy sequence in L2) Using the previous notation, we have

lim
t→∞ E((Gt+τ − Gt )2) → 0 uniformly for τ ≥ 0.

Proof From Lemma 3, uniformly for τ ≥ 0, we have that

lim
t→∞ E((Gt+τ − Gt )2) = lim

t→∞
[
E(G2

t+τ ) + E(G2
t ) − 2E(Gt+τGt )

]
= k + k − 2k = 0

�

We have just proved that Gt is a Cauchy sequence in L2, i.e. for every ε > 0 there

exists a tε > 0 s.t. for every t > tε and τ ≥ 0 we have E((Gt+τ − Gt )2) < ε. Thanks
to the completeness of the L2 space, we can now easily prove Theorem 2.

Theorem 2 (Mean square convergence of G(t)) There exists a non-negative random
variable G ∈ L2 such that

lim
t→∞ E((Gt − G)2) = 0,

with E(G) = 1 and Var(G) = k − 1 = [(v + h)
∫ ∞
0 e−2αudP(L ≤ u) − 1]/[1 −

h
∫ ∞
0 e−2αudP(L ≤ u)] > 0.
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Proof The existence of a such G follows from Corollary 2, the fact that the L2

space is complete, and that Gt satisfies the Cauchy criterion for convergence in L2.
Using (8) and the fact that L2 ⊂ L1, we know that E(G) = limt→∞ E(Gt ) = 1,
so it remains only to compute the variance. From the L2 convergence we have that
E(G2) = limt→∞ E(G2

t ). Then,

Var(G) = E(G2) − E(G)2 = lim
t→∞ E(G2

t ) − 1

= k − 1
(9)= (v + h)

∫ ∞
0 e−2αudP(L ≤ u) − 1

1 − h
∫ ∞
0 e−2αudP(L ≤ u)

. (27)

The positivity of (27) follows from the same argument used by Harris in (Harris
1963, pg. 146). Indeed, there he proved that the processZt converges a.s. to a random
variable Z with the same mean and variance as G. �


Theorem 2 gives us the mean square convergence of Gt , which implies also the
convergence in probability and in mean. In Sect. 3.5 we will see that the convergence
is also true with probability one.

3.4 Functional equation for theMGF of (G,Z)

A surprising consequence of Theorem 2 and (Harris 1963, Theorem 19.1) is that the
processesG andZ share the samemean and variance. In this section, using theMoment
Generating Function (MGF) of the pair (G,Z), we prove that these two variables are
actually almost surely equal. That is, on a path-by-path basis, the prefactor for the
normalised population size and for the normalised total generation is the same with
probability one.

Theorem 3 (Z(t) and G(t) have same randomness in their dominant terms) Given

G(t)

chα′teαt
= Gt L2→ G and

Z(t)

ceαt
= Zt

a.s.→ Z

we have that

G = Z a.s.

Proof The proof is divided in two parts: first, we prove that G and Z are equally
distributed, then that they coincide with probability one.

Theorem 2, together with (7), imply that (Gt ,Zt )
D−→ (G,Z) in distribution. So,

we can characterise the distribution of the pair (G,Z) studying the MGF of (Gt ,Zt )

when t → ∞.
Proposition 2 gives us an equation solved by the PGF of the vector (G(t),G(t +

τ), Z(t), Z(t + τ)). Evaluating this equation in (s1, 1, r1, 1, t, 0), we obtain the fol-
lowing expression solved by the PGF F(s1, r1, t) of (G(t), Z(t))
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F(s1, r1, t) = E(sG(t)
1 r Z(t)

1 )=r1P(L > t)+
∫ t

0
ρN

(
F(s1, s1r1, t − u)

)
dP(L ≤ u).

(28)

Replacing s1 with exp(−s/[hcα′teαt ]) and r1 with exp(−r/[ceαt ]), for s, r ≥ 0,
we obtain an expression solved by the MGF φ(s, r , t) of (Gt ,Zt ):

φ(s, r , t) = E

(
e− sG(t)

hcα′ teαt e− r Z(t)
ceαt

)

= e− r
ceαt P(L > t) +

∫ t

0
ρN

(
E

(
e− (t−u)se−αu

t Gt−u e− (s+hrα′ t)e−αu

hα′ t Zt−u
))

dP(L ≤ u)

= e− r
ceαt P(L > t) +

∫ t

0
ρN

(
φ
( (t − u)

t
se−αu,

(s + hrα′t)
hα′t

e−αu, t − u
))

dP(L ≤ u).

