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A B S T R A C T

Grass growth models have retrospectively predicted grass growth in Ireland using weather observations.
However, to predict future grass growth to aid farm management, weather forecasts are necessary inputs. The
Moorepark St. Gilles grass growth model (MoSt GGM) is mechanistic and was developed to predict perennial
ryegrass growth on any Irish farm. To date, it has used local farm information, (retrospective) weather data and
management factors to predict daily paddock-level grass growth. Here, we include weather forecasts in the MoSt
GGM and assess its performance through two studies: daily grass growth predictions at four nitrogen fertiliser
application levels using weather forecasts up to ten days in advance were compared with those using weather
observations; and the GGM predictions for an Irish dairy farm using observed and forecast weather were
compared with on-farm grass growth observations from 2013 to 2016. In the first study, all weather inputs
captured the rise in grass growth predictions with higher fertiliser application. Based on the Root Mean Squared
Error (RMSE), European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts outperformed a
forecast based on climatological averages as GGM inputs up to six days in advance, and up to ten days in advance
after bias correction. In the second study, ECMWF forecasts were the best weather forecast to predict grass
growth since they captured weather variability well and did not require the local weather observations necessary
for bias corrections. Weather forecasts are useful inputs to the MoSt GGM, and yield accurate weekly predictions
that could aid management decisions.

1. Introduction

The UN predicts worldwide population to grow from 6.9 billion
people in 2010 to 9.7 billion in 2050 (United Nations, 2015). A 1.1%
growth per annum in worldwide consumption of agricultural products
is projected between 2005 and 2050, giving rise to an approximate food
demand growth of 60% in this period (Alexandratos and Bruinsma,
2012). Food Wise 2025 (DAFM, 2015) anticipates an 85% increase in
Irish agri-food exports between 2015 and 2025 to capitalise on this
extra demand. To meet these targets, Irish farmers must ensure their
foodstuffs can be produced sustainably. Maximising economic growth
by expanding and making best use of available resources must be
coupled with environmental protection (DAFM, 2015). Livestock con-
vert grass into human food such as milk and meat, often on land that is
less suitable for crop production (van Zanten et al., 2016; Wilkinson,
2011). It is imperative that Irish dairy and beef farmers make best use of
their grassland resources as grazed grass is the cheapest feed source
available to them (Dillon et al., 2005; Finneran et al., 2012).

Management of grasslands on a short-term basis is essential to

maximise grass growth and utilisation (Creighton et al., 2011; Dillon
et al., 2005). However, some factors that strongly affect farm man-
agement decisions are outside the farmer’s influence, for example
weather conditions. Grass based milk production systems are pre-
dominantly based in temperate regions such as Ireland, other parts of
North West Europe, New Zealand and parts of Australia. Grass based
milk production systems are generally low input low cost systems as the
temperate climate provides favourable conditions for high yields of
grass dry matter (DM) from perennial ryegrass (Lolium perenne L.) over
a long grazing season (O’Donovan et al., 2011). Perennial ryegrass
growth begins at 5 °C and ceases around 20–25 °C (Frame, 1992;
Hopkins, 2000), so the Irish growing season can last from early Spring
to early Winter (Burke et al., 2004; Hopkins, 2000; Hurtado-Uria et al.,
2013). Rainfall during the Irish growing season is often optimal for
grass growth, although an excess of water can sometimes make grazing
impossible or reduce grass growth (Burke et al., 2004). Solar radiation
is essential for the conversion of carbon dioxide into biomass (Laidlaw
and Frame, 2013); during a large part of the growing season, low solar
radiation is more limiting than low temperature, and strongly affects
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growth in all seasons (Hurtado-Uria et al., 2013; Laidlaw and Frame,
2013).