Taking the limit for t → ∞ of φ(s, r , t), we obtain that E(exp(−sG) exp(−rZ))

solves the integral equation

φ(s, r) =
∫ ∞

0
ρN

(
φ
(
se−αu, re−αu

))
dP(L ≤ u) s, r ≥ 0. (29)

This means that if we consider r = 0, the function E[exp(−sG)], that represents the
MGF of G, solves the integral equation

ψ(s) =
∫ ∞

0
ρN

(
ψ

(
se−αu))dP(L ≤ u), s ≥ 0 (30)

with ψ(0) = 0 and ψ ′(0) = −1. The uniqueness of the solution of this problem
(Levinson 1960, Theorem 4.1) and the fact that the MGF of the variableZ solves (30)
too (Harris 1963, pg. 146), give us that the MGFs of Z and G coincide for s ≥ 0.
Using a result proved by Mukherjea et al. (Mukherjea et al. 2006, Theorem 2), we can
conclude that Z is equal in distribution to G.

Now, if we consider r = s in (29), we can see that the functionE[exp(−s(G+Z))],
that represents theMGF of G+Z , solves (30) but with the initial conditionsψ(0) = 0
and ψ ′(0) = −2. Another solution of (30) with the same initial conditions is given
by 2Z . Also in this case, the uniqueness of the solution and (Mukherjea et al. 2006,

Theorem 2) allows us to conclude that 2Z D= Z + G.
These last two results give us that Z a.s.= G. In fact, Z D= G implies that Var(Z) =

Var(G), and

2Z D= Z + G �⇒ 4Var(Z) = Var(Z) + Var(G) + 2Cov(Z,G)

�⇒ Var(Z) = Cov(Z,G) �⇒ CorrZ,G := Cov(Z,G)√
Var(Z)

√
Var(G)

= 1,

where in the last inequality we have used the definition of Pearson’s correlation coef-
ficient. The correlation coefficient equal to 1 implies that G = aZ + b a.s., for a ≥ 0,
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b ∈ R (Casella and Berger 2002, Theorem 4.5.7). From Z D= G, we obtain a = 1 and
b = 0, i.e. Z a.s.= G. This conclude the proof. �


Thus, from Theorem 3, Z can be used in lieu of G from here on.

3.5 Almost sure convergence of G(t)

We have gathered the results needed to establish one of the significant results of the
article: the almost sure convergence of a normalised version of the process {G(t)}.
In order to prove that, we will assume something concerning the speed of conver-
gence of Gt to Z as L2 functions. This assumption is equivalent to the one made by
Harris in (Harris 1963, Chapter VI, Theorem 21.1) concerning the size of the popu-
lation, which—for the population size—was later established by Jagers (1969b) to be
unnecessary.

Theorem 4 (Almost sure convergence of G(t)) If
∫ ∞
0 E((Gt −Z)2)dt < ∞, we have

that

G(t)

hα′cteαt
= Gt a.s−−−→

t→∞ Z.

Proof We start with the additional hypothesis p0 = P(N = 0) = 0 in order to
have G(t) as a finite, non-decreasing step function of t . Using Fubini’s theorem on∫ ∞
0 E((Gt − Z)2)dt < ∞, we obtain that P(

∫ ∞
0 (Gt − Z)2dt < ∞) = 1. Since G(t)

is non-decreasing in t, we have

Gt+τ = G(t + τ)

hcα′(t + τ)eα(t+τ)
≥ t

(t + τ)eατ

G(t)

hcα′teαt
= t

(t + τ)eατ
Gt , (31)

where the inequalities are true for every realisation of the random variables.
Let’s suppose that Gt a.s.−−−→

t→∞ Z is not true . If (Ω,B(Ω), P) is the probability space

where Gt and Zt are defined, then there exists a set A ⊆ {ω ∈ Ω| limt→∞ Gt (ω) �=
Z(ω)} that is measurable and such that P(A) > 0. Since Z > 0 a.s. (Harris 1963,
Remark 1, Section 20), we can also suppose that Z(ω) > 0 for every ω ∈ A.

For every ω ∈ A we have that at least one between lim supt→∞ Gt (ω) > Z(ω)

and lim inft→∞ Gt (ω) < Z(ω) is true. We will see that in both cases we will have∫ ∞
0 (Gt (ω) − Z(ω))2dt = +∞, leading to the contradiction E(

∫ ∞
0 (Gt − Z)2dt) =

+∞.
Let us start fixing ω ∈ A and assuming lim supt→∞ Gt (ω) > Z(ω). This implies

that there exist a δ > 0 and a sequence (ti )i∈N, with limi→∞ ti = ∞, such that
Gti (ω) > (1 + δ)Z(ω), i ∈ N. If we consider 0 < ε < δ, without loss of generality
we can choose this sequence such that

ti+1 − ti >
(δ − ε)ti

1 + ε + αti (1 + δ)
:= bi .
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Note that δ, ε, and ti depend on ω and that (bi )i∈N and (ti )i∈N are monotonically
increasing.

Using (31) and the relation e−ατ ≥ 1 − ατ , we obtain for every i ∈ N

Gti+τ (ω)
(31)≥ ti

(ti + τ)eατ
Gti (ω) >

ti
ti + τ

(1 − ατ)(1 + δ)Z(ω), τ ∈ (0,∞)

≥ (1 + ε)Z(ω) τ ∈ (0, bi )

≥ (1 + ε)Z(ω) τ ∈ (0, b1),
(32)

where we have used the fact that the function ti (ti +τ)−1(1−ατ)(1+δ) is decreasing
in τ , that for τ = bi it is equal to (1 + ε), and that (bi )i∈N is an increasing sequence.

Hence, using (32), we have for every i that

∫ ti+1

ti
(Gt (ω) − Z(ω))2dt ≥

∫ ti+b1

ti
(Gt (ω) − Z(ω))2dt

=
∫ b1

0
(Gti+τ (ω) − Z(ω))2dτ ≥ (εZ(ω))2b1 > 0.

This allows us to say that
∫ ∞
0 (Gt (ω) − Z(ω))2dt = +∞.

Same conclusion can be obtained assuming lim inft→∞ Gt (ω) < Z(ω). Indeed,
for the definition of lim inf we have that there exist δ ∈ (0, 1) and a sequence (ti )i∈N,
with ti > 1 and limi→∞ ti = ∞, such that Gti < (1 − δ)Z . We can also pretend that
ti+1 − ti > a > 0, where a is chosen in order to satisfy the following inequalities for
i big enough

0 < Gti−τ

(31)≤ ti
ti − τ

eατGti < (1 − δ)
ti

ti − τ
eατZ τ ∈ (0, t1)

≤ (1 − ε)Z τ ∈ (0, a),

where ε is a constant s.t. 0 < ε < δ. The existence of such a is consequence of
the fact that ψ(t, τ ) := (1 − δ)eατ t/(t − τ), as long as τ < t , is increasing in τ

and decreasing in t . Indeed, this implies that there exists a > 0 s.t. for τ ∈ [0, a]
(1 − δ) = ψ(1, 0) ≤ ψ(1, τ ) ≤ (1 − ε), from which we can conclude that for
τ ∈ [0, a] and t ≥ 1, we have (1 − δ) = ψ(t, 0) ≤ ψ(t, τ ) ≤ (1 − ε) .

Then, we have

∫ ti

ti−1

(Z(ω) − Gt (ω))2dt ≥
∫ ti

ti−a
(Z(ω) − Gt (ω))2dt

≥
∫ a

0
(Z(ω) − Gti−τ (ω))2dτ ≥ (εZ(ω))2a.

As before, this implies that
∫ ∞
0 (Gt (ω) − Z(ω))2dt = +∞.
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So, for everyω ∈ Awehave
∫ ∞
0 (Gt (ω)−Z(ω))2dt = +∞ and, becauseP(A) > 0,

we have E(
∫ ∞
0 (Gt − Z)2dt) = +∞. This contradicts the hypothesis of the theorem

and so we have proved that limt→∞ Gt = Z with probability 1 under the condition
p0 = 0.