A grass growth model (GGM) accounting for weather and local
conditions, as well as factors that can be controlled by farmers, such as
N fertiliser application, grazing rotation length and removal of excess
herbage, would aid farm management decisions on feed supply and
grassland management. GGMs accounting for some or all of these
components have been developed for specific locations in countries
such as England (Johnson and Thornley, 1983) and France (Jouven
et al., 2006), as well as general models for multiple European sites in
different countries (Schapendonk et al., 1998). These models can be
mechanistic (for example Johnson and Thornley, 1983; Jouven et al.,
2006; Schapendonk et al., 1998) or empirical (for example Brereton
et al., 1996). Australian studies have assessed the potential usefulness
of seasonal climate forecasts in agriculture (Ash et al., 2007), and in-
cluded monthly to seasonal climatological hindcasts in a GGM
(Harrison et al., 2017). Grass growth predictors such as the NZ Pasture
Growth Forecaster (Dairy NZ, 2018) are being used in practice but do
not use weather forecasts. The model used in this paper is the Moor-
epark St Gilles (MoSt) GGM (Ruelle et al., 2018), which is an Irish
adaptation of the model developed by Jouven et al. (2006). Although
Irish GGMs have been developed, none are being widely used in prac-
tice, and none have used weather forecasts. An operational GGM would
allow the farmer to describe their location, soil type and management
practices initially. It would then account for these parameters and local
weather conditions to predict on-farm growth over the next seven to ten
days. Based on these predictions, farmers could make informed man-
agement decisions. For example, they could plan to supplement feed if a
grass shortage occurs or remove excess herbage from paddocks when
there is a surplus of grass on-farm.

Weather forecasts are potentially highly influential inputs for a
GGM to predict future grass growth. To date, only predictions from the
MoSt GGM using retrospective weather observations have been verified
(Ruelle et al., 2018). The inclusion of forecasts will introduce an extra
level of uncertainty to the model. McDonnell et al. (2018) assessed the
accuracy of European Centre for Medium-Range Weather Forecasts
(ECMWF) forecasts at 25 Irish weather stations, and applied bias cor-
rection techniques to improve forecast accuracy. Air temperatures were
forecast accurately up to ten days in advance, with improvements after
bias correction, and rainfall forecasts generally performed well up to
five days in advance. However, high rainfall observations were often
poorly forecast. Inaccurate rainfall forecasts could decrease the accu-
racy of grass growth predictions from the MoSt GGM due to the strong
influence of rainfall on grass growth.

The objective of this paper is to compare weather observations and
forecasts as predictors in the MoSt GGM to ensure there is not a large
decrease in accuracy when forecasts are used, and to assess model
predictions against on-farm grass growth observations to determine the
best weather forecast to use in the model. The practical benefits of the
MoSt GGM as an on-farm management decision aid would be improved
if weather forecasts can be identified as useful model inputs.

2. Materials and methods

2.1. Outline of weather forecast assessment studies

Two assessments of the inclusion of weather forecasts in the
Moorepark St Gilles grass growth model (MoSt GGM) were performed:

1 Fertiliser study: The predictions from the GGM when weather ob-
servations were used as inputs were compared with those using
weather forecasts. Predictions were performed using four different
fertiliser application levels, assuming other conditions for a single
farm.

2 Observed grass growth study: GGM predictions using i) weather
observations and ii) weather forecasts were verified against on-farm
grass growth observations.

The GGM predictions, the weather data (observed and forecast) and
the observed grass growth data are described in the following sections.

The motivation for these two separate studies is as follows. The
fertiliser study will compare grass growth predictions with weather
observations versus weather forecasts at varying lead time as inputs in
the MoSt GGM. If weather forecasts perform similarly to weather ob-
servations, it provides a first step in validating the use of forecasts. The
observed grass growth study will compare grass growth predictions to
real observed grass growth data with (i) weather observations and (ii)
weather forecasts as inputs in the MoSt GGM. This second study will
test the predictive ability of the MoSt GGM when using weather fore-
casts under more realistic settings than the first study, e.g., if predicting
grass growth today for the coming seven days, the GGM will use ob-
served weather up until today and will use weather forecast for the
coming seven days. This study can identify how useful the MoSt GGM is
at predicting grass growth (compared to observed real grass growth)
when weather forecasts are employed as inputs, since in practice ob-
served weather data is not available into the future, but is available up
to the day on which the grass growth predictions are generated.

2.2. Grass growth model description

The MoSt GGM is a mechanistic grass growth prediction model
developed in C++ (Ruelle et al., 2018). It describes perennial ryegrass
(Lolium perenne L.) growth in dairy production systems and is an
adaptation of the Jouven model (2006), which was customised for local
conditions (Hurtado-Uria, 2013). The MoSt GGM incorporates N, and
soil and water sub-models added by Ruelle et al. (2018), which describe
the availability of N to the plants through immobilisation and miner-
alisation, and the movement of water through the soil. The sub-models
also interact to describe N leaching. Senescence and abscission allow for
the conversion of some green biomass to dead biomass, and subse-
quently to organic N. The MoSt model is designed to be able to predict
grass growth for any location in Ireland. To do this, it requires inputs
based on environmental factors (weather data (forecast or observed), N
content, soil clay, sand and organic matter content) and management
factors (N fertiliser application details, cutting data and grazing data
including number of animals, paddock size, pre-grazing height, and
post-grazing height). Based on all of these factors, it updates the state of
the systems controlling grass growth on a daily basis, such as the
amount of water and N available to the plant. The final output is a daily
grass growth prediction at the paddock level, which can be summed
over time. Predictions can be generated for multiple paddocks and
aggregated to predict at farm level. The model is described in full detail
in Ruelle et al. (2018).

2.3. Weather forecasts and observations

Six different weather inputs were examined in the GGM:

1) Observed weather: daily observations of rainfall, solar radiation and
maximum, minimum and mean 2 m air temperature were collected
between 2008 and 2016 inclusive at the Met Éireann synoptic
weather station at Teagasc, AGRIC, Moorepark, Fermoy, Co. Cork,
Ireland (52.16 N; 8.26 W). Missing weather observations were im-
puted by taking the mean of the observations from the days before
and after the missing date. There was only a small number of
missing observations: 14 across all weather variables, and only one
(rainfall) from 2013 onwards.

2) ECMWF forecasts: for each daily observed weather value,
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corresponding forecasts from one day to ten days in advance were
taken from the ECMWF Atmospheric Model high resolution de-
terministic 10-day 0000 forecast. Forecasts generated at 0000 on the
day of the observation are denoted day-1, and similar notation was
used up to day-10 forecast.

3) Forecasts bias corrected monthly: this correction used a leave one out
method: the training set contained all data from the month for
which the forecasts were being bias corrected, except the data from
the particular year being bias corrected. For example, to obtain bias
corrections in June 2013, the training set contained the values from
June in all available years except 2013. The monthly mean differ-
ence between ECMWF forecasts and observed weather in the
training set was calculated, and subtracted from each of the daily
ECMWF forecasts in the month being corrected to obtain the bias
corrected forecasts.

4) Forecasts bias corrected yearly: as per the monthly bias correction,
except the differences was computed annually (rather than
monthly).

5) Forecasts bias corrected by a model: the following regression model
with the month and daily weather forecast as predictors of the ob-
served weather was estimated:

= + +E y f[ ] j0 1

where y is the observation, f is the ECMWF forecast, j is a cate-
gorical month specific term, = …j 1, ,12. For each year of daily data,
the regression model was calibrated using a leave one out method
(i.e. current year excluded, all other years of data included), and the
resulting model was used to predict the observations. These re-
gression model predictions were then used as the bias corrected
forecasts.

6) Mean climatological forecasts: Mean climatological forecasts for
rainfall and air temperature were created using the Met Éireann
mean climatological data for Ireland which was generated from
historical data by Walsh (2012). The mean climatological value for
each month was used as the forecast for every day in that month.
Mean climatological forecasts predict the same value for every day
in the same month, giving a ‘low-skill’ forecast to compare the other
forecasts against. Since mean climatological data for solar radiation
is not available at a national level in Ireland, solar radiation ob-
servations recorded locally at the research station at Moorepark
from between 2001 and 2016 were obtained, and monthly mean
climatological forecasts were calculated using them: for example,
the average of all values from January over the 16 years provides
the forecast for every January day.

Further details on these bias correction techniques are available in
McDonnell et al. (2018) and Joliffe and Stephenson (2011).