When p0 �= 0,we can observe thatG(t) = GB(t)−GD(t), whereGB(t) andGD(t)
are the sum of the generation of the cells born and dead before or at time t , respectively.
Also for these processes we can find integral equations for the probability generating
function similar to the one found for G(t) and repeat all the previous steps. Thanks
to the monotonicity of GB(t) and GD(t), this time we don’t need the assumption
p0 = 0, obtaining the almost sure convergence of GB(t)/n1teαt and GD(t)/n2teαt

to the random variables ZB and ZD respectively, where n1, n2 are positive constants.
This allows us to conclude that Gt converges to ZB + ZD . �


Having established the almost sure result for the limiting behaviour of the total
generation processG(t), we are in a position to make the final deduction of the section
that leads to Eq. (4). Thanks to Eq. (7), Theorem 4, and the Continuous Mapping
Theorem, we have the following corollary.

Corollary 3 (Almost sure average generation inference) If E(N 2) < ∞,
lim inft→∞ Z+(t) > 0, and

∫ ∞
0 E((Gt − Z)2)dt < ∞, we have that

lim
t→∞

G(t)

t Z(t)
= hα′ = − lim

p→0
lim
t→∞

1

pt
log

(
Z+(t)

Z(t)

)
almost surely, (33)

where the right hand side is established in (Weber et al. 2016, Theorem 1).

Thus the average estimation scheme firstly proposed inWeber et al. (2016) is almost
surely correct on a path-by-path basis for a Bellman–Harris branching process. The
principle behind this result is that for almost all paths G(t)/Z(t) = hα′t + o(t) for
large t . That is, the randomness in the average generation is not contained in the linear
factor but in something asymptotic smaller (see Fig. 3c). On the other hand, so long as
the Z+ population persists, −1/t log(Z+(t)/Z(t)) ≈ α(h(1− p)) − α(h) for large t .
However, as the Malthus parameter is real analytic (Weber et al. 2016, Proposition1),
α(h(1− p)) coincides with its Taylor expansion around p = 0, α(h(1− p)) = α(h)−
hα′(h)pt + O(p2). Thus −1/(pt) log(Z+(t)/Z(t)) ≈ hα′(h), the same constant as
appears for the time-rescaled average generation.

4 A two-type Bellman–Harris process subject to one-way
differentiation

In addition to division and death, cells often undergo changes in cell-type. For example,
many tissues are formed through progressive stages of proliferation and change in
cell-type, called cellular differentiation, from stem cells (Kondo et al. 1997; Akashi
et al. 2000), while cancer cells arise as mutants with abherent DNA from healthy
cells (Mendelsohn et al. 2015; Hong et al. 2010). Changes in cell-type are often
accompanied by changes in population kinetics (Akinduro et al. 2018), and to better
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understand these differentiation processes it can be desirable to obtain information on
the average generation of each population as they are often reported as being division-
linked (Hodgkin et al. 1996; Deenick et al. 1999; Duffy et al. 2012; Pauklin and Vallier
2013).

As a basic model of changes in cell type, in the present section we extend the
previous results to a two-type Bellman–Harris branching process subject to one-way
differentiation, a model first considered in Jagers (1969a) where cells of one type can
give rise to another but not vice-versa. These results significantly extend the remit and
utility of the inference of average generation by randomdelabelling. In particular, if the
initial cell is equipped with a neutral label that is heritably lost with a fixed probability
per division, we prove that the average generation of each cell-type can be inferred
from knowledge of that probability and the proportion of label positive cells. Before
stating the results, we introduce notation that is consistent with that used in Sect. 3.1
andwith that employed in Jagers (1969a), where sample path results for the population
size were first established in this two-type setting. More general classes of multi-type
branching processes have been studied, both with directed, one-way changes in type
as considered here, and also when cycles of cell types are possible. Extensive early
synopses of these results are gathered in Mode (1971) and Athreya and Ney (1972)
while a comprehensive recent treatment appears in Athreya and Jagers (2012).