2.4. Grass growth observations

A grazing experiment investigating the effect of calving date and
stocking rate on animal performance was conducted at Teagasc
Moorepark Curtins Research Farm, AGRIC, Moorepark, Fermoy, Co.
Cork, Ireland (Coffey et al., 2018). Visual cover assessments of grass
growth (Hanrahan, 2017) recorded for the 54 perennial ryegrass pad-
docks from 2013 to 2016 inclusive are used in this paper. The grazing
season lasted from early February until late November each year and
three stocking rates were studied in a randomised block design: 3.28,
2.91 and 2.51 cows/ha. Nitrogen fertiliser application rates were
250 kg N/ha per year for every paddock on every treatment. Full details
of the experiment are described by Coffey et al. (2018). The visual as-
sessments were regularly calibrated by cut and weigh measurements as
described by O’Donovan et al. (2002a). Visual assessment was under-
taken by a team of at least two trained observers each week. The same

persons undertook the assessment weekly. The daily growth observa-
tions for each paddock were calculated using the visual cover estimates,
previous growth rate, the number of days pre-grazing, the grazing re-
siduals and the number of days since the last growth figure was ob-
tained (Hanrahan, 2017). Although it is the most accurate method of
pasture cover estimation (O’Donovan et al., 2002b), there are errors
associated with visual assessment (Hanrahan, 2017). O’Donovan et al.
(2002b) reported that visual assessment was the most accurate of four
non-destructive methods evaluated and had a R2 of 0.95 compared with
harvesting. Hanrahan (2017) reported an R2 of 0.84 when visual as-
sessment was compared to mechanical harvesting.

2.5. Assessment of weather forecasts in MoSt GGM

2.5.1. Fertiliser study
Weather observations of rainfall, solar radiation and minimum,

maximum and mean 2 m air temperature were employed as model in-
puts to give paddock-level daily grass growth predictions from the MoSt
GGM between 2008 and 2016. These were compared with daily pre-
dictions from the GGM using day-1 to day-10 ECMWF and bias-cor-
rected forecasts of rainfall, solar radiation and minimum, maximum
and mean 2 m air temperature as inputs. Low-skill mean climatological
forecasts were also used as weather inputs to compare with the GGM
predictions employing more skilful forecasts. All of these predictions
(daily predictions over nine years for each set of weather inputs) were
performed at four fertiliser application levels: 0, 100, 200 and 300 kg
N/ha, with the first fertilisation for each year on day 65 of the year, and
the day after the end of each of the first four grazing events of the year.
For each fertiliser application level, the fertiliser events applied the
same amount at all five stages of the year. The first yearly grazing event
happened when the paddock height reached 9 cm, and at 8 cm there-
after. There were 40 animals per grazing event in all model runs. An
example of the grazing dates for the predictions with 300 kg N/ha using
day-1 ECMWF forecasts is provided in Table S1.

2.5.2. Observed grass growth study
Predictions from the MoSt GGM were performed for Teagasc

Moorepark Curtins Research Farm, AGRIC, Moorepark, Fermoy, Co.
Cork, Ireland (52.17 N; 8.27 W) using all of the weather inputs de-
scribed in Section 2.3, and were compared to the grass growth ob-
servations described in Section 2.4. To allow accurate comparisons
between the experimental grass growth observations and predictions
from the MoSt GGM, the farm management inputs in each of the 54
experimental paddocks were replicated in the model. For each grass
growth observation, weather observations were the model inputs from
the first day of the year in question until the day before the period of the
grass growth observation to allow the updates of the MoSt GGM sub-
models. Then the most recent weather forecasts available were used for
the period of the grass growth observation. For example, the model run
between March 4th and 10th 2013 used weather observations from
January 1st to March 3rd, day-1 forecasts for March 4th, and day-7
forecasts for March 10th. The model predictions were also generated
using realised weather observations for the period of the grass growth
observation to allow comparisons. If the period of the grass growth
observation was greater than ten days, forecasts were not available, and
the period was not used for comparisons. This usually happened outside
of the peak growing season (April to September). Thus, some periods at
the beginning and end of the growing season (February to November)
are not described in the study. The period of the grass growth ob-
servation is referred to as a ‘weekly’ observation but can be from four to
ten days in length since it is the growth between pasture cover esti-
mations. The grass growth was predicted for each paddock with
available grass growth figures for the ‘week’, and the ‘weekly’ average
paddock values were computed to describe average farm growth. The
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‘weekly’ values were scaled to daily averages to ensure reasonable
comparisons across weeks, and did not always contain the same number
of paddocks.

2.6. Statistical methods for comparisons

The methods used to compare the MoSt model predictions with each
other and with observed grass growth include Mean Systematic Bias
(MSB = = p o

n
( )i

n
i i1 ), Mean Squared Error (MSE = = p o

n
( )i

n
i i1

2
) and Root

Mean Squared Error (RMSE = MSE ), where pi and oi are the ith pre-
dicted and observed values respectively, and n is the number of pre-
dicted and observed values. Relative Prediction Error (RPE) is the RMSE
divided by the mean of the observed values (Rook et al., 1990). The
MSE can be partitioned into errors in central tendency (mean bias =
p o( ¯ ¯)2), errors due to regression (slope bias = b(1 )p

2 2) and errors
due to unexplained random variation ( R(1 )o

2 2 ), i.e.:
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Where, p
2 and o

2 are the variances of the predictions and observations
respectively, b is the slope of the regression line of observed on pre-
dicted and R2 is the coefficient of determination from this regression.
Ideally, the MSE (and therefore each of the three components) is close
to zero, meaning the predictions and observations agree closely. A high
mean bias component means the predictions are consistently over or
under predicting the observed values. A high slope bias means the best
fit regression line is not similar to the line of equality, meaning equality
of predictions and observations does not describe the relationship. Er-
rors due to unexplained random variation cannot be bias corrected by
linear correction methods. A high value indicates that the points are
scattered widely about the best-fit regression line. These comparison
methods were also sometimes used to compare two sets of predictions
from the MoSt GGM, those using weather forecasts with those using
weather observations.

3. Results

3.1. Fertiliser study

Yearly total grass growth predictions increased as the amount of N
fertiliser increased. For example, the predicted grass growth yearly
totals in 2016 from model runs using weather observations with 0, 100,
200 and 300 kg N/ha were 10100, 12800, 14,800 and 16,200 kg DM/
ha, respectively. However, across N application levels for each forecast
period, the RPE of the predicted grass growth using ECMWF forecasts
versus observed weather was similar, so the accuracy of the predictions
did not change with N application levels (Table S2).

The MoSt GGM predictions using forecasts generally followed those
using weather observations closely for 200 kg N/ha of fertiliser (Fig. 1,
S1). This shows that forecasts can be interchanged with observed
weather with no serious change to the grass growth predictions, but the
interchangeability decreases as the forecast period increases (Fig. S2).
Of the weather forecast types examined, grass growth predictions using
forecasts bias corrected by model gave the lowest RMSE values at all
forecast periods up to eight days in advance (Table 1). It was also the
most effective forecast in predicting grass growth in the short term
(Fig. 1, S1), but did not capture the variations in daily growth as well
for forecast periods over five days (Fig. S2). The ECMWF forecasts
yielded better grass growth

predictions than the low-skill mean climatological forecasts up to
six days in advance, but not for any longer forecast periods (Table 1).

For each forecast period in each year, most of the MSE from the
GGM predictions using ECMWF forecasts was attributable to un-
explained random variation (always above 67% for all N application
levels). The remainder was predominantly due to slope bias. The

error due to unexplained random variation was only 63.6% of the
total MSE at forecast period nine in 2012 with 300 kg N/ha. In 2012,
the errors due to regression from the GGM

predictions using ECMWF forecasts were higher at forecast periods
of over five days than in the other years examined. This was due to
ECMWF forecasts of solar radiation and rainfall over-predicting and
under-predicting, respectively, the observations for many days in June

Fig. 1. Predicted daily grass growth in 2015 for (a) May, (b) June, (c) July and (d) August from the MoSt GGM using weather observations (filled squares), day-2
ECMWF forecasts (empty circles, dotted line) and day-2 forecasts biased corrected by model (crossed diamonds, dotted line) with 200 kg N/ha.
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Table 1
RMSE values (kg DM/ha) comparing daily grass growth predictions for 2008 to
2016 from the MoSt grass growth model using observed weather, with grass
growth predictions from the model using five weather forecasts (weather forecast
type) from 1 to 10 days in advance (forecast period). The fertiliser application
level for these predictions is 200 kg N/ha. The most accurate predictions for each
forecast period are shaded in grey.