As in Fig. 2, consider a cell population whose members are from two types, type-1
and type-2. Each cell lives a random type-dependent lifetime Li , i ∈ {1, 2}, after which
it dies or divides generating Ni offspring. We assume Li and Ni are independent for
each cell, and amongst all cells. Furthermore, we suppose that only type-1 cells can
generate cells of both types, i.e. N1 takes values in N

2 and has PGF ρ1, whereas the
offspring of type-2 cells are exclusively type-2 cells, so that N2 takes value in N and
has PGF ρ2. We denote by hi := (∂/∂xi )ρ1(1, 1) the average number offspring of
type-i generated from a type-1 cell and, with μ := d/dxρ2(1), the average number
of offspring obtained from a type-2 cell. As in the single-type case, we suppose that
h1 and μ are greater than 1 so that both populations are super-critical.

We assign a generation to each cell, the integer that records how many divisions
led to that cell (Fig. 2). We define cells a time zero as being in generation zero.
Furthermore, we suppose the cells in the initial population are equipped with a neutral
label (i.e. one that does not influence population dynamics) that, independently for
each cell, is heritably lost immediately prior to a cell’s division with probability p.
For i ∈ {1, 2}, we denote by Zi (t) the total number of type-i cells in the population at
time t , by Gi (t) the total generation of type-i cells at time t , and by Z+

i (t) the size of
type-i label-positive at time t . To describe the growth rates of these processes, we will
need the Malthusian parameters, α1 and α2, that are the solutions of the equations

h1E
(
e−α1L1t

)
= 1 and μE

(
e−α2L2t

)
= 1. (34)

The existence and the uniqueness of the solutions of these equations are guaranteed
by the hypotheses h1 > 1 and μ > 1. As in Sect. 3.1, we denote the derivatives of the
Malthus parameters as a function of the average offspring number by
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α′
1 = 1

h21
∫ +∞
0 te−α1t dP(L1 ≤ u)

and α′
2 = 1

μ2
∫ +∞
0 te−α2t dP(L2 ≤ u)

.

The population dynamics of type-1 cells are unaffected by type-2 cells and, treating
differentiation as death, behave as a single type process. If the starting population only
has type-2 cells, the system is again in the single type setting. Thus the interesting setup
is when the system is initiated with cells of type-1 and queries are of the population
size and average generation of type-2 cells.

Let Pi and Ei denote the probability and the expectation conditional on the popula-
tion starting with a single cell of type i ∈ {1, 2}. The growth of the type-2 population
size given one initial type-1 cell, Z2(t) under P1, is studied in Jagers (1969a). Those
results can be immediately applied to study Z+

2 (t), given the first cell is type-1 and
label-positive. Analogous results for G2(t) can be obtained by repeating the steps
made in the single type case. In particular, adapting the integral Eq. (16) to the
two-type problem, using Lemma 1 and Theorem 1 we can establish the growth
rates of E1(G2(t)Z2(t)), E1(G2(t)2), E1(Z2(t)Z2(t + τ)), E1(G2(t)Z2(t + τ)),
E1(G2(t+τ)Z2(t)), andE1(G2(t)G2(t+τ)). These results enable us to conclude the
mean square limit of G2(t) under P1. Stepping from the L2 result to the almost sure
one is achieved in the same way as Theorem 4. As this line of reasoning is essentially
a replication of what is done in the single type case, the details are omitted. From
these, starting with one label-positive type-1 cell, the in-expectation result relating the
average generation to the proportion of labelled cells follows immediately:

lim
t→∞

E1(G2(t))

tE1(Z2(t))
= − lim

p→0
lim
t→∞

1

pt
log

(
E1(Z

+
2 (t))

E1(Z2(t))

)
.

This equation says that, on average, the average generation of the type-2 population
can be determined from averages of the delabelling proportion. To obtain stronger
convergence results, one notes that a combination of (Harris 1963, Theorems 19.1 and
21.1), Theorem 2, and Theorem 4 gives that

lim
t→∞

Zi (t)

ci eαi t
L2,a.s.= Zi and lim

t→∞
Gi (t)

di teαi t
L2,a.s.= Zi under Pi , (35)

where

c1 = h1 − 1

h21α1
∫ ∞
0 te−α1t dP(L1 ≤ t)

, c2 = μ − 1

μ2α2
∫ ∞
0 te−α2t dP(L2 ≤ t)

,

d1 = c1h1α′
1, d2 = c2μα′

2, and assuming
∫ ∞
0 E[(Gi (t)/(di teαi t ) −Zi )