Fig. 2. Weekly grass growth (kg DM/ha scaled to daily mean) across all 54 paddocks (filled squares), and corresponding predicted yearly grass growth from the MoSt
GGM using observed weather (empty circles), ECMWF forecasts (empty triangles), forecasts bias corrected by model (crosses), and mean climatology forecasts
(crossed circles) in (a) 2013, (b) 2014, (c) 2015, and (d) 2016. Grass growth is only shown for weeks in which it was recorded.
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2012, leading to over-predictions of grass growth in the month. Bias
correction by model of the day-9 forecasts reduced the RMSE of the
grass growth predictions in June 2012 from 37.8 kg DM/ha when
ECMWF forecasts were used to 29.2 kg DM/ha.

3.2. Observed grass growth study

Weekly predictions from the MoSt GGM generally followed the grass
growth observations closely for all weather inputs (Fig. 2). However, in
many cases the predictions did not capture the weekly variability well
(for example in May and June 2015, Fig. 2c). The grass growth ob-
servations suitable for comparisons in 2015 went from February 16th to
November 2nd, the longest of the four years in the study (Fig. 2c). The
weekly MoSt GGM predictions at the end of the growing season were
often lower than observed grass growth, suggesting that there are
physical processes sustaining grass growth at the end of the year that
are not being captured by the MoSt GGM (Fig. 2). Although mean cli-
matology forecasts yielded good predictions in many weeks, they do not
capture variability in weather and therefore did not capture weekly
variability in grass growth as well as other weather inputs, for example
in July 2013 (Fig. 2a). However, in some years, the weekly variability
of the grass growth observations was not predicted well by the MoSt
GGM regardless of the weather input used, for example in August 2014,
and in May and June 2015. This was likely due to the fact that the MoSt
GGM must describe a number of physical processes to predict grass
growth such as N leaching and the water content in the soil. These
physical processes cannot be checked for accuracy using actual ob-
servations, and if they become inaccurate the grass growth predictions
will be less accurate. The total grass growth during the growing

season was predicted accurately in most years from 2013 to 2016,
inclusive, by MoSt GGM predictions using actual weather, ECMWF
forecasts, forecasts bias corrected by model and mean climatology
forecasts as weather inputs (Fig. 3). However, all weather inputs over-
predicted the observed total grass growth in 2013, 2014 and 2015
(Fig. 3). As expected, the predictions using actual weather generally
gave the best estimates of the yearly total. The paddock variability of
the yearly totals was similar for all predictions from the MoSt GGM
regardless of the weather input. The paddock to paddock variability of
the observed grass growth (obs) was slightly higher than predicted in
all years (Fig. 3). This was also the case for the weekly grass growth
values, for example in 2014 (Fig. S3). The monthly observed grass
growth totals were followed closely by monthly grass growth predic-
tions for each of the weather inputs (Table 2). The MoSt model run

using forecasts bias corrected by model gave a lower RMSE value in
2015 than the runs using actual weather, and ECMWF and mean cli-
matology forecasts (Table 3). In some of the years, and in some seasons
within the years, actual weather had higher RMSE values than BC by
model and mean climatology forecasts.

4. Discussion

4.1. Fertiliser study

The results suggest that weather forecasts can be useful predictors in
a GGM, with varying accuracy for the different methods. The fertiliser
study showed that grass growth predictions from the MoSt GGM using

Fig. 3. Total grass growth during the growing
season, averaged across all 54 paddocks from
2013 to 2016 (observed growth), and corre-
sponding predicted grass growth from the MoSt
GGM using actual weather (actual), mean cli-
matology forecasts (clim), ECMWF forecasts
(fore), and forecasts bias corrected by model
(model_BC). The standard errors of the ob-
servations and predictions are shown in the
error bars.

Table 2
Monthly grass growth observations and predictions (kg DM/ha) for 2013–2016.

Weather input

Month Year Observed
grass growth

Actual
weather

ECMWF BC by
model

Mean
climatology

4 2013 1481 2129 2110 2164 2465
5 2013 1924 2506 2798 2707 2684
6 2013 1798 2196 2298 2199 2256
7 2013 1837 1900 2316 2364 2594
8 2013 1991 1832 1932 1689 1916
9 2013 1525 1405 1524 877 1604

4 2014 1937 1916 2134 2099 1974
5 2014 2044 2404 2603 2504 2561
6 2014 2665 2766 2864 2751 2704
7 2014 2280 2064 2247 2177 2194
8 2014 1581 1960 2161 1989 1909
9 2014 1788 2043 2171 1916 1797

4 2015 2016 2295 2463 2408 2124
5 2015 2065 2495 2442 2540 2701
6 2015 2393 2882 2918 2824 2802
7 2015 2034 1970 2014 2010 2176
8 2015 2043 2324 2401 2266 2274
9 2015 1574 1336 1466 1382 1378

4 2016 1416 1558 1714 1701 1787
5 2016 3103 3253 3376 3294 3312
6 2016 2427 2165 2390 2323 2377
7 2016 2355 1977 2107 2063 2309
8 2016 2265 2253 2381 2284 2347
9 2016 1356 1371 1445 1342 1519
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weather forecasts can give similar predictions to those using weather
observations, particularly after bias corrections, although decrease in
accuracy as forecast period increases (Fig. 1, Table 1). This is because
weather forecasts predict weather observations less accurately as fore-
cast period increases. The example in which poor ECMWF forecasts in
June 2012 resulted in poor predictions from the MoSt GGM illustrates
the influence that inaccurate weather forecasts can have on predictions
from the MoSt GGM, and how bias corrections can improve prediction
accuracy.

The predictions using forecasts bias corrected by model failing to
capture variability was linked to the problem identified in McDonnell
et al. (2018): ECMWF forecasts (particularly of rainfall) were not ac-
curate at longer forecast lead times, so forecasts bias corrected by
model were close to the mean rainfall. This resulted in similarly con-
servative grass growth estimates from the MoSt GGM. When using the
MoSt GGM in practice, if the intention is to get accurate daily grass
growth predictions between 1 and 6 days in advance, it is generally best
to use forecasts bias corrected by model (Fig. 1, S1). However, if the
priority is to predict the daily fluctuations in grass growth for 7–10 days
in advance, it would be recommendable not to use forecasts bias cor-
rected by model or mean climatological forecasts, but to use ECMWF
forecasts instead (Fig. S2).

4.2. Observed grass growth study

The observed grass growth simulations showed that grass growth
could be modelled accurately during the growing season using weather
observations, and predicted a week in advance by weather forecasts.
Bias corrected by model and mean climatological forecasts often gave
the most accurate grass growth predictions, according to the RMSE
values (Table 3). RMSE gives a high weight to high errors, and the more
conservative bias corrected by model and mean climatological weather
forecasts yield grass growth predictions with lower RMSE values, sug-
gesting that the MoSt GGM does not capture some extreme grass growth
observations. Mean climatology can be a useful weather input, as it
gives the expected grass growth performance of the farm based on the
usual weather for the month in question. It does not capture grass
growth variability, but it is a good prediction to compare with predic-
tions using other weather inputs which should describe the fluctuations
in grass growth more accurately.

The grass growth predictions at the end of the growing season were
generally lower than the observed grass growth for all weather inputs to
the MoSt model. This could be due to the method of estimation for the
grass growth observations. Visual observation may result in the esti-
mation of higher covers on pastures than the actual values. In many
weeks, forecasts bias corrected by model gave similar grass growth
predictions to the mean climatological forecast grass growth predic-
tions. This was due to the poor forecasting ability of rainfall and solar
radiation at long forecast periods causing bias correcting by model to
give forecasts close to the mean climatology for these weather vari-
ables. Thus, grass growth predictions using forecasts bias corrected by
model often under-predicted weekly grass growth fluctuations. Some of

the large changes in weekly grass growth were not predicted well by the
MoSt GGM regardless of the weather used, including weather ob-
servations. This suggests that the MoSt GGM is not always describing
the physical processes required in the model sufficiently to allow the
weather to predict the change in grass growth accurately. However, this
is a first step towards the inclusion of weather forecasts in a GGM which
shows promise. As more data is acquired over longer time scales and at
more locations, it will be possible to adapt the MoSt GGM to better
describe these processes such as N leaching.