2]dt < ∞ for
the almost sure results concerning {Gi (t)} in (35). Moreover, fromWeber et al. (2016)
we have also that, if limt→∞ Z+

i (t) > 0

lim
p→0

lim
t→∞ − 1

pt
log

(
Z+
i (t)

Zi (t)

)
a.s.=

{
h1α′

1 if i = 1

μα′
2 if i = 2

under Pi ,
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where we supposed that the first cell is label positive.
We present two sets of results depending on whether α1 > α2 or vice versa. If

α1 < α2, which would model, for example, the creation of cancer cells, the growth
rate of the type-2 cells is greater than the type-1 cells and their average generation is
determined by the derivative of the latter Malthus parameter.

Proposition 3 (α1 < α2) If (∂/∂xi x j )ρ1(1, 1), for 1 ≤ i ≤ j ≤ 2, and (∂/∂x2)ρ2(1)
are finite, we have that

lim
t→∞

Z2(t)

c1,2eα2t
L2,a.s.= W, and lim

t→∞
G2(t)

d1,2teα2t
L2= W under P1, (36)

where

c1,2 = h2c2
∫ ∞
0 e−α2t dP(L1 ≤ t)

1 − h1
∫ ∞
0 e−α2t dP(L1 ≤ t)

, d1,2 = c1,2μα′
2, (37)

andW is a non-negative randomvariable such thatP1(W = 0) = P1(limt→∞ Z1(t) =
0, limt→∞ Z2(t) = 0) and E1(W) = 1.

If
∫ ∞
0 E1[(G2(t)/(d1,2teα2t ) − W)2]dt < ∞, the second limit in (36) is also true

almost surely. Assuming the initial cell is of type-1, i.e. Z+
1 (0) = 1 and Z2(0) =

G1(0) = G2(0) = 0, we have

lim
t→∞

G2(t)

t Z2(t)
a.s.= μα′

2
a.s.= lim

p→0
lim
t→∞ − 1

pt
log

(
Z+
2 (t)

Z2(t)

)
if lim

t→∞ Z+
2 (t) > 0.

If α2 < α1, as might occur with the production of terminally differentiated cells,
the growth rate of the type-1 cells is greater than the type-2 cells and their average
generation is determined by the derivative of the former Malthus parameter. That is, in
this setting, so long as the type-1 population continues to exist, the average generation
of the type-2 cells is dominated by immigrants from the type-1 population.

Proposition 4 (α2 < α1) If (∂/∂xi x j )ρ1(1, 1), for 1 ≤ i ≤ j ≤ 2, and (∂/∂x2)ρ2(1)
are finite, we have that

lim
t→∞

Z2(t)

c2,1eα1t
L2,a.s.= Z2 and lim

t→∞
G2(t)

d2,1teα1t
L2= Z2 under P1, (38)

where

c2,1 = h2(1 − ∫ ∞
0 e−α1t dP(L2 ≤ t))

h22α1(1 − μ
∫ ∞
0 e−α1t dP(L2 ≤ t))

, d2,1 = c2,1h1α
′
1, (39)

and Z2 random variable defined in (35) with P1(Z2 = 0) = P1(limt→∞ Z1(t) = 0)
and E1(Z2) = 1.
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Fig. 5 Average growth rates of population sizes and total generations of each type starting with a single
type-1 cell and using the scalings in Propositions 3 and 4. Cells have lognormal lifetimewith mean 9.3 hours
and standard deviation 2.54 (Hawkins et al. 2009). Type-1 cells give rise to type-1 cells with probability 5/6
and to type-2 cells with probability 1/6. Means are computed averaging the results of 1000 Monte Carlo
simulations of populations growing for four days. a, b These illustrations are in the case α1 < α2 and cells
of both types always have two offspring. c, d These are in the setting α2 < α1, obtained by setting N1 = 2
and P(N2 = 0) = 2/5 = 1 − P(N2 = 2)

If
∫ ∞
0 E1[(G2(t)/(d2,1teα2t ) − Z2)

2]dt < ∞, the second limit in (38) is also true
almost surely. Assuming the initial cell is of type-1, i.e. Z+

1 (0) = 1 and Z2(0) =
G1(0) = G2(0) = 0, we have

lim
t→∞

G2(t)

t Z2(t)
a.s.= h1α

′
1
a.s.= lim

p→0
lim
t→∞ − 1

pt
log

(
Z+
2 (t)

Z2(t)

)
if lim

t→∞ Z+
1 (t) > 0.

We conclude the paper by presenting some simulated results that illustrate the
features of these two-type results, both for average generation and for its inference.
Figure 5 provides average normalised paths of the processes Zi (t) and Gi (t). In
Fig. 5a, b, α1 < α2, but despite the fact the type-2 population is the fastest growing
on average, it is the slowest one to converge. This occurs due to the random delay in
the production of any type-2 cells. Note also that the total population of both type-1
and type-2 cells behave as a single-type branching process with N = 2 and log-
normal lifetime distribution. Hence, the growth rates of Z(t) = Z1(t) + Z2(t) and
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Fig. 6 Relationships in per-path randomness. Plots were created using the same 1000 Monte Carlo simula-
tions used to generate Fig. 5. Blue points correspond to α1 < α2, while red ones to α2 < α1. a Scatter plot
of normalised versions of Z2(t) and G2(t) is displayed at t = 4 days. Pearson correlation coefficient for
both blue and red points is 0.99. b Scatter plot of normalised versions of Z1(t) and Z2(t) is displayed at
t = 4 days. Pearson correlation coefficient for blue and red points is −0.19 and 0.94, respectively. c Scatter
plot of normalised versions of G1(t) and G2(t) is displayed at t = 4 days. Pearson correlation coefficient
for blue and red points is −0.09 and 0.94, respectively (colour figure online)

G(t) = G1(t) + G2(t) are the same as if the type-2 population was started with
one type-2 cell. In Fig. 5c, d, α1 > α2. Here, the second population is dominated by
differentiation from the first cell type, with both populations have the growth rate of
the type-1 population. The behaviour of Z(t) and G(t) for the entire population is the
sum of the corresponding processes for the two types.

Turning to the relatedness in randomprefactors, Fig. 6a is consistent with the deduc-
tion that there is equality almost surely between the rescaled limit of the population
size and total generation of the second type. Figure 6b shows the prefactor for type-1
and type-2 population sizes. Consistent with results in (Jagers 1969a) red dots are
suggestive that when α2 < α1 both normalised processes converge to the same ran-
dom variable. For α1 < α2, however, this is not the case for the blue dots and the
random variables appear uncorrelated. Figure 6c is analogous to Fig. 6d but for total
generation, with the same deduction as for the population size holding where when
α1 > α2, the randomness is common to both types and otherwise it is not.

Part of the significance of Propositions 3 and 4 is that they provide an instrument
by which one can infer the average generation of each of the populations in a two-
type Bellman–Harris branching process, generalising the results in (Weber et al. 2016)
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Fig. 7 Sample-path estimation of average generation. For each sub-panel, ten Monte Carlo simulations of
a two-type population are presented. These employ the same parameterisation in Fig. 5, with the exception
of the initial population size in the two right hand side panels. Each initial cell is equipped with a neutral
label that doesn’t alter population dynamics, and which is lost irrevocably to all subsequent offspring with
probability p = 10−2 per cell division. The red line indicates the theoretical prediction of the mean average
generation. Blue lines indicate the development of the per-path average generation, while the green lines
are the estimates from the delabelling formula (1). a, b Plots are in the setting α1 < α2 case, but start with
one and 100 type-1 cells at t = 0, respectively. c, d Equivalent of (a, b) but with α2 < α1

Proposition 2. In the presence of cells equipped with a neutral label that is heritably
lost with a fixed probability at each division, the average generation and a function of
the proportion of label-positive cells of each type share the same dominant term. The
mathematical results say that the slope of the average generation and the slope of the
estimator are the same when the probabilistic regularity of a large population takes
hold. Figure 7a, b illustrate this relationship for the type-2 population via the use of
some Monte Carlo simulations in the presence of a single initial label positive cell of
type-1. In this setting the large population regularlity only takes hold at later times.
Starting with more than one initially labelled cell, illustrated with 100 in Fig. 7c, d,
results in the desired asymptotic equivalence occuring at a much earlier time. For true
cellular systems, the cell numbers are likely to be significantly larger again.
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