These predictions were conducted at one site which is a well-man-
aged dairy research farm with free-draining soils and high grass growth,
and easily accessible weather observations. However, if this GGM tool
was to be used in practice by farmers as part of the Pasture Base Ireland
framework (Hanrahan, 2017), it would have to give accurate predic-
tions in many different locations on different soil types with varying
levels of farm management (Ruelle et al., 2017). Although an increasing
number of Irish farmers record daily on-farm weather observations,
they will not be available at most sites, and the bias-correction methods
may not give improvements as the nearest available weather stations
may not describe the farm accurately enough. In these cases, it would
make sense to use the ECMWF forecasts in the MoSt GGM.

4.3. Future work

The predictions presented in this paper are from the MoSt GGM
described in Ruelle et al. (2018). The MoSt GGM will be incorporated
into the Pasture Base Ireland framework, and use weather forecasts to
give farmers grass growth predictions for their farm. As with any pre-
dictive model, it can be updated to improve the accuracy of the pre-
dictions. The MoSt GGM currently predicts for perennial ryegrass sys-
tems (Ruelle et al., 2018). However, it could be adapted to include
mixed-species swards, including those with white clover. White clover
is being included in increasing numbers of grassland systems in Ireland
because of its N fixation traits, and the resultant increase in dry matter
yield (Guy et al., 2018), as well as increased animal performance as-
sociated with mixed perennial ryegrass white clover swards (Egan et al.,
2018). Sowing species mixtures that include legumes such as white
clover can help to stabilise yield output at different levels of N appli-
cation (Suter et al., 2005). For example, in the fertiliser study, the dry
matter yields would probably have been more similar across the N
fertiliser levels if white clover was included in the system.

The MoSt GGM under-predicted grass growth in the early and late
growing season. Also, many of the extreme grass growth observations
were not detected by the model for any of the weather inputs. It should
be investigated whether these poor predictions happen at other loca-
tions, and if so, the causes of the problems identified and fixed. Weather
forecasts are not usually good at predicting extremes accurately at a
weekly scale but, using weather and grass growth observations, the
GGM model runs could be updated to capture the extreme grass growth
values. It is important for farmers to be able to prepare for extreme
weather and grass growth conditions.

5. Conclusions

The MoSt GGM can utilise weather forecasts to predict short-term
grass growth, and aid farmers with their daily management decisions. It
has been shown to capture the variability in systems using different
amounts of N fertiliser, and to accurately describe weekly on-farm grass
growth observations. We have demonstrated that weather forecasts can
be a useful input to a grass growth model and have the potential to
enhance on-farm resource use efficiency, as pressure mounts on farms
to increase outputs to meet extra food demands. As the MoSt GGM uses
weather forecasts to predict grass growth at more farms, and over
longer time periods, it can be adapted to describe physical processes
that influence grass growth more accurately, improving the accuracy of
the predictions. ECMWF forecasts are the best overall input to predict

Table 3
RMSE values (kg DM/ha) comparing daily average of ‘weekly’ grass growth
observations for 2013 to 2016 with grass growth predictions from the model
using the weather observations and various weather forecasts.

Year Weather input

Actual weather ECMWF BC by model Mean climatology

2013 18.8 21.8 24.4 22.7
2014 16.7 18.2 14.9 13.0
2015 14.7 15.1 13.8 14.6
2016 16.4 16.2 15.7 14.0
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future grass growth. Forecasts bias corrected by model require local
weather observations which are not always available, and they often
give conservative forecasts close to the mean climatological value for
rainfall and solar radiation. This means the MoSt GGM cannot predict
the more extreme grass growth changes using forecasts bias corrected
by model. Similarly, because they do not capture daily changes in
weather, mean climatological values are not as useful as ECMWF
forecasts as inputs for the MoSt GGM. However, they are easily ob-
tained in comparison to the other weather inputs since they are the
same for each year. ECMWF forecasts predict the weekly variation in
grass growth best, which is what farmers using the MoSt GGM in
practice would be most interested in.
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